/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_CUTILS_ATOMIC_H #define ANDROID_CUTILS_ATOMIC_H #include #include #ifdef __cplusplus extern "C" { #endif /* * A handful of basic atomic operations. The appropriate pthread * functions should be used instead of these whenever possible. * * The "acquire" and "release" terms can be defined intuitively in terms * of the placement of memory barriers in a simple lock implementation: * - wait until compare-and-swap(lock-is-free --> lock-is-held) succeeds * - barrier * - [do work] * - barrier * - store(lock-is-free) * In very crude terms, the initial (acquire) barrier prevents any of the * "work" from happening before the lock is held, and the later (release) * barrier ensures that all of the work happens before the lock is released. * (Think of cached writes, cache read-ahead, and instruction reordering * around the CAS and store instructions.) * * The barriers must apply to both the compiler and the CPU. Note it is * legal for instructions that occur before an "acquire" barrier to be * moved down below it, and for instructions that occur after a "release" * barrier to be moved up above it. * * The ARM-driven implementation we use here is short on subtlety, * and actually requests a full barrier from the compiler and the CPU. * The only difference between acquire and release is in whether they * are issued before or after the atomic operation with which they * are associated. To ease the transition to C/C++ atomic intrinsics, * you should not rely on this, and instead assume that only the minimal * acquire/release protection is provided. * * NOTE: all int32_t* values are expected to be aligned on 32-bit boundaries. * If they are not, atomicity is not guaranteed. */ /* * Basic arithmetic and bitwise operations. These all provide a * barrier with "release" ordering, and return the previous value. * * These have the same characteristics (e.g. what happens on overflow) * as the equivalent non-atomic C operations. */ int32_t android_atomic_inc(volatile int32_t* addr); int32_t android_atomic_dec(volatile int32_t* addr); int32_t android_atomic_add(int32_t value, volatile int32_t* addr); int32_t android_atomic_and(int32_t value, volatile int32_t* addr); int32_t android_atomic_or(int32_t value, volatile int32_t* addr); /* * Perform an atomic load with "acquire" or "release" ordering. * * This is only necessary if you need the memory barrier. A 32-bit read * from a 32-bit aligned address is atomic on all supported platforms. */ int32_t android_atomic_acquire_load(volatile const int32_t* addr); int32_t android_atomic_release_load(volatile const int32_t* addr); /* * Perform an atomic store with "acquire" or "release" ordering. * * This is only necessary if you need the memory barrier. A 32-bit write * to a 32-bit aligned address is atomic on all supported platforms. */ void android_atomic_acquire_store(int32_t value, volatile int32_t* addr); void android_atomic_release_store(int32_t value, volatile int32_t* addr); /* * Unconditional swap operation with release ordering. * * Stores the new value at *addr, and returns the previous value. */ int32_t android_atomic_swap(int32_t value, volatile int32_t* addr); /* * Compare-and-set operation with "acquire" or "release" ordering. * * This returns zero if the new value was successfully stored, which will * only happen when *addr == oldvalue. * * (The return value is inverted from implementations on other platforms, * but matches the ARM ldrex/strex result.) * * Implementations that use the release CAS in a loop may be less efficient * than possible, because we re-issue the memory barrier on each iteration. */ int android_atomic_acquire_cas(int32_t oldvalue, int32_t newvalue, volatile int32_t* addr); int android_atomic_release_cas(int32_t oldvalue, int32_t newvalue, volatile int32_t* addr); /* * Aliases for code using an older version of this header. These are now * deprecated and should not be used. The definitions will be removed * in a future release. */ #define android_atomic_write android_atomic_release_store #define android_atomic_cmpxchg android_atomic_release_cas #ifdef __cplusplus } // extern "C" #endif #endif // ANDROID_CUTILS_ATOMIC_H