M7350/kernel/drivers/regulator/cpr4-apss-regulator.c
2024-09-09 08:57:42 +00:00

967 lines
28 KiB
C

/*
* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include "cpr3-regulator.h"
#define MSMTITANIUM_APSS_FUSE_CORNERS 4
/**
* struct cpr4_msmtitanium_apss_fuses - APSS specific fuse data for MSMTITANIUM
* @ro_sel: Ring oscillator select fuse parameter value for each
* fuse corner
* @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
* for each fuse corner (raw, not converted to a voltage)
* @target_quot: CPR target quotient fuse parameter value for each fuse
* corner
* @quot_offset: CPR target quotient offset fuse parameter value for each
* fuse corner (raw, not unpacked) used for target quotient
* interpolation
* @speed_bin: Application processor speed bin fuse parameter value for
* the given chip
* @cpr_fusing_rev: CPR fusing revision fuse parameter value
*
* This struct holds the values for all of the fuses read from memory.
*/
struct cpr4_msmtitanium_apss_fuses {
u64 ro_sel[MSMTITANIUM_APSS_FUSE_CORNERS];
u64 init_voltage[MSMTITANIUM_APSS_FUSE_CORNERS];
u64 target_quot[MSMTITANIUM_APSS_FUSE_CORNERS];
u64 quot_offset[MSMTITANIUM_APSS_FUSE_CORNERS];
u64 speed_bin;
u64 cpr_fusing_rev;
};
/*
* fuse combo = fusing revision + 8 * (speed bin)
* where: fusing revision = 0 - 7 and speed bin = 0 - 7
*/
#define CPR4_MSMTITANIUM_APSS_FUSE_COMBO_COUNT 64
/*
* Constants which define the name of each fuse corner.
*/
enum cpr4_msmtitanium_apss_fuse_corner {
CPR4_MSMTITANIUM_APSS_FUSE_CORNER_LOWSVS = 0,
CPR4_MSMTITANIUM_APSS_FUSE_CORNER_SVS = 1,
CPR4_MSMTITANIUM_APSS_FUSE_CORNER_NOM = 2,
CPR4_MSMTITANIUM_APSS_FUSE_CORNER_TURBO_L1 = 3,
};
static const char * const cpr4_msmtitanium_apss_fuse_corner_name[] = {
[CPR4_MSMTITANIUM_APSS_FUSE_CORNER_LOWSVS] = "LowSVS",
[CPR4_MSMTITANIUM_APSS_FUSE_CORNER_SVS] = "SVS",
[CPR4_MSMTITANIUM_APSS_FUSE_CORNER_NOM] = "NOM",
[CPR4_MSMTITANIUM_APSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1",
};
/*
* MSMTITANIUM APSS fuse parameter locations:
*
* Structs are organized with the following dimensions:
* Outer: 0 to 3 for fuse corners from lowest to highest corner
* Inner: large enough to hold the longest set of parameter segments which
* fully defines a fuse parameter, +1 (for NULL termination).
* Each segment corresponds to a contiguous group of bits from a
* single fuse row. These segments are concatentated together in
* order to form the full fuse parameter value. The segments for
* a given parameter may correspond to different fuse rows.
*/
static const struct cpr3_fuse_param
msmtitanium_apss_ro_sel_param[MSMTITANIUM_APSS_FUSE_CORNERS][2] = {
{{73, 12, 15}, {} },
{{73, 8, 11}, {} },
{{73, 4, 7}, {} },
{{73, 0, 3}, {} },
};
static const struct cpr3_fuse_param
msmtitanium_apss_init_voltage_param[MSMTITANIUM_APSS_FUSE_CORNERS][2] = {
{{71, 24, 29}, {} },
{{71, 18, 23}, {} },
{{71, 12, 17}, {} },
{{71, 6, 11}, {} },
};
static const struct cpr3_fuse_param
msmtitanium_apss_target_quot_param[MSMTITANIUM_APSS_FUSE_CORNERS][2] = {
{{72, 44, 55}, {} },
{{72, 32, 43}, {} },
{{72, 20, 31}, {} },
{{72, 8, 19}, {} },
};
static const struct cpr3_fuse_param
msmtitanium_apss_quot_offset_param[MSMTITANIUM_APSS_FUSE_CORNERS][2] = {
{{} },
{{71, 46, 52}, {} },
{{71, 39, 45}, {} },
{{71, 32, 38}, {} },
};
static const struct cpr3_fuse_param msmtitanium_cpr_fusing_rev_param[] = {
{71, 53, 55},
{},
};
static const struct cpr3_fuse_param msmtitanium_apss_speed_bin_param[] = {
{36, 40, 42},
{},
};
/*
* Open loop voltage fuse reference voltages in microvolts for MSMTITANIUM
*/
static const int msmtitanium_apss_fuse_ref_volt
[MSMTITANIUM_APSS_FUSE_CORNERS] = {
645000,
720000,
865000,
1065000,
};
#define MSMTITANIUM_APSS_FUSE_STEP_VOLT 10000
#define MSMTITANIUM_APSS_VOLTAGE_FUSE_SIZE 6
#define MSMTITANIUM_APSS_QUOT_OFFSET_SCALE 5
#define MSMTITANIUM_APSS_CPR_SENSOR_COUNT 13
#define MSMTITANIUM_APSS_CPR_CLOCK_RATE 19200000
/**
* cpr4_msmtitanium_apss_read_fuse_data() - load APSS specific fuse parameter values
* @vreg: Pointer to the CPR3 regulator
*
* This function allocates a cpr4_msmtitanium_apss_fuses struct, fills it with
* values read out of hardware fuses, and finally copies common fuse values
* into the CPR3 regulator struct.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_msmtitanium_apss_read_fuse_data(struct cpr3_regulator *vreg)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
struct cpr4_msmtitanium_apss_fuses *fuse;
int i, rc;
fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
if (!fuse)
return -ENOMEM;
rc = cpr3_read_fuse_param(base, msmtitanium_apss_speed_bin_param,
&fuse->speed_bin);
if (rc) {
cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc);
return rc;
}
cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
rc = cpr3_read_fuse_param(base, msmtitanium_cpr_fusing_rev_param,
&fuse->cpr_fusing_rev);
if (rc) {
cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
for (i = 0; i < MSMTITANIUM_APSS_FUSE_CORNERS; i++) {
rc = cpr3_read_fuse_param(base,
msmtitanium_apss_init_voltage_param[i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msmtitanium_apss_target_quot_param[i],
&fuse->target_quot[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msmtitanium_apss_ro_sel_param[i],
&fuse->ro_sel[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
msmtitanium_apss_quot_offset_param[i],
&fuse->quot_offset[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
i, rc);
return rc;
}
}
vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
if (vreg->fuse_combo >= CPR4_MSMTITANIUM_APSS_FUSE_COMBO_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
vreg->fuse_combo);
return -EINVAL;
}
vreg->speed_bin_fuse = fuse->speed_bin;
vreg->cpr_rev_fuse = fuse->cpr_fusing_rev;
vreg->fuse_corner_count = MSMTITANIUM_APSS_FUSE_CORNERS;
vreg->platform_fuses = fuse;
return 0;
}
/**
* cpr4_apss_parse_corner_data() - parse APSS corner data from device tree
* properties of the CPR3 regulator's device node
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_parse_corner_data(struct cpr3_regulator *vreg)
{
int rc;
rc = cpr3_parse_common_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
return rc;
}
return rc;
}
/**
* cpr4_msmtitanium_apss_calculate_open_loop_voltages() - calculate the open-loop
* voltage for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* If open-loop voltage interpolation is allowed in device tree, then
* this function calculates the open-loop voltage for a given corner using
* linear interpolation. This interpolation is performed using the processor
* frequencies of the lower and higher Fmax corners along with their fused
* open-loop voltages.
*
* If open-loop voltage interpolation is not allowed, then this function uses
* the Fmax fused open-loop voltage for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_msmtitanium_apss_calculate_open_loop_voltages(
struct cpr3_regulator *vreg)
{
struct device_node *node = vreg->of_node;
struct cpr4_msmtitanium_apss_fuses *fuse = vreg->platform_fuses;
int i, j, rc = 0;
bool allow_interpolation;
u64 freq_low, volt_low, freq_high, volt_high;
int *fuse_volt;
int *fmax_corner;
fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
if (!fuse_volt || !fmax_corner) {
rc = -ENOMEM;
goto done;
}
for (i = 0; i < vreg->fuse_corner_count; i++) {
fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(
msmtitanium_apss_fuse_ref_volt[i],
MSMTITANIUM_APSS_FUSE_STEP_VOLT, fuse->init_voltage[i],
MSMTITANIUM_APSS_VOLTAGE_FUSE_SIZE);
/* Log fused open-loop voltage values for debugging purposes. */
cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n",
cpr4_msmtitanium_apss_fuse_corner_name[i],
fuse_volt[i]);
}
rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
if (rc) {
cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
rc);
goto done;
}
allow_interpolation = of_property_read_bool(node,
"qcom,allow-voltage-interpolation");
for (i = 1; i < vreg->fuse_corner_count; i++) {
if (fuse_volt[i] < fuse_volt[i - 1]) {
cpr3_info(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
i, fuse_volt[i], i - 1, fuse_volt[i - 1],
i, fuse_volt[i - 1]);
fuse_volt[i] = fuse_volt[i - 1];
}
}
if (!allow_interpolation) {
/* Use fused open-loop voltage for lower frequencies. */
for (i = 0; i < vreg->corner_count; i++)
vreg->corner[i].open_loop_volt
= fuse_volt[vreg->corner[i].cpr_fuse_corner];
goto done;
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
for (i = 0; i <= fmax_corner[0]; i++)
vreg->corner[i].open_loop_volt = fuse_volt[0];
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
volt_low = fuse_volt[i - 1];
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
volt_high = fuse_volt[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].open_loop_volt = cpr3_interpolate(
freq_low, volt_low, freq_high, volt_high,
vreg->corner[j].proc_freq);
}
done:
if (rc == 0) {
cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
for (i = 0; i < vreg->corner_count; i++)
cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
vreg->corner[i].open_loop_volt);
rc = cpr3_adjust_open_loop_voltages(vreg);
if (rc)
cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
rc);
}
kfree(fuse_volt);
kfree(fmax_corner);
return rc;
}
/**
* cpr4_msmtitanium_apss_set_no_interpolation_quotients() - use the fused target
* quotient values for lower frequencies.
* @vreg: Pointer to the CPR3 regulator
* @volt_adjust: Pointer to array of per-corner closed-loop adjustment
* voltages
* @volt_adjust_fuse: Pointer to array of per-fuse-corner closed-loop
* adjustment voltages
* @ro_scale: Pointer to array of per-fuse-corner RO scaling factor
* values with units of QUOT/V
*
* Return: 0 on success, errno on failure
*/
static int cpr4_msmtitanium_apss_set_no_interpolation_quotients(
struct cpr3_regulator *vreg, int *volt_adjust,
int *volt_adjust_fuse, int *ro_scale)
{
struct cpr4_msmtitanium_apss_fuses *fuse = vreg->platform_fuses;
u32 quot, ro;
int quot_adjust;
int i, fuse_corner;
for (i = 0; i < vreg->corner_count; i++) {
fuse_corner = vreg->corner[i].cpr_fuse_corner;
quot = fuse->target_quot[fuse_corner];
quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
volt_adjust_fuse[fuse_corner] +
volt_adjust[i]);
ro = fuse->ro_sel[fuse_corner];
vreg->corner[i].target_quot[ro] = quot + quot_adjust;
cpr3_debug(vreg, "corner=%d RO=%u target quot=%u\n",
i, ro, quot);
if (quot_adjust)
cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n",
i, ro, quot, vreg->corner[i].target_quot[ro],
volt_adjust_fuse[fuse_corner] +
volt_adjust[i]);
}
return 0;
}
/**
* cpr4_msmtitanium_apss_calculate_target_quotients() - calculate the CPR target
* quotient for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* If target quotient interpolation is allowed in device tree, then this
* function calculates the target quotient for a given corner using linear
* interpolation. This interpolation is performed using the processor
* frequencies of the lower and higher Fmax corners along with the fused
* target quotient and quotient offset of the higher Fmax corner.
*
* If target quotient interpolation is not allowed, then this function uses
* the Fmax fused target quotient for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cpr4_msmtitanium_apss_calculate_target_quotients(
struct cpr3_regulator *vreg)
{
struct cpr4_msmtitanium_apss_fuses *fuse = vreg->platform_fuses;
int rc;
bool allow_interpolation;
u64 freq_low, freq_high, prev_quot;
u64 *quot_low;
u64 *quot_high;
u32 quot, ro;
int i, j, fuse_corner, quot_adjust;
int *fmax_corner;
int *volt_adjust, *volt_adjust_fuse, *ro_scale;
/* Log fused quotient values for debugging purposes. */
cpr3_info(vreg, "fused LowSVS: quot[%2llu]=%4llu\n",
fuse->ro_sel[CPR4_MSMTITANIUM_APSS_FUSE_CORNER_LOWSVS],
fuse->target_quot[CPR4_MSMTITANIUM_APSS_FUSE_CORNER_LOWSVS]);
for (i = CPR4_MSMTITANIUM_APSS_FUSE_CORNER_SVS;
i <= CPR4_MSMTITANIUM_APSS_FUSE_CORNER_TURBO_L1; i++)
cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n",
cpr4_msmtitanium_apss_fuse_corner_name[i],
fuse->ro_sel[i], fuse->target_quot[i],
fuse->ro_sel[i], fuse->quot_offset[i] *
MSMTITANIUM_APSS_QUOT_OFFSET_SCALE);
allow_interpolation = of_property_read_bool(vreg->of_node,
"qcom,allow-quotient-interpolation");
volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
GFP_KERNEL);
volt_adjust_fuse = kcalloc(vreg->fuse_corner_count,
sizeof(*volt_adjust_fuse), GFP_KERNEL);
ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low),
GFP_KERNEL);
quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high),
GFP_KERNEL);
if (!volt_adjust || !volt_adjust_fuse || !ro_scale ||
!fmax_corner || !quot_low || !quot_high) {
rc = -ENOMEM;
goto done;
}
rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0],
volt_adjust, volt_adjust_fuse, ro_scale);
if (rc) {
cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
rc);
goto done;
}
if (!allow_interpolation) {
/* Use fused target quotients for lower frequencies. */
return cpr4_msmtitanium_apss_set_no_interpolation_quotients(
vreg, volt_adjust, volt_adjust_fuse, ro_scale);
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
i = CPR4_MSMTITANIUM_APSS_FUSE_CORNER_LOWSVS;
quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]);
quot = fuse->target_quot[i] + quot_adjust;
quot_high[i] = quot_low[i] = quot;
ro = fuse->ro_sel[i];
if (quot_adjust)
cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n",
i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]);
for (i = 0; i <= fmax_corner[CPR4_MSMTITANIUM_APSS_FUSE_CORNER_LOWSVS];
i++)
vreg->corner[i].target_quot[ro] = quot;
for (i = CPR4_MSMTITANIUM_APSS_FUSE_CORNER_SVS;
i < vreg->fuse_corner_count; i++) {
quot_high[i] = fuse->target_quot[i];
if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
quot_low[i] = quot_high[i - 1];
else
quot_low[i] = quot_high[i]
- fuse->quot_offset[i]
* MSMTITANIUM_APSS_QUOT_OFFSET_SCALE;
if (quot_high[i] < quot_low[i]) {
cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n",
i, quot_high[i], i, quot_low[i],
i, quot_low[i]);
quot_high[i] = quot_low[i];
}
}
/* Perform per-fuse-corner target quotient adjustment */
for (i = 1; i < vreg->fuse_corner_count; i++) {
quot_adjust = cpr3_quot_adjustment(ro_scale[i],
volt_adjust_fuse[i]);
if (quot_adjust) {
prev_quot = quot_high[i];
quot_high[i] += quot_adjust;
cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n",
i, fuse->ro_sel[i], prev_quot, quot_high[i],
volt_adjust_fuse[i]);
}
if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
quot_low[i] = quot_high[i - 1];
else
quot_low[i] += cpr3_quot_adjustment(ro_scale[i],
volt_adjust_fuse[i - 1]);
if (quot_high[i] < quot_low[i]) {
cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n",
i, quot_high[i], i, quot_low[i],
i, quot_low[i]);
quot_high[i] = quot_low[i];
}
}
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
ro = fuse->ro_sel[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].target_quot[ro] = cpr3_interpolate(
freq_low, quot_low[i], freq_high, quot_high[i],
vreg->corner[j].proc_freq);
}
/* Perform per-corner target quotient adjustment */
for (i = 0; i < vreg->corner_count; i++) {
fuse_corner = vreg->corner[i].cpr_fuse_corner;
ro = fuse->ro_sel[fuse_corner];
quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
volt_adjust[i]);
if (quot_adjust) {
prev_quot = vreg->corner[i].target_quot[ro];
vreg->corner[i].target_quot[ro] += quot_adjust;
cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n",
i, ro, prev_quot,
vreg->corner[i].target_quot[ro],
volt_adjust[i]);
}
}
/* Ensure that target quotients increase monotonically */
for (i = 1; i < vreg->corner_count; i++) {
ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner];
if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro
&& vreg->corner[i].target_quot[ro]
< vreg->corner[i - 1].target_quot[ro]) {
cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
i, ro, vreg->corner[i].target_quot[ro],
i - 1, ro, vreg->corner[i - 1].target_quot[ro],
i, ro, vreg->corner[i - 1].target_quot[ro]);
vreg->corner[i].target_quot[ro]
= vreg->corner[i - 1].target_quot[ro];
}
}
done:
kfree(volt_adjust);
kfree(volt_adjust_fuse);
kfree(ro_scale);
kfree(fmax_corner);
kfree(quot_low);
kfree(quot_high);
return rc;
}
/**
* cpr4_apss_print_settings() - print out APSS CPR configuration settings into
* the kernel log for debugging purposes
* @vreg: Pointer to the CPR3 regulator
*/
static void cpr4_apss_print_settings(struct cpr3_regulator *vreg)
{
struct cpr3_corner *corner;
int i;
cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
for (i = 0; i < vreg->corner_count; i++) {
corner = &vreg->corner[i];
cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
i, corner->proc_freq, corner->cpr_fuse_corner,
corner->floor_volt, corner->open_loop_volt,
corner->ceiling_volt);
}
if (vreg->thread->ctrl->apm)
cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
vreg->thread->ctrl->apm_threshold_volt,
vreg->thread->ctrl->apm_adj_volt);
}
/**
* cpr4_apss_init_thread() - perform steps necessary to initialize the
* configuration data for a CPR3 thread
* @thread: Pointer to the CPR3 thread
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_init_thread(struct cpr3_thread *thread)
{
int rc;
rc = cpr3_parse_common_thread_data(thread);
if (rc) {
cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n",
thread->thread_id, rc);
return rc;
}
return 0;
}
/**
* cpr4_apss_init_regulator() - perform all steps necessary to initialize the
* configuration data for a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_init_regulator(struct cpr3_regulator *vreg)
{
struct cpr4_msmtitanium_apss_fuses *fuse;
int rc;
rc = cpr4_msmtitanium_apss_read_fuse_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
return rc;
}
fuse = vreg->platform_fuses;
rc = cpr4_apss_parse_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
rc);
return rc;
}
rc = cpr3_mem_acc_init(vreg);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(vreg, "unable to initialize mem-acc regulator settings, rc=%d\n",
rc);
return rc;
}
rc = cpr4_msmtitanium_apss_calculate_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
rc);
return rc;
}
rc = cpr3_limit_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
rc);
return rc;
}
cpr3_open_loop_voltage_as_ceiling(vreg);
rc = cpr3_limit_floor_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
return rc;
}
rc = cpr4_msmtitanium_apss_calculate_target_quotients(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n",
rc);
return rc;
}
cpr4_apss_print_settings(vreg);
return 0;
}
/**
* cpr4_apss_init_controller() - perform APSS CPR4 controller specific
* initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr4_apss_init_controller(struct cpr3_controller *ctrl)
{
int rc;
rc = cpr3_parse_common_ctrl_data(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-down-error-step-limit",
&ctrl->down_error_step_limit);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-down-error-step-limit, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-up-error-step-limit",
&ctrl->up_error_step_limit);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-up-error-step-limit, rc=%d\n",
rc);
return rc;
}
ctrl->saw_use_unit_mV = of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-saw-use-unit-mV");
ctrl->vdd_limit_regulator = devm_regulator_get(ctrl->dev, "vdd-limit");
if (IS_ERR(ctrl->vdd_limit_regulator)) {
rc = PTR_ERR(ctrl->vdd_limit_regulator);
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to request vdd-limit regulator, rc=%d\n",
rc);
return rc;
}
rc = cpr3_apm_init(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to initialize APM settings, rc=%d\n",
rc);
return rc;
}
ctrl->sensor_count = MSMTITANIUM_APSS_CPR_SENSOR_COUNT;
/*
* APSS only has one thread (0) per controller so the zeroed
* array does not need further modification.
*/
ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
sizeof(*ctrl->sensor_owner), GFP_KERNEL);
if (!ctrl->sensor_owner)
return -ENOMEM;
ctrl->cpr_clock_rate = MSMTITANIUM_APSS_CPR_CLOCK_RATE;
ctrl->ctrl_type = CPR_CTRL_TYPE_CPR4;
ctrl->supports_hw_closed_loop = true;
ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-hw-closed-loop");
return 0;
}
static int cpr4_apss_regulator_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_suspend(ctrl);
}
static int cpr4_apss_regulator_resume(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_resume(ctrl);
}
static int cpr4_apss_regulator_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct cpr3_controller *ctrl;
int i, rc;
if (!dev->of_node) {
dev_err(dev, "Device tree node is missing\n");
return -EINVAL;
}
ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
ctrl->dev = dev;
/* Set to false later if anything precludes CPR operation. */
ctrl->cpr_allowed_hw = true;
rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
&ctrl->name);
if (rc) {
cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
rc);
return rc;
}
rc = cpr3_map_fuse_base(ctrl, pdev);
if (rc) {
cpr3_err(ctrl, "could not map fuse base address\n");
return rc;
}
rc = cpr3_allocate_threads(ctrl, 0, 0);
if (rc) {
cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
rc);
return rc;
}
if (ctrl->thread_count != 1) {
cpr3_err(ctrl, "expected 1 thread but found %d\n",
ctrl->thread_count);
return -EINVAL;
}
rc = cpr4_apss_init_controller(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
rc);
return rc;
}
rc = cpr4_apss_init_thread(&ctrl->thread[0]);
if (rc) {
cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc);
return rc;
}
for (i = 0; i < ctrl->thread[0].vreg_count; i++) {
rc = cpr4_apss_init_regulator(&ctrl->thread[0].vreg[i]);
if (rc) {
cpr3_err(&ctrl->thread[0].vreg[i], "regulator initialization failed, rc=%d\n",
rc);
return rc;
}
}
platform_set_drvdata(pdev, ctrl);
return cpr3_regulator_register(pdev, ctrl);
}
static int cpr4_apss_regulator_remove(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_unregister(ctrl);
}
static struct of_device_id cpr4_regulator_match_table[] = {
{ .compatible = "qcom,cpr4-msmtitanium-apss-regulator", },
{}
};
static struct platform_driver cpr4_apss_regulator_driver = {
.driver = {
.name = "qcom,cpr4-apss-regulator",
.of_match_table = cpr4_regulator_match_table,
.owner = THIS_MODULE,
},
.probe = cpr4_apss_regulator_probe,
.remove = cpr4_apss_regulator_remove,
.suspend = cpr4_apss_regulator_suspend,
.resume = cpr4_apss_regulator_resume,
};
static int cpr4_regulator_init(void)
{
return platform_driver_register(&cpr4_apss_regulator_driver);
}
static void cpr4_regulator_exit(void)
{
platform_driver_unregister(&cpr4_apss_regulator_driver);
}
MODULE_DESCRIPTION("CPR4 APSS regulator driver");
MODULE_LICENSE("GPL v2");
arch_initcall(cpr4_regulator_init);
module_exit(cpr4_regulator_exit);