M7350/kernel/drivers/soc/qcom/glink_smem_native_xprt.c
2024-09-09 08:57:42 +00:00

3029 lines
80 KiB
C

/* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/gfp.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ipc_logging.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/srcu.h>
#include <linux/wait.h>
#include <soc/qcom/smem.h>
#include <soc/qcom/tracer_pkt.h>
#include "glink_core_if.h"
#include "glink_private.h"
#include "glink_xprt_if.h"
#define XPRT_NAME "smem"
#define FIFO_FULL_RESERVE 8
#define FIFO_ALIGNMENT 8
#define TX_BLOCKED_CMD_RESERVE 8 /* size of struct read_notif_request */
#define SMEM_CH_DESC_SIZE 32
#define RPM_TOC_ID 0x67727430
#define RPM_TX_FIFO_ID 0x61703272
#define RPM_RX_FIFO_ID 0x72326170
#define RPM_TOC_SIZE 256
#define RPM_MAX_TOC_ENTRIES 20
#define RPM_FIFO_ADDR_ALIGN_BYTES 3
#define TRACER_PKT_FEATURE BIT(2)
/**
* enum command_types - definition of the types of commands sent/received
* @VERSION_CMD: Version and feature set supported
* @VERSION_ACK_CMD: Response for @VERSION_CMD
* @OPEN_CMD: Open a channel
* @CLOSE_CMD: Close a channel
* @OPEN_ACK_CMD: Response to @OPEN_CMD
* @RX_INTENT_CMD: RX intent for a channel was queued
* @RX_DONE_CMD: Use of RX intent for a channel is complete
* @RX_INTENT_REQ_CMD: Request to have RX intent queued
* @RX_INTENT_REQ_ACK_CMD: Response for @RX_INTENT_REQ_CMD
* @TX_DATA_CMD: Start of a data transfer
* @ZERO_COPY_TX_DATA_CMD: Start of a data transfer with zero copy
* @CLOSE_ACK_CMD: Response for @CLOSE_CMD
* @TX_DATA_CONT_CMD: Continuation or end of a data transfer
* @READ_NOTIF_CMD: Request for a notification when this cmd is read
* @RX_DONE_W_REUSE_CMD: Same as @RX_DONE but also reuse the used intent
* @SIGNALS_CMD: Sideband signals
* @TRACER_PKT_CMD: Start of a Tracer Packet Command
* @TRACER_PKT_CONT_CMD: Continuation or end of a Tracer Packet Command
*/
enum command_types {
VERSION_CMD,
VERSION_ACK_CMD,
OPEN_CMD,
CLOSE_CMD,
OPEN_ACK_CMD,
RX_INTENT_CMD,
RX_DONE_CMD,
RX_INTENT_REQ_CMD,
RX_INTENT_REQ_ACK_CMD,
TX_DATA_CMD,
ZERO_COPY_TX_DATA_CMD,
CLOSE_ACK_CMD,
TX_DATA_CONT_CMD,
READ_NOTIF_CMD,
RX_DONE_W_REUSE_CMD,
SIGNALS_CMD,
TRACER_PKT_CMD,
TRACER_PKT_CONT_CMD,
};
/**
* struct channel_desc - description of a channel fifo with a remote entity
* @read_index: The read index for the fifo where data should be
* consumed from.
* @write_index: The write index for the fifo where data should produced
* to.
*
* This structure resides in SMEM and contains the control information for the
* fifo data pipes of the channel. There is one physical channel between us
* and a remote entity.
*/
struct channel_desc {
uint32_t read_index;
uint32_t write_index;
};
/**
* struct mailbox_config_info - description of a mailbox tranposrt channel
* @tx_read_index: Offset into the tx fifo where data should be read from.
* @tx_write_index: Offset into the tx fifo where new data will be placed.
* @tx_size: Size of the transmit fifo in bytes.
* @rx_read_index: Offset into the rx fifo where data should be read from.
* @rx_write_index: Offset into the rx fifo where new data will be placed.
* @rx_size: Size of the receive fifo in bytes.
* @fifo: The fifos for the channel.
*/
struct mailbox_config_info {
uint32_t tx_read_index;
uint32_t tx_write_index;
uint32_t tx_size;
uint32_t rx_read_index;
uint32_t rx_write_index;
uint32_t rx_size;
char fifo[]; /* tx fifo, then rx fifo */
};
/**
* struct edge_info - local information for managing a single complete edge
* @xprt_if: The transport interface registered with the
* glink core associated with this edge.
* @xprt_cfg: The transport configuration for the glink core
* assocaited with this edge.
* @intentless: True if this edge runs in intentless mode.
* @irq_disabled: Flag indicating the whether interrupt is enabled
* or disabled.
* @remote_proc_id: The SMEM processor id for the remote side.
* @rx_reset_reg: Reference to the register to reset the rx irq
* line, if applicable.
* @out_irq_reg: Reference to the register to send an irq to the
* remote side.
* @out_irq_mask: Mask written to @out_irq_reg to trigger the
* correct irq.
* @irq_line: The incoming interrupt line.
* @tx_irq_count: Number of interrupts triggered.
* @rx_irq_count: Number of interrupts received.
* @tx_ch_desc: Reference to the channel description structure
* for tx in SMEM for this edge.
* @rx_ch_desc: Reference to the channel description structure
* for rx in SMEM for this edge.
* @tx_fifo: Reference to the transmit fifo in SMEM.
* @rx_fifo: Reference to the receive fifo in SMEM.
* @tx_fifo_size: Total size of @tx_fifo.
* @rx_fifo_size: Total size of @rx_fifo.
* @read_from_fifo: Memcpy for this edge.
* @write_to_fifo: Memcpy for this edge.
* @write_lock: Lock to serialize access to @tx_fifo.
* @tx_blocked_queue: Queue of entities waiting for the remote side to
* signal @tx_fifo has flushed and is now empty.
* @tx_resume_needed: A tx resume signal needs to be sent to the glink
* core once the remote side indicates @tx_fifo has
* flushed.
* @tx_blocked_signal_sent: Flag to indicate the flush signal has already
* been sent, and a response is pending from the
* remote side. Protected by @write_lock.
* @kwork: Work to be executed when an irq is received.
* @kworker: Handle to the entity processing @kwork.
* @task: Handle to the task context used to run @kworker.
* @use_ref: Active uses of this transport use this to grab
* a reference. Used for ssr synchronization.
* @in_ssr: Signals if this transport is in ssr.
* @rx_lock: Used to serialize concurrent instances of rx
* processing.
* @deferred_cmds: List of deferred commands that need to be
* processed in process context.
* @num_pw_states: Size of @ramp_time_us.
* @ramp_time_us: Array of ramp times in microseconds where array
* index position represents a power state.
* @mailbox: Mailbox transport channel description reference.
*/
struct edge_info {
struct glink_transport_if xprt_if;
struct glink_core_transport_cfg xprt_cfg;
bool intentless;
bool irq_disabled;
uint32_t remote_proc_id;
void __iomem *rx_reset_reg;
void __iomem *out_irq_reg;
uint32_t out_irq_mask;
uint32_t irq_line;
uint32_t tx_irq_count;
uint32_t rx_irq_count;
struct channel_desc *tx_ch_desc;
struct channel_desc *rx_ch_desc;
void __iomem *tx_fifo;
void __iomem *rx_fifo;
uint32_t tx_fifo_size;
uint32_t rx_fifo_size;
void * (*read_from_fifo)(void *dest, const void *src, size_t num_bytes);
void * (*write_to_fifo)(void *dest, const void *src, size_t num_bytes);
spinlock_t write_lock;
wait_queue_head_t tx_blocked_queue;
bool tx_resume_needed;
bool tx_blocked_signal_sent;
struct kthread_work kwork;
struct kthread_worker kworker;
struct task_struct *task;
struct srcu_struct use_ref;
bool in_ssr;
spinlock_t rx_lock;
struct list_head deferred_cmds;
uint32_t num_pw_states;
unsigned long *ramp_time_us;
struct mailbox_config_info *mailbox;
};
/**
* struct deferred_cmd - description of a command to be processed later
* @list_node: Used to put this command on a list in the edge.
* @id: ID of the command.
* @param1: Parameter one of the command.
* @param2: Parameter two of the command.
* @data: Extra data associated with the command, if applicable.
*
* This structure stores the relevant information of a command that was removed
* from the fifo but needs to be processed at a later time.
*/
struct deferred_cmd {
struct list_head list_node;
uint16_t id;
uint16_t param1;
uint32_t param2;
void *data;
};
static uint32_t negotiate_features_v1(struct glink_transport_if *if_ptr,
const struct glink_core_version *version,
uint32_t features);
static void register_debugfs_info(struct edge_info *einfo);
static struct edge_info *edge_infos[NUM_SMEM_SUBSYSTEMS];
static DEFINE_MUTEX(probe_lock);
static struct glink_core_version versions[] = {
{1, TRACER_PKT_FEATURE, negotiate_features_v1},
};
/**
* send_irq() - send an irq to a remote entity as an event signal
* @einfo: Which remote entity that should receive the irq.
*/
static void send_irq(struct edge_info *einfo)
{
/*
* Any data associated with this event must be visable to the remote
* before the interrupt is triggered
*/
wmb();
writel_relaxed(einfo->out_irq_mask, einfo->out_irq_reg);
einfo->tx_irq_count++;
}
/**
* read_from_fifo() - memcpy from fifo memory
* @dest: Destination address.
* @src: Source address.
* @num_bytes: Number of bytes to copy.
*
* Return: Destination address.
*/
static void *read_from_fifo(void *dest, const void *src, size_t num_bytes)
{
memcpy_fromio(dest, src, num_bytes);
return dest;
}
/**
* write_to_fifo() - memcpy to fifo memory
* @dest: Destination address.
* @src: Source address.
* @num_bytes: Number of bytes to copy.
*
* Return: Destination address.
*/
static void *write_to_fifo(void *dest, const void *src, size_t num_bytes)
{
memcpy_toio(dest, src, num_bytes);
return dest;
}
/**
* memcpy32_toio() - memcpy to word access only memory
* @dest: Destination address.
* @src: Source address.
* @num_bytes: Number of bytes to copy.
*
* Return: Destination address.
*/
static void *memcpy32_toio(void *dest, const void *src, size_t num_bytes)
{
uint32_t *dest_local = (uint32_t *)dest;
uint32_t *src_local = (uint32_t *)src;
BUG_ON(num_bytes & RPM_FIFO_ADDR_ALIGN_BYTES);
BUG_ON(!dest_local ||
((uintptr_t)dest_local & RPM_FIFO_ADDR_ALIGN_BYTES));
BUG_ON(!src_local ||
((uintptr_t)src_local & RPM_FIFO_ADDR_ALIGN_BYTES));
num_bytes /= sizeof(uint32_t);
while (num_bytes--)
__raw_writel_no_log(*src_local++, dest_local++);
return dest;
}
/**
* memcpy32_fromio() - memcpy from word access only memory
* @dest: Destination address.
* @src: Source address.
* @num_bytes: Number of bytes to copy.
*
* Return: Destination address.
*/
static void *memcpy32_fromio(void *dest, const void *src, size_t num_bytes)
{
uint32_t *dest_local = (uint32_t *)dest;
uint32_t *src_local = (uint32_t *)src;
BUG_ON(num_bytes & RPM_FIFO_ADDR_ALIGN_BYTES);
BUG_ON(!dest_local ||
((uintptr_t)dest_local & RPM_FIFO_ADDR_ALIGN_BYTES));
BUG_ON(!src_local ||
((uintptr_t)src_local & RPM_FIFO_ADDR_ALIGN_BYTES));
num_bytes /= sizeof(uint32_t);
while (num_bytes--)
*dest_local++ = __raw_readl_no_log(src_local++);
return dest;
}
/**
* fifo_read_avail() - how many bytes are available to be read from an edge
* @einfo: The concerned edge to query.
*
* Return: The number of bytes available to be read from edge.
*/
static uint32_t fifo_read_avail(struct edge_info *einfo)
{
uint32_t read_index = einfo->rx_ch_desc->read_index;
uint32_t write_index = einfo->rx_ch_desc->write_index;
uint32_t fifo_size = einfo->rx_fifo_size;
uint32_t bytes_avail;
bytes_avail = write_index - read_index;
if (write_index < read_index)
/*
* Case: W < R - Write has wrapped
* --------------------------------
* In this case, the write operation has wrapped past the end
* of the FIFO which means that now calculating the amount of
* data in the FIFO results in a negative number. This can be
* easily fixed by adding the fifo_size to the value. Even
* though the values are unsigned, subtraction is always done
* using 2's complement which means that the result will still
* be correct once the FIFO size has been added to the negative
* result.
*
* Example:
* '-' = data in fifo
* '.' = empty
*
* 0 1
* 0123456789012345
* |-----w.....r----|
* 0 N
*
* write = 5 = 101b
* read = 11 = 1011b
* Data in FIFO
* (write - read) + fifo_size = (101b - 1011b) + 10000b
* = 11111010b + 10000b = 1010b = 10
*/
bytes_avail += fifo_size;
return bytes_avail;
}
/**
* fifo_write_avail() - how many bytes can be written to the edge
* @einfo: The concerned edge to query.
*
* Calculates the number of bytes that can be transmitted at this time.
* Automatically reserves some space to maintain alignment when the fifo is
* completely full, and reserves space so that the flush command can always be
* transmitted when needed.
*
* Return: The number of bytes available to be read from edge.
*/
static uint32_t fifo_write_avail(struct edge_info *einfo)
{
uint32_t read_index = einfo->tx_ch_desc->read_index;
uint32_t write_index = einfo->tx_ch_desc->write_index;
uint32_t fifo_size = einfo->tx_fifo_size;
uint32_t bytes_avail = read_index - write_index;
if (read_index <= write_index)
bytes_avail += fifo_size;
if (bytes_avail < FIFO_FULL_RESERVE + TX_BLOCKED_CMD_RESERVE)
bytes_avail = 0;
else
bytes_avail -= FIFO_FULL_RESERVE + TX_BLOCKED_CMD_RESERVE;
return bytes_avail;
}
/**
* fifo_read() - read data from an edge
* @einfo: The concerned edge to read from.
* @_data: Buffer to copy the read data into.
* @len: The ammount of data to read in bytes.
*
* Return: The number of bytes read.
*/
static int fifo_read(struct edge_info *einfo, void *_data, int len)
{
void *ptr;
void *data = _data;
int orig_len = len;
uint32_t read_index = einfo->rx_ch_desc->read_index;
uint32_t write_index = einfo->rx_ch_desc->write_index;
uint32_t fifo_size = einfo->rx_fifo_size;
uint32_t n;
while (len) {
ptr = einfo->rx_fifo + read_index;
if (read_index <= write_index)
n = write_index - read_index;
else
n = fifo_size - read_index;
if (n == 0)
break;
if (n > len)
n = len;
einfo->read_from_fifo(data, ptr, n);
data += n;
len -= n;
read_index += n;
if (read_index >= fifo_size)
read_index -= fifo_size;
}
einfo->rx_ch_desc->read_index = read_index;
return orig_len - len;
}
/**
* fifo_write_body() - Copy transmit data into an edge
* @einfo: The concerned edge to copy into.
* @_data: Buffer of data to copy from.
* @len: Size of data to copy in bytes.
* @write_index: Index into the channel where the data should be copied.
*
* Return: Number of bytes remaining to be copied into the edge.
*/
static uint32_t fifo_write_body(struct edge_info *einfo, const void *_data,
int len, uint32_t *write_index)
{
void *ptr;
const void *data = _data;
uint32_t read_index = einfo->tx_ch_desc->read_index;
uint32_t fifo_size = einfo->tx_fifo_size;
uint32_t n;
while (len) {
ptr = einfo->tx_fifo + *write_index;
if (*write_index < read_index) {
n = read_index - *write_index - FIFO_FULL_RESERVE;
} else {
if (read_index < FIFO_FULL_RESERVE)
n = fifo_size + read_index - *write_index -
FIFO_FULL_RESERVE;
else
n = fifo_size - *write_index;
}
if (n == 0)
break;
if (n > len)
n = len;
einfo->write_to_fifo(ptr, data, n);
data += n;
len -= n;
*write_index += n;
if (*write_index >= fifo_size)
*write_index -= fifo_size;
}
return len;
}
/**
* fifo_write() - Write data into an edge
* @einfo: The concerned edge to write to.
* @data: Buffer of data to write.
* @len: Length of data to write, in bytes.
*
* Wrapper around fifo_write_body() to manage additional details that are
* necessary for a complete write event. Does not manage concurrency. Clients
* should use fifo_write_avail() to check if there is sufficent space before
* calling fifo_write().
*
* Return: Number of bytes written to the edge.
*/
static int fifo_write(struct edge_info *einfo, const void *data, int len)
{
int orig_len = len;
uint32_t write_index = einfo->tx_ch_desc->write_index;
len = fifo_write_body(einfo, data, len, &write_index);
einfo->tx_ch_desc->write_index = write_index;
send_irq(einfo);
return orig_len - len;
}
/**
* fifo_write_complex() - writes a transaction of multiple buffers to an edge
* @einfo: The concerned edge to write to.
* @data1: The first buffer of data to write.
* @len1: The length of the first buffer in bytes.
* @data2: The second buffer of data to write.
* @len2: The length of the second buffer in bytes.
* @data3: The thirs buffer of data to write.
* @len3: The length of the third buffer in bytes.
*
* A variant of fifo_write() which optimizes the usecase found in tx(). The
* remote side expects all or none of the transmitted data to be available.
* This prevents the tx() usecase from calling fifo_write() multiple times. The
* alternative would be an allocation and additional memcpy to create a buffer
* to copy all the data segments into one location before calling fifo_write().
*
* Return: Number of bytes written to the edge.
*/
static int fifo_write_complex(struct edge_info *einfo,
const void *data1, int len1,
const void *data2, int len2,
const void *data3, int len3)
{
int orig_len = len1 + len2 + len3;
uint32_t write_index = einfo->tx_ch_desc->write_index;
len1 = fifo_write_body(einfo, data1, len1, &write_index);
len2 = fifo_write_body(einfo, data2, len2, &write_index);
len3 = fifo_write_body(einfo, data3, len3, &write_index);
einfo->tx_ch_desc->write_index = write_index;
send_irq(einfo);
return orig_len - len1 - len2 - len3;
}
/**
* send_tx_blocked_signal() - send the flush command as we are blocked from tx
* @einfo: The concerned edge which is blocked.
*
* Used to send a signal to the remote side that we have no more space to
* transmit data and therefore need the remote side to signal us when they have
* cleared some space by reading some data. This function relies upon the
* assumption that fifo_write_avail() will reserve some space so that the flush
* signal command can always be put into the transmit fifo, even when "everyone"
* else thinks that the transmit fifo is truely full. This function assumes
* that it is called with the write_lock already locked.
*/
static void send_tx_blocked_signal(struct edge_info *einfo)
{
struct read_notif_request {
uint16_t cmd;
uint16_t reserved;
uint32_t reserved2;
};
struct read_notif_request read_notif_req;
read_notif_req.cmd = READ_NOTIF_CMD;
read_notif_req.reserved = 0;
read_notif_req.reserved2 = 0;
if (!einfo->tx_blocked_signal_sent) {
einfo->tx_blocked_signal_sent = true;
fifo_write(einfo, &read_notif_req, sizeof(read_notif_req));
}
}
/**
* fifo_tx() - transmit data on an edge
* @einfo: The concerned edge to transmit on.
* @data: Buffer of data to transmit.
* @len: Length of data to transmit in bytes.
*
* This helper function is the preferred interface to fifo_write() and should
* be used in the normal case for transmitting entities. fifo_tx() will block
* until there is sufficent room to transmit the requested ammount of data.
* fifo_tx() will manage any concurrency between multiple transmitters on a
* channel.
*
* Return: Number of bytes transmitted.
*/
static int fifo_tx(struct edge_info *einfo, const void *data, int len)
{
unsigned long flags;
int ret;
DEFINE_WAIT(wait);
spin_lock_irqsave(&einfo->write_lock, flags);
while (fifo_write_avail(einfo) < len) {
send_tx_blocked_signal(einfo);
spin_unlock_irqrestore(&einfo->write_lock, flags);
prepare_to_wait(&einfo->tx_blocked_queue, &wait,
TASK_UNINTERRUPTIBLE);
if (fifo_write_avail(einfo) < len && !einfo->in_ssr)
schedule();
finish_wait(&einfo->tx_blocked_queue, &wait);
spin_lock_irqsave(&einfo->write_lock, flags);
if (einfo->in_ssr) {
spin_unlock_irqrestore(&einfo->write_lock, flags);
return -EFAULT;
}
}
ret = fifo_write(einfo, data, len);
spin_unlock_irqrestore(&einfo->write_lock, flags);
return ret;
}
/**
* process_rx_data() - process received data from an edge
* @einfo: The edge the data was received on.
* @cmd_id: ID to specify the type of data.
* @rcid: The remote channel id associated with the data.
* @intend_id: The intent the data should be put in.
*/
static void process_rx_data(struct edge_info *einfo, uint16_t cmd_id,
uint32_t rcid, uint32_t intent_id)
{
struct command {
uint32_t frag_size;
uint32_t size_remaining;
};
struct command cmd;
struct glink_core_rx_intent *intent;
char trash[FIFO_ALIGNMENT];
int alignment;
bool err = false;
fifo_read(einfo, &cmd, sizeof(cmd));
intent = einfo->xprt_if.glink_core_if_ptr->rx_get_pkt_ctx(
&einfo->xprt_if, rcid, intent_id);
if (intent == NULL) {
GLINK_ERR("%s: no intent for ch %d liid %d\n", __func__, rcid,
intent_id);
err = true;
} else if (intent->data == NULL) {
if (einfo->intentless) {
intent->data = kmalloc(cmd.frag_size, GFP_ATOMIC);
if (!intent->data)
err = true;
else
intent->intent_size = cmd.frag_size;
} else {
GLINK_ERR(
"%s: intent for ch %d liid %d has no data buff\n",
__func__, rcid, intent_id);
err = true;
}
}
if (!err &&
(intent->intent_size - intent->write_offset < cmd.frag_size ||
intent->write_offset + cmd.size_remaining > intent->intent_size)) {
GLINK_ERR("%s: rx data size:%d and remaining:%d %s %d %s:%d\n",
__func__,
cmd.frag_size,
cmd.size_remaining,
"will overflow ch",
rcid,
"intent",
intent_id);
err = true;
}
if (err) {
alignment = ALIGN(cmd.frag_size, FIFO_ALIGNMENT);
alignment -= cmd.frag_size;
while (cmd.frag_size) {
if (cmd.frag_size > FIFO_ALIGNMENT) {
fifo_read(einfo, trash, FIFO_ALIGNMENT);
cmd.frag_size -= FIFO_ALIGNMENT;
} else {
fifo_read(einfo, trash, cmd.frag_size);
cmd.frag_size = 0;
}
}
if (alignment)
fifo_read(einfo, trash, alignment);
return;
}
fifo_read(einfo, intent->data + intent->write_offset, cmd.frag_size);
intent->write_offset += cmd.frag_size;
intent->pkt_size += cmd.frag_size;
alignment = ALIGN(cmd.frag_size, FIFO_ALIGNMENT);
alignment -= cmd.frag_size;
if (alignment)
fifo_read(einfo, trash, alignment);
if (unlikely((cmd_id == TRACER_PKT_CMD ||
cmd_id == TRACER_PKT_CONT_CMD) && !cmd.size_remaining)) {
tracer_pkt_log_event(intent->data, GLINK_XPRT_RX);
intent->tracer_pkt = true;
}
einfo->xprt_if.glink_core_if_ptr->rx_put_pkt_ctx(&einfo->xprt_if,
rcid,
intent,
cmd.size_remaining ?
false : true);
}
/**
* queue_cmd() - queue a deferred command for later processing
* @einfo: Edge to queue commands on.
* @cmd: Command to queue.
* @data: Command specific data to queue with the command.
*
* Return: True if queuing was successful, false otherwise.
*/
static bool queue_cmd(struct edge_info *einfo, void *cmd, void *data)
{
struct command {
uint16_t id;
uint16_t param1;
uint32_t param2;
};
struct command *_cmd = cmd;
struct deferred_cmd *d_cmd;
d_cmd = kmalloc(sizeof(*d_cmd), GFP_ATOMIC);
if (!d_cmd) {
GLINK_ERR("%s: Discarding cmd %d\n", __func__, _cmd->id);
return false;
}
d_cmd->id = _cmd->id;
d_cmd->param1 = _cmd->param1;
d_cmd->param2 = _cmd->param2;
d_cmd->data = data;
list_add_tail(&d_cmd->list_node, &einfo->deferred_cmds);
queue_kthread_work(&einfo->kworker, &einfo->kwork);
return true;
}
/**
* get_rx_fifo() - Find the rx fifo for an edge
* @einfo: Edge to find the fifo for.
*
* Return: True if fifo was found, false otherwise.
*/
static bool get_rx_fifo(struct edge_info *einfo)
{
if (einfo->mailbox) {
einfo->rx_fifo = &einfo->mailbox->fifo[einfo->mailbox->tx_size];
einfo->rx_fifo_size = einfo->mailbox->rx_size;
} else {
einfo->rx_fifo = smem_get_entry(SMEM_GLINK_NATIVE_XPRT_FIFO_1,
&einfo->rx_fifo_size,
einfo->remote_proc_id,
SMEM_ITEM_CACHED_FLAG);
if (!einfo->rx_fifo)
return false;
}
return true;
}
/**
* __rx_worker() - process received commands on a specific edge
* @einfo: Edge to process commands on.
* @atomic_ctx: Indicates if the caller is in atomic context and requires any
* non-atomic operations to be deferred.
*/
static void __rx_worker(struct edge_info *einfo, bool atomic_ctx)
{
struct command {
uint16_t id;
uint16_t param1;
uint32_t param2;
};
struct intent_desc {
uint32_t size;
uint32_t id;
};
struct command cmd;
struct intent_desc intent;
struct intent_desc *intents;
int i;
bool granted;
unsigned long flags;
bool trigger_wakeup = false;
int rcu_id;
uint16_t rcid;
uint32_t name_len;
uint32_t len;
char *name;
char trash[FIFO_ALIGNMENT];
struct deferred_cmd *d_cmd;
void *cmd_data;
rcu_id = srcu_read_lock(&einfo->use_ref);
if (unlikely(!einfo->rx_fifo)) {
if (!get_rx_fifo(einfo)) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return;
}
einfo->in_ssr = false;
einfo->xprt_if.glink_core_if_ptr->link_up(&einfo->xprt_if);
}
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return;
}
if (!atomic_ctx) {
if (einfo->tx_resume_needed && fifo_write_avail(einfo)) {
einfo->tx_resume_needed = false;
einfo->xprt_if.glink_core_if_ptr->tx_resume(
&einfo->xprt_if);
}
spin_lock_irqsave(&einfo->write_lock, flags);
if (waitqueue_active(&einfo->tx_blocked_queue)) {
einfo->tx_blocked_signal_sent = false;
trigger_wakeup = true;
}
spin_unlock_irqrestore(&einfo->write_lock, flags);
if (trigger_wakeup)
wake_up_all(&einfo->tx_blocked_queue);
}
/*
* Access to the fifo needs to be synchronized, however only the calls
* into the core from process_rx_data() are compatible with an atomic
* processing context. For everything else, we need to do all the fifo
* processing, then unlock the lock for the call into the core. Data
* in the fifo is allowed to be processed immediately instead of being
* ordered with the commands because the channel open process prevents
* intents from being queued (which prevents data from being sent) until
* all the channel open commands are processed by the core, thus
* eliminating a race.
*/
spin_lock_irqsave(&einfo->rx_lock, flags);
while (fifo_read_avail(einfo) ||
(!atomic_ctx && !list_empty(&einfo->deferred_cmds))) {
if (einfo->in_ssr)
break;
if (!atomic_ctx && !list_empty(&einfo->deferred_cmds)) {
d_cmd = list_first_entry(&einfo->deferred_cmds,
struct deferred_cmd, list_node);
list_del(&d_cmd->list_node);
cmd.id = d_cmd->id;
cmd.param1 = d_cmd->param1;
cmd.param2 = d_cmd->param2;
cmd_data = d_cmd->data;
kfree(d_cmd);
} else {
fifo_read(einfo, &cmd, sizeof(cmd));
cmd_data = NULL;
}
switch (cmd.id) {
case VERSION_CMD:
if (atomic_ctx) {
queue_cmd(einfo, &cmd, NULL);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
einfo->xprt_if.glink_core_if_ptr->rx_cmd_version(
&einfo->xprt_if,
cmd.param1,
cmd.param2);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
case VERSION_ACK_CMD:
if (atomic_ctx) {
queue_cmd(einfo, &cmd, NULL);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
einfo->xprt_if.glink_core_if_ptr->rx_cmd_version_ack(
&einfo->xprt_if,
cmd.param1,
cmd.param2);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
case OPEN_CMD:
rcid = cmd.param1;
name_len = cmd.param2;
if (cmd_data) {
name = cmd_data;
} else {
len = ALIGN(name_len, FIFO_ALIGNMENT);
name = kmalloc(len, GFP_ATOMIC);
if (!name) {
pr_err("No memory available to rx ch open cmd name. Discarding cmd.\n");
while (len) {
fifo_read(einfo, trash,
FIFO_ALIGNMENT);
len -= FIFO_ALIGNMENT;
}
break;
}
fifo_read(einfo, name, len);
}
if (atomic_ctx) {
if (!queue_cmd(einfo, &cmd, name))
kfree(name);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
einfo->xprt_if.glink_core_if_ptr->rx_cmd_ch_remote_open(
&einfo->xprt_if,
rcid,
name,
SMEM_XPRT_ID);
kfree(name);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
case CLOSE_CMD:
if (atomic_ctx) {
queue_cmd(einfo, &cmd, NULL);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
einfo->xprt_if.glink_core_if_ptr->
rx_cmd_ch_remote_close(
&einfo->xprt_if,
cmd.param1);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
case OPEN_ACK_CMD:
if (atomic_ctx) {
queue_cmd(einfo, &cmd, NULL);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
einfo->xprt_if.glink_core_if_ptr->rx_cmd_ch_open_ack(
&einfo->xprt_if,
cmd.param1,
SMEM_XPRT_ID);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
case RX_INTENT_CMD:
/*
* One intent listed with this command. This is the
* expected case and can be optimized over the general
* case of an array of intents.
*/
if (cmd.param2 == 1) {
if (cmd_data) {
intent.id = ((struct intent_desc *)
cmd_data)->id;
intent.size = ((struct intent_desc *)
cmd_data)->size;
kfree(cmd_data);
} else {
fifo_read(einfo, &intent,
sizeof(intent));
}
if (atomic_ctx) {
cmd_data = kmalloc(sizeof(intent),
GFP_ATOMIC);
if (!cmd_data) {
pr_err("%s: dropping cmd %d\n",
__func__,
cmd.id);
break;
}
((struct intent_desc *)cmd_data)->id =
intent.id;
((struct intent_desc *)cmd_data)->size =
intent.size;
if (!queue_cmd(einfo, &cmd, cmd_data))
kfree(cmd_data);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
einfo->xprt_if.glink_core_if_ptr->
rx_cmd_remote_rx_intent_put(
&einfo->xprt_if,
cmd.param1,
intent.id,
intent.size);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
}
/* Array of intents to process */
if (cmd_data) {
intents = cmd_data;
} else {
intents = kmalloc(sizeof(*intents) * cmd.param2,
GFP_ATOMIC);
if (!intents) {
for (i = 0; i < cmd.param2; ++i)
fifo_read(einfo, &intent,
sizeof(intent));
break;
}
fifo_read(einfo, intents,
sizeof(*intents) * cmd.param2);
}
if (atomic_ctx) {
if (!queue_cmd(einfo, &cmd, intents))
kfree(intents);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
for (i = 0; i < cmd.param2; ++i) {
einfo->xprt_if.glink_core_if_ptr->
rx_cmd_remote_rx_intent_put(
&einfo->xprt_if,
cmd.param1,
intents[i].id,
intents[i].size);
}
kfree(intents);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
case RX_DONE_CMD:
if (atomic_ctx) {
queue_cmd(einfo, &cmd, NULL);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
einfo->xprt_if.glink_core_if_ptr->rx_cmd_tx_done(
&einfo->xprt_if,
cmd.param1,
cmd.param2,
false);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
case RX_INTENT_REQ_CMD:
if (atomic_ctx) {
queue_cmd(einfo, &cmd, NULL);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
einfo->xprt_if.glink_core_if_ptr->
rx_cmd_remote_rx_intent_req(
&einfo->xprt_if,
cmd.param1,
cmd.param2);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
case RX_INTENT_REQ_ACK_CMD:
if (atomic_ctx) {
queue_cmd(einfo, &cmd, NULL);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
granted = false;
if (cmd.param2 == 1)
granted = true;
einfo->xprt_if.glink_core_if_ptr->
rx_cmd_rx_intent_req_ack(
&einfo->xprt_if,
cmd.param1,
granted);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
case TX_DATA_CMD:
case TX_DATA_CONT_CMD:
case TRACER_PKT_CMD:
case TRACER_PKT_CONT_CMD:
process_rx_data(einfo, cmd.id, cmd.param1, cmd.param2);
break;
case CLOSE_ACK_CMD:
if (atomic_ctx) {
queue_cmd(einfo, &cmd, NULL);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
einfo->xprt_if.glink_core_if_ptr->rx_cmd_ch_close_ack(
&einfo->xprt_if,
cmd.param1);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
case READ_NOTIF_CMD:
send_irq(einfo);
break;
case SIGNALS_CMD:
if (atomic_ctx) {
queue_cmd(einfo, &cmd, NULL);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
einfo->xprt_if.glink_core_if_ptr->rx_cmd_remote_sigs(
&einfo->xprt_if,
cmd.param1,
cmd.param2);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
case RX_DONE_W_REUSE_CMD:
if (atomic_ctx) {
queue_cmd(einfo, &cmd, NULL);
break;
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
einfo->xprt_if.glink_core_if_ptr->rx_cmd_tx_done(
&einfo->xprt_if,
cmd.param1,
cmd.param2,
true);
spin_lock_irqsave(&einfo->rx_lock, flags);
break;
default:
pr_err("Unrecognized command: %d\n", cmd.id);
break;
}
}
spin_unlock_irqrestore(&einfo->rx_lock, flags);
srcu_read_unlock(&einfo->use_ref, rcu_id);
}
/**
* rx_worker() - worker function to process received commands
* @work: kwork associated with the edge to process commands on.
*/
static void rx_worker(struct kthread_work *work)
{
struct edge_info *einfo;
einfo = container_of(work, struct edge_info, kwork);
__rx_worker(einfo, false);
}
irqreturn_t irq_handler(int irq, void *priv)
{
struct edge_info *einfo = (struct edge_info *)priv;
if (einfo->rx_reset_reg)
writel_relaxed(einfo->out_irq_mask, einfo->rx_reset_reg);
queue_kthread_work(&einfo->kworker, &einfo->kwork);
einfo->rx_irq_count++;
return IRQ_HANDLED;
}
/**
* tx_cmd_version() - convert a version cmd to wire format and transmit
* @if_ptr: The transport to transmit on.
* @version: The version number to encode.
* @features: The features information to encode.
*/
static void tx_cmd_version(struct glink_transport_if *if_ptr, uint32_t version,
uint32_t features)
{
struct command {
uint16_t id;
uint16_t version;
uint32_t features;
};
struct command cmd;
struct edge_info *einfo;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return;
}
cmd.id = VERSION_CMD;
cmd.version = version;
cmd.features = features;
fifo_tx(einfo, &cmd, sizeof(cmd));
srcu_read_unlock(&einfo->use_ref, rcu_id);
}
/**
* tx_cmd_version_ack() - convert a version ack cmd to wire format and transmit
* @if_ptr: The transport to transmit on.
* @version: The version number to encode.
* @features: The features information to encode.
*/
static void tx_cmd_version_ack(struct glink_transport_if *if_ptr,
uint32_t version,
uint32_t features)
{
struct command {
uint16_t id;
uint16_t version;
uint32_t features;
};
struct command cmd;
struct edge_info *einfo;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return;
}
cmd.id = VERSION_ACK_CMD;
cmd.version = version;
cmd.features = features;
fifo_tx(einfo, &cmd, sizeof(cmd));
srcu_read_unlock(&einfo->use_ref, rcu_id);
}
/**
* set_version() - activate a negotiated version and feature set
* @if_ptr: The transport to configure.
* @version: The version to use.
* @features: The features to use.
*
* Return: The supported capabilities of the transport.
*/
static uint32_t set_version(struct glink_transport_if *if_ptr, uint32_t version,
uint32_t features)
{
struct edge_info *einfo;
uint32_t ret;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return 0;
}
ret = einfo->intentless ?
GCAP_INTENTLESS | GCAP_SIGNALS : GCAP_SIGNALS;
if (features & TRACER_PKT_FEATURE)
ret |= GCAP_TRACER_PKT;
srcu_read_unlock(&einfo->use_ref, rcu_id);
return ret;
}
/**
* tx_cmd_ch_open() - convert a channel open cmd to wire format and transmit
* @if_ptr: The transport to transmit on.
* @lcid: The local channel id to encode.
* @name: The channel name to encode.
* @req_xprt: The transport the core would like to migrate this channel to.
*
* Return: 0 on success or standard Linux error code.
*/
static int tx_cmd_ch_open(struct glink_transport_if *if_ptr, uint32_t lcid,
const char *name, uint16_t req_xprt)
{
struct command {
uint16_t id;
uint16_t lcid;
uint32_t length;
};
struct command cmd;
struct edge_info *einfo;
uint32_t buf_size;
void *buf;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EFAULT;
}
cmd.id = OPEN_CMD;
cmd.lcid = lcid;
cmd.length = strlen(name) + 1;
buf_size = ALIGN(sizeof(cmd) + cmd.length, FIFO_ALIGNMENT);
buf = kzalloc(buf_size, GFP_KERNEL);
if (!buf) {
pr_err("%s: malloc fail for %d size buf\n", __func__, buf_size);
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -ENOMEM;
}
memcpy(buf, &cmd, sizeof(cmd));
memcpy(buf + sizeof(cmd), name, cmd.length);
fifo_tx(einfo, buf, buf_size);
kfree(buf);
srcu_read_unlock(&einfo->use_ref, rcu_id);
return 0;
}
/**
* tx_cmd_ch_close() - convert a channel close cmd to wire format and transmit
* @if_ptr: The transport to transmit on.
* @lcid: The local channel id to encode.
*
* Return: 0 on success or standard Linux error code.
*/
static int tx_cmd_ch_close(struct glink_transport_if *if_ptr, uint32_t lcid)
{
struct command {
uint16_t id;
uint16_t lcid;
uint32_t reserved;
};
struct command cmd;
struct edge_info *einfo;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EFAULT;
}
cmd.id = CLOSE_CMD;
cmd.lcid = lcid;
cmd.reserved = 0;
fifo_tx(einfo, &cmd, sizeof(cmd));
srcu_read_unlock(&einfo->use_ref, rcu_id);
return 0;
}
/**
* tx_cmd_ch_remote_open_ack() - convert a channel open ack cmd to wire format
* and transmit
* @if_ptr: The transport to transmit on.
* @rcid: The remote channel id to encode.
* @xprt_resp: The response to a transport migration request.
*/
static void tx_cmd_ch_remote_open_ack(struct glink_transport_if *if_ptr,
uint32_t rcid, uint16_t xprt_resp)
{
struct command {
uint16_t id;
uint16_t rcid;
uint32_t reserved;
};
struct command cmd;
struct edge_info *einfo;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return;
}
cmd.id = OPEN_ACK_CMD;
cmd.rcid = rcid;
cmd.reserved = 0;
fifo_tx(einfo, &cmd, sizeof(cmd));
srcu_read_unlock(&einfo->use_ref, rcu_id);
}
/**
* tx_cmd_ch_remote_close_ack() - convert a channel close ack cmd to wire format
* and transmit
* @if_ptr: The transport to transmit on.
* @rcid: The remote channel id to encode.
*/
static void tx_cmd_ch_remote_close_ack(struct glink_transport_if *if_ptr,
uint32_t rcid)
{
struct command {
uint16_t id;
uint16_t rcid;
uint32_t reserved;
};
struct command cmd;
struct edge_info *einfo;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return;
}
cmd.id = CLOSE_ACK_CMD;
cmd.rcid = rcid;
cmd.reserved = 0;
fifo_tx(einfo, &cmd, sizeof(cmd));
srcu_read_unlock(&einfo->use_ref, rcu_id);
}
/**
* ssr() - process a subsystem restart notification of a transport
* @if_ptr: The transport to restart
*
* Return: 0 on success or standard Linux error code.
*/
static int ssr(struct glink_transport_if *if_ptr)
{
struct edge_info *einfo;
struct deferred_cmd *cmd;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
BUG_ON(einfo->remote_proc_id == SMEM_RPM);
einfo->in_ssr = true;
wake_up_all(&einfo->tx_blocked_queue);
synchronize_srcu(&einfo->use_ref);
while (!list_empty(&einfo->deferred_cmds)) {
cmd = list_first_entry(&einfo->deferred_cmds,
struct deferred_cmd, list_node);
list_del(&cmd->list_node);
kfree(cmd->data);
kfree(cmd);
}
einfo->tx_resume_needed = false;
einfo->tx_blocked_signal_sent = false;
einfo->rx_fifo = NULL;
einfo->rx_fifo_size = 0;
einfo->tx_ch_desc->write_index = 0;
einfo->rx_ch_desc->read_index = 0;
einfo->xprt_if.glink_core_if_ptr->link_down(&einfo->xprt_if);
return 0;
}
/**
* int wait_link_down() - Check status of read/write indices
* @if_ptr: The transport to check
*
* Return: 1 if indices are all zero, 0 otherwise
*/
int wait_link_down(struct glink_transport_if *if_ptr)
{
struct edge_info *einfo;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
if (einfo->tx_ch_desc->write_index == 0 &&
einfo->tx_ch_desc->read_index == 0 &&
einfo->rx_ch_desc->write_index == 0 &&
einfo->rx_ch_desc->read_index == 0)
return 1;
else
return 0;
}
/**
* allocate_rx_intent() - allocate/reserve space for RX Intent
* @if_ptr: The transport the intent is associated with.
* @size: size of intent.
* @intent: Pointer to the intent structure.
*
* Assign "data" with the buffer created, since the transport creates
* a linear buffer and "iovec" with the "intent" itself, so that
* the data can be passed to a client that receives only vector buffer.
* Note that returning NULL for the pointer is valid (it means that space has
* been reserved, but the actual pointer will be provided later).
*
* Return: 0 on success or standard Linux error code.
*/
static int allocate_rx_intent(struct glink_transport_if *if_ptr, size_t size,
struct glink_core_rx_intent *intent)
{
void *t;
t = kmalloc(size, GFP_KERNEL);
if (!t)
return -ENOMEM;
intent->data = t;
intent->iovec = (void *)intent;
intent->vprovider = rx_linear_vbuf_provider;
intent->pprovider = NULL;
return 0;
}
/**
* deallocate_rx_intent() - Deallocate space created for RX Intent
* @if_ptr: The transport the intent is associated with.
* @intent: Pointer to the intent structure.
*
* Return: 0 on success or standard Linux error code.
*/
static int deallocate_rx_intent(struct glink_transport_if *if_ptr,
struct glink_core_rx_intent *intent)
{
if (!intent || !intent->data)
return -EINVAL;
kfree(intent->data);
intent->data = NULL;
intent->iovec = NULL;
intent->vprovider = NULL;
return 0;
}
/**
* tx_cmd_local_rx_intent() - convert an rx intent cmd to wire format and
* transmit
* @if_ptr: The transport to transmit on.
* @lcid: The local channel id to encode.
* @size: The intent size to encode.
* @liid: The local intent id to encode.
*
* Return: 0 on success or standard Linux error code.
*/
static int tx_cmd_local_rx_intent(struct glink_transport_if *if_ptr,
uint32_t lcid, size_t size, uint32_t liid)
{
struct command {
uint16_t id;
uint16_t lcid;
uint32_t count;
uint32_t size;
uint32_t liid;
};
struct command cmd;
struct edge_info *einfo;
int rcu_id;
if (size > UINT_MAX) {
pr_err("%s: size %zu is too large to encode\n", __func__, size);
return -EMSGSIZE;
}
einfo = container_of(if_ptr, struct edge_info, xprt_if);
if (einfo->intentless)
return -EOPNOTSUPP;
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EFAULT;
}
cmd.id = RX_INTENT_CMD;
cmd.lcid = lcid;
cmd.count = 1;
cmd.size = size;
cmd.liid = liid;
fifo_tx(einfo, &cmd, sizeof(cmd));
srcu_read_unlock(&einfo->use_ref, rcu_id);
return 0;
}
/**
* tx_cmd_local_rx_done() - convert an rx done cmd to wire format and transmit
* @if_ptr: The transport to transmit on.
* @lcid: The local channel id to encode.
* @liid: The local intent id to encode.
* @reuse: Reuse the consumed intent.
*/
static void tx_cmd_local_rx_done(struct glink_transport_if *if_ptr,
uint32_t lcid, uint32_t liid, bool reuse)
{
struct command {
uint16_t id;
uint16_t lcid;
uint32_t liid;
};
struct command cmd;
struct edge_info *einfo;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
if (einfo->intentless)
return;
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return;
}
cmd.id = reuse ? RX_DONE_W_REUSE_CMD : RX_DONE_CMD;
cmd.lcid = lcid;
cmd.liid = liid;
fifo_tx(einfo, &cmd, sizeof(cmd));
srcu_read_unlock(&einfo->use_ref, rcu_id);
}
/**
* tx_cmd_rx_intent_req() - convert an rx intent request cmd to wire format and
* transmit
* @if_ptr: The transport to transmit on.
* @lcid: The local channel id to encode.
* @size: The requested intent size to encode.
*
* Return: 0 on success or standard Linux error code.
*/
static int tx_cmd_rx_intent_req(struct glink_transport_if *if_ptr,
uint32_t lcid, size_t size)
{
struct command {
uint16_t id;
uint16_t lcid;
uint32_t size;
};
struct command cmd;
struct edge_info *einfo;
int rcu_id;
if (size > UINT_MAX) {
pr_err("%s: size %zu is too large to encode\n", __func__, size);
return -EMSGSIZE;
}
einfo = container_of(if_ptr, struct edge_info, xprt_if);
if (einfo->intentless)
return -EOPNOTSUPP;
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EFAULT;
}
cmd.id = RX_INTENT_REQ_CMD,
cmd.lcid = lcid;
cmd.size = size;
fifo_tx(einfo, &cmd, sizeof(cmd));
srcu_read_unlock(&einfo->use_ref, rcu_id);
return 0;
}
/**
* tx_cmd_rx_intent_req_ack() - convert an rx intent request ack cmd to wire
* format and transmit
* @if_ptr: The transport to transmit on.
* @lcid: The local channel id to encode.
* @granted: The request response to encode.
*
* Return: 0 on success or standard Linux error code.
*/
static int tx_cmd_remote_rx_intent_req_ack(struct glink_transport_if *if_ptr,
uint32_t lcid, bool granted)
{
struct command {
uint16_t id;
uint16_t lcid;
uint32_t response;
};
struct command cmd;
struct edge_info *einfo;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
if (einfo->intentless)
return -EOPNOTSUPP;
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EFAULT;
}
cmd.id = RX_INTENT_REQ_ACK_CMD,
cmd.lcid = lcid;
if (granted)
cmd.response = 1;
else
cmd.response = 0;
fifo_tx(einfo, &cmd, sizeof(cmd));
srcu_read_unlock(&einfo->use_ref, rcu_id);
return 0;
}
/**
* tx_cmd_set_sigs() - convert a signals ack cmd to wire format and transmit
* @if_ptr: The transport to transmit on.
* @lcid: The local channel id to encode.
* @sigs: The signals to encode.
*
* Return: 0 on success or standard Linux error code.
*/
static int tx_cmd_set_sigs(struct glink_transport_if *if_ptr, uint32_t lcid,
uint32_t sigs)
{
struct command {
uint16_t id;
uint16_t lcid;
uint32_t sigs;
};
struct command cmd;
struct edge_info *einfo;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EFAULT;
}
cmd.id = SIGNALS_CMD,
cmd.lcid = lcid;
cmd.sigs = sigs;
fifo_tx(einfo, &cmd, sizeof(cmd));
srcu_read_unlock(&einfo->use_ref, rcu_id);
return 0;
}
/**
* poll() - poll for data on a channel
* @if_ptr: The transport the channel exists on.
* @lcid: The local channel id.
*
* Return: 0 if no data available, 1 if data available.
*/
static int poll(struct glink_transport_if *if_ptr, uint32_t lcid)
{
struct edge_info *einfo;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EFAULT;
}
if (fifo_read_avail(einfo)) {
__rx_worker(einfo, true);
srcu_read_unlock(&einfo->use_ref, rcu_id);
return 1;
}
srcu_read_unlock(&einfo->use_ref, rcu_id);
return 0;
}
/**
* mask_rx_irq() - mask the receive irq for a channel
* @if_ptr: The transport the channel exists on.
* @lcid: The local channel id for the channel.
* @mask: True to mask the irq, false to unmask.
* @pstruct: Platform defined structure for handling the masking.
*
* Return: 0 on success or standard Linux error code.
*/
static int mask_rx_irq(struct glink_transport_if *if_ptr, uint32_t lcid,
bool mask, void *pstruct)
{
struct edge_info *einfo;
struct irq_chip *irq_chip;
struct irq_data *irq_data;
int rcu_id;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EFAULT;
}
irq_chip = irq_get_chip(einfo->irq_line);
if (!irq_chip) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -ENODEV;
}
irq_data = irq_get_irq_data(einfo->irq_line);
if (!irq_data) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -ENODEV;
}
if (mask) {
irq_chip->irq_mask(irq_data);
einfo->irq_disabled = true;
if (pstruct)
irq_set_affinity(einfo->irq_line, pstruct);
} else {
irq_chip->irq_unmask(irq_data);
einfo->irq_disabled = false;
}
srcu_read_unlock(&einfo->use_ref, rcu_id);
return 0;
}
/**
* tx_data() - convert a data/tracer_pkt to wire format and transmit
* @if_ptr: The transport to transmit on.
* @cmd_id: The command ID to transmit.
* @lcid: The local channel id to encode.
* @pctx: The data to encode.
*
* Return: Number of bytes written or standard Linux error code.
*/
static int tx_data(struct glink_transport_if *if_ptr, uint16_t cmd_id,
uint32_t lcid, struct glink_core_tx_pkt *pctx)
{
struct command {
uint16_t id;
uint16_t lcid;
uint32_t riid;
uint32_t size;
uint32_t size_left;
};
struct command cmd;
struct edge_info *einfo;
uint32_t size;
uint32_t zeros_size;
const void *data_start;
char zeros[FIFO_ALIGNMENT] = { 0 };
unsigned long flags;
size_t tx_size = 0;
int rcu_id;
if (pctx->size < pctx->size_remaining) {
GLINK_ERR("%s: size remaining exceeds size. Resetting.\n",
__func__);
pctx->size_remaining = pctx->size;
}
if (!pctx->size_remaining)
return 0;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
rcu_id = srcu_read_lock(&einfo->use_ref);
if (einfo->in_ssr) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EFAULT;
}
if (einfo->intentless &&
(pctx->size_remaining != pctx->size || cmd_id == TRACER_PKT_CMD)) {
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EINVAL;
}
if (cmd_id == TX_DATA_CMD) {
if (pctx->size_remaining == pctx->size)
cmd.id = TX_DATA_CMD;
else
cmd.id = TX_DATA_CONT_CMD;
} else {
if (pctx->size_remaining == pctx->size)
cmd.id = TRACER_PKT_CMD;
else
cmd.id = TRACER_PKT_CONT_CMD;
}
cmd.lcid = lcid;
cmd.riid = pctx->riid;
data_start = get_tx_vaddr(pctx, pctx->size - pctx->size_remaining,
&tx_size);
if (!data_start) {
GLINK_ERR("%s: invalid data_start\n", __func__);
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EINVAL;
}
spin_lock_irqsave(&einfo->write_lock, flags);
size = fifo_write_avail(einfo);
/* Intentless clients expect a complete commit or instant failure */
if (einfo->intentless && size < sizeof(cmd) + pctx->size) {
spin_unlock_irqrestore(&einfo->write_lock, flags);
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -ENOSPC;
}
/* Need enough space to write the command and some data */
if (size <= sizeof(cmd)) {
einfo->tx_resume_needed = true;
spin_unlock_irqrestore(&einfo->write_lock, flags);
srcu_read_unlock(&einfo->use_ref, rcu_id);
return -EAGAIN;
}
size -= sizeof(cmd);
if (size > tx_size)
size = tx_size;
cmd.size = size;
pctx->size_remaining -= size;
cmd.size_left = pctx->size_remaining;
zeros_size = ALIGN(size, FIFO_ALIGNMENT) - cmd.size;
if (cmd.id == TRACER_PKT_CMD)
tracer_pkt_log_event((void *)(pctx->data), GLINK_XPRT_TX);
fifo_write_complex(einfo, &cmd, sizeof(cmd), data_start, size, zeros,
zeros_size);
GLINK_DBG("%s %s: lcid[%u] riid[%u] cmd[%d], size[%d], size_left[%d]\n",
"<SMEM>", __func__, cmd.lcid, cmd.riid, cmd.id, cmd.size,
cmd.size_left);
spin_unlock_irqrestore(&einfo->write_lock, flags);
/* Fake tx_done for intentless since its not supported over the wire */
if (einfo->intentless) {
spin_lock_irqsave(&einfo->rx_lock, flags);
cmd.id = RX_DONE_CMD;
cmd.lcid = pctx->rcid;
queue_cmd(einfo, &cmd, NULL);
spin_unlock_irqrestore(&einfo->rx_lock, flags);
}
srcu_read_unlock(&einfo->use_ref, rcu_id);
return cmd.size;
}
/**
* tx() - convert a data transmit cmd to wire format and transmit
* @if_ptr: The transport to transmit on.
* @lcid: The local channel id to encode.
* @pctx: The data to encode.
*
* Return: Number of bytes written or standard Linux error code.
*/
static int tx(struct glink_transport_if *if_ptr, uint32_t lcid,
struct glink_core_tx_pkt *pctx)
{
return tx_data(if_ptr, TX_DATA_CMD, lcid, pctx);
}
/**
* tx_cmd_tracer_pkt() - convert a tracer packet cmd to wire format and transmit
* @if_ptr: The transport to transmit on.
* @lcid: The local channel id to encode.
* @pctx: The data to encode.
*
* Return: Number of bytes written or standard Linux error code.
*/
static int tx_cmd_tracer_pkt(struct glink_transport_if *if_ptr, uint32_t lcid,
struct glink_core_tx_pkt *pctx)
{
return tx_data(if_ptr, TRACER_PKT_CMD, lcid, pctx);
}
/**
* get_power_vote_ramp_time() - Get the ramp time required for the power
* votes to be applied
* @if_ptr: The transport interface on which power voting is requested.
* @state: The power state for which ramp time is required.
*
* Return: The ramp time specific to the power state, standard error otherwise.
*/
static unsigned long get_power_vote_ramp_time(
struct glink_transport_if *if_ptr,
uint32_t state)
{
struct edge_info *einfo;
einfo = container_of(if_ptr, struct edge_info, xprt_if);
if (state >= einfo->num_pw_states || !(einfo->ramp_time_us))
return (unsigned long)ERR_PTR(-EINVAL);
return einfo->ramp_time_us[state];
}
/**
* power_vote() - Update the power votes to meet qos requirement
* @if_ptr: The transport interface on which power voting is requested.
* @state: The power state for which the voting should be done.
*
* Return: 0 on Success, standard error otherwise.
*/
static int power_vote(struct glink_transport_if *if_ptr, uint32_t state)
{
return 0;
}
/**
* power_unvote() - Remove the all the power votes
* @if_ptr: The transport interface on which power voting is requested.
*
* Return: 0 on Success, standard error otherwise.
*/
static int power_unvote(struct glink_transport_if *if_ptr)
{
return 0;
}
/**
* negotiate_features_v1() - determine what features of a version can be used
* @if_ptr: The transport for which features are negotiated for.
* @version: The version negotiated.
* @features: The set of requested features.
*
* Return: What set of the requested features can be supported.
*/
static uint32_t negotiate_features_v1(struct glink_transport_if *if_ptr,
const struct glink_core_version *version,
uint32_t features)
{
return features & version->features;
}
/**
* init_xprt_if() - initialize the xprt_if for an edge
* @einfo: The edge to initialize.
*/
static void init_xprt_if(struct edge_info *einfo)
{
einfo->xprt_if.tx_cmd_version = tx_cmd_version;
einfo->xprt_if.tx_cmd_version_ack = tx_cmd_version_ack;
einfo->xprt_if.set_version = set_version;
einfo->xprt_if.tx_cmd_ch_open = tx_cmd_ch_open;
einfo->xprt_if.tx_cmd_ch_close = tx_cmd_ch_close;
einfo->xprt_if.tx_cmd_ch_remote_open_ack = tx_cmd_ch_remote_open_ack;
einfo->xprt_if.tx_cmd_ch_remote_close_ack = tx_cmd_ch_remote_close_ack;
einfo->xprt_if.ssr = ssr;
einfo->xprt_if.allocate_rx_intent = allocate_rx_intent;
einfo->xprt_if.deallocate_rx_intent = deallocate_rx_intent;
einfo->xprt_if.tx_cmd_local_rx_intent = tx_cmd_local_rx_intent;
einfo->xprt_if.tx_cmd_local_rx_done = tx_cmd_local_rx_done;
einfo->xprt_if.tx = tx;
einfo->xprt_if.tx_cmd_rx_intent_req = tx_cmd_rx_intent_req;
einfo->xprt_if.tx_cmd_remote_rx_intent_req_ack =
tx_cmd_remote_rx_intent_req_ack;
einfo->xprt_if.tx_cmd_set_sigs = tx_cmd_set_sigs;
einfo->xprt_if.poll = poll;
einfo->xprt_if.mask_rx_irq = mask_rx_irq;
einfo->xprt_if.wait_link_down = wait_link_down;
einfo->xprt_if.tx_cmd_tracer_pkt = tx_cmd_tracer_pkt;
einfo->xprt_if.get_power_vote_ramp_time = get_power_vote_ramp_time;
einfo->xprt_if.power_vote = power_vote;
einfo->xprt_if.power_unvote = power_unvote;
}
/**
* init_xprt_cfg() - initialize the xprt_cfg for an edge
* @einfo: The edge to initialize.
* @name: The name of the remote side this edge communicates to.
*/
static void init_xprt_cfg(struct edge_info *einfo, const char *name)
{
einfo->xprt_cfg.name = XPRT_NAME;
einfo->xprt_cfg.edge = name;
einfo->xprt_cfg.versions = versions;
einfo->xprt_cfg.versions_entries = ARRAY_SIZE(versions);
einfo->xprt_cfg.max_cid = SZ_64K;
einfo->xprt_cfg.max_iid = SZ_2G;
}
/**
* parse_qos_dt_params() - Parse the power states from DT
* @dev: Reference to the platform device for a specific edge.
* @einfo: Edge information for the edge probe function is called.
*
* Return: 0 on success, standard error code otherwise.
*/
static int parse_qos_dt_params(struct device_node *node,
struct edge_info *einfo)
{
int rc;
int i;
char *key;
uint32_t *arr32;
uint32_t num_states;
key = "qcom,ramp-time";
if (!of_find_property(node, key, &num_states))
return -ENODEV;
num_states /= sizeof(uint32_t);
einfo->num_pw_states = num_states;
arr32 = kmalloc_array(num_states, sizeof(uint32_t), GFP_KERNEL);
if (!arr32)
return -ENOMEM;
einfo->ramp_time_us = kmalloc_array(num_states, sizeof(unsigned long),
GFP_KERNEL);
if (!einfo->ramp_time_us) {
rc = -ENOMEM;
goto mem_alloc_fail;
}
rc = of_property_read_u32_array(node, key, arr32, num_states);
if (rc) {
rc = -ENODEV;
goto invalid_key;
}
for (i = 0; i < num_states; i++)
einfo->ramp_time_us[i] = arr32[i];
rc = 0;
return rc;
invalid_key:
kfree(einfo->ramp_time_us);
mem_alloc_fail:
kfree(arr32);
return rc;
}
/**
* subsys_name_to_id() - translate a subsystem name to a processor id
* @name: The subsystem name to look up.
*
* Return: The processor id corresponding to @name or standard Linux error code.
*/
static int subsys_name_to_id(const char *name)
{
if (!name)
return -ENODEV;
if (!strcmp(name, "apss"))
return SMEM_APPS;
if (!strcmp(name, "dsps"))
return SMEM_DSPS;
if (!strcmp(name, "lpass"))
return SMEM_Q6;
if (!strcmp(name, "mpss"))
return SMEM_MODEM;
if (!strcmp(name, "rpm"))
return SMEM_RPM;
if (!strcmp(name, "wcnss"))
return SMEM_WCNSS;
if (!strcmp(name, "spss"))
return SMEM_SPSS;
return -ENODEV;
}
static int glink_smem_native_probe(struct platform_device *pdev)
{
struct device_node *node;
struct device_node *phandle_node;
struct edge_info *einfo;
int rc;
char *key;
const char *subsys_name;
uint32_t irq_line;
uint32_t irq_mask;
struct resource *r;
node = pdev->dev.of_node;
einfo = kzalloc(sizeof(*einfo), GFP_KERNEL);
if (!einfo) {
pr_err("%s: edge_info allocation failed\n", __func__);
rc = -ENOMEM;
goto edge_info_alloc_fail;
}
key = "label";
subsys_name = of_get_property(node, key, NULL);
if (!subsys_name) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "interrupts";
irq_line = irq_of_parse_and_map(node, 0);
if (!irq_line) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "qcom,irq-mask";
rc = of_property_read_u32(node, key, &irq_mask);
if (rc) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "irq-reg-base";
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key);
if (!r) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
if (subsys_name_to_id(subsys_name) == -ENODEV) {
pr_err("%s: unknown subsystem: %s\n", __func__, subsys_name);
rc = -ENODEV;
goto invalid_key;
}
einfo->remote_proc_id = subsys_name_to_id(subsys_name);
init_xprt_cfg(einfo, subsys_name);
init_xprt_if(einfo);
spin_lock_init(&einfo->write_lock);
init_waitqueue_head(&einfo->tx_blocked_queue);
init_kthread_work(&einfo->kwork, rx_worker);
init_kthread_worker(&einfo->kworker);
einfo->read_from_fifo = read_from_fifo;
einfo->write_to_fifo = write_to_fifo;
init_srcu_struct(&einfo->use_ref);
spin_lock_init(&einfo->rx_lock);
INIT_LIST_HEAD(&einfo->deferred_cmds);
mutex_lock(&probe_lock);
if (edge_infos[einfo->remote_proc_id]) {
pr_err("%s: duplicate subsys %s is not valid\n", __func__,
subsys_name);
rc = -ENODEV;
mutex_unlock(&probe_lock);
goto invalid_key;
}
edge_infos[einfo->remote_proc_id] = einfo;
mutex_unlock(&probe_lock);
einfo->out_irq_mask = irq_mask;
einfo->out_irq_reg = ioremap_nocache(r->start, resource_size(r));
if (!einfo->out_irq_reg) {
pr_err("%s: unable to map irq reg\n", __func__);
rc = -ENOMEM;
goto ioremap_fail;
}
einfo->task = kthread_run(kthread_worker_fn, &einfo->kworker,
"smem_native_%s", subsys_name);
if (IS_ERR(einfo->task)) {
rc = PTR_ERR(einfo->task);
pr_err("%s: kthread_run failed %d\n", __func__, rc);
goto kthread_fail;
}
einfo->tx_ch_desc = smem_alloc(SMEM_GLINK_NATIVE_XPRT_DESCRIPTOR,
SMEM_CH_DESC_SIZE,
einfo->remote_proc_id,
0);
if (PTR_ERR(einfo->tx_ch_desc) == -EPROBE_DEFER) {
rc = -EPROBE_DEFER;
goto smem_alloc_fail;
}
if (!einfo->tx_ch_desc) {
pr_err("%s: smem alloc of ch descriptor failed\n", __func__);
rc = -ENOMEM;
goto smem_alloc_fail;
}
einfo->rx_ch_desc = einfo->tx_ch_desc + 1;
einfo->tx_fifo_size = SZ_16K;
einfo->tx_fifo = smem_alloc(SMEM_GLINK_NATIVE_XPRT_FIFO_0,
einfo->tx_fifo_size,
einfo->remote_proc_id,
SMEM_ITEM_CACHED_FLAG);
if (!einfo->tx_fifo) {
pr_err("%s: smem alloc of tx fifo failed\n", __func__);
rc = -ENOMEM;
goto smem_alloc_fail;
}
key = "qcom,qos-config";
phandle_node = of_parse_phandle(node, key, 0);
if (phandle_node && !(of_get_glink_core_qos_cfg(phandle_node,
&einfo->xprt_cfg)))
parse_qos_dt_params(node, einfo);
rc = glink_core_register_transport(&einfo->xprt_if, &einfo->xprt_cfg);
if (rc == -EPROBE_DEFER)
goto reg_xprt_fail;
if (rc) {
pr_err("%s: glink core register transport failed: %d\n",
__func__, rc);
goto reg_xprt_fail;
}
einfo->irq_line = irq_line;
rc = request_irq(irq_line, irq_handler,
IRQF_TRIGGER_RISING | IRQF_NO_SUSPEND | IRQF_SHARED,
node->name, einfo);
if (rc < 0) {
pr_err("%s: request_irq on %d failed: %d\n", __func__, irq_line,
rc);
goto request_irq_fail;
}
rc = enable_irq_wake(irq_line);
if (rc < 0)
pr_err("%s: enable_irq_wake() failed on %d\n", __func__,
irq_line);
register_debugfs_info(einfo);
/* fake an interrupt on this edge to see if the remote side is up */
irq_handler(0, einfo);
return 0;
request_irq_fail:
glink_core_unregister_transport(&einfo->xprt_if);
reg_xprt_fail:
smem_alloc_fail:
flush_kthread_worker(&einfo->kworker);
kthread_stop(einfo->task);
einfo->task = NULL;
kthread_fail:
iounmap(einfo->out_irq_reg);
ioremap_fail:
mutex_lock(&probe_lock);
edge_infos[einfo->remote_proc_id] = NULL;
mutex_unlock(&probe_lock);
invalid_key:
missing_key:
kfree(einfo);
edge_info_alloc_fail:
return rc;
}
static int glink_rpm_native_probe(struct platform_device *pdev)
{
struct device_node *node;
struct edge_info *einfo;
int rc;
char *key;
const char *subsys_name;
uint32_t irq_line;
uint32_t irq_mask;
struct resource *irq_r;
struct resource *msgram_r;
void __iomem *msgram;
char toc[RPM_TOC_SIZE];
uint32_t *tocp;
uint32_t num_toc_entries;
node = pdev->dev.of_node;
einfo = kzalloc(sizeof(*einfo), GFP_KERNEL);
if (!einfo) {
pr_err("%s: edge_info allocation failed\n", __func__);
rc = -ENOMEM;
goto edge_info_alloc_fail;
}
subsys_name = "rpm";
key = "interrupts";
irq_line = irq_of_parse_and_map(node, 0);
if (!irq_line) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "qcom,irq-mask";
rc = of_property_read_u32(node, key, &irq_mask);
if (rc) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "irq-reg-base";
irq_r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key);
if (!irq_r) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "msgram";
msgram_r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key);
if (!msgram_r) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
if (subsys_name_to_id(subsys_name) == -ENODEV) {
pr_err("%s: unknown subsystem: %s\n", __func__, subsys_name);
rc = -ENODEV;
goto invalid_key;
}
einfo->remote_proc_id = subsys_name_to_id(subsys_name);
init_xprt_cfg(einfo, subsys_name);
init_xprt_if(einfo);
spin_lock_init(&einfo->write_lock);
init_waitqueue_head(&einfo->tx_blocked_queue);
init_kthread_work(&einfo->kwork, rx_worker);
init_kthread_worker(&einfo->kworker);
einfo->intentless = true;
einfo->read_from_fifo = memcpy32_fromio;
einfo->write_to_fifo = memcpy32_toio;
init_srcu_struct(&einfo->use_ref);
spin_lock_init(&einfo->rx_lock);
INIT_LIST_HEAD(&einfo->deferred_cmds);
mutex_lock(&probe_lock);
if (edge_infos[einfo->remote_proc_id]) {
pr_err("%s: duplicate subsys %s is not valid\n", __func__,
subsys_name);
rc = -ENODEV;
mutex_unlock(&probe_lock);
goto invalid_key;
}
edge_infos[einfo->remote_proc_id] = einfo;
mutex_unlock(&probe_lock);
einfo->out_irq_mask = irq_mask;
einfo->out_irq_reg = ioremap_nocache(irq_r->start,
resource_size(irq_r));
if (!einfo->out_irq_reg) {
pr_err("%s: unable to map irq reg\n", __func__);
rc = -ENOMEM;
goto irq_ioremap_fail;
}
msgram = ioremap_nocache(msgram_r->start, resource_size(msgram_r));
if (!msgram) {
pr_err("%s: unable to map msgram\n", __func__);
rc = -ENOMEM;
goto msgram_ioremap_fail;
}
einfo->task = kthread_run(kthread_worker_fn, &einfo->kworker,
"smem_native_%s", subsys_name);
if (IS_ERR(einfo->task)) {
rc = PTR_ERR(einfo->task);
pr_err("%s: kthread_run failed %d\n", __func__, rc);
goto kthread_fail;
}
memcpy32_fromio(toc, msgram + resource_size(msgram_r) - RPM_TOC_SIZE,
RPM_TOC_SIZE);
tocp = (uint32_t *)toc;
if (*tocp != RPM_TOC_ID) {
rc = -ENODEV;
pr_err("%s: TOC id %d is not valid\n", __func__, *tocp);
goto toc_init_fail;
}
++tocp;
num_toc_entries = *tocp;
if (num_toc_entries > RPM_MAX_TOC_ENTRIES) {
rc = -ENODEV;
pr_err("%s: %d is too many toc entries\n", __func__,
num_toc_entries);
goto toc_init_fail;
}
++tocp;
for (rc = 0; rc < num_toc_entries; ++rc) {
if (*tocp != RPM_TX_FIFO_ID) {
tocp += 3;
continue;
}
++tocp;
einfo->tx_ch_desc = msgram + *tocp;
einfo->tx_fifo = einfo->tx_ch_desc + 1;
if ((uintptr_t)einfo->tx_fifo >
(uintptr_t)(msgram + resource_size(msgram_r))) {
pr_err("%s: invalid tx fifo address\n", __func__);
einfo->tx_fifo = NULL;
break;
}
++tocp;
einfo->tx_fifo_size = *tocp;
if (einfo->tx_fifo_size > resource_size(msgram_r) ||
(uintptr_t)(einfo->tx_fifo + einfo->tx_fifo_size) >
(uintptr_t)(msgram + resource_size(msgram_r))) {
pr_err("%s: invalid tx fifo size\n", __func__);
einfo->tx_fifo = NULL;
break;
}
break;
}
if (!einfo->tx_fifo) {
rc = -ENODEV;
pr_err("%s: tx fifo not found\n", __func__);
goto toc_init_fail;
}
tocp = (uint32_t *)toc;
tocp += 2;
for (rc = 0; rc < num_toc_entries; ++rc) {
if (*tocp != RPM_RX_FIFO_ID) {
tocp += 3;
continue;
}
++tocp;
einfo->rx_ch_desc = msgram + *tocp;
einfo->rx_fifo = einfo->rx_ch_desc + 1;
if ((uintptr_t)einfo->rx_fifo >
(uintptr_t)(msgram + resource_size(msgram_r))) {
pr_err("%s: invalid rx fifo address\n", __func__);
einfo->rx_fifo = NULL;
break;
}
++tocp;
einfo->rx_fifo_size = *tocp;
if (einfo->rx_fifo_size > resource_size(msgram_r) ||
(uintptr_t)(einfo->rx_fifo + einfo->rx_fifo_size) >
(uintptr_t)(msgram + resource_size(msgram_r))) {
pr_err("%s: invalid rx fifo size\n", __func__);
einfo->rx_fifo = NULL;
break;
}
break;
}
if (!einfo->rx_fifo) {
rc = -ENODEV;
pr_err("%s: rx fifo not found\n", __func__);
goto toc_init_fail;
}
einfo->tx_ch_desc->write_index = 0;
einfo->rx_ch_desc->read_index = 0;
rc = glink_core_register_transport(&einfo->xprt_if, &einfo->xprt_cfg);
if (rc == -EPROBE_DEFER)
goto reg_xprt_fail;
if (rc) {
pr_err("%s: glink core register transport failed: %d\n",
__func__, rc);
goto reg_xprt_fail;
}
einfo->irq_line = irq_line;
rc = request_irq(irq_line, irq_handler,
IRQF_TRIGGER_RISING | IRQF_NO_SUSPEND | IRQF_SHARED,
node->name, einfo);
if (rc < 0) {
pr_err("%s: request_irq on %d failed: %d\n", __func__, irq_line,
rc);
goto request_irq_fail;
}
rc = enable_irq_wake(irq_line);
if (rc < 0)
pr_err("%s: enable_irq_wake() failed on %d\n", __func__,
irq_line);
register_debugfs_info(einfo);
einfo->xprt_if.glink_core_if_ptr->link_up(&einfo->xprt_if);
return 0;
request_irq_fail:
glink_core_unregister_transport(&einfo->xprt_if);
reg_xprt_fail:
toc_init_fail:
flush_kthread_worker(&einfo->kworker);
kthread_stop(einfo->task);
einfo->task = NULL;
kthread_fail:
iounmap(msgram);
msgram_ioremap_fail:
iounmap(einfo->out_irq_reg);
irq_ioremap_fail:
mutex_lock(&probe_lock);
edge_infos[einfo->remote_proc_id] = NULL;
mutex_unlock(&probe_lock);
invalid_key:
missing_key:
kfree(einfo);
edge_info_alloc_fail:
return rc;
}
static int glink_mailbox_probe(struct platform_device *pdev)
{
struct device_node *node;
struct edge_info *einfo;
int rc;
char *key;
const char *subsys_name;
uint32_t irq_line;
uint32_t irq_mask;
struct resource *irq_r;
struct resource *mbox_loc_r;
struct resource *mbox_size_r;
struct resource *rx_reset_r;
void *mbox_loc;
void *mbox_size;
struct mailbox_config_info *mbox_cfg;
uint32_t mbox_cfg_size;
phys_addr_t cfg_p_addr;
node = pdev->dev.of_node;
einfo = kzalloc(sizeof(*einfo), GFP_KERNEL);
if (!einfo) {
rc = -ENOMEM;
goto edge_info_alloc_fail;
}
key = "label";
subsys_name = of_get_property(node, key, NULL);
if (!subsys_name) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "interrupts";
irq_line = irq_of_parse_and_map(node, 0);
if (!irq_line) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "qcom,irq-mask";
rc = of_property_read_u32(node, key, &irq_mask);
if (rc) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "irq-reg-base";
irq_r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key);
if (!irq_r) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "mbox-loc-addr";
mbox_loc_r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key);
if (!mbox_loc_r) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "mbox-loc-size";
mbox_size_r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key);
if (!mbox_size_r) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "irq-rx-reset";
rx_reset_r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key);
if (!irq_r) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "qcom,tx-ring-size";
rc = of_property_read_u32(node, key, &einfo->tx_fifo_size);
if (rc) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
key = "qcom,rx-ring-size";
rc = of_property_read_u32(node, key, &einfo->rx_fifo_size);
if (rc) {
pr_err("%s: missing key %s\n", __func__, key);
rc = -ENODEV;
goto missing_key;
}
if (subsys_name_to_id(subsys_name) == -ENODEV) {
pr_err("%s: unknown subsystem: %s\n", __func__, subsys_name);
rc = -ENODEV;
goto invalid_key;
}
einfo->remote_proc_id = subsys_name_to_id(subsys_name);
init_xprt_cfg(einfo, subsys_name);
einfo->xprt_cfg.name = "mailbox";
init_xprt_if(einfo);
spin_lock_init(&einfo->write_lock);
init_waitqueue_head(&einfo->tx_blocked_queue);
init_kthread_work(&einfo->kwork, rx_worker);
init_kthread_worker(&einfo->kworker);
einfo->read_from_fifo = read_from_fifo;
einfo->write_to_fifo = write_to_fifo;
init_srcu_struct(&einfo->use_ref);
spin_lock_init(&einfo->rx_lock);
INIT_LIST_HEAD(&einfo->deferred_cmds);
mutex_lock(&probe_lock);
if (edge_infos[einfo->remote_proc_id]) {
pr_err("%s: duplicate subsys %s is not valid\n", __func__,
subsys_name);
rc = -ENODEV;
mutex_unlock(&probe_lock);
goto invalid_key;
}
edge_infos[einfo->remote_proc_id] = einfo;
mutex_unlock(&probe_lock);
einfo->out_irq_mask = irq_mask;
einfo->out_irq_reg = ioremap_nocache(irq_r->start,
resource_size(irq_r));
if (!einfo->out_irq_reg) {
pr_err("%s: unable to map irq reg\n", __func__);
rc = -ENOMEM;
goto irq_ioremap_fail;
}
mbox_loc = ioremap_nocache(mbox_loc_r->start,
resource_size(mbox_loc_r));
if (!mbox_loc) {
pr_err("%s: unable to map mailbox location reg\n", __func__);
rc = -ENOMEM;
goto mbox_loc_ioremap_fail;
}
mbox_size = ioremap_nocache(mbox_size_r->start,
resource_size(mbox_size_r));
if (!mbox_size) {
pr_err("%s: unable to map mailbox size reg\n", __func__);
rc = -ENOMEM;
goto mbox_size_ioremap_fail;
}
einfo->rx_reset_reg = ioremap_nocache(rx_reset_r->start,
resource_size(rx_reset_r));
if (!einfo->rx_reset_reg) {
pr_err("%s: unable to map rx reset reg\n", __func__);
rc = -ENOMEM;
goto rx_reset_ioremap_fail;
}
einfo->task = kthread_run(kthread_worker_fn, &einfo->kworker,
"smem_native_%s", subsys_name);
if (IS_ERR(einfo->task)) {
rc = PTR_ERR(einfo->task);
pr_err("%s: kthread_run failed %d\n", __func__, rc);
goto kthread_fail;
}
mbox_cfg_size = sizeof(*mbox_cfg) + einfo->tx_fifo_size +
einfo->rx_fifo_size;
mbox_cfg = smem_alloc(SMEM_GLINK_NATIVE_XPRT_DESCRIPTOR,
mbox_cfg_size,
einfo->remote_proc_id,
0);
if (PTR_ERR(mbox_cfg) == -EPROBE_DEFER) {
rc = -EPROBE_DEFER;
goto smem_alloc_fail;
}
if (!mbox_cfg) {
pr_err("%s: smem alloc of mailbox struct failed\n", __func__);
rc = -ENOMEM;
goto smem_alloc_fail;
}
einfo->mailbox = mbox_cfg;
einfo->tx_ch_desc = (struct channel_desc *)(&mbox_cfg->tx_read_index);
einfo->rx_ch_desc = (struct channel_desc *)(&mbox_cfg->rx_read_index);
mbox_cfg->tx_size = einfo->tx_fifo_size;
mbox_cfg->rx_size = einfo->rx_fifo_size;
einfo->tx_fifo = &mbox_cfg->fifo[0];
rc = glink_core_register_transport(&einfo->xprt_if, &einfo->xprt_cfg);
if (rc == -EPROBE_DEFER)
goto reg_xprt_fail;
if (rc) {
pr_err("%s: glink core register transport failed: %d\n",
__func__, rc);
goto reg_xprt_fail;
}
einfo->irq_line = irq_line;
rc = request_irq(irq_line, irq_handler,
IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND | IRQF_SHARED,
node->name, einfo);
if (rc < 0) {
pr_err("%s: request_irq on %d failed: %d\n", __func__, irq_line,
rc);
goto request_irq_fail;
}
rc = enable_irq_wake(irq_line);
if (rc < 0)
pr_err("%s: enable_irq_wake() failed on %d\n", __func__,
irq_line);
register_debugfs_info(einfo);
writel_relaxed(mbox_cfg_size, mbox_size);
cfg_p_addr = smem_virt_to_phys(mbox_cfg);
writel_relaxed(lower_32_bits(cfg_p_addr), mbox_loc);
writel_relaxed(upper_32_bits(cfg_p_addr), mbox_loc + 4);
send_irq(einfo);
iounmap(mbox_size);
iounmap(mbox_loc);
return 0;
request_irq_fail:
glink_core_unregister_transport(&einfo->xprt_if);
reg_xprt_fail:
smem_alloc_fail:
flush_kthread_worker(&einfo->kworker);
kthread_stop(einfo->task);
einfo->task = NULL;
kthread_fail:
iounmap(einfo->rx_reset_reg);
rx_reset_ioremap_fail:
iounmap(mbox_size);
mbox_size_ioremap_fail:
iounmap(mbox_loc);
mbox_loc_ioremap_fail:
iounmap(einfo->out_irq_reg);
irq_ioremap_fail:
mutex_lock(&probe_lock);
edge_infos[einfo->remote_proc_id] = NULL;
mutex_unlock(&probe_lock);
invalid_key:
missing_key:
kfree(einfo);
edge_info_alloc_fail:
return rc;
}
#if defined(CONFIG_DEBUG_FS)
/**
* debug_edge() - generates formatted text output displaying current edge state
* @s: File to send the output to.
*/
static void debug_edge(struct seq_file *s)
{
struct edge_info *einfo;
struct glink_dbgfs_data *dfs_d;
dfs_d = s->private;
einfo = dfs_d->priv_data;
/*
* formatted, human readable edge state output, ie:
* TX/RX fifo information:
ID|EDGE |TX READ |TX WRITE |TX SIZE |RX READ |RX WRITE |RX SIZE
-------------------------------------------------------------------------------
01|mpss |0x00000128|0x00000128|0x00000800|0x00000256|0x00000256|0x00001000
*
* Interrupt information:
* EDGE |TX INT |RX INT
* --------------------------------
* mpss |0x00000006|0x00000008
*/
seq_puts(s, "TX/RX fifo information:\n");
seq_printf(s, "%2s|%-10s|%-10s|%-10s|%-10s|%-10s|%-10s|%-10s\n",
"ID",
"EDGE",
"TX READ",
"TX WRITE",
"TX SIZE",
"RX READ",
"RX WRITE",
"RX SIZE");
seq_puts(s,
"-------------------------------------------------------------------------------\n");
if (!einfo)
return;
seq_printf(s, "%02i|%-10s|", einfo->remote_proc_id,
einfo->xprt_cfg.edge);
if (!einfo->rx_fifo)
seq_puts(s, "Link Not Up\n");
else
seq_printf(s, "0x%08X|0x%08X|0x%08X|0x%08X|0x%08X|0x%08X\n",
einfo->tx_ch_desc->read_index,
einfo->tx_ch_desc->write_index,
einfo->tx_fifo_size,
einfo->rx_ch_desc->read_index,
einfo->rx_ch_desc->write_index,
einfo->rx_fifo_size);
seq_puts(s, "\nInterrupt information:\n");
seq_printf(s, "%-10s|%-10s|%-10s\n", "EDGE", "TX INT", "RX INT");
seq_puts(s, "--------------------------------\n");
seq_printf(s, "%-10s|0x%08X|0x%08X\n", einfo->xprt_cfg.edge,
einfo->tx_irq_count,
einfo->rx_irq_count);
}
/**
* register_debugfs_info() - initialize debugfs device entries
* @einfo: Pointer to specific edge_info for which register is called.
*/
static void register_debugfs_info(struct edge_info *einfo)
{
struct glink_dbgfs dfs;
char *curr_dir_name;
int dir_name_len;
dir_name_len = strlen(einfo->xprt_cfg.edge) +
strlen(einfo->xprt_cfg.name) + 2;
curr_dir_name = kmalloc(dir_name_len, GFP_KERNEL);
if (!curr_dir_name) {
GLINK_ERR("%s: Memory allocation failed\n", __func__);
return;
}
snprintf(curr_dir_name, dir_name_len, "%s_%s",
einfo->xprt_cfg.edge, einfo->xprt_cfg.name);
dfs.curr_name = curr_dir_name;
dfs.par_name = "xprt";
dfs.b_dir_create = false;
glink_debugfs_create("XPRT_INFO", debug_edge,
&dfs, einfo, false);
kfree(curr_dir_name);
}
#else
static void register_debugfs_info(struct edge_info *einfo)
{
}
#endif /* CONFIG_DEBUG_FS */
static struct of_device_id smem_match_table[] = {
{ .compatible = "qcom,glink-smem-native-xprt" },
{},
};
static struct platform_driver glink_smem_native_driver = {
.probe = glink_smem_native_probe,
.driver = {
.name = "msm_glink_smem_native_xprt",
.owner = THIS_MODULE,
.of_match_table = smem_match_table,
},
};
static struct of_device_id rpm_match_table[] = {
{ .compatible = "qcom,glink-rpm-native-xprt" },
{},
};
static struct platform_driver glink_rpm_native_driver = {
.probe = glink_rpm_native_probe,
.driver = {
.name = "msm_glink_rpm_native_xprt",
.owner = THIS_MODULE,
.of_match_table = rpm_match_table,
},
};
static struct of_device_id mailbox_match_table[] = {
{ .compatible = "qcom,glink-mailbox-xprt" },
{},
};
static struct platform_driver glink_mailbox_driver = {
.probe = glink_mailbox_probe,
.driver = {
.name = "msm_glink_mailbox_xprt",
.owner = THIS_MODULE,
.of_match_table = mailbox_match_table,
},
};
static int __init glink_smem_native_xprt_init(void)
{
int rc;
rc = platform_driver_register(&glink_smem_native_driver);
if (rc) {
pr_err("%s: glink_smem_native_driver register failed %d\n",
__func__, rc);
return rc;
}
rc = platform_driver_register(&glink_rpm_native_driver);
if (rc) {
pr_err("%s: glink_rpm_native_driver register failed %d\n",
__func__, rc);
return rc;
}
rc = platform_driver_register(&glink_mailbox_driver);
if (rc) {
pr_err("%s: glink_mailbox_driver register failed %d\n",
__func__, rc);
return rc;
}
return 0;
}
arch_initcall(glink_smem_native_xprt_init);
MODULE_DESCRIPTION("MSM G-Link SMEM Native Transport");
MODULE_LICENSE("GPL v2");