M7350/bootable/bootloader/lk/dev/pmic/pm8x41/pm_pwm.c
2024-09-09 08:57:42 +00:00

258 lines
7.1 KiB
C

/*
* * Copyright (c) 2014, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <debug.h>
#include <pm_pwm.h>
#include <pm8x41_hw.h>
#define NSEC_PER_USEC 1000L
#define USEC_PER_SEC 1000000L
#define NSEC_PER_SEC 1000000000L
#define NUM_REF_CLOCKS 3
#define NSEC_1024HZ (NSEC_PER_SEC / 1024)
#define NSEC_32768HZ (NSEC_PER_SEC / 32768)
#define NSEC_19P2MHZ (NSEC_PER_SEC / 19200000)
#define NUM_PRE_DIVIDE 4
#define PRE_DIVIDE_1 1
#define PRE_DIVIDE_3 3
#define PRE_DIVIDE_5 5
#define PRE_DIVIDE_6 6
static unsigned int pt_t[NUM_PRE_DIVIDE][NUM_REF_CLOCKS] = {
{ PRE_DIVIDE_1 * NSEC_1024HZ,
PRE_DIVIDE_1 * NSEC_32768HZ,
PRE_DIVIDE_1 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_3 * NSEC_1024HZ,
PRE_DIVIDE_3 * NSEC_32768HZ,
PRE_DIVIDE_3 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_5 * NSEC_1024HZ,
PRE_DIVIDE_5 * NSEC_32768HZ,
PRE_DIVIDE_5 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_6 * NSEC_1024HZ,
PRE_DIVIDE_6 * NSEC_32768HZ,
PRE_DIVIDE_6 * NSEC_19P2MHZ,
},
};
enum pwm_ctl_reg {
SIZE_CLK,
FREQ_PREDIV_CLK,
TYPE_CONFIG,
VALUE_LSB,
VALUE_MSB,
};
#define NUM_PWM_CTL_REGS 5
struct pm_pwm_config {
int pwm_size; /* round up to 6 or 9 for 6/9-bit PWM SIZE */
int clk;
int pre_div;
int pre_div_exp;
int pwm_value;
uint8_t pwm_ctl[NUM_PWM_CTL_REGS];
};
static void pm_pwm_reg_write(uint8_t off, uint8_t val)
{
REG_WRITE(PM_PWM_BASE(off), val);
}
/*
* PWM Frequency = Clock Frequency / (N * T)
* or
* PWM Period = Clock Period * (N * T)
* where
* N = 2^9 or 2^6 for 9-bit or 6-bit PWM size
* T = Pre-divide * 2^m, where m = 0..7 (exponent)
*
* This is the formula to figure out m for the best pre-divide and clock:
* (PWM Period / N) = (Pre-divide * Clock Period) * 2^m
*/
#define PRE_DIVIDE_MAX 6
#define CLK_PERIOD_MAX NSEC_1024HZ
#define PM_PWM_M_MAX 7
#define MAX_MPT ((PRE_DIVIDE_MAX * CLK_PERIOD_MAX) << PM_PWM_M_MAX)
static void pm_pwm_calc_period(unsigned int period_us,
struct pm_pwm_config *pwm_config)
{
int n, m, clk, div;
int best_m, best_div, best_clk;
unsigned int last_err, cur_err, min_err;
unsigned int tmp_p, period_n;
n = 6;
if (period_us < ((unsigned)(-1) / NSEC_PER_USEC))
period_n = (period_us * NSEC_PER_USEC) >> n;
else
period_n = (period_us >> n) * NSEC_PER_USEC;
if (period_n >= MAX_MPT) {
n = 9;
period_n >>= 3;
}
min_err = last_err = (unsigned)(-1);
best_m = 0;
best_clk = 0;
best_div = 0;
for (clk = 0; clk < NUM_REF_CLOCKS; clk++) {
for (div = 0; div < NUM_PRE_DIVIDE; div++) {
/* period_n = (PWM Period / N) */
/* tmp_p = (Pre-divide * Clock Period) * 2^m */
tmp_p = pt_t[div][clk];
for (m = 0; m <= PM_PWM_M_MAX; m++) {
if (period_n > tmp_p)
cur_err = period_n - tmp_p;
else
cur_err = tmp_p - period_n;
if (cur_err < min_err) {
min_err = cur_err;
best_m = m;
best_clk = clk;
best_div = div;
}
if (m && cur_err > last_err)
/* Break for bigger cur_err */
break;
last_err = cur_err;
tmp_p <<= 1;
}
}
}
pwm_config->pwm_size = n;
pwm_config->clk = best_clk;
pwm_config->pre_div = best_div;
pwm_config->pre_div_exp = best_m;
}
static void pm_pwm_calc_pwm_value(struct pm_pwm_config *pwm_config,
unsigned int period_us,
unsigned int duty_us)
{
int max_pwm_value;
unsigned int tmp;
/* Figure out pwm_value with overflow handling */
tmp = 1 << (sizeof(tmp) * 8 - pwm_config->pwm_size);
if (duty_us < tmp) {
tmp = duty_us << pwm_config->pwm_size;
pwm_config->pwm_value = tmp / period_us;
} else {
tmp = period_us >> pwm_config->pwm_size;
pwm_config->pwm_value = duty_us / tmp;
}
max_pwm_value = (1 << pwm_config->pwm_size) - 1;
if (pwm_config->pwm_value > max_pwm_value)
pwm_config->pwm_value = max_pwm_value;
}
#define PM_PWM_SIZE_9_BIT 1
#define PM_PWM_SIZE_6_BIT 0
static void pm_pwm_config_regs(struct pm_pwm_config *pwm_config)
{
int i;
uint8_t reg;
reg = ((pwm_config->pwm_size > 6 ? PM_PWM_SIZE_9_BIT : PM_PWM_SIZE_6_BIT)
<< PM_PWM_SIZE_SEL_SHIFT)
& PM_PWM_SIZE_SEL_MASK;
reg |= (pwm_config->clk + 1) & PM_PWM_CLK_SEL_MASK;
pwm_config->pwm_ctl[SIZE_CLK] = reg;
reg = (pwm_config->pre_div << PM_PWM_PREDIVIDE_SHIFT)
& PM_PWM_PREDIVIDE_MASK;
reg |= pwm_config->pre_div_exp & PM_PWM_M_MASK;
pwm_config->pwm_ctl[FREQ_PREDIV_CLK] = reg;
/* Enable glitch removal by default */
reg = 1 << PM_PWM_EN_GLITCH_REMOVAL_SHIFT
& PM_PWM_EN_GLITCH_REMOVAL_MASK;
pwm_config->pwm_ctl[TYPE_CONFIG] = reg;
if (pwm_config->pwm_size > 6) {
pwm_config->pwm_ctl[VALUE_LSB] = pwm_config->pwm_value
& PM_PWM_VALUE_BIT7_0;
pwm_config->pwm_ctl[VALUE_MSB] = (pwm_config->pwm_value >> 8)
& PM_PWM_VALUE_BIT8;
} else
pwm_config->pwm_ctl[VALUE_LSB] = pwm_config->pwm_value
& PM_PWM_VALUE_BIT5_0;
for (i = 0; i < NUM_PWM_CTL_REGS; i++)
pm_pwm_reg_write(PM_PWM_CTL_REG_OFFSET + i, pwm_config->pwm_ctl[i]);
reg = 1 & PM_PWM_SYNC_MASK;
pm_pwm_reg_write(PM_PWM_SYNC_REG_OFFSET, reg);
}
/* usec: 19.2M, n=6, m=0, pre=2 */
#define PM_PWM_PERIOD_MIN 7
/* 1K, n=9, m=7, pre=6 */
#define PM_PWM_PERIOD_MAX (384 * USEC_PER_SEC)
int pm_pwm_config(unsigned int duty_us, unsigned int period_us)
{
struct pm_pwm_config pwm_config;
if ((duty_us > period_us) || (period_us > PM_PWM_PERIOD_MAX) ||
(period_us < PM_PWM_PERIOD_MIN)) {
dprintf(CRITICAL, "Error in duty cycle and period\n");
return -1;
}
pm_pwm_calc_period(period_us, &pwm_config);
pm_pwm_calc_pwm_value(&pwm_config, period_us, duty_us);
dprintf(SPEW, "duty/period=%u/%u usec: pwm_value=%d (of %d)\n",
duty_us, period_us, pwm_config.pwm_value, 1 << pwm_config.pwm_size);
pm_pwm_config_regs(&pwm_config);
return 0;
}
void pm_pwm_enable(bool enable)
{
uint8_t reg;
reg = enable << PM_PWM_ENABLE_CTL_SHIFT
& PM_PWM_ENABLE_CTL_MASK;
pm_pwm_reg_write(PM_PWM_ENABLE_CTL_REG_OFFSET, reg);
}