M7350/kernel/drivers/clk/msm/gdsc.c
2024-09-09 08:57:42 +00:00

657 lines
17 KiB
C

/*
* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/clk/msm-clk.h>
#define PWR_ON_MASK BIT(31)
#define EN_REST_WAIT_MASK (0xF << 20)
#define EN_FEW_WAIT_MASK (0xF << 16)
#define CLK_DIS_WAIT_MASK (0xF << 12)
#define SW_OVERRIDE_MASK BIT(2)
#define HW_CONTROL_MASK BIT(1)
#define SW_COLLAPSE_MASK BIT(0)
#define GMEM_CLAMP_IO_MASK BIT(0)
#define BCR_BLK_ARES_BIT BIT(0)
/* Wait 2^n CXO cycles between all states. Here, n=2 (4 cycles). */
#define EN_REST_WAIT_VAL (0x2 << 20)
#define EN_FEW_WAIT_VAL (0x8 << 16)
#define CLK_DIS_WAIT_VAL (0x2 << 12)
#define TIMEOUT_US 100
struct gdsc {
struct regulator_dev *rdev;
struct regulator_desc rdesc;
void __iomem *gdscr;
struct clk **clocks;
int clock_count;
bool toggle_mem;
bool toggle_periph;
bool toggle_logic;
bool resets_asserted;
bool root_en;
bool force_root_en;
int root_clk_idx;
bool no_status_check_on_disable;
bool is_gdsc_enabled;
bool allow_clear;
void __iomem *domain_addr;
void __iomem *hw_ctrl_addr;
void __iomem *sw_reset_addr;
u32 gds_timeout;
};
enum gdscr_status {
ENABLED,
DISABLED,
};
static DEFINE_MUTEX(gdsc_seq_lock);
void gdsc_allow_clear_retention(struct regulator *regulator)
{
struct gdsc *sc = regulator_get_drvdata(regulator);
if (sc)
sc->allow_clear = true;
}
static int poll_gdsc_status(struct gdsc *sc, enum gdscr_status status)
{
void __iomem *gdscr;
int count = sc->gds_timeout;
u32 val;
if (sc->hw_ctrl_addr)
gdscr = sc->hw_ctrl_addr;
else
gdscr = sc->gdscr;
for (; count > 0; count--) {
val = readl_relaxed(gdscr);
val &= PWR_ON_MASK;
switch (status) {
case ENABLED:
if (val)
return 0;
break;
case DISABLED:
if (!val)
return 0;
break;
}
/*
* There is no guarantee about the delay needed for the enable
* bit in the GDSCR to be set or reset after the GDSC state
* changes. Hence, keep on checking for a reasonable number
* of times until the bit is set with the least possible delay
* between succeessive tries.
*/
udelay(1);
}
return -ETIMEDOUT;
}
static int gdsc_is_enabled(struct regulator_dev *rdev)
{
struct gdsc *sc = rdev_get_drvdata(rdev);
uint32_t regval;
if (!sc->toggle_logic)
return !sc->resets_asserted;
regval = readl_relaxed(sc->gdscr);
if (regval & PWR_ON_MASK) {
/*
* The GDSC might be turned on due to TZ/HYP vote on the
* votable GDS registers. Check the SW_COLLAPSE_MASK to
* determine if HLOS has voted for it.
*/
if (!(regval & SW_COLLAPSE_MASK))
return true;
}
return false;
}
static int gdsc_enable(struct regulator_dev *rdev)
{
struct gdsc *sc = rdev_get_drvdata(rdev);
uint32_t regval, hw_ctrl_regval = 0x0;
int i, ret = 0;
mutex_lock(&gdsc_seq_lock);
if (sc->root_en || sc->force_root_en)
clk_prepare_enable(sc->clocks[sc->root_clk_idx]);
if (sc->toggle_logic) {
if (sc->sw_reset_addr) {
regval = readl_relaxed(sc->sw_reset_addr);
regval |= BCR_BLK_ARES_BIT;
writel_relaxed(regval, sc->sw_reset_addr);
/*
* BLK_ARES should be kept asserted for 1us before
* being de-asserted.
*/
wmb();
udelay(1);
regval &= ~BCR_BLK_ARES_BIT;
writel_relaxed(regval, sc->sw_reset_addr);
/* Make sure de-assert goes through before continuing */
wmb();
}
if (sc->domain_addr) {
regval = readl_relaxed(sc->domain_addr);
regval &= ~GMEM_CLAMP_IO_MASK;
writel_relaxed(regval, sc->domain_addr);
/*
* Make sure CLAMP_IO is de-asserted before continuing.
*/
wmb();
}
regval = readl_relaxed(sc->gdscr);
if (regval & HW_CONTROL_MASK) {
dev_warn(&rdev->dev, "Invalid enable while %s is under HW control\n",
sc->rdesc.name);
mutex_unlock(&gdsc_seq_lock);
return -EBUSY;
}
regval &= ~SW_COLLAPSE_MASK;
writel_relaxed(regval, sc->gdscr);
/* Wait for 8 XO cycles before polling the status bit. */
mb();
udelay(1);
ret = poll_gdsc_status(sc, ENABLED);
if (ret) {
regval = readl_relaxed(sc->gdscr);
if (sc->hw_ctrl_addr) {
hw_ctrl_regval =
readl_relaxed(sc->hw_ctrl_addr);
dev_warn(&rdev->dev, "%s state (after %d us timeout): 0x%x, GDS_HW_CTRL: 0x%x. Re-polling.\n",
sc->rdesc.name, sc->gds_timeout,
regval, hw_ctrl_regval);
ret = poll_gdsc_status(sc, ENABLED);
if (ret) {
dev_err(&rdev->dev, "%s final state (after additional %d us timeout): 0x%x, GDS_HW_CTRL: 0x%x\n",
sc->rdesc.name, sc->gds_timeout,
readl_relaxed(sc->gdscr),
readl_relaxed(sc->hw_ctrl_addr));
mutex_unlock(&gdsc_seq_lock);
return ret;
}
} else {
dev_err(&rdev->dev, "%s enable timed out: 0x%x\n",
sc->rdesc.name,
regval);
udelay(sc->gds_timeout);
regval = readl_relaxed(sc->gdscr);
dev_err(&rdev->dev, "%s final state: 0x%x (%d us after timeout)\n",
sc->rdesc.name, regval,
sc->gds_timeout);
mutex_unlock(&gdsc_seq_lock);
return ret;
}
}
} else {
for (i = 0; i < sc->clock_count; i++)
if (likely(i != sc->root_clk_idx))
clk_reset(sc->clocks[i], CLK_RESET_DEASSERT);
sc->resets_asserted = false;
}
for (i = 0; i < sc->clock_count; i++) {
if (unlikely(i == sc->root_clk_idx))
continue;
if (sc->toggle_mem)
clk_set_flags(sc->clocks[i], CLKFLAG_RETAIN_MEM);
if (sc->toggle_periph)
clk_set_flags(sc->clocks[i], CLKFLAG_RETAIN_PERIPH);
}
/*
* If clocks to this power domain were already on, they will take an
* additional 4 clock cycles to re-enable after the rail is enabled.
* Delay to account for this. A delay is also needed to ensure clocks
* are not enabled within 400ns of enabling power to the memories.
*/
udelay(1);
/* Delay to account for staggered memory powerup. */
udelay(1);
if (sc->force_root_en)
clk_disable_unprepare(sc->clocks[sc->root_clk_idx]);
sc->is_gdsc_enabled = true;
mutex_unlock(&gdsc_seq_lock);
return ret;
}
static int gdsc_disable(struct regulator_dev *rdev)
{
struct gdsc *sc = rdev_get_drvdata(rdev);
uint32_t regval;
int i, ret = 0;
mutex_lock(&gdsc_seq_lock);
if (sc->force_root_en)
clk_prepare_enable(sc->clocks[sc->root_clk_idx]);
for (i = sc->clock_count-1; i >= 0; i--) {
if (unlikely(i == sc->root_clk_idx))
continue;
if (sc->toggle_mem && sc->allow_clear)
clk_set_flags(sc->clocks[i], CLKFLAG_NORETAIN_MEM);
if (sc->toggle_periph && sc->allow_clear)
clk_set_flags(sc->clocks[i], CLKFLAG_NORETAIN_PERIPH);
}
/* Delay to account for staggered memory powerdown. */
udelay(1);
if (sc->toggle_logic) {
regval = readl_relaxed(sc->gdscr);
if (regval & HW_CONTROL_MASK) {
dev_warn(&rdev->dev, "Invalid disable while %s is under HW control\n",
sc->rdesc.name);
mutex_unlock(&gdsc_seq_lock);
return -EBUSY;
}
regval |= SW_COLLAPSE_MASK;
writel_relaxed(regval, sc->gdscr);
/* Wait for 8 XO cycles before polling the status bit. */
mb();
udelay(1);
if (sc->no_status_check_on_disable) {
/*
* Add a short delay here to ensure that gdsc_enable
* right after it was disabled does not put it in a
* wierd state.
*/
udelay(TIMEOUT_US);
} else {
ret = poll_gdsc_status(sc, DISABLED);
if (ret)
dev_err(&rdev->dev, "%s disable timed out: 0x%x\n",
sc->rdesc.name, regval);
}
if (sc->domain_addr) {
regval = readl_relaxed(sc->domain_addr);
regval |= GMEM_CLAMP_IO_MASK;
writel_relaxed(regval, sc->domain_addr);
}
} else {
for (i = sc->clock_count-1; i >= 0; i--)
if (likely(i != sc->root_clk_idx))
clk_reset(sc->clocks[i], CLK_RESET_ASSERT);
sc->resets_asserted = true;
}
/*
* Check if gdsc_enable was called for this GDSC. If not, the root
* clock will not have been enabled prior to this.
*/
if ((sc->is_gdsc_enabled && sc->root_en) || sc->force_root_en)
clk_disable_unprepare(sc->clocks[sc->root_clk_idx]);
sc->is_gdsc_enabled = false;
mutex_unlock(&gdsc_seq_lock);
return ret;
}
static unsigned int gdsc_get_mode(struct regulator_dev *rdev)
{
struct gdsc *sc = rdev_get_drvdata(rdev);
uint32_t regval;
mutex_lock(&gdsc_seq_lock);
regval = readl_relaxed(sc->gdscr);
mutex_unlock(&gdsc_seq_lock);
if (regval & HW_CONTROL_MASK)
return REGULATOR_MODE_FAST;
return REGULATOR_MODE_NORMAL;
}
static int gdsc_set_mode(struct regulator_dev *rdev, unsigned int mode)
{
struct gdsc *sc = rdev_get_drvdata(rdev);
uint32_t regval;
int ret = 0;
mutex_lock(&gdsc_seq_lock);
regval = readl_relaxed(sc->gdscr);
/*
* HW control can only be enable/disabled when SW_COLLAPSE
* indicates on.
*/
if (regval & SW_COLLAPSE_MASK) {
dev_err(&rdev->dev, "can't enable hw collapse now\n");
mutex_unlock(&gdsc_seq_lock);
return -EBUSY;
}
switch (mode) {
case REGULATOR_MODE_FAST:
/* Turn on HW trigger mode */
regval |= HW_CONTROL_MASK;
writel_relaxed(regval, sc->gdscr);
/*
* There may be a race with internal HW trigger signal,
* that will result in GDSC going through a power down and
* up cycle. In case HW trigger signal is controlled by
* firmware that also poll same status bits as we do, FW
* might read an 'on' status before the GDSC can finish
* power cycle. We wait 1us before returning to ensure
* FW can't immediately poll the status bit.
*/
mb();
udelay(1);
break;
case REGULATOR_MODE_NORMAL:
/* Turn off HW trigger mode */
regval &= ~HW_CONTROL_MASK;
writel_relaxed(regval, sc->gdscr);
/*
* There may be a race with internal HW trigger signal,
* that will result in GDSC going through a power down and
* up cycle. If we poll too early, status bit will
* indicate 'on' before the GDSC can finish the power cycle.
* Account for this case by waiting 1us before polling.
*/
mb();
udelay(1);
ret = poll_gdsc_status(sc, ENABLED);
if (ret)
dev_err(&rdev->dev, "%s set_mode timed out: 0x%x\n",
sc->rdesc.name, regval);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&gdsc_seq_lock);
return ret;
}
static struct regulator_ops gdsc_ops = {
.is_enabled = gdsc_is_enabled,
.enable = gdsc_enable,
.disable = gdsc_disable,
.set_mode = gdsc_set_mode,
.get_mode = gdsc_get_mode,
};
static int gdsc_probe(struct platform_device *pdev)
{
static atomic_t gdsc_count = ATOMIC_INIT(-1);
struct regulator_config reg_config = {};
struct regulator_init_data *init_data;
struct resource *res;
struct gdsc *sc;
uint32_t regval, clk_dis_wait_val = CLK_DIS_WAIT_VAL;
bool retain_mem, retain_periph, support_hw_trigger;
int i, ret;
u32 timeout;
sc = devm_kzalloc(&pdev->dev, sizeof(struct gdsc), GFP_KERNEL);
if (sc == NULL)
return -ENOMEM;
init_data = of_get_regulator_init_data(&pdev->dev, pdev->dev.of_node);
if (init_data == NULL)
return -ENOMEM;
if (of_get_property(pdev->dev.of_node, "parent-supply", NULL))
init_data->supply_regulator = "parent";
ret = of_property_read_string(pdev->dev.of_node, "regulator-name",
&sc->rdesc.name);
if (ret)
return ret;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL)
return -EINVAL;
sc->gdscr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (sc->gdscr == NULL)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"domain_addr");
if (res) {
sc->domain_addr = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (sc->domain_addr == NULL)
return -ENOMEM;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"sw_reset");
if (res) {
sc->sw_reset_addr = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (sc->sw_reset_addr == NULL)
return -ENOMEM;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"hw_ctrl_addr");
if (res) {
sc->hw_ctrl_addr = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (sc->hw_ctrl_addr == NULL)
return -ENOMEM;
}
sc->gds_timeout = TIMEOUT_US;
ret = of_property_read_u32(pdev->dev.of_node, "qcom,gds-timeout",
&timeout);
if (!ret)
sc->gds_timeout = timeout;
sc->clock_count = of_property_count_strings(pdev->dev.of_node,
"clock-names");
if (sc->clock_count == -EINVAL) {
sc->clock_count = 0;
} else if (IS_ERR_VALUE(sc->clock_count)) {
dev_err(&pdev->dev, "Failed to get clock names\n");
return -EINVAL;
}
sc->clocks = devm_kzalloc(&pdev->dev,
sizeof(struct clk *) * sc->clock_count, GFP_KERNEL);
if (!sc->clocks)
return -ENOMEM;
sc->root_clk_idx = -1;
sc->root_en = of_property_read_bool(pdev->dev.of_node,
"qcom,enable-root-clk");
sc->force_root_en = of_property_read_bool(pdev->dev.of_node,
"qcom,force-enable-root-clk");
for (i = 0; i < sc->clock_count; i++) {
const char *clock_name;
of_property_read_string_index(pdev->dev.of_node, "clock-names",
i, &clock_name);
sc->clocks[i] = devm_clk_get(&pdev->dev, clock_name);
if (IS_ERR(sc->clocks[i])) {
int rc = PTR_ERR(sc->clocks[i]);
if (rc != -EPROBE_DEFER)
dev_err(&pdev->dev, "Failed to get %s\n",
clock_name);
return rc;
}
if (!strcmp(clock_name, "core_root_clk"))
sc->root_clk_idx = i;
}
if ((sc->root_en || sc->force_root_en) && (sc->root_clk_idx == -1)) {
dev_err(&pdev->dev, "Failed to get root clock name\n");
return -EINVAL;
}
sc->rdesc.id = atomic_inc_return(&gdsc_count);
sc->rdesc.ops = &gdsc_ops;
sc->rdesc.type = REGULATOR_VOLTAGE;
sc->rdesc.owner = THIS_MODULE;
platform_set_drvdata(pdev, sc);
/*
* Disable HW trigger: collapse/restore occur based on registers writes.
* Disable SW override: Use hardware state-machine for sequencing.
*/
regval = readl_relaxed(sc->gdscr);
regval &= ~(HW_CONTROL_MASK | SW_OVERRIDE_MASK);
if (!of_property_read_u32(pdev->dev.of_node, "qcom,clk-dis-wait-val",
&clk_dis_wait_val))
clk_dis_wait_val = clk_dis_wait_val << 12;
/* Configure wait time between states. */
regval &= ~(EN_REST_WAIT_MASK | EN_FEW_WAIT_MASK | CLK_DIS_WAIT_MASK);
regval |= EN_REST_WAIT_VAL | EN_FEW_WAIT_VAL | clk_dis_wait_val;
writel_relaxed(regval, sc->gdscr);
sc->no_status_check_on_disable =
of_property_read_bool(pdev->dev.of_node,
"qcom,no-status-check-on-disable");
retain_mem = of_property_read_bool(pdev->dev.of_node,
"qcom,retain-mem");
sc->toggle_mem = !retain_mem;
retain_periph = of_property_read_bool(pdev->dev.of_node,
"qcom,retain-periph");
sc->toggle_periph = !retain_periph;
sc->toggle_logic = !of_property_read_bool(pdev->dev.of_node,
"qcom,skip-logic-collapse");
support_hw_trigger = of_property_read_bool(pdev->dev.of_node,
"qcom,support-hw-trigger");
if (support_hw_trigger) {
init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_MODE;
init_data->constraints.valid_modes_mask |=
REGULATOR_MODE_NORMAL | REGULATOR_MODE_FAST;
}
if (!sc->toggle_logic) {
regval &= ~SW_COLLAPSE_MASK;
writel_relaxed(regval, sc->gdscr);
ret = poll_gdsc_status(sc, ENABLED);
if (ret) {
dev_err(&pdev->dev, "%s enable timed out: 0x%x\n",
sc->rdesc.name, regval);
return ret;
}
}
sc->allow_clear = of_property_read_bool(pdev->dev.of_node,
"qcom,disallow-clear");
sc->allow_clear = !sc->allow_clear;
for (i = 0; i < sc->clock_count; i++) {
if (retain_mem || (regval & PWR_ON_MASK) || !sc->allow_clear)
clk_set_flags(sc->clocks[i], CLKFLAG_RETAIN_MEM);
else
clk_set_flags(sc->clocks[i], CLKFLAG_NORETAIN_MEM);
if (retain_periph || (regval & PWR_ON_MASK) || !sc->allow_clear)
clk_set_flags(sc->clocks[i], CLKFLAG_RETAIN_PERIPH);
else
clk_set_flags(sc->clocks[i], CLKFLAG_NORETAIN_PERIPH);
}
reg_config.dev = &pdev->dev;
reg_config.init_data = init_data;
reg_config.driver_data = sc;
reg_config.of_node = pdev->dev.of_node;
sc->rdev = regulator_register(&sc->rdesc, &reg_config);
if (IS_ERR(sc->rdev)) {
dev_err(&pdev->dev, "regulator_register(\"%s\") failed.\n",
sc->rdesc.name);
return PTR_ERR(sc->rdev);
}
return 0;
}
static int gdsc_remove(struct platform_device *pdev)
{
struct gdsc *sc = platform_get_drvdata(pdev);
regulator_unregister(sc->rdev);
return 0;
}
static struct of_device_id gdsc_match_table[] = {
{ .compatible = "qcom,gdsc" },
{}
};
static struct platform_driver gdsc_driver = {
.probe = gdsc_probe,
.remove = gdsc_remove,
.driver = {
.name = "gdsc",
.of_match_table = gdsc_match_table,
.owner = THIS_MODULE,
},
};
static int __init gdsc_init(void)
{
return platform_driver_register(&gdsc_driver);
}
subsys_initcall(gdsc_init);
static void __exit gdsc_exit(void)
{
platform_driver_unregister(&gdsc_driver);
}
module_exit(gdsc_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM8974 GDSC power rail regulator driver");