M7350/base/core/jni/android/opengl/util.cpp
2024-09-09 08:52:07 +00:00

1084 lines
32 KiB
C++

/**
** Copyright 2007, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <nativehelper/jni.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <dlfcn.h>
#include <GLES/gl.h>
#include <ETC1/etc1.h>
#include <core/SkBitmap.h>
#include "android_runtime/AndroidRuntime.h"
#undef LOG_TAG
#define LOG_TAG "OpenGLUtil"
#include <utils/Log.h>
#include "utils/misc.h"
#include "poly.h"
namespace android {
static jclass gIAEClass;
static jclass gUOEClass;
static jclass gAIOOBEClass;
static inline
void mx4transform(float x, float y, float z, float w, const float* pM, float* pDest) {
pDest[0] = pM[0 + 4 * 0] * x + pM[0 + 4 * 1] * y + pM[0 + 4 * 2] * z + pM[0 + 4 * 3] * w;
pDest[1] = pM[1 + 4 * 0] * x + pM[1 + 4 * 1] * y + pM[1 + 4 * 2] * z + pM[1 + 4 * 3] * w;
pDest[2] = pM[2 + 4 * 0] * x + pM[2 + 4 * 1] * y + pM[2 + 4 * 2] * z + pM[2 + 4 * 3] * w;
pDest[3] = pM[3 + 4 * 0] * x + pM[3 + 4 * 1] * y + pM[3 + 4 * 2] * z + pM[3 + 4 * 3] * w;
}
class MallocHelper {
public:
MallocHelper() {
mData = 0;
}
~MallocHelper() {
if (mData != 0) {
free(mData);
}
}
void* alloc(size_t size) {
mData = malloc(size);
return mData;
}
private:
void* mData;
};
#if 0
static
void
print_poly(const char* label, Poly* pPoly) {
LOGI("%s: %d verts", label, pPoly->n);
for(int i = 0; i < pPoly->n; i++) {
Poly_vert* pV = & pPoly->vert[i];
LOGI("[%d] %g, %g, %g %g", i, pV->sx, pV->sy, pV->sz, pV->sw);
}
}
#endif
static
int visibilityTest(float* pWS, float* pPositions, int positionsLength,
unsigned short* pIndices, int indexCount) {
MallocHelper mallocHelper;
int result = POLY_CLIP_OUT;
float* pTransformed = 0;
int transformedIndexCount = 0;
if ( indexCount < 3 ) {
return POLY_CLIP_OUT;
}
// Find out how many vertices we need to transform
// We transform every vertex between the min and max indices, inclusive.
// This is OK for the data sets we expect to use with this function, but
// for other loads it might be better to use a more sophisticated vertex
// cache of some sort.
int minIndex = 65536;
int maxIndex = -1;
for(int i = 0; i < indexCount; i++) {
int index = pIndices[i];
if ( index < minIndex ) {
minIndex = index;
}
if ( index > maxIndex ) {
maxIndex = index;
}
}
if ( maxIndex * 3 > positionsLength) {
return -1;
}
transformedIndexCount = maxIndex - minIndex + 1;
pTransformed = (float*) mallocHelper.alloc(transformedIndexCount * 4 * sizeof(float));
if (pTransformed == 0 ) {
return -2;
}
// Transform the vertices
{
const float* pSrc = pPositions + 3 * minIndex;
float* pDst = pTransformed;
for (int i = 0; i < transformedIndexCount; i++, pSrc += 3, pDst += 4) {
mx4transform(pSrc[0], pSrc[1], pSrc[2], 1.0f, pWS, pDst);
}
}
// Clip the triangles
Poly poly;
float* pDest = & poly.vert[0].sx;
for (int i = 0; i < indexCount; i += 3) {
poly.n = 3;
memcpy(pDest , pTransformed + 4 * (pIndices[i ] - minIndex), 4 * sizeof(float));
memcpy(pDest + 4, pTransformed + 4 * (pIndices[i + 1] - minIndex), 4 * sizeof(float));
memcpy(pDest + 8, pTransformed + 4 * (pIndices[i + 2] - minIndex), 4 * sizeof(float));
result = poly_clip_to_frustum(&poly);
if ( result != POLY_CLIP_OUT) {
return result;
}
}
return result;
}
template<class JArray, class T>
class ArrayHelper {
public:
ArrayHelper(JNIEnv* env, JArray ref, jint offset, jint minSize) {
mEnv = env;
mRef = ref;
mOffset = offset;
mMinSize = minSize;
mBase = 0;
mReleaseParam = JNI_ABORT;
}
~ArrayHelper() {
if (mBase) {
mEnv->ReleasePrimitiveArrayCritical(mRef, mBase, mReleaseParam);
}
}
// We seperate the bounds check from the initialization because we want to
// be able to bounds-check multiple arrays, and we can't throw an exception
// after we've called GetPrimitiveArrayCritical.
// Return true if the bounds check succeeded
// Else instruct the runtime to throw an exception
bool check() {
if ( ! mRef) {
mEnv->ThrowNew(gIAEClass, "array == null");
return false;
}
if ( mOffset < 0) {
mEnv->ThrowNew(gIAEClass, "offset < 0");
return false;
}
mLength = mEnv->GetArrayLength(mRef) - mOffset;
if (mLength < mMinSize ) {
mEnv->ThrowNew(gIAEClass, "length - offset < n");
return false;
}
return true;
}
// Bind the array.
void bind() {
mBase = (T*) mEnv->GetPrimitiveArrayCritical(mRef, (jboolean *) 0);
mData = mBase + mOffset;
}
void commitChanges() {
mReleaseParam = 0;
}
T* mData;
int mLength;
private:
T* mBase;
JNIEnv* mEnv;
JArray mRef;
jint mOffset;
jint mMinSize;
int mReleaseParam;
};
typedef ArrayHelper<jfloatArray, float> FloatArrayHelper;
typedef ArrayHelper<jcharArray, unsigned short> UnsignedShortArrayHelper;
typedef ArrayHelper<jintArray, int> IntArrayHelper;
typedef ArrayHelper<jbyteArray, unsigned char> ByteArrayHelper;
inline float distance2(float x, float y, float z) {
return x * x + y * y + z * z;
}
inline float distance(float x, float y, float z) {
return sqrtf(distance2(x, y, z));
}
static
void util_computeBoundingSphere(JNIEnv *env, jclass clazz,
jfloatArray positions_ref, jint positionsOffset, jint positionsCount,
jfloatArray sphere_ref, jint sphereOffset) {
FloatArrayHelper positions(env, positions_ref, positionsOffset, 0);
FloatArrayHelper sphere(env, sphere_ref, sphereOffset, 4);
bool checkOK = positions.check() && sphere.check();
if (! checkOK) {
return;
}
positions.bind();
sphere.bind();
if ( positionsCount < 1 ) {
env->ThrowNew(gIAEClass, "positionsCount < 1");
return;
}
const float* pSrc = positions.mData;
// find bounding box
float x0 = *pSrc++;
float x1 = x0;
float y0 = *pSrc++;
float y1 = y0;
float z0 = *pSrc++;
float z1 = z0;
for(int i = 1; i < positionsCount; i++) {
{
float x = *pSrc++;
if (x < x0) {
x0 = x;
}
else if (x > x1) {
x1 = x;
}
}
{
float y = *pSrc++;
if (y < y0) {
y0 = y;
}
else if (y > y1) {
y1 = y;
}
}
{
float z = *pSrc++;
if (z < z0) {
z0 = z;
}
else if (z > z1) {
z1 = z;
}
}
}
// Because we know our input meshes fit pretty well into bounding boxes,
// just take the diagonal of the box as defining our sphere.
float* pSphere = sphere.mData;
float dx = x1 - x0;
float dy = y1 - y0;
float dz = z1 - z0;
*pSphere++ = x0 + dx * 0.5f;
*pSphere++ = y0 + dy * 0.5f;
*pSphere++ = z0 + dz * 0.5f;
*pSphere++ = distance(dx, dy, dz) * 0.5f;
sphere.commitChanges();
}
static void normalizePlane(float* p) {
float rdist = 1.0f / distance(p[0], p[1], p[2]);
for(int i = 0; i < 4; i++) {
p[i] *= rdist;
}
}
static inline float dot3(float x0, float y0, float z0, float x1, float y1, float z1) {
return x0 * x1 + y0 * y1 + z0 * z1;
}
static inline float signedDistance(const float* pPlane, float x, float y, float z) {
return dot3(pPlane[0], pPlane[1], pPlane[2], x, y, z) + pPlane[3];
}
// Return true if the sphere intersects or is inside the frustum
static bool sphereHitsFrustum(const float* pFrustum, const float* pSphere) {
float x = pSphere[0];
float y = pSphere[1];
float z = pSphere[2];
float negRadius = -pSphere[3];
for (int i = 0; i < 6; i++, pFrustum += 4) {
if (signedDistance(pFrustum, x, y, z) <= negRadius) {
return false;
}
}
return true;
}
static void computeFrustum(const float* m, float* f) {
float m3 = m[3];
float m7 = m[7];
float m11 = m[11];
float m15 = m[15];
// right
f[0] = m3 - m[0];
f[1] = m7 - m[4];
f[2] = m11 - m[8];
f[3] = m15 - m[12];
normalizePlane(f);
f+= 4;
// left
f[0] = m3 + m[0];
f[1] = m7 + m[4];
f[2] = m11 + m[8];
f[3] = m15 + m[12];
normalizePlane(f);
f+= 4;
// top
f[0] = m3 - m[1];
f[1] = m7 - m[5];
f[2] = m11 - m[9];
f[3] = m15 - m[13];
normalizePlane(f);
f+= 4;
// bottom
f[0] = m3 + m[1];
f[1] = m7 + m[5];
f[2] = m11 + m[9];
f[3] = m15 + m[13];
normalizePlane(f);
f+= 4;
// far
f[0] = m3 - m[2];
f[1] = m7 - m[6];
f[2] = m11 - m[10];
f[3] = m15 - m[14];
normalizePlane(f);
f+= 4;
// near
f[0] = m3 + m[2];
f[1] = m7 + m[6];
f[2] = m11 + m[10];
f[3] = m15 + m[14];
normalizePlane(f);
}
static
int util_frustumCullSpheres(JNIEnv *env, jclass clazz,
jfloatArray mvp_ref, jint mvpOffset,
jfloatArray spheres_ref, jint spheresOffset, jint spheresCount,
jintArray results_ref, jint resultsOffset, jint resultsCapacity) {
float frustum[6*4];
int outputCount;
int* pResults;
float* pSphere;
FloatArrayHelper mvp(env, mvp_ref, mvpOffset, 16);
FloatArrayHelper spheres(env, spheres_ref, spheresOffset, spheresCount * 4);
IntArrayHelper results(env, results_ref, resultsOffset, resultsCapacity);
bool initializedOK = mvp.check() && spheres.check() && results.check();
if (! initializedOK) {
return -1;
}
mvp.bind();
spheres.bind();
results.bind();
computeFrustum(mvp.mData, frustum);
// Cull the spheres
pSphere = spheres.mData;
pResults = results.mData;
outputCount = 0;
for(int i = 0; i < spheresCount; i++, pSphere += 4) {
if (sphereHitsFrustum(frustum, pSphere)) {
if (outputCount < resultsCapacity) {
*pResults++ = i;
}
outputCount++;
}
}
results.commitChanges();
return outputCount;
}
/*
public native int visibilityTest(float[] ws, int wsOffset,
float[] positions, int positionsOffset,
char[] indices, int indicesOffset, int indexCount);
*/
static
int util_visibilityTest(JNIEnv *env, jclass clazz,
jfloatArray ws_ref, jint wsOffset,
jfloatArray positions_ref, jint positionsOffset,
jcharArray indices_ref, jint indicesOffset, jint indexCount) {
FloatArrayHelper ws(env, ws_ref, wsOffset, 16);
FloatArrayHelper positions(env, positions_ref, positionsOffset, 0);
UnsignedShortArrayHelper indices(env, indices_ref, indicesOffset, 0);
bool checkOK = ws.check() && positions.check() && indices.check();
if (! checkOK) {
// Return value will be ignored, because an exception has been thrown.
return -1;
}
if (indices.mLength < indexCount) {
env->ThrowNew(gIAEClass, "length < offset + indexCount");
// Return value will be ignored, because an exception has been thrown.
return -1;
}
ws.bind();
positions.bind();
indices.bind();
return visibilityTest(ws.mData,
positions.mData, positions.mLength,
indices.mData, indexCount);
}
#define I(_i, _j) ((_j)+ 4*(_i))
static
void multiplyMM(float* r, const float* lhs, const float* rhs)
{
for (int i=0 ; i<4 ; i++) {
register const float rhs_i0 = rhs[ I(i,0) ];
register float ri0 = lhs[ I(0,0) ] * rhs_i0;
register float ri1 = lhs[ I(0,1) ] * rhs_i0;
register float ri2 = lhs[ I(0,2) ] * rhs_i0;
register float ri3 = lhs[ I(0,3) ] * rhs_i0;
for (int j=1 ; j<4 ; j++) {
register const float rhs_ij = rhs[ I(i,j) ];
ri0 += lhs[ I(j,0) ] * rhs_ij;
ri1 += lhs[ I(j,1) ] * rhs_ij;
ri2 += lhs[ I(j,2) ] * rhs_ij;
ri3 += lhs[ I(j,3) ] * rhs_ij;
}
r[ I(i,0) ] = ri0;
r[ I(i,1) ] = ri1;
r[ I(i,2) ] = ri2;
r[ I(i,3) ] = ri3;
}
}
static
void util_multiplyMM(JNIEnv *env, jclass clazz,
jfloatArray result_ref, jint resultOffset,
jfloatArray lhs_ref, jint lhsOffset,
jfloatArray rhs_ref, jint rhsOffset) {
FloatArrayHelper resultMat(env, result_ref, resultOffset, 16);
FloatArrayHelper lhs(env, lhs_ref, lhsOffset, 16);
FloatArrayHelper rhs(env, rhs_ref, rhsOffset, 16);
bool checkOK = resultMat.check() && lhs.check() && rhs.check();
if ( !checkOK ) {
return;
}
resultMat.bind();
lhs.bind();
rhs.bind();
multiplyMM(resultMat.mData, lhs.mData, rhs.mData);
resultMat.commitChanges();
}
static
void multiplyMV(float* r, const float* lhs, const float* rhs)
{
mx4transform(rhs[0], rhs[1], rhs[2], rhs[3], lhs, r);
}
static
void util_multiplyMV(JNIEnv *env, jclass clazz,
jfloatArray result_ref, jint resultOffset,
jfloatArray lhs_ref, jint lhsOffset,
jfloatArray rhs_ref, jint rhsOffset) {
FloatArrayHelper resultV(env, result_ref, resultOffset, 4);
FloatArrayHelper lhs(env, lhs_ref, lhsOffset, 16);
FloatArrayHelper rhs(env, rhs_ref, rhsOffset, 4);
bool checkOK = resultV.check() && lhs.check() && rhs.check();
if ( !checkOK ) {
return;
}
resultV.bind();
lhs.bind();
rhs.bind();
multiplyMV(resultV.mData, lhs.mData, rhs.mData);
resultV.commitChanges();
}
// ---------------------------------------------------------------------------
static jfieldID nativeBitmapID = 0;
void nativeUtilsClassInit(JNIEnv *env, jclass clazz)
{
jclass bitmapClass = env->FindClass("android/graphics/Bitmap");
nativeBitmapID = env->GetFieldID(bitmapClass, "mNativeBitmap", "I");
}
static int checkFormat(SkBitmap::Config config, int format, int type)
{
switch(config) {
case SkBitmap::kIndex8_Config:
if (format == GL_PALETTE8_RGBA8_OES)
return 0;
case SkBitmap::kARGB_8888_Config:
case SkBitmap::kA8_Config:
if (type == GL_UNSIGNED_BYTE)
return 0;
case SkBitmap::kARGB_4444_Config:
case SkBitmap::kRGB_565_Config:
switch (type) {
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_5_5_1:
return 0;
case GL_UNSIGNED_BYTE:
if (format == GL_LUMINANCE_ALPHA)
return 0;
}
break;
default:
break;
}
return -1;
}
static int getInternalFormat(SkBitmap::Config config)
{
switch(config) {
case SkBitmap::kA8_Config:
return GL_ALPHA;
case SkBitmap::kARGB_4444_Config:
return GL_RGBA;
case SkBitmap::kARGB_8888_Config:
return GL_RGBA;
case SkBitmap::kIndex8_Config:
return GL_PALETTE8_RGBA8_OES;
case SkBitmap::kRGB_565_Config:
return GL_RGB;
default:
return -1;
}
}
static int getType(SkBitmap::Config config)
{
switch(config) {
case SkBitmap::kA8_Config:
return GL_UNSIGNED_BYTE;
case SkBitmap::kARGB_4444_Config:
return GL_UNSIGNED_SHORT_4_4_4_4;
case SkBitmap::kARGB_8888_Config:
return GL_UNSIGNED_BYTE;
case SkBitmap::kIndex8_Config:
return -1; // No type for compressed data.
case SkBitmap::kRGB_565_Config:
return GL_UNSIGNED_SHORT_5_6_5;
default:
return -1;
}
}
static jint util_getInternalFormat(JNIEnv *env, jclass clazz,
jobject jbitmap)
{
SkBitmap const * nativeBitmap =
(SkBitmap const *)env->GetIntField(jbitmap, nativeBitmapID);
const SkBitmap& bitmap(*nativeBitmap);
SkBitmap::Config config = bitmap.getConfig();
return getInternalFormat(config);
}
static jint util_getType(JNIEnv *env, jclass clazz,
jobject jbitmap)
{
SkBitmap const * nativeBitmap =
(SkBitmap const *)env->GetIntField(jbitmap, nativeBitmapID);
const SkBitmap& bitmap(*nativeBitmap);
SkBitmap::Config config = bitmap.getConfig();
return getType(config);
}
static jint util_texImage2D(JNIEnv *env, jclass clazz,
jint target, jint level, jint internalformat,
jobject jbitmap, jint type, jint border)
{
SkBitmap const * nativeBitmap =
(SkBitmap const *)env->GetIntField(jbitmap, nativeBitmapID);
const SkBitmap& bitmap(*nativeBitmap);
SkBitmap::Config config = bitmap.getConfig();
if (internalformat < 0) {
internalformat = getInternalFormat(config);
}
if (type < 0) {
type = getType(config);
}
int err = checkFormat(config, internalformat, type);
if (err)
return err;
bitmap.lockPixels();
const int w = bitmap.width();
const int h = bitmap.height();
const void* p = bitmap.getPixels();
if (internalformat == GL_PALETTE8_RGBA8_OES) {
if (sizeof(SkPMColor) != sizeof(uint32_t)) {
err = -1;
goto error;
}
const size_t size = bitmap.getSize();
const size_t palette_size = 256*sizeof(SkPMColor);
const size_t imageSize = size + palette_size;
void* const data = malloc(imageSize);
if (data) {
void* const pixels = (char*)data + palette_size;
SkColorTable* ctable = bitmap.getColorTable();
memcpy(data, ctable->lockColors(), ctable->count() * sizeof(SkPMColor));
memcpy(pixels, p, size);
ctable->unlockColors(false);
glCompressedTexImage2D(target, level, internalformat, w, h, border, imageSize, data);
free(data);
} else {
err = -1;
}
} else {
glTexImage2D(target, level, internalformat, w, h, border, internalformat, type, p);
}
error:
bitmap.unlockPixels();
return err;
}
static jint util_texSubImage2D(JNIEnv *env, jclass clazz,
jint target, jint level, jint xoffset, jint yoffset,
jobject jbitmap, jint format, jint type)
{
SkBitmap const * nativeBitmap =
(SkBitmap const *)env->GetIntField(jbitmap, nativeBitmapID);
const SkBitmap& bitmap(*nativeBitmap);
SkBitmap::Config config = bitmap.getConfig();
if (format < 0) {
format = getInternalFormat(config);
if (format == GL_PALETTE8_RGBA8_OES)
return -1; // glCompressedTexSubImage2D() not supported
}
int err = checkFormat(config, format, type);
if (err)
return err;
bitmap.lockPixels();
const int w = bitmap.width();
const int h = bitmap.height();
const void* p = bitmap.getPixels();
glTexSubImage2D(target, level, xoffset, yoffset, w, h, format, type, p);
bitmap.unlockPixels();
return 0;
}
/*
* ETC1 methods.
*/
static jclass nioAccessClass;
static jclass bufferClass;
static jmethodID getBasePointerID;
static jmethodID getBaseArrayID;
static jmethodID getBaseArrayOffsetID;
static jfieldID positionID;
static jfieldID limitID;
static jfieldID elementSizeShiftID;
/* Cache method IDs each time the class is loaded. */
static void
nativeClassInitBuffer(JNIEnv *_env)
{
jclass nioAccessClassLocal = _env->FindClass("java/nio/NIOAccess");
nioAccessClass = (jclass) _env->NewGlobalRef(nioAccessClassLocal);
jclass bufferClassLocal = _env->FindClass("java/nio/Buffer");
bufferClass = (jclass) _env->NewGlobalRef(bufferClassLocal);
getBasePointerID = _env->GetStaticMethodID(nioAccessClass,
"getBasePointer", "(Ljava/nio/Buffer;)J");
getBaseArrayID = _env->GetStaticMethodID(nioAccessClass,
"getBaseArray", "(Ljava/nio/Buffer;)Ljava/lang/Object;");
getBaseArrayOffsetID = _env->GetStaticMethodID(nioAccessClass,
"getBaseArrayOffset", "(Ljava/nio/Buffer;)I");
positionID = _env->GetFieldID(bufferClass, "position", "I");
limitID = _env->GetFieldID(bufferClass, "limit", "I");
elementSizeShiftID =
_env->GetFieldID(bufferClass, "_elementSizeShift", "I");
}
static void *
getPointer(JNIEnv *_env, jobject buffer, jint *remaining)
{
jint position;
jint limit;
jint elementSizeShift;
jlong pointer;
jint offset;
void *data;
position = _env->GetIntField(buffer, positionID);
limit = _env->GetIntField(buffer, limitID);
elementSizeShift = _env->GetIntField(buffer, elementSizeShiftID);
*remaining = (limit - position) << elementSizeShift;
pointer = _env->CallStaticLongMethod(nioAccessClass,
getBasePointerID, buffer);
if (pointer != 0L) {
return (void *) (jint) pointer;
}
return NULL;
}
class BufferHelper {
public:
BufferHelper(JNIEnv *env, jobject buffer) {
mEnv = env;
mBuffer = buffer;
mData = NULL;
mRemaining = 0;
}
bool checkPointer(const char* errorMessage) {
if (mBuffer) {
mData = getPointer(mEnv, mBuffer, &mRemaining);
if (mData == NULL) {
mEnv->ThrowNew(gIAEClass, errorMessage);
}
return mData != NULL;
} else {
mEnv->ThrowNew(gIAEClass, errorMessage);
return false;
}
}
inline void* getData() {
return mData;
}
inline jint remaining() {
return mRemaining;
}
private:
JNIEnv* mEnv;
jobject mBuffer;
void* mData;
jint mRemaining;
};
/**
* Encode a block of pixels.
*
* @param in a pointer to a ETC1_DECODED_BLOCK_SIZE array of bytes that represent a
* 4 x 4 square of 3-byte pixels in form R, G, B. Byte (3 * (x + 4 * y) is the R
* value of pixel (x, y).
*
* @param validPixelMask is a 16-bit mask where bit (1 << (x + y * 4)) indicates whether
* the corresponding (x,y) pixel is valid. Invalid pixel color values are ignored when compressing.
*
* @param out an ETC1 compressed version of the data.
*
*/
static void etc1_encodeBlock(JNIEnv *env, jclass clazz,
jobject in, jint validPixelMask, jobject out) {
if (validPixelMask < 0 || validPixelMask > 15) {
env->ThrowNew(gIAEClass, "validPixelMask");
return;
}
BufferHelper inB(env, in);
BufferHelper outB(env, out);
if (inB.checkPointer("in") && outB.checkPointer("out")) {
if (inB.remaining() < ETC1_DECODED_BLOCK_SIZE) {
env->ThrowNew(gIAEClass, "in's remaining data < DECODED_BLOCK_SIZE");
} else if (outB.remaining() < ETC1_ENCODED_BLOCK_SIZE) {
env->ThrowNew(gIAEClass, "out's remaining data < ENCODED_BLOCK_SIZE");
} else {
etc1_encode_block((etc1_byte*) inB.getData(), validPixelMask,
(etc1_byte*) outB.getData());
}
}
}
/**
* Decode a block of pixels.
*
* @param in an ETC1 compressed version of the data.
*
* @param out a pointer to a ETC_DECODED_BLOCK_SIZE array of bytes that represent a
* 4 x 4 square of 3-byte pixels in form R, G, B. Byte (3 * (x + 4 * y) is the R
* value of pixel (x, y).
*/
static void etc1_decodeBlock(JNIEnv *env, jclass clazz,
jobject in, jobject out){
BufferHelper inB(env, in);
BufferHelper outB(env, out);
if (inB.checkPointer("in") && outB.checkPointer("out")) {
if (inB.remaining() < ETC1_ENCODED_BLOCK_SIZE) {
env->ThrowNew(gIAEClass, "in's remaining data < ENCODED_BLOCK_SIZE");
} else if (outB.remaining() < ETC1_DECODED_BLOCK_SIZE) {
env->ThrowNew(gIAEClass, "out's remaining data < DECODED_BLOCK_SIZE");
} else {
etc1_decode_block((etc1_byte*) inB.getData(),
(etc1_byte*) outB.getData());
}
}
}
/**
* Return the size of the encoded image data (does not include size of PKM header).
*/
static jint etc1_getEncodedDataSize(JNIEnv *env, jclass clazz,
jint width, jint height) {
return etc1_get_encoded_data_size(width, height);
}
/**
* Encode an entire image.
* @param in pointer to the image data. Formatted such that
* pixel (x,y) is at pIn + pixelSize * x + stride * y + redOffset;
* @param out pointer to encoded data. Must be large enough to store entire encoded image.
*/
static void etc1_encodeImage(JNIEnv *env, jclass clazz,
jobject in, jint width, jint height,
jint pixelSize, jint stride, jobject out) {
if (pixelSize < 2 || pixelSize > 3) {
env->ThrowNew(gIAEClass, "pixelSize must be 2 or 3");
return;
}
BufferHelper inB(env, in);
BufferHelper outB(env, out);
if (inB.checkPointer("in") && outB.checkPointer("out")) {
jint imageSize = stride * height;
jint encodedImageSize = etc1_get_encoded_data_size(width, height);
if (inB.remaining() < imageSize) {
env->ThrowNew(gIAEClass, "in's remaining data < image size");
} else if (outB.remaining() < encodedImageSize) {
env->ThrowNew(gIAEClass, "out's remaining data < encoded image size");
} else {
int result = etc1_encode_image((etc1_byte*) inB.getData(),
width, height, pixelSize,
stride,
(etc1_byte*) outB.getData());
}
}
}
/**
* Decode an entire image.
* @param in the encoded data.
* @param out pointer to the image data. Will be written such that
* pixel (x,y) is at pIn + pixelSize * x + stride * y. Must be
* large enough to store entire image.
*/
static void etc1_decodeImage(JNIEnv *env, jclass clazz,
jobject in, jobject out,
jint width, jint height,
jint pixelSize, jint stride) {
if (pixelSize < 2 || pixelSize > 3) {
env->ThrowNew(gIAEClass, "pixelSize must be 2 or 3");
return;
}
BufferHelper inB(env, in);
BufferHelper outB(env, out);
if (inB.checkPointer("in") && outB.checkPointer("out")) {
jint imageSize = stride * height;
jint encodedImageSize = etc1_get_encoded_data_size(width, height);
if (inB.remaining() < encodedImageSize) {
env->ThrowNew(gIAEClass, "in's remaining data < encoded image size");
} else if (outB.remaining() < imageSize) {
env->ThrowNew(gIAEClass, "out's remaining data < image size");
} else {
int result = etc1_decode_image((etc1_byte*) inB.getData(),
(etc1_byte*) outB.getData(),
width, height, pixelSize,
stride);
}
}
}
/**
* Format a PKM header
*/
static void etc1_formatHeader(JNIEnv *env, jclass clazz,
jobject header, jint width, jint height) {
BufferHelper headerB(env, header);
if (headerB.checkPointer("header") ){
if (headerB.remaining() < ETC_PKM_HEADER_SIZE) {
env->ThrowNew(gIAEClass, "header's remaining data < ETC_PKM_HEADER_SIZE");
} else {
etc1_pkm_format_header((etc1_byte*) headerB.getData(), width, height);
}
}
}
/**
* Check if a PKM header is correctly formatted.
*/
static jboolean etc1_isValid(JNIEnv *env, jclass clazz,
jobject header) {
jboolean result = false;
BufferHelper headerB(env, header);
if (headerB.checkPointer("header") ){
if (headerB.remaining() < ETC_PKM_HEADER_SIZE) {
env->ThrowNew(gIAEClass, "header's remaining data < ETC_PKM_HEADER_SIZE");
} else {
result = etc1_pkm_is_valid((etc1_byte*) headerB.getData());
}
}
return result;
}
/**
* Read the image width from a PKM header
*/
static jint etc1_getWidth(JNIEnv *env, jclass clazz,
jobject header) {
jint result = 0;
BufferHelper headerB(env, header);
if (headerB.checkPointer("header") ){
if (headerB.remaining() < ETC_PKM_HEADER_SIZE) {
env->ThrowNew(gIAEClass, "header's remaining data < ETC_PKM_HEADER_SIZE");
} else {
result = etc1_pkm_get_width((etc1_byte*) headerB.getData());
}
}
return result;
}
/**
* Read the image height from a PKM header
*/
static int etc1_getHeight(JNIEnv *env, jclass clazz,
jobject header) {
jint result = 0;
BufferHelper headerB(env, header);
if (headerB.checkPointer("header") ){
if (headerB.remaining() < ETC_PKM_HEADER_SIZE) {
env->ThrowNew(gIAEClass, "header's remaining data < ETC_PKM_HEADER_SIZE");
} else {
result = etc1_pkm_get_height((etc1_byte*) headerB.getData());
}
}
return result;
}
/*
* JNI registration
*/
static void
lookupClasses(JNIEnv* env) {
gIAEClass = (jclass) env->NewGlobalRef(
env->FindClass("java/lang/IllegalArgumentException"));
gUOEClass = (jclass) env->NewGlobalRef(
env->FindClass("java/lang/UnsupportedOperationException"));
gAIOOBEClass = (jclass) env->NewGlobalRef(
env->FindClass("java/lang/ArrayIndexOutOfBoundsException"));
}
static JNINativeMethod gMatrixMethods[] = {
{ "multiplyMM", "([FI[FI[FI)V", (void*)util_multiplyMM },
{ "multiplyMV", "([FI[FI[FI)V", (void*)util_multiplyMV },
};
static JNINativeMethod gVisiblityMethods[] = {
{ "computeBoundingSphere", "([FII[FI)V", (void*)util_computeBoundingSphere },
{ "frustumCullSpheres", "([FI[FII[III)I", (void*)util_frustumCullSpheres },
{ "visibilityTest", "([FI[FI[CII)I", (void*)util_visibilityTest },
};
static JNINativeMethod gUtilsMethods[] = {
{"nativeClassInit", "()V", (void*)nativeUtilsClassInit },
{ "native_getInternalFormat", "(Landroid/graphics/Bitmap;)I", (void*) util_getInternalFormat },
{ "native_getType", "(Landroid/graphics/Bitmap;)I", (void*) util_getType },
{ "native_texImage2D", "(IIILandroid/graphics/Bitmap;II)I", (void*)util_texImage2D },
{ "native_texSubImage2D", "(IIIILandroid/graphics/Bitmap;II)I", (void*)util_texSubImage2D },
};
static JNINativeMethod gEtc1Methods[] = {
{ "encodeBlock", "(Ljava/nio/Buffer;ILjava/nio/Buffer;)V", (void*) etc1_encodeBlock },
{ "decodeBlock", "(Ljava/nio/Buffer;Ljava/nio/Buffer;)V", (void*) etc1_decodeBlock },
{ "getEncodedDataSize", "(II)I", (void*) etc1_getEncodedDataSize },
{ "encodeImage", "(Ljava/nio/Buffer;IIIILjava/nio/Buffer;)V", (void*) etc1_encodeImage },
{ "decodeImage", "(Ljava/nio/Buffer;Ljava/nio/Buffer;IIII)V", (void*) etc1_decodeImage },
{ "formatHeader", "(Ljava/nio/Buffer;II)V", (void*) etc1_formatHeader },
{ "isValid", "(Ljava/nio/Buffer;)Z", (void*) etc1_isValid },
{ "getWidth", "(Ljava/nio/Buffer;)I", (void*) etc1_getWidth },
{ "getHeight", "(Ljava/nio/Buffer;)I", (void*) etc1_getHeight },
};
typedef struct _ClassRegistrationInfo {
const char* classPath;
JNINativeMethod* methods;
size_t methodCount;
} ClassRegistrationInfo;
static ClassRegistrationInfo gClasses[] = {
{"android/opengl/Matrix", gMatrixMethods, NELEM(gMatrixMethods)},
{"android/opengl/Visibility", gVisiblityMethods, NELEM(gVisiblityMethods)},
{"android/opengl/GLUtils", gUtilsMethods, NELEM(gUtilsMethods)},
{"android/opengl/ETC1", gEtc1Methods, NELEM(gEtc1Methods)},
};
int register_android_opengl_classes(JNIEnv* env)
{
lookupClasses(env);
nativeClassInitBuffer(env);
int result = 0;
for (int i = 0; i < NELEM(gClasses); i++) {
ClassRegistrationInfo* cri = &gClasses[i];
result = AndroidRuntime::registerNativeMethods(env,
cri->classPath, cri->methods, cri->methodCount);
if (result < 0) {
LOGE("Failed to register %s: %d", cri->classPath, result);
break;
}
}
return result;
}
} // namespace android