M7350/kernel/drivers/iommu/arm-smmu.c
2024-09-09 08:57:42 +00:00

3540 lines
92 KiB
C

/*
* IOMMU API for ARM architected SMMU implementations.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2013 ARM Limited
*
* Author: Will Deacon <will.deacon@arm.com>
*
* This driver currently supports:
* - SMMUv1 and v2 implementations
* - Stream-matching and stream-indexing
* - v7/v8 long-descriptor format
* - Non-secure access to the SMMU
* - Context fault reporting
*/
#define pr_fmt(fmt) "arm-smmu: " fmt
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/notifier.h>
#include <linux/amba/bus.h>
#include <soc/qcom/msm_tz_smmu.h>
#include <soc/qcom/secure_buffer.h>
#include <linux/msm_pcie.h>
#include <asm/cacheflush.h>
#include <linux/msm-bus.h>
#include <dt-bindings/msm/msm-bus-ids.h>
#include "io-pgtable.h"
/* Maximum number of stream IDs assigned to a single device */
#define MAX_MASTER_STREAMIDS 45
/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS 128
/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS 128
/* SMMU global address space */
#define ARM_SMMU_GR0(smmu) ((smmu)->base)
#define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
/*
* SMMU global address space with conditional offset to access secure
* aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
* nsGFSYNR0: 0x450)
*/
#define ARM_SMMU_GR0_NS(smmu) \
((smmu)->base + \
((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
? 0x400 : 0))
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0 0x0
#define sCR0_CLIENTPD (1 << 0)
#define sCR0_GFRE (1 << 1)
#define sCR0_GFIE (1 << 2)
#define sCR0_GCFGFRE (1 << 4)
#define sCR0_GCFGFIE (1 << 5)
#define sCR0_USFCFG (1 << 10)
#define sCR0_VMIDPNE (1 << 11)
#define sCR0_PTM (1 << 12)
#define sCR0_FB (1 << 13)
#define sCR0_BSU_SHIFT 14
#define sCR0_BSU_MASK 0x3
/* Identification registers */
#define ARM_SMMU_GR0_ID0 0x20
#define ARM_SMMU_GR0_ID1 0x24
#define ARM_SMMU_GR0_ID2 0x28
#define ARM_SMMU_GR0_ID3 0x2c
#define ARM_SMMU_GR0_ID4 0x30
#define ARM_SMMU_GR0_ID5 0x34
#define ARM_SMMU_GR0_ID6 0x38
#define ARM_SMMU_GR0_ID7 0x3c
#define ARM_SMMU_GR0_sGFSR 0x48
#define ARM_SMMU_GR0_sGFSYNR0 0x50
#define ARM_SMMU_GR0_sGFSYNR1 0x54
#define ARM_SMMU_GR0_sGFSYNR2 0x58
#define ID0_S1TS (1 << 30)
#define ID0_S2TS (1 << 29)
#define ID0_NTS (1 << 28)
#define ID0_SMS (1 << 27)
#define ID0_ATOSNS (1 << 26)
#define ID0_CTTW (1 << 14)
#define ID0_NUMIRPT_SHIFT 16
#define ID0_NUMIRPT_MASK 0xff
#define ID0_NUMSIDB_SHIFT 9
#define ID0_NUMSIDB_MASK 0xf
#define ID0_NUMSMRG_SHIFT 0
#define ID0_NUMSMRG_MASK 0xff
#define ID1_PAGESIZE (1 << 31)
#define ID1_NUMPAGENDXB_SHIFT 28
#define ID1_NUMPAGENDXB_MASK 7
#define ID1_NUMS2CB_SHIFT 16
#define ID1_NUMS2CB_MASK 0xff
#define ID1_NUMCB_SHIFT 0
#define ID1_NUMCB_MASK 0xff
#define ID2_OAS_SHIFT 4
#define ID2_OAS_MASK 0xf
#define ID2_IAS_SHIFT 0
#define ID2_IAS_MASK 0xf
#define ID2_UBS_SHIFT 8
#define ID2_UBS_MASK 0xf
#define ID2_PTFS_4K (1 << 12)
#define ID2_PTFS_16K (1 << 13)
#define ID2_PTFS_64K (1 << 14)
/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID 0x64
#define ARM_SMMU_GR0_TLBIALLNSNH 0x68
#define ARM_SMMU_GR0_TLBIALLH 0x6c
#define ARM_SMMU_GR0_sTLBGSYNC 0x70
#define ARM_SMMU_GR0_sTLBGSTATUS 0x74
#define sTLBGSTATUS_GSACTIVE (1 << 0)
#define TLB_LOOP_TIMEOUT 500000 /* 500ms */
/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
#define SMR_VALID (1 << 31)
#define SMR_MASK_SHIFT 16
#define SMR_MASK_MASK 0x7fff
#define SMR_ID_SHIFT 0
#define SMR_ID_MASK 0x7fff
#define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT 0
#define S2CR_CBNDX_MASK 0xff
#define S2CR_TYPE_SHIFT 16
#define S2CR_TYPE_MASK 0x3
#define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT 0
#define CBAR_VMID_MASK 0xff
#define CBAR_S1_BPSHCFG_SHIFT 8
#define CBAR_S1_BPSHCFG_MASK 3
#define CBAR_S1_BPSHCFG_NSH 3
#define CBAR_S1_MEMATTR_SHIFT 12
#define CBAR_S1_MEMATTR_MASK 0xf
#define CBAR_S1_MEMATTR_WB 0xf
#define CBAR_TYPE_SHIFT 16
#define CBAR_TYPE_MASK 0x3
#define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT 24
#define CBAR_IRPTNDX_MASK 0xff
#define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT (0 << 0)
#define CBA2R_RW64_64BIT (1 << 0)
/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
#define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
#define ARM_SMMU_CB_SCTLR 0x0
#define ARM_SMMU_CB_ACTLR 0x4
#define ARM_SMMU_CB_RESUME 0x8
#define ARM_SMMU_CB_TTBCR2 0x10
#define ARM_SMMU_CB_TTBR0_LO 0x20
#define ARM_SMMU_CB_TTBR0_HI 0x24
#define ARM_SMMU_CB_TTBR1_LO 0x28
#define ARM_SMMU_CB_TTBR1_HI 0x2c
#define ARM_SMMU_CB_TTBCR 0x30
#define ARM_SMMU_CB_CONTEXTIDR 0x34
#define ARM_SMMU_CB_S1_MAIR0 0x38
#define ARM_SMMU_CB_S1_MAIR1 0x3c
#define ARM_SMMU_CB_PAR_LO 0x50
#define ARM_SMMU_CB_PAR_HI 0x54
#define ARM_SMMU_CB_FSR 0x58
#define ARM_SMMU_CB_FSRRESTORE 0x5c
#define ARM_SMMU_CB_FAR_LO 0x60
#define ARM_SMMU_CB_FAR_HI 0x64
#define ARM_SMMU_CB_FSYNR0 0x68
#define ARM_SMMU_CB_S1_TLBIVA 0x600
#define ARM_SMMU_CB_S1_TLBIASID 0x610
#define ARM_SMMU_CB_S1_TLBIALL 0x618
#define ARM_SMMU_CB_S1_TLBIVAL 0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
#define ARM_SMMU_CB_TLBSYNC 0x7f0
#define ARM_SMMU_CB_TLBSTATUS 0x7f4
#define TLBSTATUS_SACTIVE (1 << 0)
#define ARM_SMMU_CB_ATS1PR_LO 0x800
#define ARM_SMMU_CB_ATS1PR_HI 0x804
#define ARM_SMMU_CB_ATSR 0x8f0
#define ARM_SMMU_GR1_CBFRSYNRA(n) (0x400 + ((n) << 2))
#define SCTLR_S1_ASIDPNE (1 << 12)
#define SCTLR_CFCFG (1 << 7)
#define SCTLR_CFIE (1 << 6)
#define SCTLR_CFRE (1 << 5)
#define SCTLR_E (1 << 4)
#define SCTLR_AFE (1 << 2)
#define SCTLR_TRE (1 << 1)
#define SCTLR_M (1 << 0)
#define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
#define CB_PAR_F (1 << 0)
#define ATSR_ACTIVE (1 << 0)
#define RESUME_RETRY (0 << 0)
#define RESUME_TERMINATE (1 << 0)
#define TTBCR2_SEP_SHIFT 15
#define TTBCR2_SEP_MASK 0x7
#define TTBCR2_ADDR_32 0
#define TTBCR2_ADDR_36 1
#define TTBCR2_ADDR_40 2
#define TTBCR2_ADDR_42 3
#define TTBCR2_ADDR_44 4
#define TTBCR2_ADDR_48 5
#define TTBCR2_SEP_31 0
#define TTBCR2_SEP_35 1
#define TTBCR2_SEP_39 2
#define TTBCR2_SEP_41 3
#define TTBCR2_SEP_43 4
#define TTBCR2_SEP_47 5
#define TTBCR2_SEP_NOSIGN 7
#define TTBRn_HI_ASID_SHIFT 16
#define FSR_MULTI (1 << 31)
#define FSR_SS (1 << 30)
#define FSR_UUT (1 << 8)
#define FSR_ASF (1 << 7)
#define FSR_TLBLKF (1 << 6)
#define FSR_TLBMCF (1 << 5)
#define FSR_EF (1 << 4)
#define FSR_PF (1 << 3)
#define FSR_AFF (1 << 2)
#define FSR_TF (1 << 1)
/* Definitions for implementation-defined registers */
#define ACTLR_QCOM_OSH_SHIFT 28
#define ACTLR_QCOM_OSH 1
#define ACTLR_QCOM_ISH_SHIFT 29
#define ACTLR_QCOM_ISH 1
#define ACTLR_QCOM_NSH_SHIFT 30
#define ACTLR_QCOM_NSH 1
#define ARM_SMMU_IMPL_DEF0(smmu) \
((smmu)->base + (2 * (1 << (smmu)->pgshift)))
#define ARM_SMMU_IMPL_DEF1(smmu) \
((smmu)->base + (6 * (1 << (smmu)->pgshift)))
#define IMPL_DEF1_MICRO_MMU_CTRL 0
#define MICRO_MMU_CTRL_LOCAL_HALT_REQ (1 << 2)
#define MICRO_MMU_CTRL_IDLE (1 << 3)
#define FSR_IGN (FSR_AFF | FSR_ASF | \
FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
#define FSYNR0_WNR (1 << 4)
static int force_stage;
module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(force_stage,
"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
enum arm_smmu_arch_version {
ARM_SMMU_V1 = 1,
ARM_SMMU_V2,
};
struct arm_smmu_smr {
u8 idx;
u16 mask;
u16 id;
};
struct arm_smmu_master_cfg {
int num_streamids;
u16 streamids[MAX_MASTER_STREAMIDS];
struct arm_smmu_smr *smrs;
};
struct arm_smmu_master {
struct device_node *of_node;
struct rb_node node;
struct arm_smmu_master_cfg cfg;
};
enum smmu_model_id {
SMMU_MODEL_DEFAULT,
SMMU_MODEL_QCOM_V2,
};
struct arm_smmu_impl_def_reg {
u32 offset;
u32 value;
};
struct arm_smmu_device {
struct device *dev;
enum smmu_model_id model;
void __iomem *base;
unsigned long size;
unsigned long pgshift;
#define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
#define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
u32 features;
#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
#define ARM_SMMU_OPT_INVALIDATE_ON_MAP (1 << 1)
#define ARM_SMMU_OPT_HALT_AND_TLB_ON_ATOS (1 << 2)
#define ARM_SMMU_OPT_REGISTER_SAVE (1 << 3)
#define ARM_SMMU_OPT_SKIP_INIT (1 << 4)
#define ARM_SMMU_OPT_ERRATA_CTX_FAULT_HANG (1 << 5)
#define ARM_SMMU_OPT_FATAL_ASF (1 << 6)
#define ARM_SMMU_OPT_ERRATA_TZ_ATOS (1 << 7)
#define ARM_SMMU_OPT_NO_M (1 << 8)
#define ARM_SMMU_OPT_NO_SMR_CHECK (1 << 9)
#define ARM_SMMU_OPT_DYNAMIC (1 << 10)
#define ARM_SMMU_OPT_HALT (1 << 11)
u32 options;
enum arm_smmu_arch_version version;
u32 num_context_banks;
u32 num_s2_context_banks;
DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
atomic_t irptndx;
u32 num_mapping_groups;
DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
unsigned long va_size;
unsigned long ipa_size;
unsigned long pa_size;
u32 num_global_irqs;
u32 num_context_irqs;
unsigned int *irqs;
struct list_head list;
struct rb_root masters;
int num_clocks;
struct clk **clocks;
struct regulator *gdsc;
struct notifier_block regulator_nb;
/* Protects against domains attaching to the same SMMU concurrently */
struct mutex attach_lock;
unsigned int attach_count;
struct idr asid_idr;
struct arm_smmu_impl_def_reg *impl_def_attach_registers;
unsigned int num_impl_def_attach_registers;
spinlock_t atos_lock;
unsigned int clock_refs_count;
spinlock_t clock_refs_lock;
struct msm_bus_client_handle *bus_client;
char *bus_client_name;
};
struct arm_smmu_cfg {
u8 cbndx;
u8 irptndx;
u32 cbar;
u32 procid;
u16 asid;
u8 vmid;
};
#define INVALID_IRPTNDX 0xff
#define INVALID_CBNDX 0xff
#define INVALID_ASID 0xffff
#define INVALID_VMID 0xff
/*
* In V7L and V8L with TTBCR2.AS == 0, ASID is 8 bits.
* V8L 16 with TTBCR2.AS == 1 (16 bit ASID) isn't supported yet.
*/
#define MAX_ASID 0xff
#define ARM_SMMU_CB_ASID(cfg) ((cfg)->asid)
#define ARM_SMMU_CB_VMID(cfg) ((cfg)->vmid)
enum arm_smmu_domain_stage {
ARM_SMMU_DOMAIN_S1 = 0,
ARM_SMMU_DOMAIN_S2,
ARM_SMMU_DOMAIN_NESTED,
};
struct arm_smmu_pte_info {
void *virt_addr;
size_t size;
struct list_head entry;
};
struct arm_smmu_domain {
struct arm_smmu_device *smmu;
struct io_pgtable_ops *pgtbl_ops;
struct io_pgtable_cfg pgtbl_cfg;
spinlock_t pgtbl_lock;
struct arm_smmu_cfg cfg;
enum arm_smmu_domain_stage stage;
struct mutex init_mutex; /* Protects smmu pointer */
u32 attributes;
u32 secure_vmid;
struct list_head pte_info_list;
struct list_head unassign_list;
struct mutex assign_lock;
struct list_head secure_pool_list;
bool non_fatal_faults;
};
static struct iommu_ops arm_smmu_ops;
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);
struct arm_smmu_option_prop {
u32 opt;
const char *prop;
};
static struct arm_smmu_option_prop arm_smmu_options[] = {
{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
{ ARM_SMMU_OPT_INVALIDATE_ON_MAP, "qcom,smmu-invalidate-on-map" },
{ ARM_SMMU_OPT_HALT_AND_TLB_ON_ATOS, "qcom,halt-and-tlb-on-atos" },
{ ARM_SMMU_OPT_REGISTER_SAVE, "qcom,register-save" },
{ ARM_SMMU_OPT_SKIP_INIT, "qcom,skip-init" },
{ ARM_SMMU_OPT_ERRATA_CTX_FAULT_HANG, "qcom,errata-ctx-fault-hang" },
{ ARM_SMMU_OPT_FATAL_ASF, "qcom,fatal-asf" },
{ ARM_SMMU_OPT_ERRATA_TZ_ATOS, "qcom,errata-tz-atos" },
{ ARM_SMMU_OPT_NO_M, "qcom,no-mmu-enable" },
{ ARM_SMMU_OPT_NO_SMR_CHECK, "qcom,no-smr-check" },
{ ARM_SMMU_OPT_DYNAMIC, "qcom,dynamic" },
{ ARM_SMMU_OPT_HALT, "qcom,enable-smmu-halt"},
{ 0, NULL},
};
static int arm_smmu_enable_clocks_atomic(struct arm_smmu_device *smmu);
static void arm_smmu_disable_clocks_atomic(struct arm_smmu_device *smmu);
static void arm_smmu_prepare_pgtable(void *addr, void *cookie);
static void arm_smmu_unprepare_pgtable(void *cookie, void *addr, size_t size);
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
dma_addr_t iova);
static phys_addr_t arm_smmu_iova_to_phys_hard_no_halt(
struct iommu_domain *domain, dma_addr_t iova);
static int arm_smmu_wait_for_halt(struct arm_smmu_device *smmu);
static int arm_smmu_halt_nowait(struct arm_smmu_device *smmu);
static void arm_smmu_resume(struct arm_smmu_device *smmu);
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova);
static int arm_smmu_assign_table(struct arm_smmu_domain *smmu_domain);
static void arm_smmu_unassign_table(struct arm_smmu_domain *smmu_domain);
static int arm_smmu_halt(struct arm_smmu_device *smmu);
static void arm_smmu_device_reset(struct arm_smmu_device *smmu);
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
size_t size);
static bool arm_smmu_is_domain_secure(struct arm_smmu_domain *smmu_domain);
static void parse_driver_options(struct arm_smmu_device *smmu)
{
int i = 0;
do {
if (of_property_read_bool(smmu->dev->of_node,
arm_smmu_options[i].prop)) {
smmu->options |= arm_smmu_options[i].opt;
dev_dbg(smmu->dev, "option %s\n",
arm_smmu_options[i].prop);
}
} while (arm_smmu_options[++i].opt);
}
static struct device_node *dev_get_dev_node(struct device *dev)
{
if (dev_is_pci(dev)) {
struct pci_bus *bus = to_pci_dev(dev)->bus;
while (!pci_is_root_bus(bus))
bus = bus->parent;
return bus->bridge->parent->of_node;
}
return dev->of_node;
}
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
struct device_node *dev_node)
{
struct rb_node *node = smmu->masters.rb_node;
while (node) {
struct arm_smmu_master *master;
master = container_of(node, struct arm_smmu_master, node);
if (dev_node < master->of_node)
node = node->rb_left;
else if (dev_node > master->of_node)
node = node->rb_right;
else
return master;
}
return NULL;
}
static struct arm_smmu_master_cfg *
find_smmu_master_cfg(struct device *dev)
{
struct arm_smmu_master_cfg *cfg = NULL;
struct iommu_group *group = iommu_group_get(dev);
if (group) {
cfg = iommu_group_get_iommudata(group);
iommu_group_put(group);
}
return cfg;
}
static int insert_smmu_master(struct arm_smmu_device *smmu,
struct arm_smmu_master *master)
{
struct rb_node **new, *parent;
new = &smmu->masters.rb_node;
parent = NULL;
while (*new) {
struct arm_smmu_master *this
= container_of(*new, struct arm_smmu_master, node);
parent = *new;
if (master->of_node < this->of_node)
new = &((*new)->rb_left);
else if (master->of_node > this->of_node)
new = &((*new)->rb_right);
else
return -EEXIST;
}
rb_link_node(&master->node, parent, new);
rb_insert_color(&master->node, &smmu->masters);
return 0;
}
struct iommus_entry {
struct list_head list;
struct device_node *node;
u16 streamids[MAX_MASTER_STREAMIDS];
int num_sids;
};
static int register_smmu_master(struct arm_smmu_device *smmu,
struct iommus_entry *entry)
{
int i;
struct arm_smmu_master *master;
struct device *dev = smmu->dev;
master = find_smmu_master(smmu, entry->node);
if (master) {
dev_err(dev,
"rejecting multiple registrations for master device %s\n",
entry->node->name);
return -EBUSY;
}
if (entry->num_sids > MAX_MASTER_STREAMIDS) {
dev_err(dev,
"reached maximum number (%d) of stream IDs for master device %s\n",
MAX_MASTER_STREAMIDS, entry->node->name);
return -ENOSPC;
}
master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
if (!master)
return -ENOMEM;
master->of_node = entry->node;
master->cfg.num_streamids = entry->num_sids;
for (i = 0; i < master->cfg.num_streamids; ++i)
master->cfg.streamids[i] = entry->streamids[i];
return insert_smmu_master(smmu, master);
}
static int arm_smmu_parse_iommus_properties(struct arm_smmu_device *smmu,
int *num_masters)
{
struct of_phandle_args iommuspec;
struct device_node *master;
*num_masters = 0;
for_each_node_with_property(master, "iommus") {
int arg_ind = 0;
struct iommus_entry *entry, *n;
LIST_HEAD(iommus);
while (!of_parse_phandle_with_args(
master, "iommus", "#iommu-cells",
arg_ind, &iommuspec)) {
if (iommuspec.np != smmu->dev->of_node) {
arg_ind++;
continue;
}
list_for_each_entry(entry, &iommus, list)
if (entry->node == master)
break;
if (&entry->list == &iommus) {
entry = devm_kzalloc(smmu->dev, sizeof(*entry),
GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->node = master;
list_add(&entry->list, &iommus);
}
switch (iommuspec.args_count) {
case 0:
/*
* For pci-e devices the SIDs are provided
* at device attach time.
*/
break;
case 1:
entry->num_sids++;
entry->streamids[entry->num_sids - 1]
= iommuspec.args[0];
break;
default:
BUG();
}
arg_ind++;
}
list_for_each_entry_safe(entry, n, &iommus, list) {
int rc = register_smmu_master(smmu, entry);
if (rc) {
dev_err(smmu->dev, "Couldn't register %s\n",
entry->node->name);
} else {
(*num_masters)++;
}
list_del(&entry->list);
devm_kfree(smmu->dev, entry);
}
}
return 0;
}
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
{
struct arm_smmu_device *smmu;
struct arm_smmu_master *master = NULL;
struct device_node *dev_node = dev_get_dev_node(dev);
spin_lock(&arm_smmu_devices_lock);
list_for_each_entry(smmu, &arm_smmu_devices, list) {
master = find_smmu_master(smmu, dev_node);
if (master)
break;
}
spin_unlock(&arm_smmu_devices_lock);
return master ? smmu : NULL;
}
static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
int idx;
do {
idx = find_next_zero_bit(map, end, start);
if (idx == end)
return -ENOSPC;
} while (test_and_set_bit(idx, map));
return idx;
}
static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
clear_bit(idx, map);
}
static void arm_smmu_unprepare_clocks(struct arm_smmu_device *smmu)
{
int i;
for (i = 0; i < smmu->num_clocks; ++i)
clk_unprepare(smmu->clocks[i]);
}
static int arm_smmu_prepare_clocks(struct arm_smmu_device *smmu)
{
int i, ret = 0;
for (i = 0; i < smmu->num_clocks; ++i) {
ret = clk_prepare(smmu->clocks[i]);
if (ret) {
dev_err(smmu->dev, "Couldn't prepare clock #%d\n", i);
while (i--)
clk_unprepare(smmu->clocks[i]);
break;
}
}
return ret;
}
static int arm_smmu_request_bus(struct arm_smmu_device *smmu)
{
if (!smmu->bus_client)
return 0;
return msm_bus_scale_update_bw(smmu->bus_client, 0, 1000);
}
static int arm_smmu_unrequest_bus(struct arm_smmu_device *smmu)
{
if (!smmu->bus_client)
return 0;
return msm_bus_scale_update_bw(smmu->bus_client, 0, 0);
}
static int arm_smmu_disable_regulators(struct arm_smmu_device *smmu)
{
arm_smmu_unprepare_clocks(smmu);
arm_smmu_unrequest_bus(smmu);
if (!smmu->gdsc)
return 0;
return regulator_disable(smmu->gdsc);
}
static int arm_smmu_enable_regulators(struct arm_smmu_device *smmu)
{
int ret;
if (smmu->gdsc) {
ret = regulator_enable(smmu->gdsc);
if (WARN_ON_ONCE(ret))
goto out;
}
ret = arm_smmu_request_bus(smmu);
if (WARN_ON_ONCE(ret))
goto out_reg;
ret = arm_smmu_prepare_clocks(smmu);
if (WARN_ON_ONCE(ret))
goto out_bus;
return ret;
out_bus:
arm_smmu_unrequest_bus(smmu);
out_reg:
if (smmu->gdsc)
regulator_disable(smmu->gdsc);
out:
return ret;
}
static int arm_smmu_enable_clocks(struct arm_smmu_device *smmu)
{
int ret = 0;
ret = arm_smmu_enable_regulators(smmu);
if (unlikely(ret))
return ret;
ret = arm_smmu_enable_clocks_atomic(smmu);
if (unlikely(ret))
arm_smmu_disable_regulators(smmu);
return ret;
}
static void arm_smmu_disable_clocks(struct arm_smmu_device *smmu)
{
arm_smmu_disable_clocks_atomic(smmu);
arm_smmu_disable_regulators(smmu);
}
/* Clocks must be prepared before this (arm_smmu_prepare_clocks) */
static int arm_smmu_enable_clocks_atomic(struct arm_smmu_device *smmu)
{
int i, ret = 0;
unsigned long flags;
spin_lock_irqsave(&smmu->clock_refs_lock, flags);
if (smmu->clock_refs_count++ > 0) {
spin_unlock_irqrestore(&smmu->clock_refs_lock, flags);
return 0;
}
for (i = 0; i < smmu->num_clocks; ++i) {
ret = clk_enable(smmu->clocks[i]);
if (WARN_ON_ONCE(ret)) {
dev_err(smmu->dev, "Couldn't enable clock #%d\n", i);
while (i--)
clk_disable(smmu->clocks[i]);
smmu->clock_refs_count--;
break;
}
}
spin_unlock_irqrestore(&smmu->clock_refs_lock, flags);
return ret;
}
/* Clocks should be unprepared after this (arm_smmu_unprepare_clocks) */
static void arm_smmu_disable_clocks_atomic(struct arm_smmu_device *smmu)
{
int i;
unsigned long flags;
spin_lock_irqsave(&smmu->clock_refs_lock, flags);
if (smmu->clock_refs_count-- > 1) {
spin_unlock_irqrestore(&smmu->clock_refs_lock, flags);
return;
}
for (i = 0; i < smmu->num_clocks; ++i)
clk_disable(smmu->clocks[i]);
spin_unlock_irqrestore(&smmu->clock_refs_lock, flags);
}
/* Wait for any pending TLB invalidations to complete */
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
int count = 0;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
& sTLBGSTATUS_GSACTIVE) {
cpu_relax();
if (++count == TLB_LOOP_TIMEOUT) {
dev_err_ratelimited(smmu->dev,
"TLB sync timed out -- SMMU may be deadlocked\n");
return;
}
udelay(1);
}
}
static void arm_smmu_tlb_sync_cb(struct arm_smmu_device *smmu,
int cbndx)
{
void __iomem *base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cbndx);
u32 val;
writel_relaxed(0, base + ARM_SMMU_CB_TLBSYNC);
if (readl_poll_timeout_atomic(base + ARM_SMMU_CB_TLBSTATUS, val,
!(val & TLBSTATUS_SACTIVE),
0, TLB_LOOP_TIMEOUT))
dev_err(smmu->dev, "TLBSYNC timeout!\n");
}
static void arm_smmu_tlb_sync(void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
if (smmu_domain->smmu == NULL)
return;
arm_smmu_tlb_sync_cb(smmu_domain->smmu, smmu_domain->cfg.cbndx);
}
/* Must be called with clocks/regulators enabled */
static void arm_smmu_tlb_inv_context(void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
void __iomem *base;
if (!smmu)
return;
if (stage1) {
base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
writel_relaxed(ARM_SMMU_CB_ASID(cfg),
base + ARM_SMMU_CB_S1_TLBIASID);
arm_smmu_tlb_sync_cb(smmu, cfg->cbndx);
} else {
base = ARM_SMMU_GR0(smmu);
writel_relaxed(ARM_SMMU_CB_VMID(cfg),
base + ARM_SMMU_GR0_TLBIVMID);
__arm_smmu_tlb_sync(smmu);
}
}
static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
bool leaf, void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
void __iomem *reg;
int atomic_ctx = smmu_domain->attributes & (1 << DOMAIN_ATTR_ATOMIC);
BUG_ON(atomic_ctx && !smmu);
if (!smmu)
return;
if (arm_smmu_enable_clocks_atomic(smmu))
return;
if (stage1) {
reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
iova &= ~12UL;
iova |= ARM_SMMU_CB_ASID(cfg);
writel_relaxed(iova, reg);
#ifdef CONFIG_64BIT
} else {
iova >>= 12;
iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
writeq_relaxed(iova, reg);
#endif
}
#ifdef CONFIG_64BIT
} else if (smmu->version == ARM_SMMU_V2) {
reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
ARM_SMMU_CB_S2_TLBIIPAS2;
writeq_relaxed(iova >> 12, reg);
#endif
} else {
reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
}
arm_smmu_disable_clocks_atomic(smmu);
}
static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
int coherent_htw_disable = smmu_domain->attributes &
(1 << DOMAIN_ATTR_COHERENT_HTW_DISABLE);
/* Ensure new page tables are visible to the hardware walker */
if (!coherent_htw_disable) {
dsb(ishst);
} else {
/*
* If the SMMU can't walk tables in the CPU caches, treat them
* like non-coherent DMA since we need to flush the new entries
* all the way out to memory. There's no possibility of
* recursion here as the SMMU table walker will not be wired
* through another SMMU.
*/
dmac_clean_range(addr, addr + size);
}
}
struct arm_smmu_secure_pool_chunk {
void *addr;
size_t size;
struct list_head list;
};
static void *arm_smmu_secure_pool_remove(struct arm_smmu_domain *smmu_domain,
size_t size)
{
struct arm_smmu_secure_pool_chunk *it;
list_for_each_entry(it, &smmu_domain->secure_pool_list, list) {
if (it->size == size) {
void *addr = it->addr;
list_del(&it->list);
kfree(it);
return addr;
}
}
return NULL;
}
static int arm_smmu_secure_pool_add(struct arm_smmu_domain *smmu_domain,
void *addr, size_t size)
{
struct arm_smmu_secure_pool_chunk *chunk;
chunk = kmalloc(sizeof(*chunk), GFP_ATOMIC);
if (!chunk)
return -ENOMEM;
chunk->addr = addr;
chunk->size = size;
memset(addr, 0, size);
list_add(&chunk->list, &smmu_domain->secure_pool_list);
return 0;
}
static void arm_smmu_secure_pool_destroy(struct arm_smmu_domain *smmu_domain)
{
struct arm_smmu_secure_pool_chunk *it, *i;
list_for_each_entry_safe(it, i, &smmu_domain->secure_pool_list, list) {
arm_smmu_unprepare_pgtable(smmu_domain, it->addr, it->size);
/* pages will be freed later (after being unassigned) */
kfree(it);
}
}
static void *arm_smmu_alloc_pages_exact(void *cookie,
size_t size, gfp_t gfp_mask)
{
void *ret;
struct arm_smmu_domain *smmu_domain = cookie;
if (!arm_smmu_is_domain_secure(smmu_domain))
return alloc_pages_exact(size, gfp_mask);
ret = arm_smmu_secure_pool_remove(smmu_domain, size);
if (ret)
return ret;
ret = alloc_pages_exact(size, gfp_mask);
if (ret)
arm_smmu_prepare_pgtable(ret, cookie);
return ret;
}
static void arm_smmu_free_pages_exact(void *cookie, void *virt, size_t size)
{
struct arm_smmu_domain *smmu_domain = cookie;
if (!arm_smmu_is_domain_secure(smmu_domain)) {
free_pages_exact(virt, size);
return;
}
if (arm_smmu_secure_pool_add(smmu_domain, virt, size))
arm_smmu_unprepare_pgtable(smmu_domain, virt, size);
}
static struct iommu_gather_ops arm_smmu_gather_ops = {
.tlb_flush_all = arm_smmu_tlb_inv_context,
.tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
.tlb_sync = arm_smmu_tlb_sync,
.flush_pgtable = arm_smmu_flush_pgtable,
.alloc_pages_exact = arm_smmu_alloc_pages_exact,
.free_pages_exact = arm_smmu_free_pages_exact,
};
static phys_addr_t arm_smmu_verify_fault(struct iommu_domain *domain,
dma_addr_t iova, u32 fsr)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu;
void __iomem *cb_base;
u64 sctlr, sctlr_orig;
phys_addr_t phys;
smmu = smmu_domain->smmu;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
arm_smmu_halt_nowait(smmu);
writel_relaxed(RESUME_TERMINATE, cb_base + ARM_SMMU_CB_RESUME);
arm_smmu_wait_for_halt(smmu);
/* clear FSR to allow ATOS to log any faults */
writel_relaxed(fsr, cb_base + ARM_SMMU_CB_FSR);
/* disable stall mode momentarily */
sctlr_orig = readl_relaxed(cb_base + ARM_SMMU_CB_SCTLR);
sctlr = sctlr_orig & ~SCTLR_CFCFG;
writel_relaxed(sctlr, cb_base + ARM_SMMU_CB_SCTLR);
phys = arm_smmu_iova_to_phys_hard_no_halt(domain, iova);
if (!phys) {
dev_err(smmu->dev,
"ATOS failed. Will issue a TLBIALL and try again...\n");
arm_smmu_tlb_inv_context(smmu_domain);
phys = arm_smmu_iova_to_phys_hard_no_halt(domain, iova);
if (phys)
dev_err(smmu->dev,
"ATOS succeeded this time. Maybe we missed a TLB invalidation while messing with page tables earlier??\n");
else
dev_err(smmu->dev,
"ATOS still failed. If the page tables look good (check the software table walk) then hardware might be misbehaving.\n");
}
/* restore SCTLR */
writel_relaxed(sctlr_orig, cb_base + ARM_SMMU_CB_SCTLR);
arm_smmu_resume(smmu);
return phys;
}
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
int flags, ret, tmp;
u32 fsr, fsynr, resume;
unsigned long iova, far;
struct iommu_domain *domain = dev;
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu;
void __iomem *cb_base;
bool ctx_hang_errata;
bool fatal_asf;
void __iomem *gr1_base;
phys_addr_t phys_soft;
u32 frsynra;
bool non_fatal_fault = smmu_domain->non_fatal_faults;
static DEFINE_RATELIMIT_STATE(_rs,
DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
mutex_lock(&smmu_domain->init_mutex);
smmu = smmu_domain->smmu;
if (!smmu) {
ret = IRQ_HANDLED;
pr_err("took a fault on a detached domain (%p)\n", domain);
goto out_unlock;
}
ctx_hang_errata = smmu->options & ARM_SMMU_OPT_ERRATA_CTX_FAULT_HANG;
fatal_asf = smmu->options & ARM_SMMU_OPT_FATAL_ASF;
if (arm_smmu_enable_clocks(smmu)) {
ret = IRQ_NONE;
goto out_unlock;
}
gr1_base = ARM_SMMU_GR1(smmu);
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
if (!(fsr & FSR_FAULT)) {
arm_smmu_disable_clocks(smmu);
ret = IRQ_NONE;
goto out_unlock;
}
if (fatal_asf && (fsr & FSR_ASF)) {
dev_err(smmu->dev,
"Took an address size fault. Refusing to recover.\n");
BUG();
}
fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
if (fsr & FSR_TF)
flags |= IOMMU_FAULT_TRANSLATION;
if (fsr & FSR_PF)
flags |= IOMMU_FAULT_PERMISSION;
if (fsr & FSR_EF)
flags |= IOMMU_FAULT_EXTERNAL;
if (fsr & FSR_SS)
flags |= IOMMU_FAULT_TRANSACTION_STALLED;
far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
#ifdef CONFIG_64BIT
far |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI)) << 32;
#endif
iova = far;
phys_soft = arm_smmu_iova_to_phys(domain, iova);
frsynra = readl_relaxed(gr1_base + ARM_SMMU_GR1_CBFRSYNRA(cfg->cbndx));
tmp = report_iommu_fault(domain, smmu->dev, iova, flags);
if (!tmp || (tmp == -EBUSY)) {
dev_dbg(smmu->dev,
"Context fault handled by client: iova=0x%08lx, fsr=0x%x, fsynr=0x%x, cb=%d\n",
iova, fsr, fsynr, cfg->cbndx);
dev_dbg(smmu->dev,
"soft iova-to-phys=%pa\n", &phys_soft);
ret = IRQ_HANDLED;
resume = RESUME_TERMINATE;
} else {
phys_addr_t phys_atos = arm_smmu_verify_fault(domain, iova,
fsr);
if (__ratelimit(&_rs)) {
dev_err(smmu->dev,
"Unhandled context fault: iova=0x%08lx, fsr=0x%x, fsynr=0x%x, cb=%d\n",
iova, fsr, fsynr, cfg->cbndx);
dev_err(smmu->dev, "FAR = %016lx\n",
(unsigned long)far);
dev_err(smmu->dev,
"FSR = %08x [%s%s%s%s%s%s%s%s%s]\n",
fsr,
(fsr & 0x02) ? "TF " : "",
(fsr & 0x04) ? "AFF " : "",
(fsr & 0x08) ? "PF " : "",
(fsr & 0x10) ? "EF " : "",
(fsr & 0x20) ? "TLBMCF " : "",
(fsr & 0x40) ? "TLBLKF " : "",
(fsr & 0x80) ? "MHF " : "",
(fsr & 0x40000000) ? "SS " : "",
(fsr & 0x80000000) ? "MULTI " : "");
dev_err(smmu->dev,
"soft iova-to-phys=%pa\n", &phys_soft);
if (!phys_soft)
dev_err(smmu->dev,
"SOFTWARE TABLE WALK FAILED! Looks like %s accessed an unmapped address!\n",
dev_name(smmu->dev));
dev_err(smmu->dev,
"hard iova-to-phys (ATOS)=%pa\n", &phys_atos);
dev_err(smmu->dev, "SID=0x%x\n", frsynra & 0xffff);
}
ret = IRQ_NONE;
resume = RESUME_TERMINATE;
if (!non_fatal_fault) {
dev_err(smmu->dev,
"Unhandled context faults are fatal on this domain. Going down now...\n");
BUG();
}
}
/*
* If the client returns -EBUSY, do not clear FSR and do not RESUME
* if stalled. This is required to keep the IOMMU client stalled on
* the outstanding fault. This gives the client a chance to take any
* debug action and then terminate the stalled transaction.
* So, the sequence in case of stall on fault should be:
* 1) Do not clear FSR or write to RESUME here
* 2) Client takes any debug action
* 3) Client terminates the stalled transaction and resumes the IOMMU
* 4) Client clears FSR. The FSR should only be cleared after 3) and
* not before so that the fault remains outstanding. This ensures
* SCTLR.HUPCF has the desired effect if subsequent transactions also
* need to be terminated.
*/
if (tmp != -EBUSY) {
/* Clear the faulting FSR */
writel_relaxed(fsr, cb_base + ARM_SMMU_CB_FSR);
/*
* Barrier required to ensure that the FSR is cleared
* before resuming SMMU operation
*/
wmb();
/* Retry or terminate any stalled transactions */
if (fsr & FSR_SS) {
if (ctx_hang_errata)
arm_smmu_tlb_sync_cb(smmu, cfg->cbndx);
writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
}
}
arm_smmu_disable_clocks(smmu);
out_unlock:
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
struct arm_smmu_device *smmu = dev;
void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
if (arm_smmu_enable_clocks(smmu))
return IRQ_NONE;
gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
if (!gfsr) {
arm_smmu_disable_clocks(smmu);
return IRQ_NONE;
}
dev_err_ratelimited(smmu->dev,
"Unexpected global fault, this could be serious\n");
dev_err_ratelimited(smmu->dev,
"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
gfsr, gfsynr0, gfsynr1, gfsynr2);
writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
arm_smmu_disable_clocks(smmu);
return IRQ_HANDLED;
}
static void arm_smmu_trigger_fault(struct iommu_domain *domain,
unsigned long flags)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu;
void __iomem *cb_base;
if (!smmu_domain->smmu) {
pr_err("Can't trigger faults on non-attached domains\n");
return;
}
smmu = smmu_domain->smmu;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
if (arm_smmu_enable_clocks(smmu))
return;
dev_err(smmu->dev, "Writing 0x%lx to FSRRESTORE on cb %d\n",
flags, cfg->cbndx);
writel_relaxed(flags, cb_base + ARM_SMMU_CB_FSRRESTORE);
/* give the interrupt time to fire... */
msleep(1000);
arm_smmu_disable_clocks(smmu);
}
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
struct io_pgtable_cfg *pgtbl_cfg)
{
u32 reg;
bool stage1;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *cb_base, *gr0_base, *gr1_base;
gr0_base = ARM_SMMU_GR0(smmu);
gr1_base = ARM_SMMU_GR1(smmu);
stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
/* CBAR */
reg = cfg->cbar;
if (smmu->version == ARM_SMMU_V1)
reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
/*
* Use the weakest shareability/memory types, so they are
* overridden by the ttbcr/pte.
*/
if (stage1) {
reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
}
reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
if (smmu->version > ARM_SMMU_V1) {
/* CBA2R */
#ifdef CONFIG_64BIT
reg = CBA2R_RW64_64BIT;
#else
reg = CBA2R_RW64_32BIT;
#endif
writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
}
/* TTBRs */
if (stage1) {
reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
} else {
reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
}
/* TTBCR */
if (stage1) {
reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
if (smmu->version > ARM_SMMU_V1) {
reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
reg |= (TTBCR2_SEP_NOSIGN << TTBCR2_SEP_SHIFT);
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
}
} else {
reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
}
/* MAIRs (stage-1 only) */
if (stage1) {
reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
}
if (smmu->model == SMMU_MODEL_QCOM_V2) {
reg = ACTLR_QCOM_ISH << ACTLR_QCOM_ISH_SHIFT |
ACTLR_QCOM_OSH << ACTLR_QCOM_OSH_SHIFT |
ACTLR_QCOM_NSH << ACTLR_QCOM_NSH_SHIFT;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
}
/* SCTLR */
reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_EAE_SBOP;
if (!(smmu->options & ARM_SMMU_OPT_NO_M))
reg |= SCTLR_M;
if (stage1)
reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
reg |= SCTLR_E;
#endif
writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
}
static bool arm_smmu_is_domain_secure(struct arm_smmu_domain *smmu_domain)
{
return (smmu_domain->secure_vmid != VMID_INVAL);
}
static void arm_smmu_secure_domain_lock(struct arm_smmu_domain *smmu_domain)
{
if (arm_smmu_is_domain_secure(smmu_domain))
mutex_lock(&smmu_domain->assign_lock);
}
static void arm_smmu_secure_domain_unlock(struct arm_smmu_domain *smmu_domain)
{
if (arm_smmu_is_domain_secure(smmu_domain))
mutex_unlock(&smmu_domain->assign_lock);
}
static int arm_smmu_init_domain_context(struct iommu_domain *domain,
struct arm_smmu_device *smmu)
{
int irq, start, ret = 0;
unsigned long ias, oas;
struct io_pgtable_ops *pgtbl_ops;
enum io_pgtable_fmt fmt;
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
if (smmu_domain->smmu)
goto out;
/*
* Mapping the requested stage onto what we support is surprisingly
* complicated, mainly because the spec allows S1+S2 SMMUs without
* support for nested translation. That means we end up with the
* following table:
*
* Requested Supported Actual
* S1 N S1
* S1 S1+S2 S1
* S1 S2 S2
* S1 S1 S1
* N N N
* N S1+S2 S2
* N S2 S2
* N S1 S1
*
* Note that you can't actually request stage-2 mappings.
*/
if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
switch (smmu_domain->stage) {
case ARM_SMMU_DOMAIN_S1:
cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
start = smmu->num_s2_context_banks;
ias = smmu->va_size;
oas = smmu->ipa_size;
if (IS_ENABLED(CONFIG_64BIT))
fmt = ARM_64_LPAE_S1;
else
fmt = ARM_32_LPAE_S1;
break;
case ARM_SMMU_DOMAIN_NESTED:
/*
* We will likely want to change this if/when KVM gets
* involved.
*/
case ARM_SMMU_DOMAIN_S2:
cfg->cbar = CBAR_TYPE_S2_TRANS;
start = 0;
ias = smmu->ipa_size;
oas = smmu->pa_size;
if (IS_ENABLED(CONFIG_64BIT))
fmt = ARM_64_LPAE_S2;
else
fmt = ARM_32_LPAE_S2;
break;
default:
ret = -EINVAL;
goto out;
}
ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
smmu->num_context_banks);
if (IS_ERR_VALUE(ret))
goto out;
cfg->cbndx = ret;
if (smmu->version == ARM_SMMU_V1) {
cfg->irptndx = atomic_inc_return(&smmu->irptndx);
cfg->irptndx %= smmu->num_context_irqs;
} else {
cfg->irptndx = cfg->cbndx;
}
smmu_domain->pgtbl_cfg = (struct io_pgtable_cfg) {
.pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
.ias = ias,
.oas = oas,
.tlb = &arm_smmu_gather_ops,
};
cfg->asid = cfg->cbndx + 1;
cfg->vmid = cfg->cbndx + 2;
smmu_domain->smmu = smmu;
pgtbl_ops = alloc_io_pgtable_ops(fmt, &smmu_domain->pgtbl_cfg,
smmu_domain);
if (!pgtbl_ops) {
ret = -ENOMEM;
goto out_clear_smmu;
}
/*
* assign any page table memory that might have been allocated
* during alloc_io_pgtable_ops
*/
if (arm_smmu_is_domain_secure(smmu_domain)) {
arm_smmu_secure_domain_lock(smmu_domain);
arm_smmu_assign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
}
/* Update our support page sizes to reflect the page table format */
arm_smmu_ops.pgsize_bitmap = smmu_domain->pgtbl_cfg.pgsize_bitmap;
/* Initialise the context bank with our page table cfg */
arm_smmu_init_context_bank(smmu_domain, &smmu_domain->pgtbl_cfg);
/*
* Request context fault interrupt. Do this last to avoid the
* handler seeing a half-initialised domain state.
*/
irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
ret = request_threaded_irq(irq, NULL, arm_smmu_context_fault,
IRQF_ONESHOT | IRQF_SHARED,
"arm-smmu-context-fault", domain);
if (IS_ERR_VALUE(ret)) {
dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
cfg->irptndx, irq);
cfg->irptndx = INVALID_IRPTNDX;
}
/* Publish page table ops for map/unmap */
smmu_domain->pgtbl_ops = pgtbl_ops;
return 0;
out_clear_smmu:
smmu_domain->smmu = NULL;
out:
return ret;
}
static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
void __iomem *cb_base;
int irq;
if (arm_smmu_enable_clocks(smmu_domain->smmu))
goto free_irqs;
/*
* Disable the context bank and free the page tables before freeing
* it.
*/
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
arm_smmu_tlb_inv_context(smmu_domain);
arm_smmu_disable_clocks(smmu_domain->smmu);
free_irqs:
if (cfg->irptndx != INVALID_IRPTNDX) {
irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
free_irq(irq, domain);
}
__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
smmu_domain->smmu = NULL;
}
static int arm_smmu_domain_init(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain;
/*
* Allocate the domain and initialise some of its data structures.
* We can't really do anything meaningful until we've added a
* master.
*/
smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
if (!smmu_domain)
return -ENOMEM;
smmu_domain->secure_vmid = VMID_INVAL;
/* disable coherent htw by default */
smmu_domain->attributes = (1 << DOMAIN_ATTR_COHERENT_HTW_DISABLE);
INIT_LIST_HEAD(&smmu_domain->pte_info_list);
INIT_LIST_HEAD(&smmu_domain->unassign_list);
INIT_LIST_HEAD(&smmu_domain->secure_pool_list);
smmu_domain->cfg.cbndx = INVALID_CBNDX;
smmu_domain->cfg.irptndx = INVALID_IRPTNDX;
smmu_domain->cfg.asid = INVALID_ASID;
smmu_domain->cfg.vmid = INVALID_VMID;
mutex_init(&smmu_domain->init_mutex);
spin_lock_init(&smmu_domain->pgtbl_lock);
mutex_init(&smmu_domain->assign_lock);
domain->priv = smmu_domain;
return 0;
}
static void arm_smmu_domain_destroy(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
/*
* Free the domain resources. We assume that all devices have
* already been detached.
*/
if (smmu_domain->pgtbl_ops) {
free_io_pgtable_ops(smmu_domain->pgtbl_ops);
/* unassign any freed page table memory */
if (arm_smmu_is_domain_secure(smmu_domain)) {
arm_smmu_secure_domain_lock(smmu_domain);
arm_smmu_secure_pool_destroy(smmu_domain);
arm_smmu_unassign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
}
smmu_domain->pgtbl_ops = NULL;
}
kfree(smmu_domain);
}
static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
struct arm_smmu_master_cfg *cfg)
{
int i;
struct arm_smmu_smr *smrs;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
return 0;
if (cfg->smrs)
return -EEXIST;
smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
if (!smrs) {
dev_err(smmu->dev, "failed to allocate %d SMRs\n",
cfg->num_streamids);
return -ENOMEM;
}
/* Allocate the SMRs on the SMMU */
for (i = 0; i < cfg->num_streamids; ++i) {
int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
smmu->num_mapping_groups);
if (IS_ERR_VALUE(idx)) {
dev_err(smmu->dev, "failed to allocate free SMR\n");
goto err_free_smrs;
}
smrs[i] = (struct arm_smmu_smr) {
.idx = idx,
.mask = 0, /* We don't currently share SMRs */
.id = cfg->streamids[i],
};
}
/* It worked! Now, poke the actual hardware */
for (i = 0; i < cfg->num_streamids; ++i) {
u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
smrs[i].mask << SMR_MASK_SHIFT;
writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
}
cfg->smrs = smrs;
return 0;
err_free_smrs:
while (--i >= 0)
__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
kfree(smrs);
return -ENOSPC;
}
static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
struct arm_smmu_master_cfg *cfg)
{
int i;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
struct arm_smmu_smr *smrs = cfg->smrs;
if (!smrs)
return;
/* Invalidate the SMRs before freeing back to the allocator */
for (i = 0; i < cfg->num_streamids; ++i) {
u8 idx = smrs[i].idx;
writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
__arm_smmu_free_bitmap(smmu->smr_map, idx);
}
cfg->smrs = NULL;
kfree(smrs);
}
static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
struct arm_smmu_master_cfg *cfg)
{
int i, ret;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
/* Devices in an IOMMU group may already be configured */
ret = arm_smmu_master_configure_smrs(smmu, cfg);
if (ret)
return ret == -EEXIST ? 0 : ret;
for (i = 0; i < cfg->num_streamids; ++i) {
u32 idx, s2cr;
idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
s2cr = S2CR_TYPE_TRANS |
(smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
}
return 0;
}
static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
struct arm_smmu_master_cfg *cfg)
{
int i;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
/* An IOMMU group is torn down by the first device to be removed */
if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
return;
/*
* We *must* clear the S2CR first, because freeing the SMR means
* that it can be re-allocated immediately.
*/
if (arm_smmu_enable_clocks(smmu))
return;
for (i = 0; i < cfg->num_streamids; ++i) {
u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
writel_relaxed(S2CR_TYPE_BYPASS,
gr0_base + ARM_SMMU_GR0_S2CR(idx));
}
arm_smmu_master_free_smrs(smmu, cfg);
arm_smmu_disable_clocks(smmu);
}
static void arm_smmu_impl_def_programming(struct arm_smmu_device *smmu)
{
int i;
struct arm_smmu_impl_def_reg *regs = smmu->impl_def_attach_registers;
arm_smmu_halt(smmu);
for (i = 0; i < smmu->num_impl_def_attach_registers; ++i)
writel_relaxed(regs[i].value,
ARM_SMMU_GR0(smmu) + regs[i].offset);
arm_smmu_resume(smmu);
}
static int arm_smmu_attach_dynamic(struct iommu_domain *domain,
struct arm_smmu_device *smmu)
{
int ret;
struct arm_smmu_domain *smmu_domain = domain->priv;
enum io_pgtable_fmt fmt;
struct io_pgtable_ops *pgtbl_ops = NULL;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
if (!(smmu->options & ARM_SMMU_OPT_DYNAMIC)) {
dev_err(smmu->dev, "dynamic domains not supported\n");
return -EPERM;
}
if (smmu_domain->smmu != NULL) {
dev_err(smmu->dev, "domain is already attached\n");
return -EBUSY;
}
if (smmu_domain->cfg.cbndx >= smmu->num_context_banks) {
dev_err(smmu->dev, "invalid context bank\n");
return -ENODEV;
}
if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
smmu_domain->cfg.cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
} else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
smmu_domain->cfg.cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
} else {
/* dynamic only makes sense for S1. */
return -EINVAL;
}
smmu_domain->pgtbl_cfg = (struct io_pgtable_cfg) {
.pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
.ias = smmu->va_size,
.oas = smmu->ipa_size,
.tlb = &arm_smmu_gather_ops,
};
fmt = IS_ENABLED(CONFIG_64BIT) ? ARM_64_LPAE_S1 : ARM_32_LPAE_S1;
pgtbl_ops = alloc_io_pgtable_ops(fmt, &smmu_domain->pgtbl_cfg,
smmu_domain);
if (!pgtbl_ops)
return -ENOMEM;
/*
* assign any page table memory that might have been allocated
* during alloc_io_pgtable_ops
*/
if (arm_smmu_is_domain_secure(smmu_domain)) {
arm_smmu_secure_domain_lock(smmu_domain);
arm_smmu_assign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
}
cfg->vmid = cfg->cbndx + 2;
smmu_domain->smmu = smmu;
mutex_lock(&smmu->attach_lock);
/* try to avoid reusing an old ASID right away */
ret = idr_alloc_cyclic(&smmu->asid_idr, domain,
smmu->num_context_banks + 2,
MAX_ASID + 1, GFP_KERNEL);
if (ret < 0) {
dev_err(smmu->dev, "dynamic ASID allocation failed: %d\n",
ret);
goto out;
}
smmu_domain->cfg.asid = ret;
smmu_domain->smmu = smmu;
smmu_domain->pgtbl_ops = pgtbl_ops;
ret = 0;
out:
if (ret)
free_io_pgtable_ops(pgtbl_ops);
mutex_unlock(&smmu->attach_lock);
return ret;
}
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
int ret;
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_device *smmu;
struct arm_smmu_master_cfg *cfg;
int atomic_ctx = smmu_domain->attributes & (1 << DOMAIN_ATTR_ATOMIC);
mutex_lock(&smmu_domain->init_mutex);
smmu = find_smmu_for_device(dev);
if (!smmu) {
dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
mutex_unlock(&smmu_domain->init_mutex);
return -ENXIO;
}
if (smmu_domain->attributes & (1 << DOMAIN_ATTR_DYNAMIC)) {
ret = arm_smmu_attach_dynamic(domain, smmu);
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
mutex_lock(&smmu->attach_lock);
if (dev->archdata.iommu) {
dev_err(dev, "already attached to IOMMU domain\n");
ret = -EEXIST;
goto err_unlock;
}
if (!smmu->attach_count) {
/*
* We need an extra power vote if we can't retain register
* settings across a power collapse, or if this is an
* atomic domain (since atomic domains can't sleep during
* unmap, so regulators already need to be on to enable tlb
* invalidation). The result (due to regulator
* refcounting) is that we never disable regulators while a
* client is attached in these cases.
*/
if (!(smmu->options & ARM_SMMU_OPT_REGISTER_SAVE) ||
atomic_ctx) {
ret = arm_smmu_enable_regulators(smmu);
if (ret)
goto err_unlock;
}
ret = arm_smmu_enable_clocks(smmu);
if (ret)
goto err_disable_regulators;
arm_smmu_device_reset(smmu);
arm_smmu_impl_def_programming(smmu);
} else {
ret = arm_smmu_enable_clocks(smmu);
if (ret)
goto err_unlock;
}
smmu->attach_count++;
/* Ensure that the domain is finalised */
ret = arm_smmu_init_domain_context(domain, smmu);
if (IS_ERR_VALUE(ret))
goto err_disable_clocks;
/*
* Sanity check the domain. We don't support domains across
* different SMMUs.
*/
if (smmu_domain->smmu != smmu) {
dev_err(dev,
"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
ret = -EINVAL;
goto err_destroy_domain_context;
}
if (!(smmu_domain->attributes & (1 << DOMAIN_ATTR_COHERENT_HTW_DISABLE))
&& !(smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)) {
dev_err(dev,
"Can't attach: this domain wants coherent htw but %s doesn't support it\n",
dev_name(smmu_domain->smmu->dev));
ret = -EINVAL;
goto err_destroy_domain_context;
}
/* Looks ok, so add the device to the domain */
cfg = find_smmu_master_cfg(dev);
if (!cfg) {
ret = -ENODEV;
goto err_destroy_domain_context;
}
ret = arm_smmu_domain_add_master(smmu_domain, cfg);
if (ret)
goto err_destroy_domain_context;
dev->archdata.iommu = domain;
arm_smmu_disable_clocks(smmu);
mutex_unlock(&smmu->attach_lock);
mutex_unlock(&smmu_domain->init_mutex);
return ret;
err_destroy_domain_context:
arm_smmu_destroy_domain_context(domain);
err_disable_clocks:
arm_smmu_disable_clocks(smmu);
--smmu->attach_count;
err_disable_regulators:
if (!smmu->attach_count &&
(!(smmu->options & ARM_SMMU_OPT_REGISTER_SAVE) || atomic_ctx))
arm_smmu_disable_regulators(smmu);
err_unlock:
mutex_unlock(&smmu->attach_lock);
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static void arm_smmu_power_off(struct arm_smmu_device *smmu,
bool force_regulator_disable)
{
/* Turn the thing off */
if (arm_smmu_enable_clocks(smmu))
return;
writel_relaxed(sCR0_CLIENTPD,
ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
arm_smmu_disable_clocks(smmu);
if (!(smmu->options & ARM_SMMU_OPT_REGISTER_SAVE)
|| force_regulator_disable)
arm_smmu_disable_regulators(smmu);
}
static void arm_smmu_detach_dynamic(struct iommu_domain *domain,
struct arm_smmu_device *smmu)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
mutex_lock(&smmu->attach_lock);
if (smmu->attach_count > 0) {
if (arm_smmu_enable_clocks(smmu_domain->smmu))
goto idr_remove;
arm_smmu_tlb_inv_context(smmu_domain);
arm_smmu_disable_clocks(smmu_domain->smmu);
}
idr_remove:
idr_remove(&smmu->asid_idr, smmu_domain->cfg.asid);
smmu_domain->cfg.asid = INVALID_ASID;
smmu_domain->smmu = NULL;
mutex_unlock(&smmu->attach_lock);
}
static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_master_cfg *cfg;
struct arm_smmu_device *smmu;
int atomic_ctx = smmu_domain->attributes & (1 << DOMAIN_ATTR_ATOMIC);
mutex_lock(&smmu_domain->init_mutex);
smmu = smmu_domain->smmu;
if (!smmu) {
dev_err(dev, "Domain already detached!\n");
mutex_unlock(&smmu_domain->init_mutex);
return;
}
if (smmu_domain->attributes & (1 << DOMAIN_ATTR_DYNAMIC)) {
arm_smmu_detach_dynamic(domain, smmu);
mutex_unlock(&smmu_domain->init_mutex);
return;
}
mutex_lock(&smmu->attach_lock);
cfg = find_smmu_master_cfg(dev);
if (!cfg)
goto unlock;
dev->archdata.iommu = NULL;
arm_smmu_domain_remove_master(smmu_domain, cfg);
arm_smmu_destroy_domain_context(domain);
if (!--smmu->attach_count)
arm_smmu_power_off(smmu, atomic_ctx);
unlock:
mutex_unlock(&smmu->attach_lock);
mutex_unlock(&smmu_domain->init_mutex);
}
static int arm_smmu_assign_table(struct arm_smmu_domain *smmu_domain)
{
int ret = 0;
int dest_vmids[2] = {VMID_HLOS, smmu_domain->secure_vmid};
int dest_perms[2] = {PERM_READ | PERM_WRITE, PERM_READ};
int source_vmid = VMID_HLOS;
struct arm_smmu_pte_info *pte_info, *temp;
if (!arm_smmu_is_domain_secure(smmu_domain))
return ret;
list_for_each_entry(pte_info, &smmu_domain->pte_info_list, entry) {
ret = hyp_assign_phys(virt_to_phys(pte_info->virt_addr),
PAGE_SIZE, &source_vmid, 1,
dest_vmids, dest_perms, 2);
if (WARN_ON(ret))
break;
}
list_for_each_entry_safe(pte_info, temp, &smmu_domain->pte_info_list,
entry) {
list_del(&pte_info->entry);
kfree(pte_info);
}
return ret;
}
static void arm_smmu_unassign_table(struct arm_smmu_domain *smmu_domain)
{
int ret;
int dest_vmids = VMID_HLOS;
int dest_perms = PERM_READ | PERM_WRITE | PERM_EXEC;
int source_vmlist[2] = {VMID_HLOS, smmu_domain->secure_vmid};
struct arm_smmu_pte_info *pte_info, *temp;
if (!arm_smmu_is_domain_secure(smmu_domain))
return;
list_for_each_entry(pte_info, &smmu_domain->unassign_list, entry) {
ret = hyp_assign_phys(virt_to_phys(pte_info->virt_addr),
PAGE_SIZE, source_vmlist, 2,
&dest_vmids, &dest_perms, 1);
if (WARN_ON(ret))
break;
free_pages_exact(pte_info->virt_addr, pte_info->size);
}
list_for_each_entry_safe(pte_info, temp, &smmu_domain->unassign_list,
entry) {
list_del(&pte_info->entry);
kfree(pte_info);
}
return;
}
static void arm_smmu_unprepare_pgtable(void *cookie, void *addr, size_t size)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_pte_info *pte_info;
BUG_ON(!arm_smmu_is_domain_secure(smmu_domain));
pte_info = kzalloc(sizeof(struct arm_smmu_pte_info), GFP_ATOMIC);
if (!pte_info)
return;
pte_info->virt_addr = addr;
pte_info->size = size;
list_add_tail(&pte_info->entry, &smmu_domain->unassign_list);
}
static void arm_smmu_prepare_pgtable(void *addr, void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_pte_info *pte_info;
BUG_ON(!arm_smmu_is_domain_secure(smmu_domain));
pte_info = kzalloc(sizeof(struct arm_smmu_pte_info), GFP_ATOMIC);
if (!pte_info)
return;
pte_info->virt_addr = addr;
list_add_tail(&pte_info->entry, &smmu_domain->pte_info_list);
}
static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t size, int prot)
{
int ret;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = domain->priv;
struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
if (!ops)
return -ENODEV;
arm_smmu_secure_domain_lock(smmu_domain);
spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
ret = ops->map(ops, iova, paddr, size, prot);
spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
if (!ret)
ret = arm_smmu_assign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
return ret;
}
static size_t arm_smmu_map_sg(struct iommu_domain *domain, unsigned long iova,
struct scatterlist *sg, unsigned int nents, int prot)
{
int ret;
size_t size;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = domain->priv;
struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
if (!ops)
return -ENODEV;
arm_smmu_secure_domain_lock(smmu_domain);
spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
ret = ops->map_sg(ops, iova, sg, nents, prot, &size);
spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
if (ret) {
if (arm_smmu_assign_table(smmu_domain)) {
ret = 0;
goto out;
}
} else {
arm_smmu_secure_domain_unlock(smmu_domain);
arm_smmu_unmap(domain, iova, size);
}
out:
arm_smmu_secure_domain_unlock(smmu_domain);
return ret;
}
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
size_t size)
{
size_t ret;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = domain->priv;
struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
int atomic_ctx = smmu_domain->attributes & (1 << DOMAIN_ATTR_ATOMIC);
if (!ops)
return 0;
/*
* The contract here is that if you set DOMAIN_ATTR_ATOMIC your
* domain *must* must be attached an SMMU during unmap. This
* function calls other functions that try to use smmu_domain->smmu
* if it's not NULL (like the tlb invalidation routines). So if
* the client sets DOMAIN_ATTR_ATOMIC and detaches in the middle of
* the unmap the smmu instance could go away and we could
* dereference NULL. This little BUG_ON should catch most gross
* offenders but if atomic clients violate this contract then this
* code is racy.
*/
BUG_ON(atomic_ctx && !smmu_domain->smmu);
if (atomic_ctx) {
if (arm_smmu_enable_clocks_atomic(smmu_domain->smmu))
return 0;
} else {
mutex_lock(&smmu_domain->init_mutex);
arm_smmu_secure_domain_lock(smmu_domain);
if (smmu_domain->smmu &&
arm_smmu_enable_clocks(smmu_domain->smmu)) {
arm_smmu_secure_domain_unlock(smmu_domain);
mutex_unlock(&smmu_domain->init_mutex);
return 0;
}
}
spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
ret = ops->unmap(ops, iova, size);
spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
/*
* While splitting up block mappings, we might allocate page table
* memory during unmap, so the vmids needs to be assigned to the
* memory here as well.
*/
if (arm_smmu_assign_table(smmu_domain)) {
arm_smmu_unassign_table(smmu_domain);
arm_smmu_secure_domain_unlock(smmu_domain);
mutex_unlock(&smmu_domain->init_mutex);
return 0;
}
/* Also unassign any pages that were free'd during unmap */
arm_smmu_unassign_table(smmu_domain);
if (atomic_ctx) {
arm_smmu_disable_clocks_atomic(smmu_domain->smmu);
} else {
if (smmu_domain->smmu)
arm_smmu_disable_clocks(smmu_domain->smmu);
arm_smmu_secure_domain_unlock(smmu_domain);
mutex_unlock(&smmu_domain->init_mutex);
}
return ret;
}
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
phys_addr_t ret;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = domain->priv;
struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
if (!ops)
return 0;
spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
ret = ops->iova_to_phys(ops, iova);
spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
return ret;
}
static int arm_smmu_wait_for_halt(struct arm_smmu_device *smmu)
{
void __iomem *impl_def1_base = ARM_SMMU_IMPL_DEF1(smmu);
u32 tmp;
if (readl_poll_timeout_atomic(impl_def1_base + IMPL_DEF1_MICRO_MMU_CTRL,
tmp, (tmp & MICRO_MMU_CTRL_IDLE),
0, 30000)) {
dev_err(smmu->dev, "Couldn't halt SMMU!\n");
return -EBUSY;
}
return 0;
}
static int __arm_smmu_halt(struct arm_smmu_device *smmu, bool wait)
{
u32 reg;
void __iomem *impl_def1_base = ARM_SMMU_IMPL_DEF1(smmu);
reg = readl_relaxed(impl_def1_base + IMPL_DEF1_MICRO_MMU_CTRL);
reg |= MICRO_MMU_CTRL_LOCAL_HALT_REQ;
writel_relaxed(reg, impl_def1_base + IMPL_DEF1_MICRO_MMU_CTRL);
return wait ? arm_smmu_wait_for_halt(smmu) : 0;
}
static int arm_smmu_halt(struct arm_smmu_device *smmu)
{
return __arm_smmu_halt(smmu, true);
}
static int arm_smmu_halt_nowait(struct arm_smmu_device *smmu)
{
return __arm_smmu_halt(smmu, false);
}
static void arm_smmu_resume(struct arm_smmu_device *smmu)
{
void __iomem *impl_def1_base = ARM_SMMU_IMPL_DEF1(smmu);
u32 reg;
reg = readl_relaxed(impl_def1_base + IMPL_DEF1_MICRO_MMU_CTRL);
reg &= ~MICRO_MMU_CTRL_LOCAL_HALT_REQ;
writel_relaxed(reg, impl_def1_base + IMPL_DEF1_MICRO_MMU_CTRL);
}
static phys_addr_t __arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
dma_addr_t iova, bool do_halt)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct device *dev = smmu->dev;
void __iomem *cb_base;
u32 tmp;
u64 phys;
unsigned long flags;
if (arm_smmu_enable_clocks(smmu))
return 0;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
spin_lock_irqsave(&smmu->atos_lock, flags);
if (do_halt && arm_smmu_halt(smmu))
goto err_unlock;
if (smmu->version == 1)
writel_relaxed(iova & ~0xfff, cb_base + ARM_SMMU_CB_ATS1PR_LO);
else
writeq_relaxed(iova & ~0xfffULL,
cb_base + ARM_SMMU_CB_ATS1PR_LO);
if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
!(tmp & ATSR_ACTIVE), 5, 50)) {
dev_err(dev, "iova to phys timed out\n");
goto err_resume;
}
phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
phys |= ((u64) readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
if (do_halt)
arm_smmu_resume(smmu);
spin_unlock_irqrestore(&smmu->atos_lock, flags);
if (phys & CB_PAR_F) {
dev_err(dev, "translation fault on %s!\n", dev_name(dev));
dev_err(dev, "PAR = 0x%llx\n", phys);
phys = 0;
} else {
phys = (phys & (PHYS_MASK & ~0xfffULL)) | (iova & 0xfff);
}
arm_smmu_disable_clocks(smmu);
return phys;
err_resume:
if (do_halt)
arm_smmu_resume(smmu);
err_unlock:
spin_unlock_irqrestore(&smmu->atos_lock, flags);
arm_smmu_disable_clocks(smmu);
phys = arm_smmu_iova_to_phys(domain, iova);
dev_err(dev,
"iova to phys failed 0x%pa. software table walk result=%pa.\n",
&iova, &phys);
return 0;
}
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
dma_addr_t iova)
{
return __arm_smmu_iova_to_phys_hard(domain, iova, true);
}
static phys_addr_t arm_smmu_iova_to_phys_hard_no_halt(
struct iommu_domain *domain, dma_addr_t iova)
{
return __arm_smmu_iova_to_phys_hard(domain, iova, false);
}
static unsigned long arm_smmu_reg_read(struct iommu_domain *domain,
unsigned long offset)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_device *smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
void __iomem *cb_base;
unsigned long val;
if (offset >= SZ_4K) {
pr_err("Invalid offset: 0x%lx\n", offset);
return 0;
}
mutex_lock(&smmu_domain->init_mutex);
smmu = smmu_domain->smmu;
if (!smmu) {
WARN(1, "Can't read registers of a detached domain\n");
val = 0;
goto unlock;
}
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
if (arm_smmu_enable_clocks(smmu)) {
val = 0;
goto unlock;
}
val = readl_relaxed(cb_base + offset);
arm_smmu_disable_clocks(smmu);
unlock:
mutex_unlock(&smmu_domain->init_mutex);
return val;
}
static void arm_smmu_reg_write(struct iommu_domain *domain,
unsigned long offset, unsigned long val)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_device *smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
void __iomem *cb_base;
if (offset >= SZ_4K) {
pr_err("Invalid offset: 0x%lx\n", offset);
return;
}
mutex_lock(&smmu_domain->init_mutex);
smmu = smmu_domain->smmu;
if (!smmu) {
WARN(1, "Can't read registers of a detached domain\n");
goto unlock;
}
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
if (arm_smmu_enable_clocks(smmu))
goto unlock;
writel_relaxed(val, cb_base + offset);
arm_smmu_disable_clocks(smmu);
unlock:
mutex_unlock(&smmu_domain->init_mutex);
}
static bool arm_smmu_capable(enum iommu_cap cap)
{
switch (cap) {
case IOMMU_CAP_CACHE_COHERENCY:
/*
* Return true here as the SMMU can always send out coherent
* requests.
*/
return true;
case IOMMU_CAP_INTR_REMAP:
return true; /* MSIs are just memory writes */
default:
return false;
}
}
static void __arm_smmu_release_pci_iommudata(void *data)
{
kfree(data);
}
static int arm_smmu_add_device(struct device *dev)
{
struct arm_smmu_device *smmu;
struct arm_smmu_master_cfg *cfg;
struct iommu_group *group;
void (*releasefn)(void *) = NULL;
int ret;
smmu = find_smmu_for_device(dev);
if (!smmu)
return -ENODEV;
group = iommu_group_alloc();
if (IS_ERR(group)) {
dev_err(dev, "Failed to allocate IOMMU group\n");
return PTR_ERR(group);
}
if (dev_is_pci(dev)) {
u32 sid;
int tmp;
cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
if (!cfg) {
ret = -ENOMEM;
goto out_put_group;
}
cfg->num_streamids = 1;
ret = msm_pcie_configure_sid(dev, &sid, &tmp);
if (ret) {
dev_err(dev,
"Couldn't configure SID through PCI-e driver: %d\n",
ret);
kfree(cfg);
goto out_put_group;
}
cfg->streamids[0] = sid;
releasefn = __arm_smmu_release_pci_iommudata;
} else {
struct arm_smmu_master *master;
master = find_smmu_master(smmu, dev->of_node);
if (!master) {
ret = -ENODEV;
goto out_put_group;
}
cfg = &master->cfg;
}
iommu_group_set_iommudata(group, cfg, releasefn);
ret = iommu_group_add_device(group, dev);
out_put_group:
iommu_group_put(group);
return ret;
}
static void arm_smmu_remove_device(struct device *dev)
{
iommu_group_remove_device(dev);
}
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
enum iommu_attr attr, void *data)
{
int ret;
struct arm_smmu_domain *smmu_domain = domain->priv;
mutex_lock(&smmu_domain->init_mutex);
switch (attr) {
case DOMAIN_ATTR_NESTING:
*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
ret = 0;
break;
case DOMAIN_ATTR_COHERENT_HTW_DISABLE:
*((int *)data) = !!(smmu_domain->attributes &
(1 << DOMAIN_ATTR_COHERENT_HTW_DISABLE));
ret = 0;
break;
case DOMAIN_ATTR_SECURE_VMID:
*((int *)data) = smmu_domain->secure_vmid;
ret = 0;
break;
case DOMAIN_ATTR_PT_BASE_ADDR:
*((phys_addr_t *)data) =
smmu_domain->pgtbl_cfg.arm_lpae_s1_cfg.ttbr[0];
ret = 0;
break;
case DOMAIN_ATTR_CONTEXT_BANK:
/* context bank index isn't valid until we are attached */
if (smmu_domain->smmu == NULL)
return -ENODEV;
*((unsigned int *) data) = smmu_domain->cfg.cbndx;
ret = 0;
break;
case DOMAIN_ATTR_TTBR0: {
u64 val;
/* not valid until we are attached */
if (smmu_domain->smmu == NULL)
return -ENODEV;
val = smmu_domain->pgtbl_cfg.arm_lpae_s1_cfg.ttbr[0];
if (smmu_domain->cfg.cbar != CBAR_TYPE_S2_TRANS)
val |= (u64)ARM_SMMU_CB_ASID(&smmu_domain->cfg)
<< (32ULL + TTBRn_HI_ASID_SHIFT);
*((u64 *)data) = val;
ret = 0;
break;
}
case DOMAIN_ATTR_CONTEXTIDR:
/* not valid until attached */
if (smmu_domain->smmu == NULL)
return -ENODEV;
*((u32 *)data) = smmu_domain->cfg.procid;
ret = 0;
break;
case DOMAIN_ATTR_PROCID:
*((u32 *)data) = smmu_domain->cfg.procid;
ret = 0;
break;
case DOMAIN_ATTR_DYNAMIC:
*((int *)data) = !!(smmu_domain->attributes
& (1 << DOMAIN_ATTR_DYNAMIC));
ret = 0;
break;
case DOMAIN_ATTR_NON_FATAL_FAULTS:
*((int *)data) = !!(smmu_domain->attributes
& (1 << DOMAIN_ATTR_NON_FATAL_FAULTS));
ret = 0;
break;
default:
ret = -ENODEV;
break;
}
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
enum iommu_attr attr, void *data)
{
int ret = 0;
struct arm_smmu_domain *smmu_domain = domain->priv;
mutex_lock(&smmu_domain->init_mutex);
switch (attr) {
case DOMAIN_ATTR_NESTING:
if (smmu_domain->smmu) {
ret = -EPERM;
goto out_unlock;
}
if (*(int *)data)
smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
else
smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
break;
case DOMAIN_ATTR_COHERENT_HTW_DISABLE:
{
struct arm_smmu_device *smmu;
int htw_disable = *((int *)data);
smmu = smmu_domain->smmu;
if (smmu && !(smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
&& !htw_disable) {
dev_err(smmu->dev,
"Can't enable coherent htw on this domain: this SMMU doesn't support it\n");
ret = -EINVAL;
goto out_unlock;
}
if (htw_disable)
smmu_domain->attributes |=
(1 << DOMAIN_ATTR_COHERENT_HTW_DISABLE);
else
smmu_domain->attributes &=
~(1 << DOMAIN_ATTR_COHERENT_HTW_DISABLE);
break;
}
case DOMAIN_ATTR_SECURE_VMID:
BUG_ON(smmu_domain->secure_vmid != VMID_INVAL);
smmu_domain->secure_vmid = *((int *)data);
break;
case DOMAIN_ATTR_ATOMIC:
{
int atomic_ctx = *((int *)data);
if (atomic_ctx)
smmu_domain->attributes |= (1 << DOMAIN_ATTR_ATOMIC);
else
smmu_domain->attributes &= ~(1 << DOMAIN_ATTR_ATOMIC);
break;
}
case DOMAIN_ATTR_PROCID:
if (smmu_domain->smmu != NULL) {
dev_err(smmu_domain->smmu->dev,
"cannot change procid attribute while attached\n");
ret = -EBUSY;
break;
}
smmu_domain->cfg.procid = *((u32 *)data);
ret = 0;
break;
case DOMAIN_ATTR_DYNAMIC: {
int dynamic = *((int *)data);
if (smmu_domain->smmu != NULL) {
dev_err(smmu_domain->smmu->dev,
"cannot change dynamic attribute while attached\n");
ret = -EBUSY;
break;
}
if (dynamic)
smmu_domain->attributes |= 1 << DOMAIN_ATTR_DYNAMIC;
else
smmu_domain->attributes &= ~(1 << DOMAIN_ATTR_DYNAMIC);
ret = 0;
break;
}
case DOMAIN_ATTR_CONTEXT_BANK:
/* context bank can't be set while attached */
if (smmu_domain->smmu != NULL) {
ret = -EBUSY;
break;
}
/* ... and it can only be set for dynamic contexts. */
if (!(smmu_domain->attributes & (1 << DOMAIN_ATTR_DYNAMIC))) {
ret = -EINVAL;
break;
}
/* this will be validated during attach */
smmu_domain->cfg.cbndx = *((unsigned int *)data);
ret = 0;
break;
case DOMAIN_ATTR_NON_FATAL_FAULTS:
smmu_domain->non_fatal_faults = *((int *)data);
ret = 0;
break;
default:
ret = -ENODEV;
break;
}
out_unlock:
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static int arm_smmu_dma_supported(struct iommu_domain *domain,
struct device *dev, u64 mask)
{
struct arm_smmu_device *smmu;
struct arm_smmu_domain *smmu_domain = domain->priv;
int ret;
mutex_lock(&smmu_domain->init_mutex);
smmu = smmu_domain->smmu;
if (!smmu) {
dev_err(dev,
"Can't call dma_supported on an unattached domain\n");
mutex_unlock(&smmu_domain->init_mutex);
return 0;
}
ret = ((1ULL << smmu->va_size) - 1) <= mask ? 0 : 1;
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static struct iommu_ops arm_smmu_ops = {
.capable = arm_smmu_capable,
.domain_init = arm_smmu_domain_init,
.domain_destroy = arm_smmu_domain_destroy,
.attach_dev = arm_smmu_attach_dev,
.detach_dev = arm_smmu_detach_dev,
.map = arm_smmu_map,
.unmap = arm_smmu_unmap,
.map_sg = arm_smmu_map_sg,
.iova_to_phys = arm_smmu_iova_to_phys,
.iova_to_phys_hard = arm_smmu_iova_to_phys_hard,
.add_device = arm_smmu_add_device,
.remove_device = arm_smmu_remove_device,
.domain_get_attr = arm_smmu_domain_get_attr,
.domain_set_attr = arm_smmu_domain_set_attr,
.pgsize_bitmap = -1UL, /* Restricted during device attach */
.dma_supported = arm_smmu_dma_supported,
.trigger_fault = arm_smmu_trigger_fault,
.reg_read = arm_smmu_reg_read,
.reg_write = arm_smmu_reg_write,
};
static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
void __iomem *cb_base;
int i = 0;
u32 reg;
/* clear global FSR */
reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
if (!(smmu->options & ARM_SMMU_OPT_SKIP_INIT)) {
/* Mark all SMRn as invalid and all S2CRn as bypass */
for (i = 0; i < smmu->num_mapping_groups; ++i) {
writel_relaxed(0,
gr0_base + ARM_SMMU_GR0_SMR(i));
writel_relaxed(S2CR_TYPE_BYPASS,
gr0_base + ARM_SMMU_GR0_S2CR(i));
}
/* Make sure all context banks are disabled and clear CB_FSR */
for (i = 0; i < smmu->num_context_banks; ++i) {
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
}
}
/* Invalidate the TLB, just in case */
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
/* Enable fault reporting */
reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
/* Disable TLB broadcasting. */
reg |= (sCR0_VMIDPNE | sCR0_PTM);
/* Enable client access */
reg &= ~sCR0_CLIENTPD;
/* Raise an unidentified stream fault on unmapped access */
reg |= sCR0_USFCFG;
/* Disable forced broadcasting */
reg &= ~sCR0_FB;
/* Don't upgrade barriers */
reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
/* Push the button */
__arm_smmu_tlb_sync(smmu);
writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
}
static int arm_smmu_id_size_to_bits(int size)
{
switch (size) {
case 0:
return 32;
case 1:
return 36;
case 2:
return 40;
case 3:
return 42;
case 4:
return 44;
case 5:
default:
return 48;
}
}
static int regulator_notifier(struct notifier_block *nb,
unsigned long event, void *data)
{
int ret = 0;
struct arm_smmu_device *smmu = container_of(nb,
struct arm_smmu_device, regulator_nb);
/* Ignore EVENT DISABLE as no clocks could be turned on
* at this notification.
*/
if (event != REGULATOR_EVENT_PRE_DISABLE &&
event != REGULATOR_EVENT_ENABLE)
return NOTIFY_OK;
ret = arm_smmu_prepare_clocks(smmu);
if (ret)
goto out;
ret = arm_smmu_enable_clocks_atomic(smmu);
if (ret)
goto unprepare_clock;
if (event == REGULATOR_EVENT_PRE_DISABLE)
arm_smmu_halt(smmu);
else if (event == REGULATOR_EVENT_ENABLE)
arm_smmu_resume(smmu);
arm_smmu_disable_clocks_atomic(smmu);
unprepare_clock:
arm_smmu_unprepare_clocks(smmu);
out:
return NOTIFY_OK;
}
static int register_regulator_notifier(struct arm_smmu_device *smmu)
{
struct device *dev = smmu->dev;
int ret = 0;
if (smmu->options & ARM_SMMU_OPT_HALT) {
smmu->regulator_nb.notifier_call = regulator_notifier;
ret = regulator_register_notifier(smmu->gdsc,
&smmu->regulator_nb);
if (ret)
dev_err(dev, "Regulator notifier request failed\n");
}
return ret;
}
static int arm_smmu_init_regulators(struct arm_smmu_device *smmu)
{
struct device *dev = smmu->dev;
if (!of_get_property(dev->of_node, "vdd-supply", NULL))
return 0;
smmu->gdsc = devm_regulator_get(dev, "vdd");
if (IS_ERR(smmu->gdsc))
return PTR_ERR(smmu->gdsc);
return 0;
}
static int arm_smmu_init_clocks(struct arm_smmu_device *smmu)
{
const char *cname;
struct property *prop;
int i;
struct device *dev = smmu->dev;
smmu->num_clocks =
of_property_count_strings(dev->of_node, "clock-names");
if (smmu->num_clocks < 1)
return 0;
smmu->clocks = devm_kzalloc(
dev, sizeof(*smmu->clocks) * smmu->num_clocks,
GFP_KERNEL);
if (!smmu->clocks) {
dev_err(dev,
"Failed to allocate memory for clocks\n");
return -ENODEV;
}
i = 0;
of_property_for_each_string(dev->of_node, "clock-names",
prop, cname) {
struct clk *c = devm_clk_get(dev, cname);
if (IS_ERR(c)) {
dev_err(dev, "Couldn't get clock: %s",
cname);
return -ENODEV;
}
if (clk_get_rate(c) == 0) {
long rate = clk_round_rate(c, 1000);
clk_set_rate(c, rate);
}
smmu->clocks[i] = c;
++i;
}
return 0;
}
static int arm_smmu_init_bus_scaling(struct platform_device *pdev,
struct arm_smmu_device *smmu)
{
u32 master_id;
if (of_property_read_u32(pdev->dev.of_node, "qcom,bus-master-id",
&master_id)) {
dev_dbg(smmu->dev, "No bus scaling info\n");
return 0;
}
smmu->bus_client_name = devm_kasprintf(
smmu->dev, GFP_KERNEL, "smmu-bus-client-%s",
dev_name(smmu->dev));
if (!smmu->bus_client_name)
return -ENOMEM;
smmu->bus_client = msm_bus_scale_register(
master_id, MSM_BUS_SLAVE_EBI_CH0, smmu->bus_client_name, true);
if (IS_ERR(&smmu->bus_client)) {
int ret = PTR_ERR(smmu->bus_client);
if (ret != -EPROBE_DEFER)
dev_err(smmu->dev, "Bus client registration failed\n");
return ret;
}
return 0;
}
static int arm_smmu_parse_impl_def_registers(struct arm_smmu_device *smmu)
{
struct device *dev = smmu->dev;
int i, ntuples, ret;
u32 *tuples;
struct arm_smmu_impl_def_reg *regs, *regit;
if (!of_find_property(dev->of_node, "attach-impl-defs", &ntuples))
return 0;
ntuples /= sizeof(u32);
if (ntuples % 2) {
dev_err(dev,
"Invalid number of attach-impl-defs registers: %d\n",
ntuples);
return -EINVAL;
}
regs = devm_kmalloc(
dev, sizeof(*smmu->impl_def_attach_registers) * ntuples,
GFP_KERNEL);
if (!regs)
return -ENOMEM;
tuples = devm_kmalloc(dev, sizeof(u32) * ntuples * 2, GFP_KERNEL);
if (!tuples)
return -ENOMEM;
ret = of_property_read_u32_array(dev->of_node, "attach-impl-defs",
tuples, ntuples);
if (ret)
return ret;
for (i = 0, regit = regs; i < ntuples; i += 2, ++regit) {
regit->offset = tuples[i];
regit->value = tuples[i + 1];
}
devm_kfree(dev, tuples);
smmu->impl_def_attach_registers = regs;
smmu->num_impl_def_attach_registers = ntuples / 2;
return 0;
}
static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
unsigned long size;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
u32 id;
dev_dbg(smmu->dev, "probing hardware configuration...\n");
dev_dbg(smmu->dev, "SMMUv%d with:\n", smmu->version);
/* ID0 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
/* Restrict available stages based on module parameter */
if (force_stage == 1)
id &= ~(ID0_S2TS | ID0_NTS);
else if (force_stage == 2)
id &= ~(ID0_S1TS | ID0_NTS);
if (id & ID0_S1TS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
dev_dbg(smmu->dev, "\tstage 1 translation\n");
}
if (id & ID0_S2TS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
dev_dbg(smmu->dev, "\tstage 2 translation\n");
}
if (id & ID0_NTS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
dev_dbg(smmu->dev, "\tnested translation\n");
}
if (!(smmu->features &
(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
dev_err(smmu->dev, "\tno translation support (id0=%x)!\n", id);
return -ENODEV;
}
if (smmu->version == 1 || (!(id & ID0_ATOSNS) && (id & ID0_S1TS))) {
smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
dev_dbg(smmu->dev, "\taddress translation ops\n");
}
if (id & ID0_CTTW) {
smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
dev_dbg(smmu->dev, "\tcoherent table walk\n");
}
if (id & ID0_SMS) {
u32 smr, sid, mask;
smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
ID0_NUMSMRG_MASK;
if (smmu->num_mapping_groups == 0) {
dev_err(smmu->dev,
"stream-matching supported, but no SMRs present!\n");
return -ENODEV;
}
if (!(smmu->options & ARM_SMMU_OPT_NO_SMR_CHECK)) {
smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
if ((mask & sid) != sid) {
dev_err(smmu->dev,
"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
mask, sid);
return -ENODEV;
}
}
dev_dbg(smmu->dev,
"\tstream matching with %u register groups, mask 0x%x",
smmu->num_mapping_groups, mask);
} else {
smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
ID0_NUMSIDB_MASK;
}
/* ID1 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
/* Check for size mismatch of SMMU address space from mapped region */
size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
size *= 2 << smmu->pgshift;
if (smmu->size != size)
dev_warn(smmu->dev,
"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
size, smmu->size);
smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
if (smmu->num_s2_context_banks > smmu->num_context_banks) {
dev_err(smmu->dev, "impossible number of S2 context banks!\n");
return -ENODEV;
}
dev_dbg(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
smmu->num_context_banks, smmu->num_s2_context_banks);
/* ID2 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
smmu->ipa_size = size;
/* The output mask is also applied for bypass */
size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
smmu->pa_size = size;
/*
* What the page table walker can address actually depends on which
* descriptor format is in use, but since a) we don't know that yet,
* and b) it can vary per context bank, this will have to do...
*/
dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size));
if (smmu->version == ARM_SMMU_V1) {
smmu->va_size = smmu->ipa_size;
size = SZ_4K | SZ_2M | SZ_1G;
} else {
size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
smmu->va_size = min(32UL, smmu->va_size);
#endif
smmu->va_size = min(36UL, smmu->va_size);
size = 0;
if (id & ID2_PTFS_4K)
size |= SZ_4K | SZ_2M | SZ_1G;
if (id & ID2_PTFS_16K)
size |= SZ_16K | SZ_32M;
if (id & ID2_PTFS_64K)
size |= SZ_64K | SZ_512M;
}
arm_smmu_ops.pgsize_bitmap &= size;
dev_dbg(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
dev_dbg(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
smmu->va_size, smmu->ipa_size);
if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
dev_dbg(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
smmu->ipa_size, smmu->pa_size);
return 0;
}
static const struct of_device_id arm_smmu_of_match[] = {
{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
{ .compatible = "qcom,smmu-v2", .data = (void *)ARM_SMMU_V2 },
{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id;
struct resource *res;
struct arm_smmu_device *smmu;
struct device *dev = &pdev->dev;
struct rb_node *node;
int num_irqs, i, err, num_masters;
smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
if (!smmu) {
dev_err(dev, "failed to allocate arm_smmu_device\n");
return -ENOMEM;
}
smmu->dev = dev;
mutex_init(&smmu->attach_lock);
spin_lock_init(&smmu->atos_lock);
spin_lock_init(&smmu->clock_refs_lock);
of_id = of_match_node(arm_smmu_of_match, dev->of_node);
if (!of_id)
return -ENODEV;
smmu->version = (enum arm_smmu_arch_version)of_id->data;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
smmu->base = devm_ioremap_resource(dev, res);
if (IS_ERR(smmu->base))
return PTR_ERR(smmu->base);
smmu->size = resource_size(res);
if (of_property_read_u32(dev->of_node, "#global-interrupts",
&smmu->num_global_irqs)) {
dev_err(dev, "missing #global-interrupts property\n");
return -ENODEV;
}
num_irqs = 0;
while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
num_irqs++;
if (num_irqs > smmu->num_global_irqs)
smmu->num_context_irqs++;
}
if (!smmu->num_context_irqs) {
dev_err(dev, "found %d interrupts but expected at least %d\n",
num_irqs, smmu->num_global_irqs + 1);
return -ENODEV;
}
smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
GFP_KERNEL);
if (!smmu->irqs) {
dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
return -ENOMEM;
}
for (i = 0; i < num_irqs; ++i) {
int irq = platform_get_irq(pdev, i);
if (irq < 0) {
dev_err(dev, "failed to get irq index %d\n", i);
return -ENODEV;
}
smmu->irqs[i] = irq;
}
i = 0;
smmu->masters = RB_ROOT;
err = arm_smmu_parse_iommus_properties(smmu, &num_masters);
if (err)
goto out_put_masters;
dev_dbg(dev, "registered %d master devices\n", num_masters);
err = arm_smmu_parse_impl_def_registers(smmu);
if (err)
goto out_put_masters;
err = arm_smmu_init_regulators(smmu);
if (err)
goto out_put_masters;
err = arm_smmu_init_clocks(smmu);
if (err)
goto out_put_masters;
err = arm_smmu_init_bus_scaling(pdev, smmu);
if (err)
goto out_put_masters;
parse_driver_options(smmu);
err = arm_smmu_enable_clocks(smmu);
if (err)
goto out_put_masters;
err = arm_smmu_device_cfg_probe(smmu);
arm_smmu_disable_clocks(smmu);
if (err)
goto out_put_masters;
if (of_device_is_compatible(dev->of_node, "qcom,smmu-v2"))
smmu->model = SMMU_MODEL_QCOM_V2;
if (smmu->version > ARM_SMMU_V1 &&
smmu->num_context_banks != smmu->num_context_irqs) {
dev_err(dev,
"found %d context interrupt(s) but have %d context banks. assuming %d context interrupts.\n",
smmu->num_context_irqs, smmu->num_context_banks,
smmu->num_context_banks);
smmu->num_context_irqs = smmu->num_context_banks;
}
for (i = 0; i < smmu->num_global_irqs; ++i) {
err = request_threaded_irq(smmu->irqs[i],
NULL, arm_smmu_global_fault,
IRQF_ONESHOT | IRQF_SHARED,
"arm-smmu global fault", smmu);
if (err) {
dev_err(dev, "failed to request global IRQ %d (%u)\n",
i, smmu->irqs[i]);
goto out_free_irqs;
}
}
idr_init(&smmu->asid_idr);
err = register_regulator_notifier(smmu);
if (err)
goto out_free_irqs;
INIT_LIST_HEAD(&smmu->list);
spin_lock(&arm_smmu_devices_lock);
list_add(&smmu->list, &arm_smmu_devices);
spin_unlock(&arm_smmu_devices_lock);
return 0;
out_free_irqs:
while (i--)
free_irq(smmu->irqs[i], smmu);
out_put_masters:
for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
struct arm_smmu_master *master
= container_of(node, struct arm_smmu_master, node);
of_node_put(master->of_node);
}
return err;
}
static int arm_smmu_device_remove(struct platform_device *pdev)
{
int i;
struct device *dev = &pdev->dev;
struct arm_smmu_device *curr, *smmu = NULL;
struct rb_node *node;
spin_lock(&arm_smmu_devices_lock);
list_for_each_entry(curr, &arm_smmu_devices, list) {
if (curr->dev == dev) {
smmu = curr;
list_del(&smmu->list);
break;
}
}
spin_unlock(&arm_smmu_devices_lock);
if (!smmu)
return -ENODEV;
for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
struct arm_smmu_master *master
= container_of(node, struct arm_smmu_master, node);
of_node_put(master->of_node);
}
if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
dev_err(dev, "removing device with active domains!\n");
for (i = 0; i < smmu->num_global_irqs; ++i)
free_irq(smmu->irqs[i], smmu);
mutex_lock(&smmu->attach_lock);
idr_destroy(&smmu->asid_idr);
/*
* If all devices weren't detached for some reason, we're
* still powered on. Power off now.
*/
if (smmu->attach_count)
arm_smmu_power_off(smmu, false);
mutex_unlock(&smmu->attach_lock);
msm_bus_scale_unregister(smmu->bus_client);
return 0;
}
static struct platform_driver arm_smmu_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "arm-smmu",
.of_match_table = of_match_ptr(arm_smmu_of_match),
},
.probe = arm_smmu_device_dt_probe,
.remove = arm_smmu_device_remove,
};
static int __init arm_smmu_init(void)
{
struct device_node *np;
int ret;
/*
* Play nice with systems that don't have an ARM SMMU by checking that
* an ARM SMMU exists in the system before proceeding with the driver
* and IOMMU bus operation registration.
*/
np = of_find_matching_node(NULL, arm_smmu_of_match);
if (!np)
return 0;
of_node_put(np);
ret = platform_driver_register(&arm_smmu_driver);
if (ret)
return ret;
/* Oh, for a proper bus abstraction */
if (!iommu_present(&platform_bus_type))
bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
#ifdef CONFIG_ARM_AMBA
if (!iommu_present(&amba_bustype))
bus_set_iommu(&amba_bustype, &arm_smmu_ops);
#endif
#ifdef CONFIG_PCI
if (!iommu_present(&pci_bus_type))
bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif
return 0;
}
static void __exit arm_smmu_exit(void)
{
return platform_driver_unregister(&arm_smmu_driver);
}
subsys_initcall(arm_smmu_init);
module_exit(arm_smmu_exit);
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");