972 lines
24 KiB
C
972 lines
24 KiB
C
/*
|
|
* Based on arch/arm/mm/mmu.c
|
|
*
|
|
* Copyright (C) 1995-2005 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/io.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/cma.h>
|
|
#include <linux/stop_machine.h>
|
|
|
|
#include <asm/cputype.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/sizes.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/memblock.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include "mm.h"
|
|
|
|
/*
|
|
* Empty_zero_page is a special page that is used for zero-initialized data
|
|
* and COW.
|
|
*/
|
|
struct page *empty_zero_page;
|
|
EXPORT_SYMBOL(empty_zero_page);
|
|
|
|
struct cachepolicy {
|
|
const char policy[16];
|
|
u64 mair;
|
|
u64 tcr;
|
|
};
|
|
|
|
static struct cachepolicy cache_policies[] __initdata = {
|
|
{
|
|
.policy = "uncached",
|
|
.mair = 0x44, /* inner, outer non-cacheable */
|
|
.tcr = TCR_IRGN_NC | TCR_ORGN_NC,
|
|
}, {
|
|
.policy = "writethrough",
|
|
.mair = 0xaa, /* inner, outer write-through, read-allocate */
|
|
.tcr = TCR_IRGN_WT | TCR_ORGN_WT,
|
|
}, {
|
|
.policy = "writeback",
|
|
.mair = 0xee, /* inner, outer write-back, read-allocate */
|
|
.tcr = TCR_IRGN_WBnWA | TCR_ORGN_WBnWA,
|
|
}
|
|
};
|
|
|
|
static bool __init dma_overlap(phys_addr_t start, phys_addr_t end);
|
|
|
|
#ifdef CONFIG_STRICT_MEMORY_RWX
|
|
static struct {
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
pmd_t saved_pmd;
|
|
pte_t saved_pte;
|
|
bool made_writeable;
|
|
} mem_unprotect;
|
|
|
|
static DEFINE_SPINLOCK(mem_text_writeable_lock);
|
|
|
|
void mem_text_writeable_spinlock(unsigned long *flags)
|
|
{
|
|
spin_lock_irqsave(&mem_text_writeable_lock, *flags);
|
|
}
|
|
|
|
void mem_text_writeable_spinunlock(unsigned long *flags)
|
|
{
|
|
spin_unlock_irqrestore(&mem_text_writeable_lock, *flags);
|
|
}
|
|
|
|
/*
|
|
* mem_text_address_writeable() and mem_text_address_restore()
|
|
* should be called as a pair. They are used to make the
|
|
* specified address in the kernel text section temporarily writeable
|
|
* when it has been marked read-only by STRICT_MEMORY_RWX.
|
|
* Used by kprobes and other debugging tools to set breakpoints etc.
|
|
* mem_text_address_writeable() is invoked before writing.
|
|
* After the write, mem_text_address_restore() must be called
|
|
* to restore the original state.
|
|
* This is only effective when used on the kernel text section
|
|
* marked as PMD_SECT_RDONLY by get_pmd_prot_sect_kernel()
|
|
*
|
|
* They must each be called with mem_text_writeable_lock locked
|
|
* by the caller, with no unlocking between the calls.
|
|
* The caller should release mem_text_writeable_lock immediately
|
|
* after the call to mem_text_address_restore().
|
|
* Only the write and associated cache operations should be performed
|
|
* between the calls.
|
|
*/
|
|
|
|
/* this function must be called with mem_text_writeable_lock held */
|
|
void mem_text_address_writeable(u64 addr)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
pud_t *pud = pud_offset(pgd, addr);
|
|
u64 addr_aligned;
|
|
|
|
mem_unprotect.made_writeable = 0;
|
|
|
|
if ((addr < (u64)_stext) || (addr >= (u64)__start_rodata))
|
|
return;
|
|
|
|
mem_unprotect.pmd = pmd_offset(pud, addr);
|
|
addr_aligned = addr & PAGE_MASK;
|
|
mem_unprotect.saved_pmd = *mem_unprotect.pmd;
|
|
if ((mem_unprotect.saved_pmd & PMD_TYPE_MASK) == PMD_TYPE_SECT) {
|
|
set_pmd(mem_unprotect.pmd,
|
|
__pmd(__pa(addr_aligned) | prot_sect_kernel));
|
|
} else {
|
|
mem_unprotect.pte = pte_offset_kernel(mem_unprotect.pmd, addr);
|
|
mem_unprotect.saved_pte = *mem_unprotect.pte;
|
|
set_pte(mem_unprotect.pte, pfn_pte(__pa(addr) >> PAGE_SHIFT,
|
|
PAGE_KERNEL_EXEC));
|
|
}
|
|
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
|
|
|
|
mem_unprotect.made_writeable = 1;
|
|
}
|
|
|
|
/* this function must be called with mem_text_writeable_lock held */
|
|
void mem_text_address_restore(u64 addr)
|
|
{
|
|
if (mem_unprotect.made_writeable) {
|
|
if ((mem_unprotect.saved_pmd & PMD_TYPE_MASK) == PMD_TYPE_SECT)
|
|
*mem_unprotect.pmd = mem_unprotect.saved_pmd;
|
|
else
|
|
*mem_unprotect.pte = mem_unprotect.saved_pte;
|
|
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
|
|
}
|
|
}
|
|
#else
|
|
static inline void mem_text_writeable_spinlock(unsigned long *flags) {};
|
|
static inline void mem_text_address_writeable(u64 addr) {};
|
|
static inline void mem_text_address_restore(u64 addr) {};
|
|
static inline void mem_text_writeable_spinunlock(unsigned long *flags) {};
|
|
#endif
|
|
|
|
void mem_text_write_kernel_word(u32 *addr, u32 word)
|
|
{
|
|
unsigned long flags;
|
|
|
|
mem_text_writeable_spinlock(&flags);
|
|
mem_text_address_writeable((u64)addr);
|
|
*addr = word;
|
|
flush_icache_range((unsigned long)addr,
|
|
((unsigned long)addr + sizeof(long)));
|
|
mem_text_address_restore((u64)addr);
|
|
mem_text_writeable_spinunlock(&flags);
|
|
}
|
|
EXPORT_SYMBOL(mem_text_write_kernel_word);
|
|
|
|
/*
|
|
* These are useful for identifying cache coherency problems by allowing the
|
|
* cache or the cache and writebuffer to be turned off. It changes the Normal
|
|
* memory caching attributes in the MAIR_EL1 register.
|
|
*/
|
|
static int __init early_cachepolicy(char *p)
|
|
{
|
|
int i;
|
|
u64 tmp;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
|
|
int len = strlen(cache_policies[i].policy);
|
|
|
|
if (memcmp(p, cache_policies[i].policy, len) == 0)
|
|
break;
|
|
}
|
|
if (i == ARRAY_SIZE(cache_policies)) {
|
|
pr_err("ERROR: unknown or unsupported cache policy: %s\n", p);
|
|
return 0;
|
|
}
|
|
|
|
flush_cache_all();
|
|
|
|
/*
|
|
* Modify MT_NORMAL attributes in MAIR_EL1.
|
|
*/
|
|
asm volatile(
|
|
" mrs %0, mair_el1\n"
|
|
" bfi %0, %1, %2, #8\n"
|
|
" msr mair_el1, %0\n"
|
|
" isb\n"
|
|
: "=&r" (tmp)
|
|
: "r" (cache_policies[i].mair), "i" (MT_NORMAL * 8));
|
|
|
|
/*
|
|
* Modify TCR PTW cacheability attributes.
|
|
*/
|
|
asm volatile(
|
|
" mrs %0, tcr_el1\n"
|
|
" bic %0, %0, %2\n"
|
|
" orr %0, %0, %1\n"
|
|
" msr tcr_el1, %0\n"
|
|
" isb\n"
|
|
: "=&r" (tmp)
|
|
: "r" (cache_policies[i].tcr), "r" (TCR_IRGN_MASK | TCR_ORGN_MASK));
|
|
|
|
flush_cache_all();
|
|
|
|
return 0;
|
|
}
|
|
early_param("cachepolicy", early_cachepolicy);
|
|
|
|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot)
|
|
{
|
|
if (!pfn_valid(pfn))
|
|
return pgprot_noncached(vma_prot);
|
|
else if (file->f_flags & O_SYNC)
|
|
return pgprot_writecombine(vma_prot);
|
|
return vma_prot;
|
|
}
|
|
EXPORT_SYMBOL(phys_mem_access_prot);
|
|
|
|
static void __init *early_alloc(unsigned long sz)
|
|
{
|
|
void *ptr = __va(memblock_alloc(sz, sz));
|
|
BUG_ON(!ptr);
|
|
memset(ptr, 0, sz);
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* remap a PMD into pages
|
|
*/
|
|
static void split_pmd(pmd_t *pmd, pte_t *pte)
|
|
{
|
|
unsigned long pfn = pmd_pfn(*pmd);
|
|
int i = 0;
|
|
|
|
do {
|
|
/*
|
|
* Need to have the least restrictive permissions available
|
|
* permissions will be fixed up later
|
|
*/
|
|
set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC));
|
|
pfn++;
|
|
} while (pte++, i++, i < PTRS_PER_PTE);
|
|
}
|
|
|
|
static void alloc_init_pte(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, unsigned long pfn,
|
|
pgprot_t prot,
|
|
void *(*alloc)(unsigned long size))
|
|
{
|
|
pte_t *pte;
|
|
|
|
if (pmd_none(*pmd) || pmd_bad(*pmd)) {
|
|
pte = alloc(PTRS_PER_PTE * sizeof(pte_t));
|
|
if (pmd_sect(*pmd))
|
|
split_pmd(pmd, pte);
|
|
__pmd_populate(pmd, __pa(pte), PMD_TYPE_TABLE);
|
|
flush_tlb_all();
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
set_pte(pte, pfn_pte(pfn, prot));
|
|
pfn++;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
void split_pud(pud_t *old_pud, pmd_t *pmd)
|
|
{
|
|
unsigned long addr = pud_pfn(*old_pud) << PAGE_SHIFT;
|
|
pgprot_t prot = __pgprot(pud_val(*old_pud) ^ addr);
|
|
int i = 0;
|
|
|
|
do {
|
|
set_pmd(pmd, __pmd(addr | prot));
|
|
addr += PMD_SIZE;
|
|
} while (pmd++, i++, i < PTRS_PER_PMD);
|
|
}
|
|
|
|
static void alloc_init_pmd(struct mm_struct *mm, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
phys_addr_t phys, pgprot_t prot,
|
|
void *(*alloc)(unsigned long size), bool pages)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
/*
|
|
* Check for initial section mappings in the pgd/pud and remove them.
|
|
*/
|
|
if (pud_none(*pud) || pud_bad(*pud)) {
|
|
pmd = alloc(PTRS_PER_PMD * sizeof(pmd_t));
|
|
if (pud_sect(*pud)) {
|
|
/*
|
|
* need to have the 1G of mappings continue to be
|
|
* present
|
|
*/
|
|
split_pud(pud, pmd);
|
|
}
|
|
pud_populate(mm, pud, pmd);
|
|
flush_tlb_all();
|
|
}
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
/* try section mapping first */
|
|
if (!pages && ((addr | next | phys) & ~SECTION_MASK) == 0) {
|
|
pmd_t old_pmd =*pmd;
|
|
set_pmd(pmd, __pmd(phys |
|
|
pgprot_val(mk_sect_prot(prot))));
|
|
/*
|
|
* Check for previous table entries created during
|
|
* boot (__create_page_tables) and flush them.
|
|
*/
|
|
if (!pmd_none(old_pmd))
|
|
flush_tlb_all();
|
|
} else {
|
|
alloc_init_pte(pmd, addr, next, __phys_to_pfn(phys),
|
|
prot, alloc);
|
|
}
|
|
phys += next - addr;
|
|
} while (pmd++, addr = next, addr != end);
|
|
}
|
|
|
|
static inline bool use_1G_block(unsigned long addr, unsigned long next,
|
|
unsigned long phys)
|
|
{
|
|
if (PAGE_SHIFT != 12)
|
|
return false;
|
|
|
|
if (((addr | next | phys) & ~PUD_MASK) != 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void alloc_init_pud(struct mm_struct *mm, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
phys_addr_t phys, pgprot_t prot,
|
|
void *(*alloc)(unsigned long size), bool force_pages)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
if (pgd_none(*pgd)) {
|
|
pud = alloc(PTRS_PER_PUD * sizeof(pud_t));
|
|
pgd_populate(mm, pgd, pud);
|
|
}
|
|
BUG_ON(pgd_bad(*pgd));
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
|
|
/*
|
|
* For 4K granule only, attempt to put down a 1GB block
|
|
*/
|
|
if (use_1G_block(addr, next, phys) &&
|
|
!force_pages &&
|
|
!dma_overlap(phys, phys + next - addr) &&
|
|
!IS_ENABLED(CONFIG_FORCE_PAGES)) {
|
|
pud_t old_pud = *pud;
|
|
set_pud(pud, __pud(phys |
|
|
pgprot_val(mk_sect_prot(prot))));
|
|
|
|
/*
|
|
* If we have an old value for a pud, it will
|
|
* be pointing to a pmd table that we no longer
|
|
* need (from swapper_pg_dir).
|
|
*
|
|
* Look up the old pmd table and free it.
|
|
*/
|
|
if (!pud_none(old_pud)) {
|
|
phys_addr_t table = __pa(pmd_offset(&old_pud, 0));
|
|
memblock_free(table, PAGE_SIZE);
|
|
flush_tlb_all();
|
|
}
|
|
} else {
|
|
alloc_init_pmd(mm, pud, addr, next, phys, prot, alloc, force_pages);
|
|
}
|
|
phys += next - addr;
|
|
} while (pud++, addr = next, addr != end);
|
|
}
|
|
|
|
/*
|
|
* Create the page directory entries and any necessary page tables for the
|
|
* mapping specified by 'md'.
|
|
*/
|
|
static void __ref __create_mapping(struct mm_struct *mm, pgd_t *pgd,
|
|
phys_addr_t phys, unsigned long virt,
|
|
phys_addr_t size, pgprot_t prot,
|
|
void *(*alloc)(unsigned long size), bool force_pages)
|
|
{
|
|
unsigned long addr, length, end, next;
|
|
|
|
addr = virt & PAGE_MASK;
|
|
length = PAGE_ALIGN(size + (virt & ~PAGE_MASK));
|
|
|
|
end = addr + length;
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
alloc_init_pud(mm, pgd, addr, next, phys, prot, alloc, force_pages);
|
|
phys += next - addr;
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void *late_alloc(unsigned long size)
|
|
{
|
|
void *ptr;
|
|
|
|
BUG_ON(size > PAGE_SIZE);
|
|
ptr = (void *)__get_free_page(PGALLOC_GFP);
|
|
BUG_ON(!ptr);
|
|
return ptr;
|
|
}
|
|
|
|
static void __ref create_mapping(phys_addr_t phys, unsigned long virt,
|
|
phys_addr_t size, pgprot_t prot, bool force_pages)
|
|
{
|
|
if (virt < VMALLOC_START) {
|
|
pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
|
|
&phys, virt);
|
|
return;
|
|
}
|
|
__create_mapping(&init_mm, pgd_offset_k(virt & PAGE_MASK), phys, virt,
|
|
size, prot, early_alloc, force_pages);
|
|
}
|
|
|
|
static inline pmd_t *pmd_off_k(unsigned long virt)
|
|
{
|
|
return pmd_offset(pud_offset(pgd_offset_k(virt), virt), virt);
|
|
}
|
|
|
|
void __init remap_as_pages(unsigned long start, unsigned long size)
|
|
{
|
|
unsigned long addr;
|
|
unsigned long end = start + size;
|
|
|
|
/*
|
|
* Make start and end PMD_SIZE aligned, observing memory
|
|
* boundaries
|
|
*/
|
|
if (memblock_is_memory(start & PMD_MASK))
|
|
start = start & PMD_MASK;
|
|
if (memblock_is_memory(ALIGN(end, PMD_SIZE)))
|
|
end = ALIGN(end, PMD_SIZE);
|
|
|
|
size = end - start;
|
|
|
|
/*
|
|
* Clear previous low-memory mapping
|
|
*/
|
|
for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
|
|
addr += PMD_SIZE) {
|
|
pmd_t *pmd;
|
|
pmd = pmd_off_k(addr);
|
|
if (pmd_bad(*pmd) || pmd_sect(*pmd))
|
|
pmd_clear(pmd);
|
|
}
|
|
|
|
create_mapping(start, __phys_to_virt(start), size, PAGE_KERNEL, true);
|
|
}
|
|
|
|
struct dma_contig_early_reserve {
|
|
phys_addr_t base;
|
|
unsigned long size;
|
|
};
|
|
|
|
static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
|
|
|
|
static int dma_mmu_remap_num __initdata;
|
|
|
|
void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
|
|
{
|
|
dma_mmu_remap[dma_mmu_remap_num].base = base;
|
|
dma_mmu_remap[dma_mmu_remap_num].size = size;
|
|
dma_mmu_remap_num++;
|
|
}
|
|
|
|
static bool __init dma_overlap(phys_addr_t start, phys_addr_t end)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dma_mmu_remap_num; i++) {
|
|
phys_addr_t dma_base = dma_mmu_remap[i].base;
|
|
phys_addr_t dma_end = dma_mmu_remap[i].base +
|
|
dma_mmu_remap[i].size;
|
|
|
|
if ((dma_base < end) && (dma_end > start))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void __init dma_contiguous_remap(void)
|
|
{
|
|
int i;
|
|
for (i = 0; i < dma_mmu_remap_num; i++)
|
|
remap_as_pages(dma_mmu_remap[i].base,
|
|
dma_mmu_remap[i].size);
|
|
}
|
|
|
|
void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
|
|
unsigned long virt, phys_addr_t size,
|
|
pgprot_t prot)
|
|
{
|
|
__create_mapping(mm, pgd_offset(mm, virt), phys, virt, size, prot,
|
|
early_alloc, false);
|
|
}
|
|
|
|
static void create_mapping_late(phys_addr_t phys, unsigned long virt,
|
|
phys_addr_t size, pgprot_t prot)
|
|
{
|
|
if (virt < VMALLOC_START) {
|
|
pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
|
|
&phys, virt);
|
|
return;
|
|
}
|
|
|
|
return __create_mapping(&init_mm, pgd_offset_k(virt & PAGE_MASK),
|
|
phys, virt, size, prot, late_alloc,
|
|
IS_ENABLED(CONFIG_FORCE_PAGES));
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_RODATA
|
|
static void __init __map_memblock(phys_addr_t start, phys_addr_t end)
|
|
{
|
|
/*
|
|
* Set up the executable regions using the existing section mappings
|
|
* for now. This will get more fine grained later once all memory
|
|
* is mapped
|
|
*/
|
|
unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
|
|
unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
|
|
|
|
if (end < kernel_x_start) {
|
|
create_mapping(start, __phys_to_virt(start),
|
|
end - start, PAGE_KERNEL, false);
|
|
} else if (start >= kernel_x_end) {
|
|
create_mapping(start, __phys_to_virt(start),
|
|
end - start, PAGE_KERNEL, false);
|
|
} else {
|
|
if (start < kernel_x_start)
|
|
create_mapping(start, __phys_to_virt(start),
|
|
kernel_x_start - start,
|
|
PAGE_KERNEL, false);
|
|
create_mapping(kernel_x_start,
|
|
__phys_to_virt(kernel_x_start),
|
|
kernel_x_end - kernel_x_start,
|
|
PAGE_KERNEL_EXEC, false);
|
|
if (kernel_x_end < end)
|
|
create_mapping(kernel_x_end,
|
|
__phys_to_virt(kernel_x_end),
|
|
end - kernel_x_end,
|
|
PAGE_KERNEL, false);
|
|
}
|
|
}
|
|
#else
|
|
static void __init __map_memblock(phys_addr_t start, phys_addr_t end)
|
|
{
|
|
create_mapping(start, __phys_to_virt(start), end - start,
|
|
PAGE_KERNEL_EXEC, false);
|
|
}
|
|
#endif
|
|
|
|
static void __init map_mem(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
phys_addr_t limit;
|
|
|
|
/*
|
|
* Temporarily limit the memblock range. We need to do this as
|
|
* create_mapping requires puds, pmds and ptes to be allocated from
|
|
* memory addressable from the initial direct kernel mapping.
|
|
*
|
|
* The initial direct kernel mapping, located at swapper_pg_dir, gives
|
|
* us PUD_SIZE (4K pages) or PMD_SIZE (64K pages) memory starting from
|
|
* PHYS_OFFSET (which must be aligned to 2MB as per
|
|
* Documentation/arm64/booting.txt).
|
|
*/
|
|
if (IS_ENABLED(CONFIG_ARM64_64K_PAGES))
|
|
limit = PHYS_OFFSET + PMD_SIZE;
|
|
else
|
|
limit = PHYS_OFFSET + PUD_SIZE;
|
|
memblock_set_current_limit(limit);
|
|
|
|
/* map all the memory banks */
|
|
for_each_memblock(memory, reg) {
|
|
phys_addr_t start = reg->base;
|
|
phys_addr_t end = start + reg->size;
|
|
|
|
if (start >= end)
|
|
break;
|
|
|
|
#ifndef CONFIG_ARM64_64K_PAGES
|
|
/*
|
|
* For the first memory bank align the start address and
|
|
* current memblock limit to prevent create_mapping() from
|
|
* allocating pte page tables from unmapped memory.
|
|
* When 64K pages are enabled, the pte page table for the
|
|
* first PGDIR_SIZE is already present in swapper_pg_dir.
|
|
*/
|
|
if (start < limit)
|
|
start = ALIGN(start, PMD_SIZE);
|
|
if (end < limit) {
|
|
limit = end & PMD_MASK;
|
|
memblock_set_current_limit(limit);
|
|
}
|
|
#endif
|
|
__map_memblock(start, end);
|
|
}
|
|
|
|
/* Limit no longer required. */
|
|
memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
|
|
}
|
|
#ifdef CONFIG_FORCE_PAGES
|
|
static noinline void __init split_and_set_pmd(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, unsigned long pfn)
|
|
{
|
|
pte_t *pte, *start_pte;
|
|
|
|
start_pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
|
|
pte = start_pte;
|
|
|
|
do {
|
|
set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC));
|
|
pfn++;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
|
|
set_pmd(pmd, __pmd((__pa(start_pte)) | PMD_TYPE_TABLE));
|
|
}
|
|
|
|
static noinline void __init remap_pages(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
|
|
for_each_memblock(memory, reg) {
|
|
phys_addr_t phys_pgd = reg->base;
|
|
phys_addr_t phys_end = reg->base + reg->size;
|
|
unsigned long addr_pgd = (unsigned long)__va(phys_pgd);
|
|
unsigned long end = (unsigned long)__va(phys_end);
|
|
pmd_t *pmd = NULL;
|
|
pud_t *pud = NULL;
|
|
pgd_t *pgd = NULL;
|
|
unsigned long next_pud, next_pmd, next_pgd;
|
|
unsigned long addr_pmd, addr_pud;
|
|
phys_addr_t phys_pud, phys_pmd;
|
|
|
|
if (phys_pgd >= phys_end)
|
|
break;
|
|
|
|
pgd = pgd_offset(&init_mm, addr_pgd);
|
|
do {
|
|
next_pgd = pgd_addr_end(addr_pgd, end);
|
|
pud = pud_offset(pgd, addr_pgd);
|
|
addr_pud = addr_pgd;
|
|
phys_pud = phys_pgd;
|
|
do {
|
|
next_pud = pud_addr_end(addr_pud, next_pgd);
|
|
pmd = pmd_offset(pud, addr_pud);
|
|
addr_pmd = addr_pud;
|
|
phys_pmd = phys_pud;
|
|
do {
|
|
next_pmd = pmd_addr_end(addr_pmd,
|
|
next_pud);
|
|
if (pmd_none(*pmd) || pmd_bad(*pmd))
|
|
split_and_set_pmd(pmd, addr_pmd,
|
|
next_pmd, __phys_to_pfn(phys_pmd));
|
|
pmd++;
|
|
phys_pmd += next_pmd - addr_pmd;
|
|
} while (addr_pmd = next_pmd,
|
|
addr_pmd < next_pud);
|
|
phys_pud += next_pud - addr_pud;
|
|
} while (pud++, addr_pud = next_pud,
|
|
addr_pud < next_pgd);
|
|
phys_pgd += next_pgd - addr_pgd;
|
|
} while (pgd++, addr_pgd = next_pgd, addr_pgd < end);
|
|
}
|
|
}
|
|
|
|
#else
|
|
static void __init remap_pages(void)
|
|
{
|
|
|
|
}
|
|
#endif
|
|
|
|
void __init fixup_executable(void)
|
|
{
|
|
#ifdef CONFIG_DEBUG_RODATA
|
|
/* now that we are actually fully mapped, make the start/end more fine grained */
|
|
if (!IS_ALIGNED((unsigned long)_stext, SECTION_SIZE)) {
|
|
unsigned long aligned_start = round_down(__pa(_stext),
|
|
SECTION_SIZE);
|
|
|
|
create_mapping(aligned_start, __phys_to_virt(aligned_start),
|
|
__pa(_stext) - aligned_start,
|
|
PAGE_KERNEL, false);
|
|
}
|
|
|
|
if (!IS_ALIGNED((unsigned long)__init_end, SECTION_SIZE)) {
|
|
unsigned long aligned_end = round_up(__pa(__init_end),
|
|
SECTION_SIZE);
|
|
create_mapping(__pa(__init_end), (unsigned long)__init_end,
|
|
aligned_end - __pa(__init_end),
|
|
PAGE_KERNEL, false);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_RODATA
|
|
void mark_rodata_ro(void)
|
|
{
|
|
create_mapping_late(__pa(_stext), (unsigned long)_stext,
|
|
(unsigned long)_etext - (unsigned long)_stext,
|
|
PAGE_KERNEL_EXEC | PTE_RDONLY);
|
|
|
|
}
|
|
#endif
|
|
|
|
void fixup_init(void)
|
|
{
|
|
create_mapping_late(__pa(__init_begin), (unsigned long)__init_begin,
|
|
(unsigned long)__init_end - (unsigned long)__init_begin,
|
|
PAGE_KERNEL);
|
|
}
|
|
|
|
/*
|
|
* paging_init() sets up the page tables, initialises the zone memory
|
|
* maps and sets up the zero page.
|
|
*/
|
|
void __init paging_init(void)
|
|
{
|
|
void *zero_page;
|
|
|
|
map_mem();
|
|
dma_contiguous_remap();
|
|
remap_pages();
|
|
fixup_executable();
|
|
|
|
/*
|
|
* Finally flush the caches and tlb to ensure that we're in a
|
|
* consistent state.
|
|
*/
|
|
flush_cache_all();
|
|
flush_tlb_all();
|
|
|
|
/* allocate the zero page. */
|
|
zero_page = early_alloc(PAGE_SIZE);
|
|
|
|
bootmem_init();
|
|
|
|
empty_zero_page = virt_to_page(zero_page);
|
|
|
|
/*
|
|
* TTBR0 is only used for the identity mapping at this stage. Make it
|
|
* point to zero page to avoid speculatively fetching new entries.
|
|
*/
|
|
cpu_set_reserved_ttbr0();
|
|
flush_tlb_all();
|
|
set_kernel_text_ro();
|
|
flush_tlb_all();
|
|
}
|
|
|
|
/*
|
|
* Enable the identity mapping to allow the MMU disabling.
|
|
*/
|
|
void setup_mm_for_reboot(void)
|
|
{
|
|
cpu_switch_mm(idmap_pg_dir, &init_mm);
|
|
flush_tlb_all();
|
|
}
|
|
|
|
/*
|
|
* Check whether a kernel address is valid (derived from arch/x86/).
|
|
*/
|
|
int kern_addr_valid(unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if ((((long)addr) >> VA_BITS) != -1UL)
|
|
return 0;
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd))
|
|
return 0;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud))
|
|
return 0;
|
|
|
|
if (pud_sect(*pud))
|
|
return pfn_valid(pud_pfn(*pud));
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
return 0;
|
|
|
|
if (pmd_sect(*pmd))
|
|
return pfn_valid(pmd_pfn(*pmd));
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(*pte))
|
|
return 0;
|
|
|
|
return pfn_valid(pte_pfn(*pte));
|
|
}
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
#ifdef CONFIG_ARM64_64K_PAGES
|
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
|
|
{
|
|
return vmemmap_populate_basepages(start, end, node);
|
|
}
|
|
#else /* !CONFIG_ARM64_64K_PAGES */
|
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
|
|
{
|
|
unsigned long addr = start;
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
pgd = vmemmap_pgd_populate(addr, node);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
pud = vmemmap_pud_populate(pgd, addr, node);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
void *p = NULL;
|
|
|
|
p = vmemmap_alloc_block_buf(PMD_SIZE, node);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
set_pmd(pmd, __pmd(__pa(p) | PROT_SECT_NORMAL));
|
|
} else
|
|
vmemmap_verify((pte_t *)pmd, node, addr, next);
|
|
} while (addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_ARM64_64K_PAGES */
|
|
void vmemmap_free(unsigned long start, unsigned long end)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
|
|
#if CONFIG_PGTABLE_LEVELS > 2
|
|
static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss;
|
|
#endif
|
|
#if CONFIG_PGTABLE_LEVELS > 3
|
|
static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss;
|
|
#endif
|
|
|
|
static inline pud_t * fixmap_pud(unsigned long addr)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
|
|
BUG_ON(pgd_none(*pgd) || pgd_bad(*pgd));
|
|
|
|
return pud_offset(pgd, addr);
|
|
}
|
|
|
|
static inline pmd_t * fixmap_pmd(unsigned long addr)
|
|
{
|
|
pud_t *pud = fixmap_pud(addr);
|
|
|
|
BUG_ON(pud_none(*pud) || pud_bad(*pud));
|
|
|
|
return pmd_offset(pud, addr);
|
|
}
|
|
|
|
static inline pte_t * fixmap_pte(unsigned long addr)
|
|
{
|
|
pmd_t *pmd = fixmap_pmd(addr);
|
|
|
|
BUG_ON(pmd_none(*pmd) || pmd_bad(*pmd));
|
|
|
|
return pte_offset_kernel(pmd, addr);
|
|
}
|
|
|
|
void __init early_fixmap_init(void)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
unsigned long addr = FIXADDR_START;
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
pgd_populate(&init_mm, pgd, bm_pud);
|
|
pud = pud_offset(pgd, addr);
|
|
pud_populate(&init_mm, pud, bm_pmd);
|
|
pmd = pmd_offset(pud, addr);
|
|
pmd_populate_kernel(&init_mm, pmd, bm_pte);
|
|
|
|
/*
|
|
* The boot-ioremap range spans multiple pmds, for which
|
|
* we are not preparted:
|
|
*/
|
|
BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
|
|
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
|
|
|
|
if ((pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
|
|
|| pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
|
|
WARN_ON(1);
|
|
pr_warn("pmd %p != %p, %p\n",
|
|
pmd, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
|
|
fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
|
|
pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_BEGIN));
|
|
pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_END));
|
|
|
|
pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
|
|
pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
|
|
}
|
|
}
|
|
|
|
void __set_fixmap(enum fixed_addresses idx,
|
|
phys_addr_t phys, pgprot_t flags)
|
|
{
|
|
unsigned long addr = __fix_to_virt(idx);
|
|
pte_t *pte;
|
|
|
|
if (idx >= __end_of_fixed_addresses) {
|
|
BUG();
|
|
return;
|
|
}
|
|
|
|
pte = fixmap_pte(addr);
|
|
|
|
if (pgprot_val(flags)) {
|
|
set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
|
|
} else {
|
|
pte_clear(&init_mm, addr, pte);
|
|
flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
|
|
}
|
|
}
|