M7350/kernel/drivers/coresight/coresight-etmv4.c
2024-09-09 08:57:42 +00:00

3698 lines
98 KiB
C

/* Copyright (c) 2014-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/sysfs.h>
#include <linux/stat.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/of_coresight.h>
#include <linux/of_address.h>
#include <linux/coresight.h>
#include <linux/pm_wakeup.h>
#include <linux/cpumask.h>
#include <asm/sections.h>
#include <asm/etmv4x.h>
#include <soc/qcom/socinfo.h>
#include <soc/qcom/memory_dump.h>
#include "coresight-priv.h"
#define etm_writel(drvdata, val, off) \
__raw_writel((val), drvdata->base + off)
#define etm_readl(drvdata, off) \
__raw_readl(drvdata->base + off)
#define etm_writeq(drvdata, val, off) \
__raw_writeq((val), drvdata->base + off)
#define etm_readq(drvdata, off) \
__raw_readq(drvdata->base + off)
#define ETM_LOCK(drvdata) \
do { \
mb(); \
isb(); \
etm_writel(drvdata, 0x0, CORESIGHT_LAR); \
} while (0)
#define ETM_UNLOCK(drvdata) \
do { \
etm_writel(drvdata, CORESIGHT_UNLOCK, CORESIGHT_LAR); \
mb(); \
isb(); \
} while (0)
/*
* Device registers:
* 0x000 - 0x2FC: Trace registers
* 0x300 - 0x314: Management registers
* 0x318 - 0xEFC: Trace registers
* 0xF00: Management registers
* 0xFA0 - 0xFA4: Trace registers
* 0xFA8 - 0xFFC: Management registers
*/
/* Trace registers (0x000-0x2FC) */
/* Main control and configuration registers */
#define TRCPRGCTLR (0x004)
#define TRCPROCSELR (0x008)
#define TRCSTATR (0x00C)
#define TRCCONFIGR (0x010)
#define TRCAUXCTLR (0x018)
#define TRCEVENTCTL0R (0x020)
#define TRCEVENTCTL1R (0x024)
#define TRCSTALLCTLR (0x02C)
#define TRCTSCTLR (0x030)
#define TRCSYNCPR (0x034)
#define TRCCCCTLR (0x038)
#define TRCBBCTLR (0x03C)
#define TRCTRACEIDR (0x040)
#define TRCQCTLR (0x044)
/* Filtering control registers */
#define TRCVICTLR (0x080)
#define TRCVIIECTLR (0x084)
#define TRCVISSCTLR (0x088)
#define TRCVIPCSSCTLR (0x08C)
#define TRCVDCTLR (0x0A0)
#define TRCVDSACCTLR (0x0A4)
#define TRCVDARCCTLR (0x0A8)
/* Derived resources registers */
#define TRCSEQEVRn(n) (0x100 + (n * 4))
#define TRCSEQRSTEVR (0x118)
#define TRCSEQSTR (0x11C)
#define TRCEXTINSELR (0x120)
#define TRCCNTRLDVRn(n) (0x140 + (n * 4))
#define TRCCNTCTLRn(n) (0x150 + (n * 4))
#define TRCCNTVRn(n) (0x160 + (n * 4))
/* ID registers */
#define TRCIDR8 (0x180)
#define TRCIDR9 (0x184)
#define TRCIDR10 (0x188)
#define TRCIDR11 (0x18C)
#define TRCIDR12 (0x190)
#define TRCIDR13 (0x194)
#define TRCIMSPEC0 (0x1C0)
#define TRCIMSPECn(n) (0x1C0 + (n * 4))
#define TRCIDR0 (0x1E0)
#define TRCIDR1 (0x1E4)
#define TRCIDR2 (0x1E8)
#define TRCIDR3 (0x1EC)
#define TRCIDR4 (0x1F0)
#define TRCIDR5 (0x1F4)
#define TRCIDR6 (0x1F8)
#define TRCIDR7 (0x1FC)
/* Resource selection registers */
#define TRCRSCTLRn(n) (0x200 + (n * 4))
/* Single-shot comparator registers */
#define TRCSSCCRn(n) (0x280 + (n * 4))
#define TRCSSCSRn(n) (0x2A0 + (n * 4))
#define TRCSSPCICRn(n) (0x2C0 + (n * 4))
/* Management registers (0x300-0x314) */
#define TRCOSLAR (0x300)
#define TRCOSLSR (0x304)
#define TRCPDCR (0x310)
#define TRCPDSR (0x314)
/* Trace registers (0x318-0xEFC) */
/* Comparator registers */
#define TRCACVRn(n) (0x400 + (n * 8))
#define TRCACATRn(n) (0x480 + (n * 8))
#define TRCDVCVRn(n) (0x500 + (n * 16))
#define TRCDVCMRn(n) (0x580 + (n * 16))
#define TRCCIDCVRn(n) (0x600 + (n * 8))
#define TRCVMIDCVRn(n) (0x640 + (n * 8))
#define TRCCIDCCTLR0 (0x680)
#define TRCCIDCCTLR1 (0x684)
#define TRCVMIDCCTLR0 (0x688)
#define TRCVMIDCCTLR1 (0x68C)
/* Management register (0xF00) */
/* Integration control registers */
#define TRCITCTRL (0xF00)
/* Trace registers (0xFA0-0xFA4) */
/* Claim tag registers */
#define TRCCLAIMSET (0xFA0)
#define TRCCLAIMCLR (0xFA4)
/* Management registers (0xFA8-0xFFC) */
#define TRCDEVAFF0 (0xFA8)
#define TRCDEVAFF1 (0xFAC)
#define TRCLAR (0xFB0)
#define TRCLSR (0xFB4)
#define TRCAUTHSTATUS (0xFB8)
#define TRCDEVARCH (0xFBC)
#define TRCDEVID (0xFC8)
#define TRCDEVTYPE (0xFCC)
#define TRCPIDR4 (0xFD0)
#define TRCPIDR5 (0xFD4)
#define TRCPIDR6 (0xFD8)
#define TRCPIDR7 (0xFDC)
#define TRCPIDR0 (0xFE0)
#define TRCPIDR1 (0xFE4)
#define TRCPIDR2 (0xFE8)
#define TRCPIDR3 (0xFEC)
#define TRCCIDR0 (0xFF0)
#define TRCCIDR1 (0xFF4)
#define TRCCIDR2 (0xFF8)
#define TRCCIDR3 (0xFFC)
/* ETMv4 resources */
#define ETM_MAX_NR_PE (8)
#define ETM_MAX_CNTR (4)
#define ETM_MAX_SEQ_STATES (4)
#define ETM_MAX_EXT_INP_SEL (4)
#define ETM_MAX_EXT_INP (256)
#define ETM_MAX_EXT_OUT (4)
#define ETM_MAX_SINGLE_ADDR_CMP (16)
#define ETM_MAX_ADDR_RANGE_CMP (ETM_MAX_SINGLE_ADDR_CMP / 2)
#define ETM_MAX_DATA_VAL_CMP (8)
#define ETM_MAX_CTXID_CMP (8)
#define ETM_MAX_VMID_CMP (8)
#define ETM_MAX_PE_CMP (8)
#define ETM_MAX_RES_SEL (16)
#define ETM_MAX_SS_CMP (8)
#define ETM_CPMR_CLKEN (0x4)
#define ETM_ARCH_V4 (0x40)
#define ETM_SYNC_MASK (0x1F)
#define ETM_CYC_THRESHOLD_MASK (0xFFF)
#define ETM_EVENT_MASK (0xFF)
#define ETM_CNTR_MAX_VAL (0xFFFF)
/* ETMv4 programming modes */
#define ETM_MODE_EXCLUDE BIT(0)
#define ETM_MODE_LOAD BIT(1)
#define ETM_MODE_STORE BIT(2)
#define ETM_MODE_LOAD_STORE BIT(3)
#define ETM_MODE_BB BIT(4)
#define ETM_MODE_CYCACC BIT(5)
#define ETM_MODE_CTXID BIT(6)
#define ETM_MODE_VMID BIT(7)
#define ETM_MODE_COND(val) BMVAL(val, 8, 10)
#define ETM_MODE_TIMESTAMP BIT(11)
#define ETM_MODE_RETURNSTACK BIT(12)
#define ETM_MODE_QELEM(val) BMVAL(val, 13, 14)
#define ETM_MODE_DATA_TRACE_ADDR BIT(15)
#define ETM_MODE_DATA_TRACE_VAL BIT(16)
#define ETM_MODE_ISTALL BIT(17)
#define ETM_MODE_DSTALL BIT(18)
#define ETM_MODE_ATB_TRIGGER BIT(19)
#define ETM_MODE_LPOVERRIDE BIT(20)
#define ETM_MODE_ISTALL_EN BIT(21)
#define ETM_MODE_DSTALL_EN BIT(22)
#define ETM_MODE_INSTPRIO BIT(23)
#define ETM_MODE_NOOVERFLOW BIT(24)
#define ETM_MODE_TRACE_RESET BIT(25)
#define ETM_MODE_TRACE_ERR BIT(26)
#define ETM_MODE_VIEWINST_STARTSTOP BIT(27)
#define ETM_MODE_ALL (0xFFFFFFF)
#define ETM_REG_DUMP_VER_OFF (4)
#define ETM_REG_DUMP_VER (1)
#ifdef CONFIG_CORESIGHT_ETMV4_DEFAULT_RESET
static int boot_reset = 1;
#else
static int boot_reset;
#endif
module_param_named(
boot_reset, boot_reset, int, S_IRUGO
);
#ifdef CONFIG_CORESIGHT_ETMV4_DEFAULT_ENABLE
static int boot_enable = 1;
#else
static int boot_enable;
#endif
module_param_named(
boot_enable, boot_enable, int, S_IRUGO
);
enum etm_addr_type {
ETM_ADDR_TYPE_NONE,
ETM_ADDR_TYPE_SINGLE,
ETM_ADDR_TYPE_RANGE,
ETM_ADDR_TYPE_START,
ETM_ADDR_TYPE_STOP,
};
/* Address comparator access types */
enum etm_addr_acctype {
ETM_INSTR_ADDR,
ETM_DATA_LOAD_ADDR,
ETM_DATA_STORE_ADDR,
ETM_DATA_LOAD_STORE_ADDR,
};
/* Address comparator context types */
enum etm_addr_ctxtype {
ETM_CTX_NONE,
ETM_CTX_CTXID,
ETM_CTX_VMID,
ETM_CTX_CTXID_VMID,
};
/* Data value match */
enum etm_data_match {
ETM_DATA_CMP_NONE,
ETM_DATA_CMP_MATCH,
ETM_DATA_CMP_RESERVED,
ETM_DATA_CMP_MISMATCH
};
/* Data value comparator size */
enum etm_data_size {
ETM_DATA_TYPE_BYTE,
ETM_DATA_TYPE_HWORD,
ETM_DATA_TYPE_WORD,
ETM_DATA_TYPE_DWORD,
};
struct etm_drvdata {
void __iomem *base;
uint32_t reg_size;
struct device *dev;
struct coresight_device *csdev;
struct clk *clk;
spinlock_t spinlock;
struct mutex mutex;
struct wakeup_source ws;
int cpu;
uint8_t arch;
bool enable;
bool sticky_enable;
bool boot_enable;
bool os_unlock;
bool init;
uint8_t nr_pe;
uint8_t nr_pe_cmp;
uint8_t nr_addr_cmp; /* comparator pairs */
uint8_t nr_data_cmp;
uint8_t nr_cntr;
uint32_t nr_ext_inp;
uint8_t nr_ext_inp_sel;
uint8_t nr_ext_out;
uint8_t nr_ctxid_cmp;
uint8_t nr_vmid_cmp;
uint8_t nr_seq_state;
uint8_t nr_event;
uint8_t nr_resource;
uint8_t nr_ss_cmp;
uint8_t reset;
uint32_t mode;
uint8_t instr_addr_size;
uint8_t trcid;
uint8_t trcid_size;
bool enable_noovrflw;
bool instrp0_support;
bool trc_cond_support;
bool cond_type_support;
bool retstack_support;
bool trc_exdata_support;
bool trc_error_support;
bool atbtrig_support;
bool lp_override_support;
bool reduced_cntr_support;
uint32_t pe_sel;
uint32_t cfg; /* controls trace options */
uint32_t event_ctrl0;
uint32_t event_ctrl1;
bool stallctrl_support;
bool stall_pe_support;
bool no_overflow_support;
uint32_t stall_ctrl;
uint8_t ts_size;
uint32_t ts_ctrl;
bool syncpr_fixed;
uint32_t syncfreq;
bool trc_cyccnt_support;
uint8_t cyccnt_size;
uint8_t cyccnt_min;
uint32_t cyccnt_ctrl;
bool trc_bb_support;
uint32_t bb_ctrl;
bool qfilt_support;
bool q_support;
uint32_t qelem;
uint32_t vinst_ctrl;
uint32_t vinst_incex_ctrl;
uint32_t vinst_startstop_ctrl;
uint32_t vinst_startstop_pe_ctrl;
uint32_t vdata_ctrl;
uint32_t vdata_incex_single;
uint32_t vdata_incex_range;
uint8_t seq_idx;
uint32_t seq_ctrl[ETM_MAX_SEQ_STATES];
uint32_t seq_rst;
uint32_t seq_state;
uint8_t cntr_idx;
uint32_t cntr_rld_val[ETM_MAX_CNTR];
uint32_t cntr_ctrl[ETM_MAX_CNTR];
uint32_t cntr_val[ETM_MAX_CNTR];
uint8_t resource_idx;
uint32_t resource_ctrl[ETM_MAX_RES_SEL];
uint8_t ss_idx;
uint32_t ss_ctrl[ETM_MAX_SS_CMP];
uint32_t ss_status[ETM_MAX_SS_CMP];
uint32_t ss_pe_cmp[ETM_MAX_SS_CMP];
uint8_t addr_idx;
uint64_t addr_val[ETM_MAX_SINGLE_ADDR_CMP];
uint64_t addr_acctype[ETM_MAX_SINGLE_ADDR_CMP];
uint8_t addr_type[ETM_MAX_SINGLE_ADDR_CMP];
bool trc_data_support;
bool data_addr_cmp_support;
uint8_t data_addr_size;
uint8_t data_val_size;
uint8_t data_idx;
uint64_t data_val[ETM_MAX_DATA_VAL_CMP];
uint64_t data_mask[ETM_MAX_DATA_VAL_CMP];
uint8_t ctxid_idx;
uint8_t ctxid_size;
uint64_t ctxid_val[ETM_MAX_CTXID_CMP];
uint32_t ctxid_mask0;
uint32_t ctxid_mask1;
uint8_t vmid_idx;
uint8_t vmid_size;
uint64_t vmid_val[ETM_MAX_VMID_CMP];
uint32_t vmid_mask0;
uint32_t vmid_mask1;
uint8_t commit_mode;
uint8_t s_ex_level;
uint8_t ns_ex_level;
uint32_t ext_inp;
struct msm_dump_data reg_data;
struct etm_cgc_data *cgc_data;
};
/* support max 2 clusters now */
#define MAX_CLUSTER_NUM 2
#define NTS_CGC_OVERRIDE BIT(9)
#define CNT_CGC_OVERRIDE BIT(8)
#define APB_CGC_OVERRIDE BIT(7)
#define ATB_CGC_OVERRIDE BIT(6)
struct etm_cgc_data {
void __iomem *base;
uint32_t phy_addr;
uint32_t len;
cpumask_t control_mask;
};
static struct etm_cgc_data *etm_cgc_data[MAX_CLUSTER_NUM];
static int count;
static struct etm_drvdata *etmdrvdata[NR_CPUS];
static struct notifier_block etm_cpu_notifier;
static struct notifier_block etm_cpu_dying_notifier;
static bool etm_os_lock_present(struct etm_drvdata *drvdata)
{
uint32_t etmoslsr;
etmoslsr = etm_readl(drvdata, TRCOSLSR);
/*
* For ARMv7-A, ARMv7-R, and ARMv8-A PEs bits[0,3] are always
* 0b10 to indicate that the OS Lock is implemented.
*/
if ((BVAL(etmoslsr, 0) == 0) && (BVAL(etmoslsr, 3) == 1))
return true;
return false;
}
static void etm_os_unlock(void *info)
{
struct etm_drvdata *drvdata = (struct etm_drvdata *) info;
ETM_UNLOCK(drvdata);
if (etm_os_lock_present(drvdata)) {
etm_writel(drvdata, 0x0, TRCOSLAR);
/* ensure os lock is unlocked before we return */
mb();
}
ETM_LOCK(drvdata);
}
static bool etm_arch_supported(uint8_t arch)
{
switch (arch) {
case ETM_ARCH_V4:
break;
default:
return false;
}
return true;
}
static int etm_set_mode_exclude(struct etm_drvdata *drvdata, bool exclude)
{
uint8_t idx = drvdata->addr_idx;
if (BMVAL(drvdata->addr_acctype[idx], 0, 1) == ETM_INSTR_ADDR) {
if (idx % 2 != 0)
return -EINVAL;
/*
* We are performing instruction address comparison. Set the
* relevant bit of ViewInst Include/Exclude Control register
* for corresponding address comparator pair.
*/
if (drvdata->addr_type[idx] != ETM_ADDR_TYPE_RANGE ||
drvdata->addr_type[idx + 1] != ETM_ADDR_TYPE_RANGE)
return -EINVAL;
if (exclude == true) {
/*
* Set exclude bit and unset the include bit
* corresponding to comparator pair
*/
drvdata->vinst_incex_ctrl |= BIT(idx / 2 + 16);
drvdata->vinst_incex_ctrl &= ~BIT(idx / 2);
} else {
/*
* Set include bit and unset exclude bit
* corresponding to comparator pair
*/
drvdata->vinst_incex_ctrl |= BIT(idx / 2);
drvdata->vinst_incex_ctrl &= ~BIT(idx / 2 + 16);
}
} else {
/*
* We are performing data address comparison. Set the relevant
* bit of ViewData Include/Exclude address range comparator or
* single address comparator for corresponding address
* comparator.
*/
if (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE) {
if (idx % 2 != 0)
return -EINVAL;
if (exclude == true) {
/*
* Set exclude bit and unset include bit
* corresponding to comparator pair.
*/
drvdata->vdata_incex_range |= BIT(idx / 2 + 16);
drvdata->vdata_incex_range &= ~BIT(idx / 2);
} else {
/*
* Set include bit cnd unset include bit
* corresponding to comparator pair.
*/
drvdata->vdata_incex_range |= BIT(idx / 2);
drvdata->vdata_incex_range &= ~BIT(idx / 2
+ 16);
}
} else if (drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE) {
/* Set single address comparator for Viewdata */
if (exclude == true) {
drvdata->vdata_incex_single |= BIT(idx + 16);
drvdata->vdata_incex_single &= ~BIT(idx);
} else {
drvdata->vdata_incex_single |= BIT(idx);
drvdata->vdata_incex_single &= ~BIT(idx + 16);
}
}
}
return 0;
}
static void etm_reset_data(struct etm_drvdata *drvdata)
{
int i;
spin_lock(&drvdata->spinlock);
drvdata->mode = 0x0;
/* Disable data tracing: do not trace load and store data transfers */
drvdata->mode &= ~(ETM_MODE_LOAD | ETM_MODE_STORE);
drvdata->cfg &= ~(BIT(1) | BIT(2));
/* Disable data value and data address tracing */
drvdata->mode &= ~(ETM_MODE_DATA_TRACE_ADDR |
ETM_MODE_DATA_TRACE_VAL);
drvdata->cfg &= ~(BIT(16) | BIT(17));
/* Disable all events tracing */
drvdata->event_ctrl0 = 0x0;
drvdata->event_ctrl1 = 0x0;
/* Disable timestamp event */
drvdata->ts_ctrl = 0x0;
/* Disable stalling */
drvdata->stall_ctrl = 0x0;
/* Reset trace synchronization period to 2^8 = 256 bytes*/
if (drvdata->syncpr_fixed == false)
drvdata->syncfreq = 0x8;
/*
* Enable ViewInst to trace everything with start-stop logic in
* started state. ARM recommends start-stop logic is set before
* each trace run.
*/
drvdata->vinst_ctrl |= BIT(0);
if (drvdata->nr_addr_cmp) {
drvdata->mode |= ETM_MODE_VIEWINST_STARTSTOP;
drvdata->vinst_ctrl |= BIT(9);
}
/* No address range filtering for ViewInst */
drvdata->vinst_incex_ctrl = 0x0;
/* No start-stop filtering for ViewInst */
drvdata->vinst_startstop_ctrl = 0x0;
/* Disable ViewData */
drvdata->vdata_ctrl = 0x0;
/* No address filtering for ViewData */
drvdata->vdata_incex_single = 0x0;
drvdata->vdata_incex_range = 0x0;
/* Disable seq events */
for (i = 0; i < drvdata->nr_seq_state-1; i++)
drvdata->seq_ctrl[i] = 0x0;
drvdata->seq_rst = 0x0;
drvdata->seq_state = 0x0;
/* Disable external input events */
drvdata->ext_inp = 0x0;
drvdata->cntr_idx = 0x0;
for (i = 0; i < drvdata->nr_cntr; i++) {
drvdata->cntr_rld_val[i] = 0x0;
drvdata->cntr_ctrl[i] = 0x0;
drvdata->cntr_val[i] = 0x0;
}
drvdata->resource_idx = 0x0;
for (i = 0; i < drvdata->nr_resource; i++)
drvdata->resource_ctrl[i] = 0x0;
drvdata->ss_idx = 0x0;
for (i = 0; i < drvdata->nr_ss_cmp; i++) {
drvdata->ss_ctrl[i] = 0x0;
drvdata->ss_pe_cmp[i] = 0x0;
}
drvdata->addr_idx = 0x0;
for (i = 0; i < drvdata->nr_addr_cmp * 2; i++) {
drvdata->addr_val[i] = 0x0;
drvdata->addr_acctype[i] = 0x0;
drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
}
drvdata->data_idx = 0x0;
for (i = 0; i < drvdata->nr_data_cmp; i++) {
drvdata->data_val[i] = 0;
drvdata->data_mask[i] = ~(0);
}
drvdata->ctxid_idx = 0x0;
for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
drvdata->ctxid_val[i] = 0x0;
drvdata->ctxid_mask0 = 0x0;
drvdata->ctxid_mask1 = 0x0;
drvdata->vmid_idx = 0x0;
for (i = 0; i < drvdata->nr_vmid_cmp; i++)
drvdata->vmid_val[i] = 0x0;
drvdata->vmid_mask0 = 0x0;
drvdata->vmid_mask1 = 0x0;
drvdata->trcid = drvdata->cpu + 1;
spin_unlock(&drvdata->spinlock);
}
static inline void etm_clk_disable(void)
{
uint32_t cpmr;
isb();
cpmr = trc_readl(CPMR_EL1);
cpmr &= ~ETM_CPMR_CLKEN;
trc_write(cpmr, CPMR_EL1);
}
static inline void etm_clk_enable(void)
{
uint32_t cpmr;
cpmr = trc_readl(CPMR_EL1);
cpmr |= ETM_CPMR_CLKEN;
trc_write(cpmr, CPMR_EL1);
isb();
}
static inline void etm_trace_disable(void)
{
etm_clk_enable();
trc_write(0x0, ETMPRGCTLR);
etm_clk_disable();
}
static inline void etm_trace_enable(void)
{
etm_clk_enable();
trc_write(0x1, ETMPRGCTLR);
etm_clk_disable();
}
static void __etm_enable(void *info)
{
int i;
struct etm_drvdata *drvdata = info;
ETM_UNLOCK(drvdata);
/* Disable the trace unit before programming trace registers */
if (drvdata->enable_noovrflw)
etm_trace_disable();
else
etm_writel(drvdata, 0, TRCPRGCTLR);
etm_writel(drvdata, drvdata->pe_sel, TRCPROCSELR);
etm_writel(drvdata, drvdata->cfg, TRCCONFIGR);
etm_writel(drvdata, 0x0, TRCAUXCTLR);
etm_writel(drvdata, drvdata->event_ctrl0, TRCEVENTCTL0R);
etm_writel(drvdata, drvdata->event_ctrl1, TRCEVENTCTL1R);
etm_writel(drvdata, drvdata->stall_ctrl, TRCSTALLCTLR);
etm_writel(drvdata, drvdata->ts_ctrl, TRCTSCTLR);
etm_writel(drvdata, drvdata->syncfreq, TRCSYNCPR);
etm_writel(drvdata, drvdata->cyccnt_ctrl, TRCCCCTLR);
etm_writel(drvdata, drvdata->bb_ctrl, TRCBBCTLR);
etm_writel(drvdata, drvdata->trcid, TRCTRACEIDR);
etm_writel(drvdata, drvdata->qelem, TRCQCTLR);
etm_writel(drvdata, drvdata->vinst_ctrl, TRCVICTLR);
etm_writel(drvdata, drvdata->vinst_incex_ctrl, TRCVIIECTLR);
etm_writel(drvdata, drvdata->vinst_startstop_ctrl, TRCVISSCTLR);
etm_writel(drvdata, drvdata->vinst_startstop_pe_ctrl, TRCVIPCSSCTLR);
etm_writel(drvdata, drvdata->vdata_ctrl, TRCVDCTLR);
etm_writel(drvdata, drvdata->vdata_incex_single, TRCVDSACCTLR);
etm_writel(drvdata, drvdata->vdata_incex_range, TRCVDARCCTLR);
for (i = 0; i < drvdata->nr_seq_state - 1; i++)
etm_writel(drvdata, drvdata->seq_ctrl[i], TRCSEQEVRn(i));
etm_writel(drvdata, drvdata->seq_rst, TRCSEQRSTEVR);
etm_writel(drvdata, drvdata->seq_state, TRCSEQSTR);
etm_writel(drvdata, drvdata->ext_inp, TRCEXTINSELR);
for (i = 0; i < drvdata->nr_cntr; i++) {
etm_writel(drvdata, drvdata->cntr_rld_val[i], TRCCNTRLDVRn(i));
etm_writel(drvdata, drvdata->cntr_ctrl[i], TRCCNTCTLRn(i));
etm_writel(drvdata, drvdata->cntr_val[i], TRCCNTVRn(i));
}
for (i = 0; i < drvdata->nr_resource; i++)
etm_writel(drvdata, drvdata->resource_ctrl[i], TRCRSCTLRn(i));
for (i = 0; i < drvdata->nr_ss_cmp; i++) {
etm_writel(drvdata, drvdata->ss_ctrl[i], TRCSSCCRn(i));
etm_writel(drvdata, drvdata->ss_status[i], TRCSSCSRn(i));
etm_writel(drvdata, drvdata->ss_pe_cmp[i], TRCSSPCICRn(i));
}
for (i = 0; i < drvdata->nr_addr_cmp; i++) {
etm_writeq(drvdata, drvdata->addr_val[i], TRCACVRn(i));
etm_writeq(drvdata, drvdata->addr_acctype[i], TRCACATRn(i));
}
for (i = 0; i < drvdata->nr_data_cmp; i++) {
etm_writeq(drvdata, drvdata->data_val[i], TRCDVCVRn(i));
etm_writeq(drvdata, drvdata->data_mask[i], TRCDVCMRn(i));
}
for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
etm_writeq(drvdata, drvdata->ctxid_val[i], TRCCIDCVRn(i));
etm_writel(drvdata, drvdata->ctxid_mask0, TRCCIDCCTLR0);
etm_writel(drvdata, drvdata->ctxid_mask1, TRCCIDCCTLR1);
for (i = 0; i < drvdata->nr_vmid_cmp; i++)
etm_writeq(drvdata, drvdata->vmid_val[i], TRCVMIDCVRn(i));
etm_writel(drvdata, drvdata->vmid_mask0, TRCVMIDCCTLR0);
etm_writel(drvdata, drvdata->vmid_mask1, TRCVMIDCCTLR1);
/* Enable the trace unit */
if (drvdata->enable_noovrflw)
etm_trace_enable();
else
etm_writel(drvdata, 1, TRCPRGCTLR);
ETM_LOCK(drvdata);
dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu);
}
static int etm_enable(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
int ret;
pm_stay_awake(drvdata->dev);
ret = clk_prepare_enable(drvdata->clk);
if (ret)
goto err_clk;
spin_lock(&drvdata->spinlock);
/*
* Executing __etm_enable on the cpu whose ETM is being enabled
* ensures that register writes occur when cpu is powered.
*/
ret = smp_call_function_single(drvdata->cpu, __etm_enable, drvdata, 1);
if (ret)
goto err;
drvdata->enable = true;
drvdata->sticky_enable = true;
spin_unlock(&drvdata->spinlock);
pm_relax(drvdata->dev);
dev_info(drvdata->dev, "ETMv4 tracing enabled\n");
return 0;
err:
spin_unlock(&drvdata->spinlock);
clk_disable_unprepare(drvdata->clk);
err_clk:
pm_relax(drvdata->dev);
return ret;
}
static void __etm_disable(void *info)
{
struct etm_drvdata *drvdata = info;
ETM_UNLOCK(drvdata);
mb();
isb();
if (drvdata->enable_noovrflw)
etm_trace_disable();
else
etm_writel(drvdata, 0, TRCPRGCTLR);
ETM_LOCK(drvdata);
dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu);
}
static void etm_disable(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
pm_stay_awake(drvdata->dev);
/*
* Taking hotplug lock here protects from clocks getting disabled
* with tracing being left on (crash scenario) if user disable occurs
* after cpu online mask indicates the cpu is offline but before the
* DYING hotplug callback is serviced by the ETM driver.
*/
get_online_cpus();
spin_lock(&drvdata->spinlock);
/*
* Executing __etm_disable on the cpu whose ETM is being disabled
* ensures that register writes occur when cpu is powered.
*/
smp_call_function_single(drvdata->cpu, __etm_disable, drvdata, 1);
drvdata->enable = false;
spin_unlock(&drvdata->spinlock);
put_online_cpus();
clk_disable_unprepare(drvdata->clk);
pm_relax(drvdata->dev);
dev_info(drvdata->dev, "ETM tracing disabled\n");
}
static const struct coresight_ops_source etm_source_ops = {
.enable = etm_enable,
.disable = etm_disable,
};
static const struct coresight_ops etm_cs_ops = {
.source_ops = &etm_source_ops,
};
static ssize_t etm_show_nr_pe_cmp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_pe_cmp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_pe_cmp, S_IRUGO, etm_show_nr_pe_cmp, NULL);
static ssize_t etm_show_nr_addr_cmp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_addr_cmp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_addr_cmp, S_IRUGO, etm_show_nr_addr_cmp, NULL);
static ssize_t etm_show_nr_data_cmp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_data_cmp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_data_cmp, S_IRUGO, etm_show_nr_data_cmp, NULL);
static ssize_t etm_show_nr_cntr(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_cntr;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_cntr, S_IRUGO, etm_show_nr_cntr, NULL);
static ssize_t etm_show_nr_ext_inp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_ext_inp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_ext_inp, S_IRUGO, etm_show_nr_ext_inp, NULL);
static ssize_t etm_show_nr_ext_out(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_ext_out;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_ext_out, S_IRUGO, etm_show_nr_ext_out, NULL);
static ssize_t etm_show_nr_ctxid_cmp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_ctxid_cmp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_ctxid_cmp, S_IRUGO, etm_show_nr_ctxid_cmp, NULL);
static ssize_t etm_show_nr_vmid_cmp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_vmid_cmp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_vmid_cmp, S_IRUGO, etm_show_nr_vmid_cmp, NULL);
static ssize_t etm_show_nr_seq_state(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_seq_state;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_seq_state, S_IRUGO, etm_show_nr_seq_state, NULL);
static ssize_t etm_show_nr_resource(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_resource;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_resource, S_IRUGO, etm_show_nr_resource, NULL);
static ssize_t etm_show_nr_ss_cmp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_ss_cmp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_ss_cmp, S_IRUGO, etm_show_nr_ss_cmp, NULL);
static ssize_t etm_show_reset(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->reset;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
/* Reset to trace everything i.e. exclude nothing. */
static ssize_t etm_store_reset(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val)
etm_reset_data(drvdata);
return size;
}
static DEVICE_ATTR(reset, S_IRUGO | S_IWUSR, etm_show_reset, etm_store_reset);
static ssize_t etm_show_mode(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->mode;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_mode(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val, mode;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->mode = val & ETM_MODE_ALL;
if (drvdata->mode & ETM_MODE_EXCLUDE)
etm_set_mode_exclude(drvdata, true);
else
etm_set_mode_exclude(drvdata, false);
if (drvdata->instrp0_support == true) {
drvdata->cfg &= ~(BIT(1) | BIT(2));
if (drvdata->mode & ETM_MODE_LOAD)
drvdata->cfg |= BIT(1);
if (drvdata->mode & ETM_MODE_STORE)
drvdata->cfg |= BIT(2);
if (drvdata->mode & ETM_MODE_LOAD_STORE)
drvdata->cfg |= BIT(1) | BIT(2);
}
if ((drvdata->mode & ETM_MODE_BB) && (drvdata->trc_bb_support == true))
drvdata->cfg |= BIT(3);
else
drvdata->cfg &= ~BIT(3);
if ((drvdata->mode & ETM_MODE_CYCACC) &&
(drvdata->trc_cyccnt_support == true))
drvdata->cfg |= BIT(4);
else
drvdata->cfg &= ~BIT(4);
if ((drvdata->mode & ETM_MODE_CTXID) && (drvdata->ctxid_size))
drvdata->cfg |= BIT(6);
else
drvdata->cfg &= ~BIT(6);
if ((drvdata->mode & ETM_MODE_VMID) && (drvdata->vmid_size))
drvdata->cfg |= BIT(7);
else
drvdata->cfg &= ~BIT(7);
mode = ETM_MODE_COND(drvdata->mode);
if (drvdata->trc_cond_support == true) {
drvdata->cfg &= ~(BIT(8) | BIT(9) | BIT(10));
drvdata->cfg |= mode << 8;
}
if ((drvdata->mode & ETM_MODE_TIMESTAMP) && (drvdata->ts_size))
drvdata->cfg |= BIT(11);
else
drvdata->cfg &= ~BIT(11);
if ((drvdata->mode & ETM_MODE_RETURNSTACK) &&
(drvdata->retstack_support == true))
drvdata->cfg |= BIT(12);
else
drvdata->cfg &= ~BIT(12);
mode = ETM_MODE_QELEM(drvdata->mode);
drvdata->cfg &= ~(BIT(13) | BIT(14));
if ((mode & BIT(0)) && (drvdata->q_support & BIT(0)))
drvdata->cfg |= BIT(13);
if ((mode & BIT(1)) && (drvdata->q_support & BIT(1)))
drvdata->cfg |= BIT(14);
if (drvdata->trc_data_support == true) {
if (drvdata->mode & ETM_MODE_DATA_TRACE_ADDR)
drvdata->cfg |= BIT(16);
else
drvdata->cfg &= ~BIT(16);
if (drvdata->mode & ETM_MODE_DATA_TRACE_VAL)
drvdata->cfg |= BIT(17);
else
drvdata->cfg &= ~BIT(17);
if ((drvdata->mode & ETM_MODE_DATA_TRACE_ADDR) ||
(drvdata->mode & ETM_MODE_DATA_TRACE_VAL)) {
/* Enable ViewData */
drvdata->vdata_ctrl = 0x1;
/*
* ETMv4 spec mandates bit[0] of traceid field must be
* zero if data trace is enabled. Keep the traceid
* consistent irrespective of data tracing is enabled
* or not.
*/
drvdata->trcid = (drvdata->cpu + 2) * 2;
}
}
if ((drvdata->mode & ETM_MODE_ATB_TRIGGER) &&
(drvdata->atbtrig_support == true))
drvdata->event_ctrl1 |= BIT(11);
else
drvdata->event_ctrl1 &= ~BIT(11);
if ((drvdata->mode & ETM_MODE_LPOVERRIDE) &&
(drvdata->lp_override_support == true))
drvdata->event_ctrl1 |= BIT(12);
else
drvdata->event_ctrl1 &= ~BIT(12);
if (drvdata->mode & ETM_MODE_ISTALL_EN)
drvdata->stall_ctrl |= BIT(8);
else
drvdata->stall_ctrl &= ~BIT(8);
if ((drvdata->mode & ETM_MODE_DSTALL_EN) &&
(drvdata->trc_data_support == true))
drvdata->stall_ctrl |= BIT(9);
else
drvdata->stall_ctrl &= ~BIT(9);
if (drvdata->mode & ETM_MODE_INSTPRIO)
drvdata->stall_ctrl |= BIT(10);
else
drvdata->stall_ctrl &= ~BIT(10);
if ((drvdata->mode & ETM_MODE_NOOVERFLOW) &&
(drvdata->no_overflow_support == true))
drvdata->stall_ctrl |= BIT(13);
else
drvdata->stall_ctrl &= ~BIT(13);
if (drvdata->mode & ETM_MODE_VIEWINST_STARTSTOP)
drvdata->vinst_ctrl |= BIT(9);
else
drvdata->vinst_ctrl &= ~BIT(9);
if (drvdata->mode & ETM_MODE_TRACE_RESET)
drvdata->vinst_ctrl |= BIT(10);
else
drvdata->vinst_ctrl &= ~BIT(10);
if ((drvdata->mode & ETM_MODE_TRACE_ERR) &&
(drvdata->trc_error_support == true))
drvdata->vinst_ctrl |= BIT(11);
else
drvdata->vinst_ctrl &= ~BIT(11);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(mode, S_IRUGO | S_IWUSR, etm_show_mode, etm_store_mode);
static ssize_t etm_show_pe(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->pe_sel;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_pe(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
if (val > drvdata->nr_pe) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
drvdata->pe_sel = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(pe, S_IRUGO | S_IWUSR, etm_show_pe, etm_store_pe);
static ssize_t etm_show_event(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->event_ctrl0;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
switch (drvdata->nr_event) {
case 0x0:
drvdata->event_ctrl0 = val & 0xFF;
break;
case 0x1:
drvdata->event_ctrl0 = val & 0xFFFF;
break;
case 0x2:
drvdata->event_ctrl0 = val & 0xFFFFFF;
break;
case 0x3:
drvdata->event_ctrl0 = val;
break;
default:
break;
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(event, S_IRUGO | S_IWUSR, etm_show_event, etm_store_event);
static ssize_t etm_show_event_instren(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = BMVAL(drvdata->event_ctrl1, 0, 3);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_event_instren(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->event_ctrl1 &= ~(BIT(0) | BIT(1) | BIT(2) | BIT(3));
switch (drvdata->nr_event) {
case 0x0:
drvdata->event_ctrl1 |= val & BIT(1);
break;
case 0x1:
drvdata->event_ctrl1 |= val & (BIT(0) | BIT(1));
break;
case 0x2:
drvdata->event_ctrl1 |= val & (BIT(0) | BIT(1) | BIT(2));
break;
case 0x3:
drvdata->event_ctrl1 |= val & 0xF;
break;
default:
break;
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(event_instren, S_IRUGO | S_IWUSR, etm_show_event_instren,
etm_store_event_instren);
static ssize_t etm_show_event_dataen(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = BVAL(drvdata->event_ctrl1, 4);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_event_dataen(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (drvdata->trc_data_support != true)
return -EINVAL;
if (val)
drvdata->event_ctrl1 |= BIT(4);
else
drvdata->event_ctrl1 &= ~BIT(4);
return size;
}
static DEVICE_ATTR(event_dataen, S_IRUGO | S_IWUSR, etm_show_event_dataen,
etm_store_event_dataen);
static ssize_t etm_show_event_ts(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->ts_ctrl;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_event_ts(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (!drvdata->ts_size)
return -EINVAL;
drvdata->ts_ctrl = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR(event_ts, S_IRUGO | S_IWUSR, etm_show_event_ts,
etm_store_event_ts);
static ssize_t etm_show_syncfreq(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->syncfreq;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_syncfreq(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (drvdata->syncpr_fixed == true)
return -EINVAL;
drvdata->syncfreq = val & ETM_SYNC_MASK;
return size;
}
static DEVICE_ATTR(syncfreq, S_IRUGO | S_IWUSR, etm_show_syncfreq,
etm_store_syncfreq);
static ssize_t etm_show_cyc_threshold(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->cyccnt_ctrl;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_cyc_threshold(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val < drvdata->cyccnt_min)
return -EINVAL;
drvdata->cyccnt_ctrl = val & ETM_CYC_THRESHOLD_MASK;
return size;
}
static DEVICE_ATTR(cyc_threshold, S_IRUGO | S_IWUSR, etm_show_cyc_threshold,
etm_store_cyc_threshold);
static ssize_t etm_show_bb_ctrl(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->bb_ctrl;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_bb_ctrl(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (drvdata->trc_bb_support == false)
return -EINVAL;
if (!drvdata->nr_addr_cmp)
return -EINVAL;
/*
* Bit[7: 0] selects which address range comparator is used for
* branch broadcast control.
*/
if (BMVAL(val, 0, 7) > drvdata->nr_addr_cmp)
return -EINVAL;
drvdata->bb_ctrl = val;
return size;
}
static DEVICE_ATTR(bb_ctrl, S_IRUGO | S_IWUSR, etm_show_bb_ctrl,
etm_store_bb_ctrl);
static ssize_t etm_show_event_vinst(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->vinst_ctrl & ETM_EVENT_MASK;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_event_vinst(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
val &= ETM_EVENT_MASK;
drvdata->vinst_ctrl &= ~ETM_EVENT_MASK;
drvdata->vinst_ctrl |= val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(event_vinst, S_IRUGO | S_IWUSR, etm_show_event_vinst,
etm_store_event_vinst);
static ssize_t etm_show_s_exlevel_vinst(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = BMVAL(drvdata->vinst_ctrl, 16, 19);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_s_exlevel_vinst(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->vinst_ctrl &= ~(BIT(16) | BIT(17) | BIT(19));
/* enable instruction tracing for corresponding exception level */
val &= drvdata->s_ex_level;
drvdata->vinst_ctrl |= (val << 16);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(s_exlevel_vinst, S_IRUGO | S_IWUSR,
etm_show_s_exlevel_vinst,
etm_store_s_exlevel_vinst);
static ssize_t etm_show_ns_exlevel_vinst(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = BMVAL(drvdata->vinst_ctrl, 20, 23);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_ns_exlevel_vinst(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->vinst_ctrl &= ~(BIT(20) | BIT(21) | BIT(22));
/* enable instruction tracing for corresponding exception level */
val &= drvdata->ns_ex_level;
drvdata->vinst_ctrl |= (val << 20);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(ns_exlevel_vinst, S_IRUGO | S_IWUSR,
etm_show_ns_exlevel_vinst,
etm_store_ns_exlevel_vinst);
static ssize_t etm_show_addr_idx(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->addr_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_addr_idx(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val >= drvdata->nr_addr_cmp * 2)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->addr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_idx, S_IRUGO | S_IWUSR, etm_show_addr_idx,
etm_store_addr_idx);
static ssize_t etm_show_addr_single(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx = drvdata->addr_idx;
spin_lock(&drvdata->spinlock);
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = (unsigned long)drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_addr_single(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (uint64_t)val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_single, S_IRUGO | S_IWUSR, etm_show_addr_single,
etm_store_addr_single);
static ssize_t etm_show_addr_range(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val1, val2;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val1 = (unsigned long)drvdata->addr_val[idx];
val2 = (unsigned long)drvdata->addr_val[idx + 1];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2);
}
static ssize_t etm_store_addr_range(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val1, val2;
uint8_t idx;
if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
return -EINVAL;
/* lower address comparator cannot have a higher address value */
if (val1 > val2)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (uint64_t)val1;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_val[idx + 1] = (uint64_t)val2;
drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
/*
* Program include or exclude control bits for vinst or vdata
* whenever we change addr comparators to ETM_ADDR_TYPE_RANGE
*/
if (drvdata->mode & ETM_MODE_EXCLUDE)
etm_set_mode_exclude(drvdata, true);
else
etm_set_mode_exclude(drvdata, false);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_range, S_IRUGO | S_IWUSR, etm_show_addr_range,
etm_store_addr_range);
static ssize_t etm_show_addr_start(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = (unsigned long)drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_addr_start(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!drvdata->nr_addr_cmp) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (uint64_t)val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
drvdata->vinst_startstop_ctrl |= BIT(idx);
drvdata->vinst_ctrl |= BIT(9);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_start, S_IRUGO | S_IWUSR, etm_show_addr_start,
etm_store_addr_start);
static ssize_t etm_show_addr_stop(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = (unsigned long)drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_addr_stop(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!drvdata->nr_addr_cmp) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (uint64_t)val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
drvdata->vinst_startstop_ctrl |= BIT(idx + 16);
drvdata->vinst_ctrl |= BIT(9);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_stop, S_IRUGO | S_IWUSR, etm_show_addr_stop,
etm_store_addr_stop);
static ssize_t etm_show_addr_instdatatype(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ssize_t len;
uint8_t val, idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
val = BMVAL(drvdata->addr_acctype[idx], 0, 1);
len = scnprintf(buf, PAGE_SIZE, "%s\n",
val == ETM_INSTR_ADDR ? "instr" :
(val == ETM_DATA_LOAD_ADDR ? "data_load" :
(val == ETM_DATA_STORE_ADDR ? "data_store" :
"data_load_store")));
spin_unlock(&drvdata->spinlock);
return len;
}
static ssize_t etm_store_addr_instdatatype(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
uint8_t idx;
char str[20] = "";
if (strlen(buf) >= 20)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!strcmp(str, "instr")) {
drvdata->addr_acctype[idx] &= ~(BIT(0) | BIT(1));
} else if (drvdata->data_addr_cmp_support == true) {
/*
* Non-zero value implies data address comparison, check if
* supported
*/
if (!strcmp(str, "data_load")) {
drvdata->addr_acctype[idx] |= BIT(0);
drvdata->addr_acctype[idx] &= ~BIT(1);
} else if (!strcmp(str, "data_store")) {
drvdata->addr_acctype[idx] &= ~BIT(0);
drvdata->addr_acctype[idx] |= BIT(1);
} else if (!strcmp(str, "data_load_store")) {
drvdata->addr_acctype[idx] |= (BIT(0) | BIT(1));
}
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_instdatatype, S_IRUGO | S_IWUSR,
etm_show_addr_instdatatype,
etm_store_addr_instdatatype);
static ssize_t etm_show_addr_ctxtype(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ssize_t len;
uint8_t idx, val;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
val = BMVAL(drvdata->addr_acctype[idx], 2, 3);
len = scnprintf(buf, PAGE_SIZE, "%s\n", val == ETM_CTX_NONE ? "none" :
(val == ETM_CTX_CTXID ? "ctxid" :
(val == ETM_CTX_VMID ? "vmid" : "all")));
spin_unlock(&drvdata->spinlock);
return len;
}
static ssize_t etm_store_addr_ctxtype(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
char str[10] = "";
uint8_t idx;
if (strlen(buf) >= 10)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!strcmp(str, "none"))
drvdata->addr_acctype[idx] &= ~(BIT(2) | BIT(3));
else if (!strcmp(str, "ctxid")) {
if (drvdata->nr_ctxid_cmp) {
drvdata->addr_acctype[idx] |= BIT(2);
drvdata->addr_acctype[idx] &= ~BIT(3);
}
} else if (!strcmp(str, "vmid")) {
if (drvdata->nr_vmid_cmp) {
drvdata->addr_acctype[idx] &= ~BIT(2);
drvdata->addr_acctype[idx] |= BIT(3);
}
} else if (!strcmp(str, "all")) {
if (drvdata->nr_ctxid_cmp)
drvdata->addr_acctype[idx] |= BIT(2);
if (drvdata->nr_vmid_cmp)
drvdata->addr_acctype[idx] |= BIT(3);
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_ctxtype, S_IRUGO | S_IWUSR, etm_show_addr_ctxtype,
etm_store_addr_ctxtype);
static ssize_t etm_show_addr_context(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
val = BMVAL(drvdata->addr_acctype[idx], 4, 6);
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_addr_context(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if ((drvdata->nr_ctxid_cmp <= 1) && (drvdata->nr_vmid_cmp <= 1))
return -EINVAL;
if (val >= (drvdata->nr_ctxid_cmp >= drvdata->nr_vmid_cmp ?
drvdata->nr_ctxid_cmp : drvdata->nr_vmid_cmp))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
drvdata->addr_acctype[idx] &= ~(BIT(4) | BIT(5) | BIT(6));
drvdata->addr_acctype[idx] |= (val << 4);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_context, S_IRUGO | S_IWUSR, etm_show_addr_context,
etm_store_addr_context);
static ssize_t etm_show_addr_dvalmatch(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ssize_t len;
uint8_t idx, val;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
val = BMVAL(drvdata->addr_acctype[idx], 16, 17);
len = scnprintf(buf, PAGE_SIZE, "%s\n", val == ETM_DATA_CMP_NONE ?
"none" : (val == ETM_DATA_CMP_MATCH ? "match" :
"nomatch"));
spin_unlock(&drvdata->spinlock);
return len;
}
static ssize_t etm_store_addr_dvalmatch(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
char str[10] = "";
uint8_t idx;
if (strlen(buf) >= 20)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
/* Supported if corresponding data value comparator is supported */
if ((idx >> 1) >= drvdata->nr_data_cmp) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
if (!strcmp(str, "none")) {
drvdata->addr_acctype[idx] &= ~(BIT(16) | BIT(17));
} else if (!strcmp(str, "match")) {
drvdata->addr_acctype[idx] |= BIT(16);
drvdata->addr_acctype[idx] &= ~BIT(17);
} else if (!strcmp(str, "nomatch")) {
drvdata->addr_acctype[idx] |= BIT(16) | BIT(17);
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_dvalmatch, S_IRUGO | S_IWUSR, etm_show_addr_dvalmatch,
etm_store_addr_dvalmatch);
static ssize_t etm_show_addr_dvalsize(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ssize_t len;
uint8_t idx, val;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
val = BMVAL(drvdata->addr_acctype[idx], 18, 19);
len = scnprintf(buf, PAGE_SIZE, "%s\n", val == ETM_DATA_TYPE_BYTE ?
"byte" : (val == ETM_DATA_TYPE_HWORD ? "halfword" :
(val == ETM_DATA_TYPE_WORD ? "word" : "double")));
spin_unlock(&drvdata->spinlock);
return len;
}
static ssize_t etm_store_addr_dvalsize(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
char str[10] = "";
uint8_t idx;
if (strlen(buf) >= 10)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
/* allowed if data value tracing is supported */
if (!drvdata->data_val_size)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
/* allowed if corresponding data value comparator is present */
if ((idx >> 1) >= drvdata->nr_data_cmp) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
if (!strcmp(str, "byte")) {
drvdata->addr_acctype[idx] &= ~(BIT(18) | BIT(19));
} else if (!strcmp(str, "halfword")) {
drvdata->addr_acctype[idx] |= BIT(18);
drvdata->addr_acctype[idx] &= ~BIT(19);
} else if (!strcmp(str, "word")) {
drvdata->addr_acctype[idx] &= ~BIT(18);
drvdata->addr_acctype[idx] |= BIT(19);
} else if (!strcmp(str, "double")) {
/* check if 64 bit values are supported */
if (drvdata->data_val_size != 0x8)
drvdata->addr_acctype[idx] |= BIT(18) | BIT(19);
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_dvalsize, S_IRUGO | S_IWUSR, etm_show_addr_dvalsize,
etm_store_addr_dvalsize);
static ssize_t etm_show_addr_dvalrange(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
val = BVAL(drvdata->addr_acctype[idx], 20);
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_addr_dvalrange(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
/* Supported if corresponding data value comparator is supported */
if ((idx >> 1) >= drvdata->nr_data_cmp) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
if (val)
drvdata->addr_acctype[idx] |= (BIT(20));
else
drvdata->addr_acctype[idx] &= ~(BIT(20));
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_dvalrange, S_IRUGO | S_IWUSR, etm_show_addr_dvalrange,
etm_store_addr_dvalrange);
static ssize_t etm_show_data_val(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
idx = idx >> 1;
if (idx >= drvdata->nr_data_cmp) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = (unsigned long)drvdata->data_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_data_val(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx, data_idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
/* Adjust index to use the correct data comparator */
data_idx = idx >> 1;
/* Only idx = 0, 2, 4, 6... are valid */
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (data_idx >= drvdata->nr_data_cmp) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->data_val[data_idx] = (uint64_t)val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(data_val, S_IRUGO | S_IWUSR, etm_show_data_val,
etm_store_data_val);
static ssize_t etm_show_data_mask(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
idx = idx >> 1;
if (idx >= drvdata->nr_data_cmp) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = (unsigned long)drvdata->data_mask[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_data_mask(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long mask;
uint8_t idx, data_idx;
if (sscanf(buf, "%lx", &mask) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
/* Adjust index to use the correct data comparator */
data_idx = idx >> 1;
/* Only idx = 0, 2, 4, 6... are valid */
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (data_idx >= drvdata->nr_data_cmp) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->data_mask[data_idx] = (uint64_t)mask;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(data_mask, S_IRUGO | S_IWUSR, etm_show_data_mask,
etm_store_data_mask);
static ssize_t etm_show_seq_idx(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->seq_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_seq_idx(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val >= drvdata->nr_seq_state - 1)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->seq_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(seq_idx, S_IRUGO | S_IWUSR, etm_show_seq_idx,
etm_store_seq_idx);
static ssize_t etm_show_seq_event(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->seq_idx;
val = drvdata->seq_ctrl[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_seq_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->seq_idx;
drvdata->seq_ctrl[idx] = val & 0xFF;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(seq_event, S_IRUGO | S_IWUSR, etm_show_seq_event,
etm_store_seq_event);
static ssize_t etm_show_seq_reset_event(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
val = drvdata->seq_rst;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_seq_reset_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (!(drvdata->nr_seq_state))
return -EINVAL;
drvdata->seq_rst = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR(seq_reset_event, S_IRUGO | S_IWUSR,
etm_show_seq_reset_event,
etm_store_seq_reset_event);
static ssize_t etm_show_seq_state(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
val = drvdata->seq_state;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_seq_state(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val >= drvdata->nr_seq_state)
return -EINVAL;
drvdata->seq_state = val;
return size;
}
static DEVICE_ATTR(seq_state, S_IRUGO | S_IWUSR,
etm_show_seq_state,
etm_store_seq_state);
static ssize_t etm_show_cntr_idx(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->cntr_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_cntr_idx(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val >= drvdata->nr_cntr)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->cntr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(cntr_idx, S_IRUGO | S_IWUSR, etm_show_cntr_idx,
etm_store_cntr_idx);
static ssize_t etm_show_cntr_rld_val(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
val = drvdata->cntr_rld_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_cntr_rld_val(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val > ETM_CNTR_MAX_VAL)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
drvdata->cntr_rld_val[idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(cntr_rld_val, S_IRUGO | S_IWUSR, etm_show_cntr_rld_val,
etm_store_cntr_rld_val);
static ssize_t etm_show_cntr_val(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
val = drvdata->cntr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_cntr_val(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val > ETM_CNTR_MAX_VAL)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
drvdata->cntr_val[idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(cntr_val, S_IRUGO | S_IWUSR, etm_show_cntr_val,
etm_store_cntr_val);
static ssize_t etm_show_cntr_ctrl(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
val = drvdata->cntr_ctrl[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_cntr_ctrl(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
drvdata->cntr_ctrl[idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(cntr_ctrl, S_IRUGO | S_IWUSR, etm_show_cntr_ctrl,
etm_store_cntr_ctrl);
static ssize_t etm_show_resource_idx(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->resource_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_resource_idx(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
/* Resource selector pair 0 is always implemented and reserved */
if ((val == 0) || (val >= drvdata->nr_resource))
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->resource_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(resource_idx, S_IRUGO | S_IWUSR, etm_show_resource_idx,
etm_store_resource_idx);
static ssize_t etm_show_resource_ctrl(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->resource_idx;
val = drvdata->resource_ctrl[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_resource_ctrl(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->resource_idx;
/* For odd idx pair inversal bit is RES0 */
if (idx % 2 != 0)
val &= ~BIT(21);
drvdata->resource_ctrl[idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(resource_ctrl, S_IRUGO | S_IWUSR, etm_show_resource_ctrl,
etm_store_resource_ctrl);
static ssize_t etm_show_ctxid_idx(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->ctxid_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_ctxid_idx(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val >= drvdata->nr_ctxid_cmp)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->ctxid_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(ctxid_idx, S_IRUGO | S_IWUSR, etm_show_ctxid_idx,
etm_store_ctxid_idx);
static ssize_t etm_show_ctxid_val(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->ctxid_idx;
val = (unsigned long)drvdata->ctxid_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_ctxid_val(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
/*
* only implemented when ctxid tracing is enabled, i.e. at least one
* ctxid comparator is implemented and ctxid is greater than 0 bits
* in length
*/
if (!drvdata->ctxid_size || !drvdata->nr_ctxid_cmp)
return -EINVAL;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->ctxid_idx;
drvdata->ctxid_val[idx] = (uint64_t)val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(ctxid_val, S_IRUGO | S_IWUSR, etm_show_ctxid_val,
etm_store_ctxid_val);
static ssize_t etm_show_ctxid_masks(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val1, val2;
spin_lock(&drvdata->spinlock);
val1 = drvdata->ctxid_mask0;
val2 = drvdata->ctxid_mask1;
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2);
}
static ssize_t etm_store_ctxid_masks(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val1, val2, mask;
uint8_t i, j, maskbyte;
/*
* only implemented when ctxid tracing is enabled, i.e. at least one
* ctxid comparator is implemented and ctxid is greater than 0 bits
* in length
*/
if (!drvdata->ctxid_size || !drvdata->nr_ctxid_cmp)
return -EINVAL;
if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
return -EINVAL;
spin_lock(&drvdata->spinlock);
/*
* each byte[0..3] controls mask value applied to ctxid
* comparator[0..3]
*/
switch (drvdata->nr_ctxid_cmp) {
case 0x1:
drvdata->ctxid_mask0 = val1 & 0xFF;
break;
case 0x2:
drvdata->ctxid_mask0 = val1 & 0xFFFF;
break;
case 0x3:
drvdata->ctxid_mask0 = val1 & 0xFFFFFF;
break;
case 0x4:
drvdata->ctxid_mask0 = val1;
break;
case 0x5:
drvdata->ctxid_mask0 = val1;
drvdata->ctxid_mask1 = val2 & 0xFF;
break;
case 0x6:
drvdata->ctxid_mask0 = val1;
drvdata->ctxid_mask1 = val2 & 0xFFFF;
break;
case 0x7:
drvdata->ctxid_mask0 = val1;
drvdata->ctxid_mask1 = val2 & 0xFFFFFF;
break;
case 0x8:
drvdata->ctxid_mask0 = val1;
drvdata->ctxid_mask1 = val2;
break;
default:
break;
}
/*
* If software sets a mask bit to 1, it must program relevant byte
* of ctxid comparator value 0x0, otherwise behavior is unpredictable.
* For example, if bit[3] of ctxid_mask0 is 1, we must clear bits[31:24]
* of ctxid comparator0 value (corresponding to byte 0) register.
*/
mask = drvdata->ctxid_mask0;
for (i = 0; i < drvdata->nr_ctxid_cmp; i++) {
/* mask value of corresponding ctxid comparator */
maskbyte = mask & ETM_EVENT_MASK;
/*
* each bit corresponds to a byte of respective ctxid comparator
* value register
*/
for (j = 0; j < 8; j++) {
if (maskbyte & 1)
drvdata->ctxid_val[i] &= ~(0xFF << (j * 8));
maskbyte >>= 1;
}
/* Select the next ctxid comparator mask value */
if (i == 3)
/* ctxid comparators[4-7] */
mask = drvdata->ctxid_mask1;
else
mask >>= 0x8;
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(ctxid_masks, S_IRUGO | S_IWUSR, etm_show_ctxid_masks,
etm_store_ctxid_masks);
static ssize_t etm_show_vmid_idx(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->vmid_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_vmid_idx(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val >= drvdata->nr_vmid_cmp)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->vmid_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(vmid_idx, S_IRUGO | S_IWUSR, etm_show_vmid_idx,
etm_store_vmid_idx);
static ssize_t etm_show_vmid_val(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
val = (unsigned long)drvdata->vmid_val[drvdata->vmid_idx];
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_vmid_val(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
/*
* only implemented when vmid tracing is enabled, i.e. at least one
* vmid comparator is implemented and at least 8 bit vmid size
*/
if (!drvdata->vmid_size || !drvdata->nr_vmid_cmp)
return -EINVAL;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->vmid_val[drvdata->vmid_idx] = (uint64_t)val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(vmid_val, S_IRUGO | S_IWUSR, etm_show_vmid_val,
etm_store_vmid_val);
static ssize_t etm_show_vmid_masks(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val1, val2;
spin_lock(&drvdata->spinlock);
val1 = drvdata->vmid_mask0;
val2 = drvdata->vmid_mask1;
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2);
}
static ssize_t etm_store_vmid_masks(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val1, val2, mask;
uint8_t i, j, maskbyte;
/*
* only implemented when vmid tracing is enabled, i.e. at least one
* vmid comparator is implemented and at least 8 bit vmid size
*/
if (!drvdata->vmid_size || !drvdata->nr_vmid_cmp)
return -EINVAL;
if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
return -EINVAL;
spin_lock(&drvdata->spinlock);
/*
* each byte[0..3] controls mask value applied to vmid
* comparator[0..3]
*/
switch (drvdata->nr_vmid_cmp) {
case 0x1:
drvdata->vmid_mask0 = val1 & 0xFF;
break;
case 0x2:
drvdata->vmid_mask0 = val1 & 0xFFFF;
break;
case 0x3:
drvdata->vmid_mask0 = val1 & 0xFFFFFF;
break;
case 0x4:
drvdata->vmid_mask0 = val1;
break;
case 0x5:
drvdata->vmid_mask0 = val1;
drvdata->vmid_mask1 = val2 & 0xFF;
break;
case 0x6:
drvdata->vmid_mask0 = val1;
drvdata->vmid_mask1 = val2 & 0xFFFF;
break;
case 0x7:
drvdata->vmid_mask0 = val1;
drvdata->vmid_mask1 = val2 & 0xFFFFFF;
break;
case 0x8:
drvdata->vmid_mask0 = val1;
drvdata->vmid_mask1 = val2;
break;
default:
break;
}
/*
* If software sets a mask bit to 1, it must program relevant byte
* of vmid comparator value 0x0, otherwise behavior is unpredictable.
* For example, if bit[3] of vmid_mask0 is 1, we must clear bits[31:24]
* of vmid comparator0 value (corresponding to byte 0) register.
*/
mask = drvdata->vmid_mask0;
for (i = 0; i < drvdata->nr_vmid_cmp; i++) {
/* mask value of corresponding vmid comparator */
maskbyte = mask & ETM_EVENT_MASK;
/*
* each bit corresponds to a byte of respective vmid comparator
* value register
*/
for (j = 0; j < 8; j++) {
if (maskbyte & 1)
drvdata->vmid_val[i] &= ~(0xFF << (j * 8));
maskbyte >>= 1;
}
/* Select the next vmid comparator mask value */
if (i == 3)
/* vmid comparators[4-7] */
mask = drvdata->vmid_mask1;
else
mask >>= 0x8;
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(vmid_masks, S_IRUGO | S_IWUSR, etm_show_vmid_masks,
etm_store_vmid_masks);
static ssize_t etm_show_cpu(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
int cpu;
cpu = drvdata->cpu;
if (cpu < 0)
return -EINVAL;
return scnprintf(buf, PAGE_SIZE, "%#x\n", cpu);
}
static DEVICE_ATTR(cpu, S_IRUGO, etm_show_cpu, NULL);
static struct attribute *etm_attrs[] = {
&dev_attr_nr_pe_cmp.attr,
&dev_attr_nr_addr_cmp.attr,
&dev_attr_nr_data_cmp.attr,
&dev_attr_nr_cntr.attr,
&dev_attr_nr_ext_inp.attr,
&dev_attr_nr_ext_out.attr,
&dev_attr_nr_ctxid_cmp.attr,
&dev_attr_nr_vmid_cmp.attr,
&dev_attr_nr_seq_state.attr,
&dev_attr_nr_resource.attr,
&dev_attr_nr_ss_cmp.attr,
&dev_attr_reset.attr,
&dev_attr_mode.attr,
&dev_attr_pe.attr,
&dev_attr_event.attr,
&dev_attr_event_instren.attr,
&dev_attr_event_dataen.attr,
&dev_attr_event_ts.attr,
&dev_attr_syncfreq.attr,
&dev_attr_cyc_threshold.attr,
&dev_attr_bb_ctrl.attr,
&dev_attr_event_vinst.attr,
&dev_attr_s_exlevel_vinst.attr,
&dev_attr_ns_exlevel_vinst.attr,
&dev_attr_addr_idx.attr,
&dev_attr_addr_instdatatype.attr,
&dev_attr_addr_single.attr,
&dev_attr_addr_range.attr,
&dev_attr_addr_start.attr,
&dev_attr_addr_stop.attr,
&dev_attr_addr_ctxtype.attr,
&dev_attr_addr_context.attr,
&dev_attr_addr_dvalmatch.attr,
&dev_attr_addr_dvalsize.attr,
&dev_attr_addr_dvalrange.attr,
&dev_attr_data_val.attr,
&dev_attr_data_mask.attr,
&dev_attr_seq_idx.attr,
&dev_attr_seq_state.attr,
&dev_attr_seq_event.attr,
&dev_attr_seq_reset_event.attr,
&dev_attr_cntr_idx.attr,
&dev_attr_cntr_rld_val.attr,
&dev_attr_cntr_val.attr,
&dev_attr_cntr_ctrl.attr,
&dev_attr_resource_idx.attr,
&dev_attr_resource_ctrl.attr,
&dev_attr_ctxid_idx.attr,
&dev_attr_ctxid_val.attr,
&dev_attr_ctxid_masks.attr,
&dev_attr_vmid_idx.attr,
&dev_attr_vmid_val.attr,
&dev_attr_vmid_masks.attr,
&dev_attr_cpu.attr,
NULL,
};
static struct attribute_group etm_attr_grp = {
.attrs = etm_attrs,
};
static const struct attribute_group *etm_attr_grps[] = {
&etm_attr_grp,
NULL,
};
int coresight_etm_get_funnel_port(int cpu)
{
struct coresight_platform_data *pdata;
if (!etmdrvdata[cpu])
return -ENODEV;
pdata = etmdrvdata[cpu]->dev->platform_data;
return pdata->child_ports[0];
}
EXPORT_SYMBOL(coresight_etm_get_funnel_port);
static void etm_init_arch_data(void *info)
{
uint32_t etmidr0;
uint32_t etmidr1;
uint32_t etmidr2;
uint32_t etmidr3;
uint32_t etmidr4;
uint32_t etmidr5;
struct etm_drvdata *drvdata = info;
ETM_UNLOCK(drvdata);
/* find all capabilities */
/* tracing capabilities of trace unit */
etmidr0 = etm_readl(drvdata, TRCIDR0);
if (BVAL(etmidr0, 1) && BVAL(etmidr0, 2))
drvdata->instrp0_support = true;
else
drvdata->instrp0_support = false;
if (BVAL(etmidr0, 3) && BVAL(etmidr0, 4))
drvdata->trc_data_support = true;
else
drvdata->trc_data_support = false;
if (BVAL(etmidr0, 5))
drvdata->trc_bb_support = true;
else
drvdata->trc_bb_support = false;
if (BVAL(etmidr0, 6))
drvdata->trc_cond_support = true;
else
drvdata->trc_cond_support = false;
if (BVAL(etmidr0, 7))
drvdata->trc_cyccnt_support = true;
else
drvdata->trc_cyccnt_support = false;
if (BVAL(etmidr0, 9))
drvdata->retstack_support = true;
else
drvdata->retstack_support = false;
drvdata->nr_event = BMVAL(etmidr0, 10, 11);
if (BMVAL(etmidr0, 12, 13))
drvdata->cond_type_support = true;
else
drvdata->cond_type_support = false;
if (BVAL(etmidr0, 14))
drvdata->qfilt_support = true;
else
drvdata->qfilt_support = false;
drvdata->q_support = BMVAL(etmidr0, 15, 16);
if (BVAL(etmidr0, 17))
drvdata->trc_exdata_support = true;
else
drvdata->trc_exdata_support = false;
drvdata->ts_size = BMVAL(etmidr0, 24, 28);
drvdata->commit_mode = BVAL(etmidr0, 29);
/* base architecture of trace unit */
etmidr1 = etm_readl(drvdata, TRCIDR1);
drvdata->arch = BMVAL(etmidr1, 4, 11);
/* maximum size of resources */
etmidr2 = etm_readl(drvdata, TRCIDR2);
drvdata->instr_addr_size = BMVAL(etmidr2, 0, 4);
drvdata->ctxid_size = BMVAL(etmidr2, 5, 9);
drvdata->vmid_size = BMVAL(etmidr2, 10, 14);
drvdata->data_addr_size = BMVAL(etmidr2, 15, 19);
drvdata->data_val_size = BMVAL(etmidr2, 20, 24);
drvdata->cyccnt_size = BMVAL(etmidr2, 25, 28);
etmidr3 = etm_readl(drvdata, TRCIDR3);
drvdata->cyccnt_min = BMVAL(etmidr3, 0, 11);
drvdata->s_ex_level = BMVAL(etmidr3, 16, 19);
drvdata->ns_ex_level = BMVAL(etmidr3, 20, 23);
if (BVAL(etmidr3, 24))
drvdata->trc_error_support = true;
else
drvdata->trc_error_support = false;
if (BVAL(etmidr3, 25))
drvdata->syncpr_fixed = true;
else
drvdata->syncpr_fixed = false;
if (BVAL(etmidr3, 26))
drvdata->stallctrl_support = true;
else
drvdata->stallctrl_support = false;
if (BVAL(etmidr3, 27))
drvdata->stall_pe_support = true;
else
drvdata->stall_pe_support = false;
drvdata->nr_pe = BMVAL(etmidr3, 28, 30);
if (BVAL(etmidr3, 31))
drvdata->no_overflow_support = true;
else
drvdata->no_overflow_support = false;
/* number of resources trace unit supports */
etmidr4 = etm_readl(drvdata, TRCIDR4);
drvdata->nr_addr_cmp = BMVAL(etmidr4, 0, 3);
if (drvdata->nr_addr_cmp > ETM_MAX_ADDR_RANGE_CMP) {
dev_err(drvdata->dev,
"nr_addr_cmp out of bounds %u\n", drvdata->nr_addr_cmp);
drvdata->nr_addr_cmp = ETM_MAX_ADDR_RANGE_CMP;
}
drvdata->nr_data_cmp = BMVAL(etmidr4, 4, 7);
if (drvdata->nr_data_cmp > ETM_MAX_DATA_VAL_CMP) {
dev_err(drvdata->dev,
"nr_data_cmp out of bounds %u\n", drvdata->nr_data_cmp);
drvdata->nr_data_cmp = ETM_MAX_DATA_VAL_CMP;
}
if (BVAL(etmidr4, 8))
drvdata->data_addr_cmp_support = true;
else
drvdata->data_addr_cmp_support = false;
drvdata->nr_pe_cmp = BMVAL(etmidr4, 12, 15);
if (drvdata->nr_pe_cmp > ETM_MAX_PE_CMP) {
dev_err(drvdata->dev,
"nr_pe_cmp out of bounds %u\n", drvdata->nr_pe_cmp);
drvdata->nr_pe_cmp = ETM_MAX_PE_CMP;
}
drvdata->nr_resource = BMVAL(etmidr4, 16, 19);
if (drvdata->nr_resource > ETM_MAX_RES_SEL) {
dev_err(drvdata->dev,
"nr_resource out of bounds %u\n", drvdata->nr_resource);
drvdata->nr_resource = ETM_MAX_RES_SEL;
}
drvdata->nr_ss_cmp = BMVAL(etmidr4, 20, 23);
if (drvdata->nr_ss_cmp > ETM_MAX_SS_CMP) {
dev_err(drvdata->dev,
"nr_ss_cmp out of bounds %u\n", drvdata->nr_ss_cmp);
drvdata->nr_ss_cmp = ETM_MAX_SS_CMP;
}
drvdata->nr_ctxid_cmp = BMVAL(etmidr4, 24, 27);
if (drvdata->nr_ctxid_cmp > ETM_MAX_CTXID_CMP) {
dev_err(drvdata->dev,
"nr_ctxid_cmp out of bounds %u\n",
drvdata->nr_ctxid_cmp);
drvdata->nr_ctxid_cmp = ETM_MAX_CTXID_CMP;
}
drvdata->nr_vmid_cmp = BMVAL(etmidr4, 28, 31);
if (drvdata->nr_vmid_cmp > ETM_MAX_VMID_CMP) {
dev_err(drvdata->dev,
"nr_vmid_cmp out of bounds %u\n", drvdata->nr_vmid_cmp);
drvdata->nr_vmid_cmp = ETM_MAX_VMID_CMP;
}
etmidr5 = etm_readl(drvdata, TRCIDR5);
drvdata->nr_ext_inp = BMVAL(etmidr5, 0, 8);
if (drvdata->nr_ext_inp > ETM_MAX_EXT_INP) {
dev_err(drvdata->dev,
"nr_ext_inp out of bounds %lu\n",
(unsigned long)drvdata->nr_ext_inp);
drvdata->nr_ext_inp = ETM_MAX_EXT_INP;
}
drvdata->nr_ext_inp_sel = BMVAL(etmidr5, 9, 11);
if (drvdata->nr_ext_inp_sel > ETM_MAX_EXT_INP_SEL) {
dev_err(drvdata->dev,
"nr_ext_inp_sel out of bounds %u\n",
drvdata->nr_ext_inp_sel);
drvdata->nr_ext_inp_sel = ETM_MAX_EXT_INP_SEL;
}
drvdata->trcid_size = BMVAL(etmidr5, 16, 21);
if (BVAL(etmidr5, 22))
drvdata->atbtrig_support = true;
else
drvdata->atbtrig_support = false;
if (BVAL(etmidr5, 23))
drvdata->lp_override_support = true;
else
drvdata->lp_override_support = false;
drvdata->nr_seq_state = BMVAL(etmidr5, 25, 27);
if (drvdata->nr_seq_state > ETM_MAX_SEQ_STATES) {
dev_err(drvdata->dev,
"nr_seq_state out of bounds %u\n",
drvdata->nr_seq_state);
drvdata->nr_seq_state = ETM_MAX_SEQ_STATES;
}
drvdata->nr_cntr = BMVAL(etmidr5, 28, 30);
if (drvdata->nr_cntr > ETM_MAX_CNTR) {
dev_err(drvdata->dev,
"nr_cntr out of bounds %u\n", drvdata->nr_cntr);
drvdata->nr_cntr = ETM_MAX_CNTR;
}
if (BVAL(etmidr5, 31))
drvdata->reduced_cntr_support = true;
else
drvdata->reduced_cntr_support = false;
ETM_LOCK(drvdata);
}
static void etm_init_default_data(struct etm_drvdata *drvdata)
{
int i;
drvdata->pe_sel = 0x0;
drvdata->cfg = 0x0;
/* disable all events tracing */
drvdata->event_ctrl0 = 0x0;
drvdata->event_ctrl1 = 0x0;
/* disable stalling */
drvdata->stall_ctrl = 0x0;
/* Set NOOVERFLOW bit */
if (drvdata->no_overflow_support && drvdata->enable_noovrflw)
drvdata->stall_ctrl |= BIT(13);
/* disable timestamp event */
drvdata->ts_ctrl = 0x0;
/* enable trace synchronization */
if (drvdata->syncpr_fixed == false)
drvdata->syncfreq = 0x8;
/*
* enable viewInst to trace everything with start-stop logic in
* started state
*/
drvdata->vinst_ctrl |= BIT(0);
/* set initial state of start-stop logic */
if (drvdata->nr_addr_cmp)
drvdata->vinst_ctrl |= BIT(9);
/* no start-stop filtering for ViewInst */
drvdata->vinst_startstop_ctrl = 0x0;
/* Disable ViewData */
drvdata->vdata_ctrl = 0x0;
/* No address filtering for ViewData */
drvdata->vdata_incex_single = 0x0;
drvdata->vdata_incex_range = 0x0;
/* disable seq events */
for (i = 0; i < drvdata->nr_seq_state-1; i++)
drvdata->seq_ctrl[i] = 0x0;
drvdata->seq_rst = 0x0;
drvdata->seq_state = 0x0;
/* disable external input events */
drvdata->ext_inp = 0x0;
for (i = 0; i < drvdata->nr_cntr; i++) {
drvdata->cntr_rld_val[i] = 0x0;
drvdata->cntr_ctrl[i] = 0x0;
drvdata->cntr_val[i] = 0x0;
}
for (i = 2; i < drvdata->nr_resource * 2; i++)
drvdata->resource_ctrl[i] = 0x0;
for (i = 0; i < drvdata->nr_ss_cmp; i++) {
drvdata->ss_ctrl[i] = 0x0;
drvdata->ss_pe_cmp[i] = 0x0;
}
if (drvdata->nr_addr_cmp >= 1) {
drvdata->addr_val[0] = (unsigned long)_stext;
drvdata->addr_val[1] = (unsigned long)_etext;
drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE;
/* address range filtering for ViewInst */
drvdata->vinst_incex_ctrl = 0x1;
}
for (i = 0; i < drvdata->nr_data_cmp; i++) {
drvdata->data_val[i] = 0;
drvdata->data_mask[i] = 0;
}
for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
drvdata->ctxid_val[i] = 0x0;
drvdata->ctxid_mask0 = 0x0;
drvdata->ctxid_mask1 = 0x0;
for (i = 0; i < drvdata->nr_vmid_cmp; i++)
drvdata->vmid_val[i] = 0x0;
drvdata->vmid_mask0 = 0x0;
drvdata->vmid_mask1 = 0x0;
drvdata->trcid = drvdata->cpu + 1;
}
static int etm_late_init(struct etm_drvdata *drvdata)
{
void *baddr;
struct msm_dump_entry dump_entry;
struct coresight_desc *desc;
struct device *dev = drvdata->dev;
int ret;
if (etm_arch_supported(drvdata->arch) == false)
return -EINVAL;
etm_init_default_data(drvdata);
baddr = devm_kzalloc(dev, drvdata->reg_size, GFP_KERNEL);
if (baddr) {
drvdata->reg_data.addr = virt_to_phys(baddr);
drvdata->reg_data.len = drvdata->reg_size;
dump_entry.id = MSM_DUMP_DATA_ETM_REG + drvdata->cpu;
dump_entry.addr = virt_to_phys(&drvdata->reg_data);
ret = msm_dump_data_register(MSM_DUMP_TABLE_APPS,
&dump_entry);
if (ret) {
devm_kfree(dev, baddr);
dev_err(dev, "ETM REG dump setup failed\n");
}
} else {
dev_err(dev, "ETM REG dump space allocation failed\n");
}
desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
if (!desc) {
ret = -ENOMEM;
goto err0;
}
desc->type = CORESIGHT_DEV_TYPE_SOURCE;
desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC;
desc->ops = &etm_cs_ops;
desc->pdata = drvdata->dev->platform_data;
desc->dev = drvdata->dev;
desc->groups = etm_attr_grps;
desc->owner = THIS_MODULE;
drvdata->csdev = coresight_register(desc);
if (IS_ERR(drvdata->csdev)) {
ret = PTR_ERR(drvdata->csdev);
goto err1;
}
dev_info(dev, "ETMv4 initialized\n");
if (boot_reset)
etm_reset_data(drvdata);
if (boot_enable) {
coresight_enable(drvdata->csdev);
drvdata->boot_enable = true;
}
return 0;
err1:
devm_kfree(dev, desc);
err0:
devm_kfree(dev, baddr);
return ret;
}
static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action,
void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
static bool clk_disable[NR_CPUS];
int ret;
struct platform_device *pdev;
if (!etmdrvdata[cpu])
goto out;
switch (action & (~CPU_TASKS_FROZEN)) {
case CPU_UP_PREPARE:
if (!etmdrvdata[cpu]->os_unlock) {
ret = clk_prepare_enable(etmdrvdata[cpu]->clk);
if (ret) {
dev_err(etmdrvdata[cpu]->dev,
"ETM clk enable during hotplug failed"
"for cpu: %d, ret: %d\n", cpu, ret);
goto err0;
}
clk_disable[cpu] = true;
}
break;
case CPU_STARTING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (!etmdrvdata[cpu]->os_unlock) {
etm_os_unlock(etmdrvdata[cpu]);
etmdrvdata[cpu]->os_unlock = true;
etm_init_arch_data(etmdrvdata[cpu]);
}
if (etmdrvdata[cpu]->enable)
__etm_enable(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
case CPU_ONLINE:
mutex_lock(&etmdrvdata[cpu]->mutex);
if (!etmdrvdata[cpu]->init) {
ret = etm_late_init(etmdrvdata[cpu]);
if (ret) {
dev_err(etmdrvdata[cpu]->dev,
"ETM init failed. Cpu: %d, ret: %d\n",
cpu, ret);
mutex_unlock(&etmdrvdata[cpu]->mutex);
goto err1;
}
etmdrvdata[cpu]->init = true;
}
mutex_unlock(&etmdrvdata[cpu]->mutex);
if (clk_disable[cpu]) {
clk_disable_unprepare(etmdrvdata[cpu]->clk);
clk_disable[cpu] = false;
}
if (etmdrvdata[cpu]->boot_enable &&
!etmdrvdata[cpu]->sticky_enable)
coresight_enable(etmdrvdata[cpu]->csdev);
break;
case CPU_UP_CANCELED:
if (clk_disable[cpu]) {
clk_disable_unprepare(etmdrvdata[cpu]->clk);
clk_disable[cpu] = false;
}
break;
}
out:
return NOTIFY_OK;
err1:
if (--count == 0) {
unregister_hotcpu_notifier(&etm_cpu_notifier);
unregister_hotcpu_notifier(&etm_cpu_dying_notifier);
}
if (clk_disable[cpu]) {
clk_disable_unprepare(etmdrvdata[cpu]->clk);
clk_disable[cpu] = false;
}
devm_clk_put(etmdrvdata[cpu]->dev, etmdrvdata[cpu]->clk);
wakeup_source_trash(&etmdrvdata[cpu]->ws);
devm_iounmap(etmdrvdata[cpu]->dev, etmdrvdata[cpu]->base);
pdev = to_platform_device(etmdrvdata[cpu]->dev);
platform_set_drvdata(pdev, NULL);
devm_kfree(etmdrvdata[cpu]->dev, etmdrvdata[cpu]);
etmdrvdata[cpu] = NULL;
err0:
return notifier_from_errno(ret);
}
static struct notifier_block etm_cpu_notifier = {
.notifier_call = etm_cpu_callback,
};
static int etm_cpu_dying_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
if (!etmdrvdata[cpu])
goto out;
switch (action & (~CPU_TASKS_FROZEN)) {
case CPU_DYING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (etmdrvdata[cpu]->enable)
__etm_disable(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
}
out:
return NOTIFY_OK;
}
static struct notifier_block etm_cpu_dying_notifier = {
.notifier_call = etm_cpu_dying_callback,
.priority = 1,
};
static int etm_parse_cgc_data(struct platform_device *pdev,
struct etm_drvdata *drvdata)
{
struct device_node *cgc_node = NULL;
struct etm_cgc_data *cgc_data = NULL;
int cluster, val, regs[2], ret, start, len;
cgc_node = of_parse_phandle(pdev->dev.of_node,
"qcom,cpuss-debug-cgc", 0);
if (!cgc_node)
return 0;
ret = of_property_read_u32(cgc_node, "cluster", &cluster);
if (ret || cluster >= MAX_CLUSTER_NUM)
return -EINVAL;
ret = of_property_read_u32_array(cgc_node, "reg",
(u32 *)&regs, 2);
if (ret)
return ret;
start = regs[0];
len = regs[1];
if (!etm_cgc_data[cluster]) {
cgc_data = devm_kzalloc(&pdev->dev, sizeof(*cgc_data),
GFP_KERNEL);
if (!cgc_data)
return -ENOMEM;
cgc_data->phy_addr = (uint32_t)start;
cgc_data->len = (uint32_t)len;
cgc_data->base = devm_ioremap(&pdev->dev, start, len);
if (!cgc_data->base)
return -ENOMEM;
val = __raw_readl(cgc_data->base);
/* disable ATB and NTS clock gating */
val |= (ATB_CGC_OVERRIDE | NTS_CGC_OVERRIDE);
__raw_writel(val, cgc_data->base);
etm_cgc_data[cluster] = cgc_data;
} else {
if (etm_cgc_data[cluster]->phy_addr != start
|| etm_cgc_data[cluster]->len != len) {
dev_err(&pdev->dev, "duplicated cluster %d setting\n",
cluster);
etm_cgc_data[cluster]->base = 0x0;
return -EINVAL;
}
}
cpumask_set_cpu(drvdata->cpu, &etm_cgc_data[cluster]->control_mask);
drvdata->cgc_data = etm_cgc_data[cluster];
return 0;
}
static int etm_probe(struct platform_device *pdev)
{
int ret, cpu;
struct device *dev = &pdev->dev;
struct coresight_platform_data *pdata;
struct etm_drvdata *drvdata;
struct resource *res;
struct device_node *cpu_node;
if (coresight_fuse_access_disabled() ||
coresight_fuse_apps_access_disabled())
return -EPERM;
pdata = of_get_coresight_platform_data(dev, pdev->dev.of_node);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
pdev->dev.platform_data = pdata;
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
drvdata->dev = &pdev->dev;
platform_set_drvdata(pdev, drvdata);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "etm-base");
if (!res)
return -ENODEV;
drvdata->reg_size = resource_size(res);
drvdata->base = devm_ioremap(dev, res->start, resource_size(res));
if (!drvdata->base)
return -ENOMEM;
spin_lock_init(&drvdata->spinlock);
mutex_init(&drvdata->mutex);
wakeup_source_init(&drvdata->ws, "coresight-etm");
drvdata->clk = devm_clk_get(dev, "core_clk");
if (IS_ERR(drvdata->clk)) {
ret = PTR_ERR(drvdata->clk);
goto err0;
}
drvdata->enable_noovrflw = of_property_read_bool(pdev->dev.of_node,
"qcom,noovrflw-enable");
drvdata->cpu = -1;
cpu_node = of_parse_phandle(pdev->dev.of_node, "coresight-etm-cpu", 0);
if (!cpu_node) {
dev_err(drvdata->dev, "ETM cpu handle not specified\n");
ret = -ENODEV;
goto err0;
}
for_each_possible_cpu(cpu) {
if (cpu_node == of_get_cpu_node(cpu, NULL)) {
drvdata->cpu = cpu;
break;
}
}
if (drvdata->cpu == -1) {
dev_err(drvdata->dev, "invalid ETM cpu handle\n");
ret = -EINVAL;
goto err0;
}
/* parse clock gating control DT and disable clock gating */
etm_parse_cgc_data(pdev, drvdata);
ret = clk_set_rate(drvdata->clk, CORESIGHT_CLK_RATE_TRACE);
if (ret)
goto err0;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
goto err0;
if (count++ == 0) {
register_hotcpu_notifier(&etm_cpu_notifier);
register_hotcpu_notifier(&etm_cpu_dying_notifier);
}
get_online_cpus();
/*
* This is safe wrt CPU_UP_PREPARE and CPU_STARTING hotplug callbacks
* on the non-boot CPUs that may enable the clock and perform
* etm_os_unlock since they occur before the cpu online mask is updated
* for the cpu which is checked by this smp call.
*/
if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata,
1)) {
drvdata->os_unlock = true;
ret = smp_call_function_single(drvdata->cpu, etm_init_arch_data,
drvdata, 1);
if (ret) {
put_online_cpus();
clk_disable_unprepare(drvdata->clk);
goto err1;
}
}
etmdrvdata[drvdata->cpu] = drvdata;
put_online_cpus();
clk_disable_unprepare(drvdata->clk);
mutex_lock(&drvdata->mutex);
if (drvdata->os_unlock && !drvdata->init) {
ret = etm_late_init(drvdata);
if (ret) {
mutex_unlock(&drvdata->mutex);
goto err1;
}
drvdata->init = true;
}
mutex_unlock(&drvdata->mutex);
return 0;
err1:
if (--count == 0) {
unregister_hotcpu_notifier(&etm_cpu_notifier);
unregister_hotcpu_notifier(&etm_cpu_dying_notifier);
}
err0:
wakeup_source_trash(&drvdata->ws);
return ret;
}
static int etm_remove(struct platform_device *pdev)
{
struct etm_drvdata *drvdata = platform_get_drvdata(pdev);
if (drvdata) {
coresight_unregister(drvdata->csdev);
if (--count == 0) {
unregister_hotcpu_notifier(&etm_cpu_notifier);
unregister_hotcpu_notifier(&etm_cpu_dying_notifier);
}
wakeup_source_trash(&drvdata->ws);
}
return 0;
}
static struct of_device_id etm_match[] = {
{.compatible = "arm,coresight-etmv4"},
{}
};
static struct platform_driver etm_driver = {
.probe = etm_probe,
.remove = etm_remove,
.driver = {
.name = "coresight-etmv4",
.owner = THIS_MODULE,
.of_match_table = etm_match,
},
};
int __init etm_init(void)
{
return platform_driver_register(&etm_driver);
}
module_init(etm_init);
void __exit etm_exit(void)
{
platform_driver_unregister(&etm_driver);
}
module_exit(etm_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CoreSight Embedded Trace Macrocell v4 driver");