/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "wcd9304.h" #define WCD9304_RATES (SNDRV_PCM_RATE_8000|SNDRV_PCM_RATE_16000|\ SNDRV_PCM_RATE_32000|SNDRV_PCM_RATE_48000) #define ADC_DMIC_SEL_ADC 0 #define ADC_DMIC_SEL_DMIC 1 #define NUM_AMIC 3 #define NUM_DECIMATORS 4 #define NUM_INTERPOLATORS 3 #define BITS_PER_REG 8 #define SITAR_RX_PORT_START_NUMBER 10 enum { AIF1_PB = 0, AIF1_CAP, NUM_CODEC_DAIS, }; struct wcd9xxx_ch sitar_rx_chs[SITAR_RX_MAX] = { WCD9XXX_CH(SITAR_RX_PORT_START_NUMBER, 0), WCD9XXX_CH(SITAR_RX_PORT_START_NUMBER + 1, 1), WCD9XXX_CH(SITAR_RX_PORT_START_NUMBER + 2, 2), WCD9XXX_CH(SITAR_RX_PORT_START_NUMBER + 3, 3), WCD9XXX_CH(SITAR_RX_PORT_START_NUMBER + 4, 4) }; struct wcd9xxx_ch sitar_tx_chs[SITAR_TX_MAX] = { WCD9XXX_CH(0, 0), WCD9XXX_CH(1, 1), WCD9XXX_CH(2, 2), WCD9XXX_CH(3, 3), WCD9XXX_CH(4, 4), }; #define SITAR_CFILT_FAST_MODE 0x00 #define SITAR_CFILT_SLOW_MODE 0x40 #define MBHC_FW_READ_ATTEMPTS 15 #define MBHC_FW_READ_TIMEOUT 2000000 #define SLIM_CLOSE_TIMEOUT 1000 #define SITAR_JACK_MASK (SND_JACK_HEADSET | SND_JACK_OC_HPHL | SND_JACK_OC_HPHR) #define SITAR_I2S_MASTER_MODE_MASK 0x08 #define SITAR_OCP_ATTEMPT 1 #define COMP_DIGITAL_DB_GAIN_APPLY(a, b) \ (((a) <= 0) ? ((a) - b) : (a)) /* The wait time value comes from codec HW specification */ #define COMP_BRINGUP_WAIT_TIME 3000 #define SITAR_MCLK_RATE_12288KHZ 12288000 #define SITAR_MCLK_RATE_9600KHZ 9600000 #define SITAR_FAKE_INS_THRESHOLD_MS 2500 #define SITAR_FAKE_REMOVAL_MIN_PERIOD_MS 50 #define SITAR_MBHC_BUTTON_MIN 0x8000 #define SITAR_GPIO_IRQ_DEBOUNCE_TIME_US 5000 #define SITAR_ACQUIRE_LOCK(x) do { mutex_lock(&x); } while (0) #define SITAR_RELEASE_LOCK(x) do { mutex_unlock(&x); } while (0) #define MBHC_NUM_DCE_PLUG_DETECT 3 #define SITAR_MBHC_FAKE_INSERT_LOW 10 #define SITAR_MBHC_FAKE_INSERT_HIGH 80 #define SITAR_MBHC_FAKE_INSERT_VOLT_DELTA_MV 500 #define SITAR_HS_DETECT_PLUG_TIME_MS (5 * 1000) #define SITAR_HS_DETECT_PLUG_INERVAL_MS 100 #define NUM_ATTEMPTS_TO_REPORT 5 #define SITAR_MBHC_STATUS_REL_DETECTION 0x0C #define SITAR_MBHC_GPIO_REL_DEBOUNCE_TIME_MS 200 #define CUT_OF_FREQ_MASK 0x30 #define CF_MIN_3DB_4HZ 0x0 #define CF_MIN_3DB_75HZ 0x01 #define CF_MIN_3DB_150HZ 0x02 static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0); static const DECLARE_TLV_DB_SCALE(line_gain, 0, 7, 1); static const DECLARE_TLV_DB_SCALE(analog_gain, 0, 25, 1); static struct snd_soc_dai_driver sitar_dai[]; static int sitar_codec_enable_slimtx(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event); static int sitar_codec_enable_slimrx(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event); enum sitar_bandgap_type { SITAR_BANDGAP_OFF = 0, SITAR_BANDGAP_AUDIO_MODE, SITAR_BANDGAP_MBHC_MODE, }; struct mbhc_micbias_regs { u16 cfilt_val; u16 cfilt_ctl; u16 mbhc_reg; u16 int_rbias; u16 ctl_reg; u8 cfilt_sel; }; /* Codec supports 2 IIR filters */ enum { IIR1 = 0, IIR2, IIR_MAX, }; /* Codec supports 5 bands */ enum { BAND1 = 0, BAND2, BAND3, BAND4, BAND5, BAND_MAX, }; enum { COMPANDER_1 = 0, COMPANDER_2, COMPANDER_MAX, }; enum { COMPANDER_FS_8KHZ = 0, COMPANDER_FS_16KHZ, COMPANDER_FS_32KHZ, COMPANDER_FS_48KHZ, COMPANDER_FS_96KHZ, COMPANDER_FS_192KHZ, COMPANDER_FS_MAX, }; /* Flags to track of PA and DAC state. * PA and DAC should be tracked separately as AUXPGA loopback requires * only PA to be turned on without DAC being on. */ enum sitar_priv_ack_flags { SITAR_HPHL_PA_OFF_ACK = 0, SITAR_HPHR_PA_OFF_ACK, SITAR_HPHL_DAC_OFF_ACK, SITAR_HPHR_DAC_OFF_ACK }; struct comp_sample_dependent_params { u32 peak_det_timeout; u32 rms_meter_div_fact; u32 rms_meter_resamp_fact; }; struct comp_dgtl_gain_offset { u8 whole_db_gain; u8 half_db_gain; }; static const struct comp_dgtl_gain_offset comp_dgtl_gain[] = { {0, 0}, {1, 1}, {3, 0}, {4, 1}, {6, 0}, {7, 1}, {9, 0}, {10, 1}, {12, 0}, {13, 1}, {15, 0}, {16, 1}, {18, 0}, }; /* Data used by MBHC */ struct mbhc_internal_cal_data { u16 dce_z; u16 dce_mb; u16 sta_z; u16 sta_mb; u32 t_sta_dce; u32 t_dce; u32 t_sta; u32 micb_mv; u16 v_ins_hu; u16 v_ins_h; u16 v_b1_hu; u16 v_b1_h; u16 v_b1_huc; u16 v_brh; u16 v_brl; u16 v_no_mic; u8 npoll; u8 nbounce_wait; }; enum sitar_mbhc_plug_type { PLUG_TYPE_INVALID = -1, PLUG_TYPE_NONE, PLUG_TYPE_HEADSET, PLUG_TYPE_HEADPHONE, PLUG_TYPE_HIGH_HPH, }; enum sitar_mbhc_state { MBHC_STATE_NONE = -1, MBHC_STATE_POTENTIAL, MBHC_STATE_POTENTIAL_RECOVERY, MBHC_STATE_RELEASE, }; static const u32 vport_check_table[NUM_CODEC_DAIS] = { 0, /* AIF1_PB */ 0, /* AIF1_CAP */ }; struct hpf_work { struct sitar_priv *sitar; u32 decimator; u8 tx_hpf_cut_of_freq; struct delayed_work dwork; }; static struct hpf_work tx_hpf_work[NUM_DECIMATORS]; struct sitar_priv { struct snd_soc_codec *codec; u32 mclk_freq; u32 adc_count; u32 cfilt1_cnt; u32 cfilt2_cnt; u32 cfilt3_cnt; u32 rx_bias_count; enum sitar_bandgap_type bandgap_type; bool mclk_enabled; bool clock_active; bool config_mode_active; bool mbhc_polling_active; unsigned long mbhc_fake_ins_start; int buttons_pressed; enum sitar_micbias_num micbias; /* void* calibration contains: * struct sitar_mbhc_general_cfg generic; * struct sitar_mbhc_plug_detect_cfg plug_det; * struct sitar_mbhc_plug_type_cfg plug_type; * struct sitar_mbhc_btn_detect_cfg btn_det; * struct sitar_mbhc_imped_detect_cfg imped_det; * Note: various size depends on btn_det->num_btn */ void *calibration; struct mbhc_internal_cal_data mbhc_data; struct wcd9xxx_pdata *pdata; u32 anc_slot; bool no_mic_headset_override; struct mbhc_micbias_regs mbhc_bias_regs; u8 cfilt_k_value; bool mbhc_micbias_switched; /* track PA/DAC state */ unsigned long hph_pa_dac_state; /*track sitar interface type*/ u8 intf_type; u32 hph_status; /* track headhpone status */ /* define separate work for left and right headphone OCP to avoid * additional checking on which OCP event to report so no locking * to ensure synchronization is required */ struct work_struct hphlocp_work; /* reporting left hph ocp off */ struct work_struct hphrocp_work; /* reporting right hph ocp off */ u8 hphlocp_cnt; /* headphone left ocp retry */ u8 hphrocp_cnt; /* headphone right ocp retry */ /* Callback function to enable MCLK */ int (*mclk_cb) (struct snd_soc_codec*, int); /* Work to perform MBHC Firmware Read */ struct delayed_work mbhc_firmware_dwork; const struct firmware *mbhc_fw; /* num of slim ports required */ struct wcd9xxx_codec_dai_data dai[NUM_CODEC_DAIS]; /*compander*/ int comp_enabled[COMPANDER_MAX]; u32 comp_fs[COMPANDER_MAX]; u8 comp_gain_offset[NUM_INTERPOLATORS]; /* Currently, only used for mbhc purpose, to protect * concurrent execution of mbhc threaded irq handlers and * kill race between DAPM and MBHC.But can serve as a * general lock to protect codec resource */ struct mutex codec_resource_lock; struct sitar_mbhc_config mbhc_cfg; bool in_gpio_handler; u8 current_plug; bool lpi_enabled; enum sitar_mbhc_state mbhc_state; struct work_struct hs_correct_plug_work; bool hs_detect_work_stop; struct delayed_work mbhc_btn_dwork; unsigned long mbhc_last_resume; /* in jiffies */ }; #ifdef CONFIG_DEBUG_FS struct sitar_priv *debug_sitar_priv; #endif static const int comp_rx_path[] = { COMPANDER_2, COMPANDER_1, COMPANDER_1, COMPANDER_MAX, }; static const struct comp_sample_dependent_params comp_samp_params[COMPANDER_FS_MAX] = { { .peak_det_timeout = 0x6, .rms_meter_div_fact = 0x9 << 4, .rms_meter_resamp_fact = 0x06, }, { .peak_det_timeout = 0x7, .rms_meter_div_fact = 0xA << 4, .rms_meter_resamp_fact = 0x0C, }, { .peak_det_timeout = 0x8, .rms_meter_div_fact = 0xB << 4, .rms_meter_resamp_fact = 0x30, }, { .peak_det_timeout = 0x9, .rms_meter_div_fact = 0xB << 4, .rms_meter_resamp_fact = 0x28, }, { .peak_det_timeout = 0xA, .rms_meter_div_fact = 0xC << 4, .rms_meter_resamp_fact = 0x50, }, { .peak_det_timeout = 0xB, .rms_meter_div_fact = 0xC << 4, .rms_meter_resamp_fact = 0x50, }, }; static int sitar_get_anc_slot(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); ucontrol->value.integer.value[0] = sitar->anc_slot; return 0; } static int sitar_put_anc_slot(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); sitar->anc_slot = ucontrol->value.integer.value[0]; return 0; } static int sitar_pa_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u8 ear_pa_gain; struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); ear_pa_gain = snd_soc_read(codec, SITAR_A_RX_EAR_GAIN); ear_pa_gain &= 0xE0; if (ear_pa_gain == 0x00) { ucontrol->value.integer.value[0] = 0; } else if (ear_pa_gain == 0x80) { ucontrol->value.integer.value[0] = 1; } else if (ear_pa_gain == 0xA0) { ucontrol->value.integer.value[0] = 2; } else if (ear_pa_gain == 0xE0) { ucontrol->value.integer.value[0] = 3; } else { pr_err("%s: ERROR: Unsupported Ear Gain = 0x%x\n", __func__, ear_pa_gain); return -EINVAL; } pr_debug("%s: ear_pa_gain = 0x%x\n", __func__, ear_pa_gain); return 0; } static int sitar_pa_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u8 ear_pa_gain; struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); pr_debug("%s: ucontrol->value.integer.value[0] = %ld\n", __func__, ucontrol->value.integer.value[0]); switch (ucontrol->value.integer.value[0]) { case 0: ear_pa_gain = 0x00; break; case 1: ear_pa_gain = 0x80; break; case 2: ear_pa_gain = 0xA0; break; case 3: ear_pa_gain = 0xE0; break; default: return -EINVAL; } snd_soc_update_bits(codec, SITAR_A_RX_EAR_GAIN, 0xE0, ear_pa_gain); return 0; } static int sitar_get_iir_enable_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; ucontrol->value.integer.value[0] = snd_soc_read(codec, (SITAR_A_CDC_IIR1_CTL + 16 * iir_idx)) & (1 << band_idx); pr_debug("%s: IIR #%d band #%d enable %d\n", __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[0]); return 0; } static int sitar_put_iir_enable_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; int value = ucontrol->value.integer.value[0]; /* Mask first 5 bits, 6-8 are reserved */ snd_soc_update_bits(codec, (SITAR_A_CDC_IIR1_CTL + 16 * iir_idx), (1 << band_idx), (value << band_idx)); pr_debug("%s: IIR #%d band #%d enable %d\n", __func__, iir_idx, band_idx, value); return 0; } static uint32_t get_iir_band_coeff(struct snd_soc_codec *codec, int iir_idx, int band_idx, int coeff_idx) { /* Address does not automatically update if reading */ snd_soc_write(codec, (SITAR_A_CDC_IIR1_COEF_B1_CTL + 16 * iir_idx), (band_idx * BAND_MAX + coeff_idx) & 0x1F); /* Mask bits top 2 bits since they are reserved */ return ((snd_soc_read(codec, (SITAR_A_CDC_IIR1_COEF_B2_CTL + 16 * iir_idx)) << 24) | (snd_soc_read(codec, (SITAR_A_CDC_IIR1_COEF_B3_CTL + 16 * iir_idx)) << 16) | (snd_soc_read(codec, (SITAR_A_CDC_IIR1_COEF_B4_CTL + 16 * iir_idx)) << 8) | (snd_soc_read(codec, (SITAR_A_CDC_IIR1_COEF_B5_CTL + 16 * iir_idx)))) & 0x3FFFFFFF; } static int sitar_get_iir_band_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; ucontrol->value.integer.value[0] = get_iir_band_coeff(codec, iir_idx, band_idx, 0); ucontrol->value.integer.value[1] = get_iir_band_coeff(codec, iir_idx, band_idx, 1); ucontrol->value.integer.value[2] = get_iir_band_coeff(codec, iir_idx, band_idx, 2); ucontrol->value.integer.value[3] = get_iir_band_coeff(codec, iir_idx, band_idx, 3); ucontrol->value.integer.value[4] = get_iir_band_coeff(codec, iir_idx, band_idx, 4); pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n" "%s: IIR #%d band #%d b1 = 0x%x\n" "%s: IIR #%d band #%d b2 = 0x%x\n" "%s: IIR #%d band #%d a1 = 0x%x\n" "%s: IIR #%d band #%d a2 = 0x%x\n", __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[0], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[1], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[2], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[3], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[4]); return 0; } static void set_iir_band_coeff(struct snd_soc_codec *codec, int iir_idx, int band_idx, int coeff_idx, uint32_t value) { /* Mask top 3 bits, 6-8 are reserved */ /* Update address manually each time */ snd_soc_write(codec, (SITAR_A_CDC_IIR1_COEF_B1_CTL + 16 * iir_idx), (band_idx * BAND_MAX + coeff_idx) & 0x1F); /* Mask top 2 bits, 7-8 are reserved */ snd_soc_write(codec, (SITAR_A_CDC_IIR1_COEF_B2_CTL + 16 * iir_idx), (value >> 24) & 0x3F); /* Isolate 8bits at a time */ snd_soc_write(codec, (SITAR_A_CDC_IIR1_COEF_B3_CTL + 16 * iir_idx), (value >> 16) & 0xFF); snd_soc_write(codec, (SITAR_A_CDC_IIR1_COEF_B4_CTL + 16 * iir_idx), (value >> 8) & 0xFF); snd_soc_write(codec, (SITAR_A_CDC_IIR1_COEF_B5_CTL + 16 * iir_idx), value & 0xFF); } static int sitar_put_iir_band_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; set_iir_band_coeff(codec, iir_idx, band_idx, 0, ucontrol->value.integer.value[0]); set_iir_band_coeff(codec, iir_idx, band_idx, 1, ucontrol->value.integer.value[1]); set_iir_band_coeff(codec, iir_idx, band_idx, 2, ucontrol->value.integer.value[2]); set_iir_band_coeff(codec, iir_idx, band_idx, 3, ucontrol->value.integer.value[3]); set_iir_band_coeff(codec, iir_idx, band_idx, 4, ucontrol->value.integer.value[4]); pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n" "%s: IIR #%d band #%d b1 = 0x%x\n" "%s: IIR #%d band #%d b2 = 0x%x\n" "%s: IIR #%d band #%d a1 = 0x%x\n" "%s: IIR #%d band #%d a2 = 0x%x\n", __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 0), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 1), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 2), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 3), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 4)); return 0; } static int sitar_compander_gain_offset( struct snd_soc_codec *codec, u32 enable, unsigned int pa_reg, unsigned int vol_reg, int mask, int event, struct comp_dgtl_gain_offset *gain_offset, int index) { unsigned int pa_gain = snd_soc_read(codec, pa_reg); unsigned int digital_vol = snd_soc_read(codec, vol_reg); int pa_mode = pa_gain & mask; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); pr_debug("%s: pa_gain(0x%x=0x%x)digital_vol(0x%x=0x%x)event(0x%x) index(%d)\n", __func__, pa_reg, pa_gain, vol_reg, digital_vol, event, index); if (((pa_gain & 0xF) + 1) > ARRAY_SIZE(comp_dgtl_gain) || (index >= ARRAY_SIZE(sitar->comp_gain_offset))) { pr_err("%s: Out of array boundary\n", __func__); return -EINVAL; } if (SND_SOC_DAPM_EVENT_ON(event) && (enable != 0)) { gain_offset->whole_db_gain = COMP_DIGITAL_DB_GAIN_APPLY( (digital_vol - comp_dgtl_gain[pa_gain & 0xF].whole_db_gain), comp_dgtl_gain[pa_gain & 0xF].half_db_gain); pr_debug("%s: listed whole_db_gain:0x%x, adjusted whole_db_gain:0x%x\n", __func__, comp_dgtl_gain[pa_gain & 0xF].whole_db_gain, gain_offset->whole_db_gain); gain_offset->half_db_gain = comp_dgtl_gain[pa_gain & 0xF].half_db_gain; sitar->comp_gain_offset[index] = digital_vol - gain_offset->whole_db_gain ; } if (SND_SOC_DAPM_EVENT_OFF(event) && (pa_mode == 0)) { gain_offset->whole_db_gain = digital_vol + sitar->comp_gain_offset[index]; pr_debug("%s: listed whole_db_gain:0x%x, adjusted whole_db_gain:0x%x\n", __func__, comp_dgtl_gain[pa_gain & 0xF].whole_db_gain, gain_offset->whole_db_gain); gain_offset->half_db_gain = 0; } pr_debug("%s: half_db_gain(%d)whole_db_gain(0x%x)comp_gain_offset[%d](%d)\n", __func__, gain_offset->half_db_gain, gain_offset->whole_db_gain, index, sitar->comp_gain_offset[index]); return 0; } static int sitar_config_gain_compander( struct snd_soc_codec *codec, u32 compander, u32 enable, int event) { int value = 0; int mask = 1 << 4; struct comp_dgtl_gain_offset gain_offset = {0, 0}; if (compander >= COMPANDER_MAX) { pr_err("%s: Error, invalid compander channel\n", __func__); return -EINVAL; } if ((enable == 0) || SND_SOC_DAPM_EVENT_OFF(event)) value = 1 << 4; if (compander == COMPANDER_1) { sitar_compander_gain_offset(codec, enable, SITAR_A_RX_HPH_L_GAIN, SITAR_A_CDC_RX2_VOL_CTL_B2_CTL, mask, event, &gain_offset, 1); snd_soc_update_bits(codec, SITAR_A_RX_HPH_L_GAIN, mask, value); snd_soc_update_bits(codec, SITAR_A_CDC_RX2_VOL_CTL_B2_CTL, 0xFF, gain_offset.whole_db_gain); snd_soc_update_bits(codec, SITAR_A_CDC_RX2_B6_CTL, 0x02, gain_offset.half_db_gain); sitar_compander_gain_offset(codec, enable, SITAR_A_RX_HPH_R_GAIN, SITAR_A_CDC_RX3_VOL_CTL_B2_CTL, mask, event, &gain_offset, 2); snd_soc_update_bits(codec, SITAR_A_RX_HPH_R_GAIN, mask, value); snd_soc_update_bits(codec, SITAR_A_CDC_RX3_VOL_CTL_B2_CTL, 0xFF, gain_offset.whole_db_gain); snd_soc_update_bits(codec, SITAR_A_CDC_RX3_B6_CTL, 0x02, gain_offset.half_db_gain); } else if (compander == COMPANDER_2) { sitar_compander_gain_offset(codec, enable, SITAR_A_RX_LINE_1_GAIN, SITAR_A_CDC_RX1_VOL_CTL_B2_CTL, mask, event, &gain_offset, 0); snd_soc_update_bits(codec, SITAR_A_RX_LINE_1_GAIN, mask, value); snd_soc_update_bits(codec, SITAR_A_RX_LINE_2_GAIN, mask, value); snd_soc_update_bits(codec, SITAR_A_CDC_RX1_VOL_CTL_B2_CTL, 0xFF, gain_offset.whole_db_gain); snd_soc_update_bits(codec, SITAR_A_CDC_RX1_B6_CTL, 0x02, gain_offset.half_db_gain); } return 0; } static int sitar_get_compander(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int comp = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); ucontrol->value.integer.value[0] = sitar->comp_enabled[comp]; return 0; } static int sitar_set_compander(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); int comp = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; int value = ucontrol->value.integer.value[0]; pr_debug("%s: compander #%d enable %d\n", __func__, comp + 1, value); if (value == sitar->comp_enabled[comp]) { pr_debug("%s: compander #%d enable %d no change\n", __func__, comp + 1, value); return 0; } sitar->comp_enabled[comp] = value; return 0; } static int sitar_config_compander(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); u32 rate = sitar->comp_fs[w->shift]; u32 value; pr_debug("%s: compander #%d enable %d event %d widget name %s\n", __func__, w->shift + 1, sitar->comp_enabled[w->shift], event , w->name); if (sitar->comp_enabled[w->shift] == 0) goto rtn; switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Update compander sample rate */ snd_soc_update_bits(codec, SITAR_A_CDC_COMP1_FS_CFG + w->shift * 8, 0x07, rate); /* Enable compander clock */ snd_soc_update_bits(codec, SITAR_A_CDC_CLK_RX_B2_CTL, 1 << w->shift, 1 << w->shift); /* Toggle compander reset bits */ snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_RESET_CTL, 1 << w->shift, 1 << w->shift); snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_RESET_CTL, 1 << w->shift, 0); sitar_config_gain_compander(codec, w->shift, 1, event); /* Compander enable -> 0x370/0x378 */ snd_soc_update_bits(codec, SITAR_A_CDC_COMP1_B1_CTL + w->shift * 8, 0x03, 0x03); /* Update the RMS meter resampling */ snd_soc_update_bits(codec, SITAR_A_CDC_COMP1_B3_CTL + w->shift * 8, 0xFF, 0x01); snd_soc_update_bits(codec, SITAR_A_CDC_COMP1_B2_CTL + w->shift * 8, 0xF0, 0x50); usleep_range(COMP_BRINGUP_WAIT_TIME, COMP_BRINGUP_WAIT_TIME); break; case SND_SOC_DAPM_POST_PMU: snd_soc_update_bits(codec, SITAR_A_CDC_CLSG_CTL, 0x11, 0x00); if (w->shift == COMPANDER_1) value = 0x22; else value = 0x11; snd_soc_write(codec, SITAR_A_CDC_CONN_CLSG_CTL, value); snd_soc_update_bits(codec, SITAR_A_CDC_COMP1_B2_CTL + w->shift * 8, 0x0F, comp_samp_params[rate].peak_det_timeout); snd_soc_update_bits(codec, SITAR_A_CDC_COMP1_B2_CTL + w->shift * 8, 0xF0, comp_samp_params[rate].rms_meter_div_fact); snd_soc_update_bits(codec, SITAR_A_CDC_COMP1_B3_CTL + w->shift * 8, 0xFF, comp_samp_params[rate].rms_meter_resamp_fact); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, SITAR_A_CDC_COMP1_B1_CTL + w->shift * 8, 0x03, 0x00); /* Toggle compander reset bits */ snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_RESET_CTL, 1 << w->shift, 1 << w->shift); snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_RESET_CTL, 1 << w->shift, 0); /* Disable compander clock */ snd_soc_update_bits(codec, SITAR_A_CDC_CLK_RX_B2_CTL, 1 << w->shift, 0); /* Restore the gain */ sitar_config_gain_compander(codec, w->shift, sitar->comp_enabled[w->shift], event); snd_soc_update_bits(codec, SITAR_A_CDC_CLSG_CTL, 0x11, 0x11); snd_soc_write(codec, SITAR_A_CDC_CONN_CLSG_CTL, 0x14); break; } rtn: return 0; } static int sitar_codec_dem_input_selection(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); pr_debug("%s: compander#1->enable(%d) compander#2->enable(%d) reg(0x%x = 0x%x) event(%d)\n", __func__, sitar->comp_enabled[COMPANDER_1], sitar->comp_enabled[COMPANDER_2], SITAR_A_CDC_RX1_B6_CTL + w->shift * 8, snd_soc_read(codec, SITAR_A_CDC_RX1_B6_CTL + w->shift * 8), event); switch (event) { case SND_SOC_DAPM_POST_PMU: if (sitar->comp_enabled[COMPANDER_1] || sitar->comp_enabled[COMPANDER_2]) snd_soc_update_bits(codec, SITAR_A_CDC_RX1_B6_CTL + w->shift * 8, 1 << 5, 0); else snd_soc_update_bits(codec, SITAR_A_CDC_RX1_B6_CTL + w->shift * 8, 1 << 5, 0x20); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, SITAR_A_CDC_RX1_B6_CTL + w->shift * 8, 1 << 5, 0); break; } return 0; } static const char * const sitar_ear_pa_gain_text[] = {"POS_6_DB", "POS_2_DB", "NEG_2P5_DB", "NEG_12_DB"}; static const struct soc_enum sitar_ear_pa_gain_enum[] = { SOC_ENUM_SINGLE_EXT(4, sitar_ear_pa_gain_text), }; /*cut of frequency for high pass filter*/ static const char *cf_text[] = { "MIN_3DB_4Hz", "MIN_3DB_75Hz", "MIN_3DB_150Hz" }; static const struct soc_enum cf_dec1_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_TX1_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_rxmix1_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_RX1_B4_CTL, 1, 3, cf_text); static const struct snd_kcontrol_new sitar_snd_controls[] = { SOC_ENUM_EXT("EAR PA Gain", sitar_ear_pa_gain_enum[0], sitar_pa_gain_get, sitar_pa_gain_put), SOC_SINGLE_TLV("LINEOUT1 Volume", SITAR_A_RX_LINE_1_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("LINEOUT2 Volume", SITAR_A_RX_LINE_2_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("HPHL Volume", SITAR_A_RX_HPH_L_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("HPHR Volume", SITAR_A_RX_HPH_R_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_S8_TLV("RX1 Digital Volume", SITAR_A_CDC_RX1_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX2 Digital Volume", SITAR_A_CDC_RX2_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX3 Digital Volume", SITAR_A_CDC_RX3_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC1 Volume", SITAR_A_CDC_TX1_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC2 Volume", SITAR_A_CDC_TX2_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC3 Volume", SITAR_A_CDC_TX3_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC4 Volume", SITAR_A_CDC_TX4_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP1 Volume", SITAR_A_CDC_IIR1_GAIN_B1_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP2 Volume", SITAR_A_CDC_IIR1_GAIN_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP3 Volume", SITAR_A_CDC_IIR1_GAIN_B3_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP4 Volume", SITAR_A_CDC_IIR1_GAIN_B4_CTL, -84, 40, digital_gain), SOC_SINGLE_TLV("ADC1 Volume", SITAR_A_TX_1_2_EN, 5, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC2 Volume", SITAR_A_TX_1_2_EN, 1, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC3 Volume", SITAR_A_TX_3_EN, 5, 3, 0, analog_gain), SOC_SINGLE_EXT("ANC Slot", SND_SOC_NOPM, 0, 0, 100, sitar_get_anc_slot, sitar_put_anc_slot), SOC_ENUM("TX1 HPF cut off", cf_dec1_enum), SOC_SINGLE("TX1 HPF Switch", SITAR_A_CDC_TX1_MUX_CTL, 3, 1, 0), SOC_SINGLE("RX1 HPF Switch", SITAR_A_CDC_RX1_B5_CTL, 2, 1, 0), SOC_ENUM("RX1 HPF cut off", cf_rxmix1_enum), SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0, sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0, sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0, sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0, sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0, sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band1", IIR2, BAND1, 1, 0, sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band2", IIR2, BAND2, 1, 0, sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band3", IIR2, BAND3, 1, 0, sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band4", IIR2, BAND4, 1, 0, sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band5", IIR2, BAND5, 1, 0, sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band1", IIR1, BAND1, 255, 0, 5, sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band2", IIR1, BAND2, 255, 0, 5, sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band3", IIR1, BAND3, 255, 0, 5, sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band4", IIR1, BAND4, 255, 0, 5, sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band5", IIR1, BAND5, 255, 0, 5, sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band1", IIR2, BAND1, 255, 0, 5, sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band2", IIR2, BAND2, 255, 0, 5, sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band3", IIR2, BAND3, 255, 0, 5, sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band4", IIR2, BAND4, 255, 0, 5, sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band5", IIR2, BAND5, 255, 0, 5, sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer), SOC_SINGLE_EXT("COMP1 Switch", SND_SOC_NOPM, COMPANDER_1, 1, 0, sitar_get_compander, sitar_set_compander), SOC_SINGLE_EXT("COMP2 Switch", SND_SOC_NOPM, COMPANDER_2, 1, 0, sitar_get_compander, sitar_set_compander), }; static const char *rx_mix1_text[] = { "ZERO", "SRC1", "SRC2", "IIR1", "IIR2", "RX1", "RX2", "RX3", "RX4", "RX5" }; static const char *rx_dac1_text[] = { "ZERO", "RX1", "RX2" }; static const char *rx_dac2_text[] = { "ZERO", "RX1", }; static const char *rx_dac3_text[] = { "ZERO", "RX1", "INV_RX1", "RX2" }; static const char *rx_dac4_text[] = { "ZERO", "ON" }; static const char *sb_tx1_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC1" }; static const char *sb_tx2_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC2" }; static const char *sb_tx3_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC3" }; static const char *sb_tx4_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC4" }; static const char *sb_tx5_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "DEC1", "DEC2", "DEC3", "DEC4" }; static const char *dec1_mux_text[] = { "ZERO", "DMIC1", "ADC1", "ADC2", "ADC3", "MBADC", "DMIC4", "ANC1_FB", }; static const char *dec2_mux_text[] = { "ZERO", "DMIC2", "ADC1", "ADC2", "ADC3", "MBADC", "DMIC3", "ANC2_FB", }; static const char *dec3_mux_text[] = { "ZERO", "DMIC3", "ADC1", "ADC2", "ADC3", "MBADC", "DMIC2", "DMIC4" }; static const char *dec4_mux_text[] = { "ZERO", "DMIC4", "ADC1", "ADC2", "ADC3", "DMIC3", "DMIC2", "DMIC1" }; static const char const *anc_mux_text[] = { "ZERO", "ADC1", "ADC2", "ADC3", "RSVD1", "RSVD2", "RSVD3", "MBADC", "RSVD4", "DMIC1", "DMIC2", "DMIC3", "DMIC4" }; static const char const *anc1_fb_mux_text[] = { "ZERO", "EAR_HPH_L", "EAR_LINE_1", }; static const char const *iir_inp1_text[] = { "ZERO", "DEC1", "DEC2", "DEC3", "DEC4", "ZERO", "ZERO", "ZERO", "ZERO", "ZERO", "ZERO", "RX1", "RX2", "RX3", "RX4", "RX5", }; static const struct soc_enum rx_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX1_B1_CTL, 0, 10, rx_mix1_text); static const struct soc_enum rx_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX1_B1_CTL, 4, 10, rx_mix1_text); static const struct soc_enum rx2_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX2_B1_CTL, 0, 10, rx_mix1_text); static const struct soc_enum rx2_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX2_B1_CTL, 4, 10, rx_mix1_text); static const struct soc_enum rx3_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX3_B1_CTL, 0, 10, rx_mix1_text); static const struct soc_enum rx3_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX3_B1_CTL, 4, 10, rx_mix1_text); static const struct soc_enum rx_dac1_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_TOP_RDAC_DOUT_CTL, 6, 3, rx_dac1_text); static const struct soc_enum rx_dac2_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_TOP_RDAC_DOUT_CTL, 4, 2, rx_dac2_text); static const struct soc_enum rx_dac3_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_TOP_RDAC_DOUT_CTL, 2, 4, rx_dac3_text); static const struct soc_enum rx_dac4_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_TOP_RDAC_DOUT_CTL, 0, 2, rx_dac4_text); static const struct soc_enum sb_tx5_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_SB_B5_CTL, 0, 9, sb_tx5_mux_text); static const struct soc_enum sb_tx4_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_SB_B4_CTL, 0, 9, sb_tx4_mux_text); static const struct soc_enum sb_tx3_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_SB_B3_CTL, 0, 9, sb_tx3_mux_text); static const struct soc_enum sb_tx2_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_SB_B2_CTL, 0, 9, sb_tx2_mux_text); static const struct soc_enum sb_tx1_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_SB_B1_CTL, 0, 9, sb_tx1_mux_text); static const struct soc_enum dec1_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_B1_CTL, 0, 8, dec1_mux_text); static const struct soc_enum dec2_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_B1_CTL, 3, 8, dec2_mux_text); static const struct soc_enum dec3_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_B2_CTL, 0, 8, dec3_mux_text); static const struct soc_enum dec4_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_B2_CTL, 3, 8, dec4_mux_text); static const struct soc_enum anc1_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_ANC_B1_CTL, 0, 13, anc_mux_text); static const struct soc_enum anc2_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_ANC_B1_CTL, 4, 13, anc_mux_text); static const struct soc_enum anc1_fb_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_ANC_B2_CTL, 0, 3, anc1_fb_mux_text); static const struct soc_enum iir1_inp1_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_EQ1_B1_CTL, 0, 16, iir_inp1_text); static const struct soc_enum iir2_inp1_mux_enum = SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_EQ2_B1_CTL, 0, 16, iir_inp1_text); static const struct snd_kcontrol_new rx_mix1_inp1_mux = SOC_DAPM_ENUM("RX1 MIX1 INP1 Mux", rx_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx_mix1_inp2_mux = SOC_DAPM_ENUM("RX1 MIX1 INP2 Mux", rx_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx2_mix1_inp1_mux = SOC_DAPM_ENUM("RX2 MIX1 INP1 Mux", rx2_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx2_mix1_inp2_mux = SOC_DAPM_ENUM("RX2 MIX1 INP2 Mux", rx2_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx3_mix1_inp1_mux = SOC_DAPM_ENUM("RX3 MIX1 INP1 Mux", rx3_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx3_mix1_inp2_mux = SOC_DAPM_ENUM("RX3 MIX1 INP2 Mux", rx3_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx_dac1_mux = SOC_DAPM_ENUM("RX DAC1 Mux", rx_dac1_enum); static const struct snd_kcontrol_new rx_dac2_mux = SOC_DAPM_ENUM("RX DAC2 Mux", rx_dac2_enum); static const struct snd_kcontrol_new rx_dac3_mux = SOC_DAPM_ENUM("RX DAC3 Mux", rx_dac3_enum); static const struct snd_kcontrol_new rx_dac4_mux = SOC_DAPM_ENUM("RX DAC4 Mux", rx_dac4_enum); static const struct snd_kcontrol_new sb_tx5_mux = SOC_DAPM_ENUM("SLIM TX5 MUX Mux", sb_tx5_mux_enum); static const struct snd_kcontrol_new sb_tx4_mux = SOC_DAPM_ENUM("SLIM TX4 MUX Mux", sb_tx4_mux_enum); static const struct snd_kcontrol_new sb_tx3_mux = SOC_DAPM_ENUM("SLIM TX3 MUX Mux", sb_tx3_mux_enum); static const struct snd_kcontrol_new sb_tx2_mux = SOC_DAPM_ENUM("SLIM TX2 MUX Mux", sb_tx2_mux_enum); static const struct snd_kcontrol_new sb_tx1_mux = SOC_DAPM_ENUM("SLIM TX1 MUX Mux", sb_tx1_mux_enum); static int wcd9304_put_dec_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *w = wlist->widgets[0]; struct snd_soc_codec *codec = w->codec; struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int dec_mux, decimator; char *dec_name = NULL; char *widget_name = NULL; char *temp; u16 tx_mux_ctl_reg; u8 adc_dmic_sel = 0x0; int ret = 0; if (ucontrol->value.enumerated.item[0] > e->max - 1) return -EINVAL; dec_mux = ucontrol->value.enumerated.item[0]; widget_name = kstrndup(w->name, 15, GFP_KERNEL); if (!widget_name) return -ENOMEM; temp = widget_name; dec_name = strsep(&widget_name, " "); widget_name = temp; if (!dec_name) { pr_err("%s: Invalid decimator = %s\n", __func__, w->name); ret = -EINVAL; goto out; } ret = kstrtouint(strpbrk(dec_name, "1234"), 10, &decimator); if (ret < 0) { pr_err("%s: Invalid decimator = %s\n", __func__, dec_name); ret = -EINVAL; goto out; } dev_dbg(w->dapm->dev, "%s(): widget = %s dec_name = %s decimator = %u"\ "dec_mux = %u\n", __func__, w->name, dec_name, decimator, dec_mux); switch (decimator) { case 1: case 2: if ((dec_mux == 1) || (dec_mux == 6)) adc_dmic_sel = ADC_DMIC_SEL_DMIC; else adc_dmic_sel = ADC_DMIC_SEL_ADC; break; case 3: if ((dec_mux == 1) || (dec_mux == 6) || (dec_mux == 7)) adc_dmic_sel = ADC_DMIC_SEL_DMIC; else adc_dmic_sel = ADC_DMIC_SEL_ADC; break; case 4: if ((dec_mux == 1) || (dec_mux == 5) || (dec_mux == 6) || (dec_mux == 7)) adc_dmic_sel = ADC_DMIC_SEL_DMIC; else adc_dmic_sel = ADC_DMIC_SEL_ADC; break; default: pr_err("%s: Invalid Decimator = %u\n", __func__, decimator); ret = -EINVAL; goto out; } tx_mux_ctl_reg = SITAR_A_CDC_TX1_MUX_CTL + 8 * (decimator - 1); snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x1, adc_dmic_sel); ret = snd_soc_dapm_put_enum_double(kcontrol, ucontrol); out: kfree(widget_name); return ret; } #define WCD9304_DEC_ENUM(xname, xenum) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_enum_double, \ .get = snd_soc_dapm_get_enum_double, \ .put = wcd9304_put_dec_enum, \ .private_value = (unsigned long)&xenum } static const struct snd_kcontrol_new dec1_mux = WCD9304_DEC_ENUM("DEC1 MUX Mux", dec1_mux_enum); static const struct snd_kcontrol_new dec2_mux = WCD9304_DEC_ENUM("DEC2 MUX Mux", dec2_mux_enum); static const struct snd_kcontrol_new dec3_mux = WCD9304_DEC_ENUM("DEC3 MUX Mux", dec3_mux_enum); static const struct snd_kcontrol_new dec4_mux = WCD9304_DEC_ENUM("DEC4 MUX Mux", dec4_mux_enum); static const struct snd_kcontrol_new iir1_inp1_mux = SOC_DAPM_ENUM("IIR1 INP1 Mux", iir1_inp1_mux_enum); static const struct snd_kcontrol_new iir2_inp1_mux = SOC_DAPM_ENUM("IIR2 INP1 Mux", iir2_inp1_mux_enum); static const struct snd_kcontrol_new anc1_mux = SOC_DAPM_ENUM("ANC1 MUX Mux", anc1_mux_enum); static const struct snd_kcontrol_new anc2_mux = SOC_DAPM_ENUM("ANC2 MUX Mux", anc2_mux_enum); static const struct snd_kcontrol_new anc1_fb_mux = SOC_DAPM_ENUM("ANC1 FB MUX Mux", anc1_fb_mux_enum); static const struct snd_kcontrol_new dac1_switch[] = { SOC_DAPM_SINGLE("Switch", SITAR_A_RX_EAR_EN, 5, 1, 0), }; static int slim_tx_mixer_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; ucontrol->value.integer.value[0] = widget->value; return 0; } static int slim_tx_mixer_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; struct snd_soc_codec *codec = widget->codec; struct sitar_priv *sitar_p = snd_soc_codec_get_drvdata(codec); struct wcd9xxx *core = dev_get_drvdata(codec->dev->parent); struct soc_multi_mixer_control *mixer = ((struct soc_multi_mixer_control *)kcontrol->private_value); u32 dai_id = widget->shift; u32 port_id = mixer->shift; u32 enable = ucontrol->value.integer.value[0]; mutex_lock(&codec->mutex); if (sitar_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) { if (dai_id != AIF1_CAP) { dev_err(codec->dev, "%s: invalid AIF for I2C mode\n", __func__); mutex_unlock(&codec->mutex); return -EINVAL; } } switch (dai_id) { case AIF1_CAP: if (enable && !(widget->value & 1 << port_id)) { if (wcd9xxx_tx_vport_validation( vport_check_table[dai_id], port_id, sitar_p->dai)) { dev_dbg(codec->dev, "%s: TX%u is used by other virtual port\n", __func__, port_id + 1); mutex_unlock(&codec->mutex); return 0; } widget->value |= 1 << port_id; list_add_tail(&core->tx_chs[port_id].list, &sitar_p->dai[dai_id].wcd9xxx_ch_list); } else if (!enable && (widget->value & 1 << port_id)) { widget->value &= ~(1<tx_chs[port_id].list); } else { if (enable) dev_dbg(codec->dev, "%s: TX%u port is used by this virtual port\n", __func__, port_id + 1); else dev_dbg(codec->dev, "%s: TX%u port is not used by this virtual port\n", __func__, port_id + 1); /* avoid update power function */ mutex_unlock(&codec->mutex); return 0; } break; default: pr_err("Unknown AIF %d\n", dai_id); mutex_unlock(&codec->mutex); return -EINVAL; } pr_debug("%s: name %s sname %s updated value %u shift %d\n", __func__, widget->name, widget->sname, widget->value, widget->shift); snd_soc_dapm_mixer_update_power(widget, kcontrol, enable); mutex_unlock(&codec->mutex); return 0; } static int slim_rx_mux_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; ucontrol->value.enumerated.item[0] = widget->value; return 0; } static const char * const slim_rx_mux_text[] = { "ZERO", "AIF1_PB" }; static int slim_rx_mux_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; struct snd_soc_codec *codec = widget->codec; struct sitar_priv *sitar_p = snd_soc_codec_get_drvdata(codec); struct wcd9xxx *core = dev_get_drvdata(codec->dev->parent); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; u32 port_id = widget->shift; widget->value = ucontrol->value.enumerated.item[0]; mutex_lock(&codec->mutex); if (sitar_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) { if (widget->value > 1) { dev_err(codec->dev, "%s: invalid AIF for I2C mode\n", __func__); goto err; } } switch (widget->value) { case 0: list_del_init(&core->rx_chs[port_id].list); break; case 1: if (wcd9xxx_rx_vport_validation(port_id + SITAR_RX_PORT_START_NUMBER, &sitar_p->dai[AIF1_PB].wcd9xxx_ch_list)) { dev_dbg(codec->dev, "%s: RX%u is used by current requesting AIF_PB itself\n", __func__, port_id + 1); goto rtn; } list_add_tail(&core->rx_chs[port_id].list, &sitar_p->dai[AIF1_PB].wcd9xxx_ch_list); break; break; default: pr_err("Unknown AIF %d\n", widget->value); goto err; } rtn: snd_soc_dapm_mux_update_power(widget, kcontrol, 1, widget->value, e); mutex_unlock(&codec->mutex); return 0; err: mutex_unlock(&codec->mutex); return -EINVAL; } static const struct soc_enum slim_rx_mux_enum = SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(slim_rx_mux_text), slim_rx_mux_text); static const struct snd_kcontrol_new sitar_aif_pb_mux[SITAR_RX_MAX] = { SOC_DAPM_ENUM_EXT("SLIM RX1 MUX", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put), SOC_DAPM_ENUM_EXT("SLIM RX2 MUX", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put), SOC_DAPM_ENUM_EXT("SLIM RX3 MUX", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put), SOC_DAPM_ENUM_EXT("SLIM RX4 MUX", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put), SOC_DAPM_ENUM_EXT("SLIM RX5 MUX", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put) }; static const struct snd_kcontrol_new sitar_aif_cap_mixer[SITAR_TX_MAX] = { SOC_SINGLE_EXT("SLIM TX1", SND_SOC_NOPM, SITAR_TX1, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX2", SND_SOC_NOPM, SITAR_TX2, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX3", SND_SOC_NOPM, SITAR_TX3, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX4", SND_SOC_NOPM, SITAR_TX4, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX5", SND_SOC_NOPM, SITAR_TX5, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), }; static void sitar_codec_enable_adc_block(struct snd_soc_codec *codec, int enable) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); pr_debug("%s %d\n", __func__, enable); if (enable) { sitar->adc_count++; snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_CTL, 0x02, 0x02); } else { sitar->adc_count--; if (!sitar->adc_count) { if (!sitar->mbhc_polling_active) snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_CTL, 0xE0, 0x0); } } } static int sitar_codec_enable_adc(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; u16 adc_reg; u8 init_bit_shift; pr_debug("%s %d\n", __func__, event); if (w->reg == SITAR_A_TX_1_2_EN) adc_reg = SITAR_A_TX_1_2_TEST_CTL; else if (w->reg == SITAR_A_TX_3_EN) adc_reg = SITAR_A_TX_3_TEST_CTL; else { pr_err("%s: Error, invalid adc register\n", __func__); return -EINVAL; } if (w->shift == 3) init_bit_shift = 6; else if (w->shift == 7) init_bit_shift = 7; else { pr_err("%s: Error, invalid init bit postion adc register\n", __func__); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: sitar_codec_enable_adc_block(codec, 1); snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift, 1 << init_bit_shift); break; case SND_SOC_DAPM_POST_PMU: snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift, 0x00); break; case SND_SOC_DAPM_POST_PMD: sitar_codec_enable_adc_block(codec, 0); break; } return 0; } static int sitar_lineout_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %s %d\n", __func__, w->name, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, w->reg, 0x40, 0x40); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, w->reg, 0x40, 0x00); break; } return 0; } static void sitar_enable_classg(struct snd_soc_codec *codec, bool enable) { if (enable) { snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_RESET_CTL, 0x10, 0x00); snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x07, 0x00); snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x08, 0x00); snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x10, 0x00); } else { snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_RESET_CTL, 0x10, 0x10); snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x07, 0x03); snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x08, 0x08); snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x10, 0x10); } } static bool sitar_is_hph_pa_on(struct snd_soc_codec *codec) { u8 hph_reg_val = 0; hph_reg_val = snd_soc_read(codec, SITAR_A_RX_HPH_CNP_EN); return (hph_reg_val & 0x30) ? true : false; } static bool sitar_is_line_pa_on(struct snd_soc_codec *codec) { u8 line_reg_val = 0; line_reg_val = snd_soc_read(codec, SITAR_A_RX_LINE_CNP_EN); return (line_reg_val & 0x03) ? true : false; } static int sitar_codec_enable_lineout(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); u16 lineout_gain_reg; pr_debug("%s %d %s comp2 enable %d\n", __func__, event, w->name, sitar->comp_enabled[COMPANDER_2]); if (sitar->comp_enabled[COMPANDER_2]) goto rtn; switch (w->shift) { case 0: lineout_gain_reg = SITAR_A_RX_LINE_1_GAIN; break; case 1: lineout_gain_reg = SITAR_A_RX_LINE_2_GAIN; break; default: pr_err("%s: Error, incorrect lineout register value\n", __func__); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: if (sitar_is_hph_pa_on(codec)) { snd_soc_update_bits(codec, SITAR_A_CDC_RX1_B6_CTL, 0x20, 0x00); sitar_enable_classg(codec, false); } else { snd_soc_update_bits(codec, SITAR_A_CDC_RX1_B6_CTL, 0x20, 0x20); sitar_enable_classg(codec, true); } snd_soc_update_bits(codec, lineout_gain_reg, 0x10, 0x10); break; case SND_SOC_DAPM_POST_PMU: pr_debug("%s: sleeping 32 ms after %s PA turn on\n", __func__, w->name); usleep_range(32000, 32000); break; case SND_SOC_DAPM_POST_PMD: if (sitar_is_hph_pa_on(codec)) sitar_enable_classg(codec, true); else sitar_enable_classg(codec, false); snd_soc_update_bits(codec, lineout_gain_reg, 0x10, 0x00); break; } rtn: return 0; } static int sitar_codec_enable_dmic(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; u16 tx_dmic_ctl_reg; u8 dmic_clk_sel, dmic_clk_en; unsigned int dmic; int ret; ret = kstrtouint(strpbrk(w->name, "1234"), 10, &dmic); if (ret < 0) { pr_err("%s: Invalid DMIC line on the codec\n", __func__); return -EINVAL; } switch (dmic) { case 1: case 2: dmic_clk_sel = 0x02; dmic_clk_en = 0x01; break; case 3: case 4: dmic_clk_sel = 0x08; dmic_clk_en = 0x04; break; break; default: pr_err("%s: Invalid DMIC Selection\n", __func__); return -EINVAL; } tx_dmic_ctl_reg = SITAR_A_CDC_TX1_DMIC_CTL + 8 * (dmic - 1); pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, SITAR_A_CDC_CLK_DMIC_CTL, dmic_clk_sel, dmic_clk_sel); snd_soc_update_bits(codec, tx_dmic_ctl_reg, 0x1, 0x1); snd_soc_update_bits(codec, SITAR_A_CDC_CLK_DMIC_CTL, dmic_clk_en, dmic_clk_en); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, SITAR_A_CDC_CLK_DMIC_CTL, dmic_clk_en, 0); break; } return 0; } static int sitar_codec_enable_anc(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; const char *filename; const struct firmware *fw; int i; int ret; int num_anc_slots; struct anc_header *anc_head; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); u32 anc_writes_size = 0; int anc_size_remaining; u32 *anc_ptr; u16 reg; u8 mask, val, old_val; pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Use the same firmware file as that of WCD9310, * since the register sequences are same for * WCD9310 and WCD9304 */ filename = "wcd9310/wcd9310_anc.bin"; ret = request_firmware(&fw, filename, codec->dev); if (ret != 0) { dev_err(codec->dev, "Failed to acquire ANC data: %d\n", ret); return -ENODEV; } if (fw->size < sizeof(struct anc_header)) { dev_err(codec->dev, "Not enough data\n"); release_firmware(fw); return -ENOMEM; } /* First number is the number of register writes */ anc_head = (struct anc_header *)(fw->data); anc_ptr = (u32 *)((u32)fw->data + sizeof(struct anc_header)); anc_size_remaining = fw->size - sizeof(struct anc_header); num_anc_slots = anc_head->num_anc_slots; if (sitar->anc_slot >= num_anc_slots) { dev_err(codec->dev, "Invalid ANC slot selected\n"); release_firmware(fw); return -EINVAL; } for (i = 0; i < num_anc_slots; i++) { if (anc_size_remaining < SITAR_PACKED_REG_SIZE) { dev_err(codec->dev, "Invalid register format\n"); release_firmware(fw); return -EINVAL; } anc_writes_size = (u32)(*anc_ptr); anc_size_remaining -= sizeof(u32); anc_ptr += 1; if (anc_writes_size * SITAR_PACKED_REG_SIZE > anc_size_remaining) { dev_err(codec->dev, "Invalid register format\n"); release_firmware(fw); return -ENOMEM; } if (sitar->anc_slot == i) break; anc_size_remaining -= (anc_writes_size * SITAR_PACKED_REG_SIZE); anc_ptr += anc_writes_size; } if (i == num_anc_slots) { dev_err(codec->dev, "Selected ANC slot not present\n"); release_firmware(fw); return -ENOMEM; } for (i = 0; i < anc_writes_size; i++) { SITAR_CODEC_UNPACK_ENTRY(anc_ptr[i], reg, mask, val); old_val = snd_soc_read(codec, reg); snd_soc_write(codec, reg, (old_val & ~mask) | (val & mask)); } release_firmware(fw); /* For Sitar, it is required to enable both Feed-forward * and Feed back clocks to enable ANC */ snd_soc_write(codec, SITAR_A_CDC_CLK_ANC_CLK_EN_CTL, 0x0F); break; case SND_SOC_DAPM_POST_PMD: snd_soc_write(codec, SITAR_A_CDC_CLK_ANC_RESET_CTL, 0xFF); snd_soc_write(codec, SITAR_A_CDC_CLK_ANC_CLK_EN_CTL, 0x00); break; } return 0; } static void sitar_codec_start_hs_polling(struct snd_soc_codec *codec) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); int mbhc_state = sitar->mbhc_state; pr_debug("%s: enter\n", __func__); if (!sitar->mbhc_polling_active) { pr_debug("Polling is not active, do not start polling\n"); return; } snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x84); if (!sitar->no_mic_headset_override) { if (mbhc_state == MBHC_STATE_POTENTIAL) { pr_debug("%s recovering MBHC state macine\n", __func__); sitar->mbhc_state = MBHC_STATE_POTENTIAL_RECOVERY; /* set to max button press threshold */ snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B2_CTL, 0x7F); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B1_CTL, 0xFF); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B4_CTL, 0x7F); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B3_CTL, 0xFF); /* set to max */ snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B6_CTL, 0x7F); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B5_CTL, 0xFF); } } snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x84); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x1); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x0); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x1); } static void sitar_codec_pause_hs_polling(struct snd_soc_codec *codec) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); pr_debug("%s: enter\n", __func__); if (!sitar->mbhc_polling_active) { pr_debug("polling not active, nothing to pause\n"); return; } snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); pr_debug("%s: leave\n", __func__); } static void sitar_codec_switch_cfilt_mode(struct snd_soc_codec *codec, int mode) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); u8 reg_mode_val, cur_mode_val; bool mbhc_was_polling = false; if (mode) reg_mode_val = SITAR_CFILT_FAST_MODE; else reg_mode_val = SITAR_CFILT_SLOW_MODE; cur_mode_val = snd_soc_read(codec, sitar->mbhc_bias_regs.cfilt_ctl) & 0x40; if (cur_mode_val != reg_mode_val) { SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock); if (sitar->mbhc_polling_active) { sitar_codec_pause_hs_polling(codec); mbhc_was_polling = true; } snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_ctl, 0x40, reg_mode_val); if (mbhc_was_polling) sitar_codec_start_hs_polling(codec); SITAR_RELEASE_LOCK(sitar->codec_resource_lock); pr_debug("%s: CFILT mode change (%x to %x)\n", __func__, cur_mode_val, reg_mode_val); } else { pr_err("%s: CFILT Value is already %x\n", __func__, cur_mode_val); } } static void sitar_codec_update_cfilt_usage(struct snd_soc_codec *codec, u8 cfilt_sel, int inc) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); u32 *cfilt_cnt_ptr = NULL; u16 micb_cfilt_reg; switch (cfilt_sel) { case SITAR_CFILT1_SEL: cfilt_cnt_ptr = &sitar->cfilt1_cnt; micb_cfilt_reg = SITAR_A_MICB_CFILT_1_CTL; break; case SITAR_CFILT2_SEL: cfilt_cnt_ptr = &sitar->cfilt2_cnt; micb_cfilt_reg = SITAR_A_MICB_CFILT_2_CTL; break; default: return; /* should not happen */ } if (inc) { if (!(*cfilt_cnt_ptr)++) { /* Switch CFILT to slow mode if MBHC CFILT being used */ if (cfilt_sel == sitar->mbhc_bias_regs.cfilt_sel) sitar_codec_switch_cfilt_mode(codec, 0); snd_soc_update_bits(codec, micb_cfilt_reg, 0x80, 0x80); } } else { /* check if count not zero, decrement * then check if zero, go ahead disable cfilter */ if ((*cfilt_cnt_ptr) && !--(*cfilt_cnt_ptr)) { snd_soc_update_bits(codec, micb_cfilt_reg, 0x80, 0); /* Switch CFILT to fast mode if MBHC CFILT being used */ if (cfilt_sel == sitar->mbhc_bias_regs.cfilt_sel) sitar_codec_switch_cfilt_mode(codec, 1); } } } static int sitar_find_k_value(unsigned int ldoh_v, unsigned int cfilt_mv) { int rc = -EINVAL; unsigned min_mv, max_mv; switch (ldoh_v) { case SITAR_LDOH_1P95_V: min_mv = 160; max_mv = 1800; break; case SITAR_LDOH_2P35_V: min_mv = 200; max_mv = 2200; break; case SITAR_LDOH_2P75_V: min_mv = 240; max_mv = 2600; break; case SITAR_LDOH_2P85_V: min_mv = 250; max_mv = 2700; break; default: goto done; } if (cfilt_mv < min_mv || cfilt_mv > max_mv) goto done; for (rc = 4; rc <= 44; rc++) { min_mv = max_mv * (rc) / 44; if (min_mv >= cfilt_mv) { rc -= 4; break; } } done: return rc; } static bool sitar_is_hph_dac_on(struct snd_soc_codec *codec, int left) { u8 hph_reg_val = 0; if (left) hph_reg_val = snd_soc_read(codec, SITAR_A_RX_HPH_L_DAC_CTL); else hph_reg_val = snd_soc_read(codec, SITAR_A_RX_HPH_R_DAC_CTL); return (hph_reg_val & 0xC0) ? true : false; } static void sitar_codec_switch_micbias(struct snd_soc_codec *codec, int vddio_switch) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); int cfilt_k_val; bool mbhc_was_polling = false; switch (vddio_switch) { case 1: if (sitar->mbhc_micbias_switched == 0 && sitar->mbhc_polling_active) { sitar_codec_pause_hs_polling(codec); /* Enable Mic Bias switch to VDDIO */ sitar->cfilt_k_value = snd_soc_read(codec, sitar->mbhc_bias_regs.cfilt_val); cfilt_k_val = sitar_find_k_value( sitar->pdata->micbias.ldoh_v, 1800); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_val, 0xFC, (cfilt_k_val << 2)); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.mbhc_reg, 0x80, 0x80); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.mbhc_reg, 0x10, 0x00); sitar_codec_start_hs_polling(codec); sitar->mbhc_micbias_switched = true; pr_debug("%s: Enabled MBHC Mic bias to VDDIO Switch\n", __func__); } break; case 0: if (sitar->mbhc_micbias_switched) { if (sitar->mbhc_polling_active) { sitar_codec_pause_hs_polling(codec); mbhc_was_polling = true; } /* Disable Mic Bias switch to VDDIO */ if (sitar->cfilt_k_value != 0) snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_val, 0XFC, sitar->cfilt_k_value); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.mbhc_reg, 0x80, 0x00); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.mbhc_reg, 0x10, 0x00); if (mbhc_was_polling) sitar_codec_start_hs_polling(codec); sitar->mbhc_micbias_switched = false; pr_debug("%s: Disabled MBHC Mic bias to VDDIO Switch\n", __func__); } break; } } static int sitar_codec_enable_micbias(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); u16 micb_int_reg; int micb_line; u8 cfilt_sel_val = 0; char *internal1_text = "Internal1"; char *internal2_text = "Internal2"; pr_debug("%s %d\n", __func__, event); switch (w->reg) { case SITAR_A_MICB_1_CTL: micb_int_reg = SITAR_A_MICB_1_INT_RBIAS; cfilt_sel_val = sitar->pdata->micbias.bias1_cfilt_sel; micb_line = SITAR_MICBIAS1; break; case SITAR_A_MICB_2_CTL: micb_int_reg = SITAR_A_MICB_2_INT_RBIAS; cfilt_sel_val = sitar->pdata->micbias.bias2_cfilt_sel; micb_line = SITAR_MICBIAS2; break; default: pr_err("%s: Error, invalid micbias register\n", __func__); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Decide whether to switch the micbias for MBHC */ if (w->reg == sitar->mbhc_bias_regs.ctl_reg) { SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock); sitar_codec_switch_micbias(codec, 0); SITAR_RELEASE_LOCK(sitar->codec_resource_lock); } snd_soc_update_bits(codec, w->reg, 0x1E, 0x00); sitar_codec_update_cfilt_usage(codec, cfilt_sel_val, 1); if (strnstr(w->name, internal1_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0xFF, 0xA4); else if (strnstr(w->name, internal2_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x1C, 0x1C); break; case SND_SOC_DAPM_POST_PMU: usleep_range(20000, 20000); if (sitar->mbhc_polling_active && sitar->mbhc_cfg.micbias == micb_line) { SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock); sitar_codec_pause_hs_polling(codec); sitar_codec_start_hs_polling(codec); SITAR_RELEASE_LOCK(sitar->codec_resource_lock); } break; case SND_SOC_DAPM_POST_PMD: if ((w->reg == sitar->mbhc_bias_regs.ctl_reg) && sitar_is_hph_pa_on(codec)) sitar_codec_switch_micbias(codec, 1); if (strnstr(w->name, internal1_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x80, 0x00); else if (strnstr(w->name, internal2_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x10, 0x00); sitar_codec_update_cfilt_usage(codec, cfilt_sel_val, 0); break; } return 0; } static void tx_hpf_corner_freq_callback(struct work_struct *work) { struct delayed_work *hpf_delayed_work; struct hpf_work *hpf_work; struct sitar_priv *sitar; struct snd_soc_codec *codec; u16 tx_mux_ctl_reg; u8 hpf_cut_of_freq; hpf_delayed_work = to_delayed_work(work); hpf_work = container_of(hpf_delayed_work, struct hpf_work, dwork); sitar = hpf_work->sitar; codec = hpf_work->sitar->codec; hpf_cut_of_freq = hpf_work->tx_hpf_cut_of_freq; tx_mux_ctl_reg = SITAR_A_CDC_TX1_MUX_CTL + (hpf_work->decimator - 1) * 8; pr_debug("%s(): decimator %u hpf_cut_of_freq 0x%x\n", __func__, hpf_work->decimator, (unsigned int)hpf_cut_of_freq); snd_soc_update_bits(codec, tx_mux_ctl_reg, CUT_OF_FREQ_MASK, hpf_cut_of_freq << 4); } static int sitar_codec_enable_dec(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; u16 dec_reset_reg, gain_reg, tx_vol_ctl_reg, tx_mux_ctl_reg; unsigned int decimator; char *dec_name = NULL; char *widget_name = NULL; char *temp; int ret = 0; u8 dec_hpf_cut_of_freq, current_gain; pr_debug("%s %d\n", __func__, event); widget_name = kstrndup(w->name, 15, GFP_KERNEL); if (!widget_name) return -ENOMEM; temp = widget_name; dec_name = strsep(&widget_name, " "); widget_name = temp; if (!dec_name) { pr_err("%s: Invalid decimator = %s\n", __func__, w->name); ret = -EINVAL; goto out; } ret = kstrtouint(strpbrk(dec_name, "1234"), 10, &decimator); if (ret < 0) { pr_err("%s: Invalid decimator = %s\n", __func__, dec_name); ret = -EINVAL; goto out; } pr_debug("%s(): widget = %s dec_name = %s decimator = %u\n", __func__, w->name, dec_name, decimator); if (w->reg == SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL) dec_reset_reg = SITAR_A_CDC_CLK_TX_RESET_B1_CTL; else { pr_err("%s: Error, incorrect dec\n", __func__); ret = EINVAL; goto out; } tx_vol_ctl_reg = SITAR_A_CDC_TX1_VOL_CTL_CFG + 8 * (decimator - 1); tx_mux_ctl_reg = SITAR_A_CDC_TX1_MUX_CTL + 8 * (decimator - 1); switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Enable TX Digital Mute */ snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01); snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 1 << w->shift); snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 0x0); dec_hpf_cut_of_freq = snd_soc_read(codec, tx_mux_ctl_reg); dec_hpf_cut_of_freq = (dec_hpf_cut_of_freq & CUT_OF_FREQ_MASK) >> 4; tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq = dec_hpf_cut_of_freq; if ((dec_hpf_cut_of_freq != CF_MIN_3DB_150HZ)) { /* Set cut off freq to CF_MIN_3DB_150HZ (0x01) */ snd_soc_update_bits(codec, tx_mux_ctl_reg, CUT_OF_FREQ_MASK, CF_MIN_3DB_150HZ << 4); } /* enable HPF */ snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x00); break; case SND_SOC_DAPM_POST_PMU: /* Disable TX Digital Mute */ snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x00); if (tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq != CF_MIN_3DB_150HZ) { schedule_delayed_work(&tx_hpf_work[decimator - 1].dwork, msecs_to_jiffies(300)); } /* Reprogram the digital gain after power up of Decimator */ gain_reg = SITAR_A_CDC_TX1_VOL_CTL_GAIN + (8 * w->shift); current_gain = snd_soc_read(codec, gain_reg); snd_soc_write(codec, gain_reg, current_gain); break; case SND_SOC_DAPM_PRE_PMD: /* Enable Digital Mute, Cancel possibly scheduled work */ snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01); cancel_delayed_work_sync(&tx_hpf_work[decimator - 1].dwork); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x08); snd_soc_update_bits(codec, tx_mux_ctl_reg, CUT_OF_FREQ_MASK, (tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq) << 4); break; } out: kfree(widget_name); return ret; } static int sitar_codec_reset_interpolator(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; u16 gain_reg; u8 current_gain; pr_debug("%s %d %s\n", __func__, event, w->name); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, SITAR_A_CDC_CLK_RX_RESET_CTL, 1 << w->shift, 1 << w->shift); snd_soc_update_bits(codec, SITAR_A_CDC_CLK_RX_RESET_CTL, 1 << w->shift, 0x0); break; case SND_SOC_DAPM_POST_PMU: /* Reprogram gain after power up interpolator */ gain_reg = SITAR_A_CDC_RX1_VOL_CTL_B2_CTL + (8 * w->shift); current_gain = snd_soc_read(codec, gain_reg); snd_soc_write(codec, gain_reg, current_gain); } return 0; } static int sitar_codec_enable_ldo_h(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { switch (event) { case SND_SOC_DAPM_POST_PMU: case SND_SOC_DAPM_POST_PMD: usleep_range(1000, 1000); pr_debug("LDO_H\n"); break; } return 0; } static void sitar_enable_rx_bias(struct snd_soc_codec *codec, u32 enable) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); if (enable) { sitar->rx_bias_count++; if (sitar->rx_bias_count == 1) snd_soc_update_bits(codec, SITAR_A_RX_COM_BIAS, 0x80, 0x80); } else { sitar->rx_bias_count--; if (!sitar->rx_bias_count) snd_soc_update_bits(codec, SITAR_A_RX_COM_BIAS, 0x80, 0x00); } } static int sitar_codec_enable_rx_bias(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: sitar_enable_rx_bias(codec, 1); break; case SND_SOC_DAPM_POST_PMD: sitar_enable_rx_bias(codec, 0); break; } return 0; } static int sitar_hph_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); pr_debug("%s %s %d comp#1 enable %d\n", __func__, w->name, event, sitar->comp_enabled[COMPANDER_1]); switch (event) { case SND_SOC_DAPM_PRE_PMU: if (w->reg == SITAR_A_RX_HPH_L_DAC_CTL) { if (!sitar->comp_enabled[COMPANDER_1]) { snd_soc_update_bits(codec, SITAR_A_CDC_CONN_CLSG_CTL, 0x30, 0x20); snd_soc_update_bits(codec, SITAR_A_CDC_CONN_CLSG_CTL, 0x0C, 0x08); } } snd_soc_update_bits(codec, w->reg, 0x40, 0x40); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, w->reg, 0x40, 0x00); if (w->reg == SITAR_A_RX_HPH_L_DAC_CTL) { snd_soc_update_bits(codec, SITAR_A_CDC_CONN_CLSG_CTL, 0x30, 0x10); snd_soc_update_bits(codec, SITAR_A_CDC_CONN_CLSG_CTL, 0x0C, 0x04); } break; } return 0; } static void sitar_snd_soc_jack_report(struct sitar_priv *sitar, struct snd_soc_jack *jack, int status, int mask) { /* XXX: wake_lock_timeout()? */ snd_soc_jack_report_no_dapm(jack, status, mask); } static void hphocp_off_report(struct sitar_priv *sitar, u32 jack_status, int irq) { struct snd_soc_codec *codec; if (!sitar) { pr_err("%s: Bad sitar private data\n", __func__); return; } pr_info("%s: clear ocp status %x\n", __func__, jack_status); codec = sitar->codec; if (sitar->hph_status & jack_status) { sitar->hph_status &= ~jack_status; if (sitar->mbhc_cfg.headset_jack) sitar_snd_soc_jack_report(sitar, sitar->mbhc_cfg.headset_jack, sitar->hph_status, SITAR_JACK_MASK); snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10, 0x00); snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10, 0x10); /* reset retry counter as PA is turned off signifying * start of new OCP detection session */ if (WCD9XXX_IRQ_HPH_PA_OCPL_FAULT) sitar->hphlocp_cnt = 0; else sitar->hphrocp_cnt = 0; wcd9xxx_enable_irq(codec->control_data, irq); } } static void hphlocp_off_report(struct work_struct *work) { struct sitar_priv *sitar = container_of(work, struct sitar_priv, hphlocp_work); hphocp_off_report(sitar, SND_JACK_OC_HPHL, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); } static void hphrocp_off_report(struct work_struct *work) { struct sitar_priv *sitar = container_of(work, struct sitar_priv, hphrocp_work); hphocp_off_report(sitar, SND_JACK_OC_HPHR, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); } static int sitar_hph_pa_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); u8 mbhc_micb_ctl_val; pr_debug("%s: event = %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: mbhc_micb_ctl_val = snd_soc_read(codec, sitar->mbhc_bias_regs.ctl_reg); if (!(mbhc_micb_ctl_val & 0x80)) { SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock); sitar_codec_switch_micbias(codec, 1); SITAR_RELEASE_LOCK(sitar->codec_resource_lock); } if (sitar_is_line_pa_on(codec)) sitar_enable_classg(codec, false); else sitar_enable_classg(codec, true); break; case SND_SOC_DAPM_POST_PMD: /* schedule work is required because at the time HPH PA DAPM * event callback is called by DAPM framework, CODEC dapm mutex * would have been locked while snd_soc_jack_report also * attempts to acquire same lock. */ if (w->shift == 5) { clear_bit(SITAR_HPHL_PA_OFF_ACK, &sitar->hph_pa_dac_state); clear_bit(SITAR_HPHL_DAC_OFF_ACK, &sitar->hph_pa_dac_state); if (sitar->hph_status & SND_JACK_OC_HPHL) schedule_work(&sitar->hphlocp_work); } else if (w->shift == 4) { clear_bit(SITAR_HPHR_PA_OFF_ACK, &sitar->hph_pa_dac_state); clear_bit(SITAR_HPHR_DAC_OFF_ACK, &sitar->hph_pa_dac_state); if (sitar->hph_status & SND_JACK_OC_HPHR) schedule_work(&sitar->hphrocp_work); } SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock); sitar_codec_switch_micbias(codec, 0); SITAR_RELEASE_LOCK(sitar->codec_resource_lock); pr_debug("%s: sleep 10 ms after %s PA disable.\n", __func__, w->name); usleep_range(10000, 10000); if (sitar_is_line_pa_on(codec)) sitar_enable_classg(codec, true); else sitar_enable_classg(codec, false); break; } return 0; } static void sitar_get_mbhc_micbias_regs(struct snd_soc_codec *codec, struct mbhc_micbias_regs *micbias_regs) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); unsigned int cfilt; switch (sitar->mbhc_cfg.micbias) { case SITAR_MICBIAS1: cfilt = sitar->pdata->micbias.bias1_cfilt_sel; micbias_regs->mbhc_reg = SITAR_A_MICB_1_MBHC; micbias_regs->int_rbias = SITAR_A_MICB_1_INT_RBIAS; micbias_regs->ctl_reg = SITAR_A_MICB_1_CTL; break; case SITAR_MICBIAS2: cfilt = sitar->pdata->micbias.bias2_cfilt_sel; micbias_regs->mbhc_reg = SITAR_A_MICB_2_MBHC; micbias_regs->int_rbias = SITAR_A_MICB_2_INT_RBIAS; micbias_regs->ctl_reg = SITAR_A_MICB_2_CTL; break; default: /* Should never reach here */ pr_err("%s: Invalid MIC BIAS for MBHC\n", __func__); return; } micbias_regs->cfilt_sel = cfilt; switch (cfilt) { case SITAR_CFILT1_SEL: micbias_regs->cfilt_val = SITAR_A_MICB_CFILT_1_VAL; micbias_regs->cfilt_ctl = SITAR_A_MICB_CFILT_1_CTL; sitar->mbhc_data.micb_mv = sitar->pdata->micbias.cfilt1_mv; break; case SITAR_CFILT2_SEL: micbias_regs->cfilt_val = SITAR_A_MICB_CFILT_2_VAL; micbias_regs->cfilt_ctl = SITAR_A_MICB_CFILT_2_CTL; sitar->mbhc_data.micb_mv = sitar->pdata->micbias.cfilt2_mv; break; } } static int sitar_codec_enable_charge_pump(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_POST_PMU: snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_CTL, 0x01, 0x01); snd_soc_update_bits(codec, SITAR_A_CDC_CLSG_CTL, 0x08, 0x08); usleep_range(200, 200); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_update_bits(codec, SITAR_A_CDC_CLSG_CTL, 0x08, 0x00); /* * This delay is for the class G controller to settle down * after turn OFF. The delay is as per the hardware spec for * the codec */ usleep_range(20, 20); snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_CTL, 0x01, 0x00); break; } return 0; } static int sitar_ear_pa_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { switch (event) { case SND_SOC_DAPM_POST_PMU: pr_debug("%s: Sleeping 20ms after enabling EAR PA\n", __func__); msleep(20); break; case SND_SOC_DAPM_POST_PMD: pr_debug("%s: Sleeping 20ms after disabling EAR PA\n", __func__); msleep(20); break; } return 0; } static const struct snd_soc_dapm_widget sitar_dapm_i2s_widgets[] = { SND_SOC_DAPM_SUPPLY("RX_I2S_CLK", SITAR_A_CDC_CLK_RX_I2S_CTL, 4, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("TX_I2S_CLK", SITAR_A_CDC_CLK_TX_I2S_CTL, 4, 0, NULL, 0), }; static const struct snd_soc_dapm_widget sitar_dapm_widgets[] = { /*RX stuff */ SND_SOC_DAPM_OUTPUT("EAR"), SND_SOC_DAPM_PGA_E("EAR PA", SITAR_A_RX_EAR_EN, 4, 0, NULL, 0, sitar_ear_pa_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER("DAC1", SITAR_A_RX_EAR_EN, 6, 0, dac1_switch, ARRAY_SIZE(dac1_switch)), SND_SOC_DAPM_SUPPLY("EAR DRIVER", SITAR_A_RX_EAR_EN, 3, 0, NULL, 0), SND_SOC_DAPM_AIF_IN_E("AIF1 PB", "AIF1 Playback", 0, SND_SOC_NOPM, AIF1_PB, 0, sitar_codec_enable_slimrx, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX("SLIM RX1 MUX", SND_SOC_NOPM, SITAR_RX1, 0, &sitar_aif_pb_mux[SITAR_RX1]), SND_SOC_DAPM_MUX("SLIM RX2 MUX", SND_SOC_NOPM, SITAR_RX2, 0, &sitar_aif_pb_mux[SITAR_RX2]), SND_SOC_DAPM_MUX("SLIM RX3 MUX", SND_SOC_NOPM, SITAR_RX3, 0, &sitar_aif_pb_mux[SITAR_RX3]), SND_SOC_DAPM_MUX("SLIM RX4 MUX", SND_SOC_NOPM, SITAR_RX4, 0, &sitar_aif_pb_mux[SITAR_RX4]), SND_SOC_DAPM_MUX("SLIM RX5 MUX", SND_SOC_NOPM, SITAR_RX5, 0, &sitar_aif_pb_mux[SITAR_RX5]), SND_SOC_DAPM_MIXER("SLIM RX1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SLIM RX2", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SLIM RX3", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SLIM RX4", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SLIM RX5", SND_SOC_NOPM, 0, 0, NULL, 0), /* Headphone */ SND_SOC_DAPM_OUTPUT("HEADPHONE"), SND_SOC_DAPM_PGA_E("HPHL", SITAR_A_RX_HPH_CNP_EN, 5, 0, NULL, 0, sitar_hph_pa_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("HPHR", SITAR_A_RX_HPH_CNP_EN, 4, 0, NULL, 0, sitar_hph_pa_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_DAC_E("HPHL DAC", NULL, SITAR_A_RX_HPH_L_DAC_CTL, 7, 0, sitar_hph_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_DAC_E("HPHR DAC", NULL, SITAR_A_RX_HPH_R_DAC_CTL, 7, 0, sitar_hph_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* Speaker */ SND_SOC_DAPM_OUTPUT("LINEOUT1"), SND_SOC_DAPM_OUTPUT("LINEOUT2"), SND_SOC_DAPM_DAC_E("LINEOUT1 DAC", NULL, SITAR_A_RX_LINE_1_DAC_CTL, 7, 0 , sitar_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_DAC_E("LINEOUT2 DAC", NULL, SITAR_A_RX_LINE_2_DAC_CTL, 7, 0 , sitar_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("LINEOUT1 PA", SITAR_A_RX_LINE_CNP_EN, 0, 0, NULL, 0, sitar_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("LINEOUT2 PA", SITAR_A_RX_LINE_CNP_EN, 1, 0, NULL, 0, sitar_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER_E("RX1 MIX1", SITAR_A_CDC_CLK_RX_B1_CTL, 0, 0, NULL, 0, sitar_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MIXER_E("RX2 MIX1", SITAR_A_CDC_CLK_RX_B1_CTL, 1, 0, NULL, 0, sitar_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MIXER_E("RX3 MIX1", SITAR_A_CDC_CLK_RX_B1_CTL, 2, 0, NULL, 0, sitar_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MUX("DAC1 MUX", SND_SOC_NOPM, 0, 0, &rx_dac1_mux), SND_SOC_DAPM_MUX("DAC2 MUX", SND_SOC_NOPM, 0, 0, &rx_dac2_mux), SND_SOC_DAPM_MUX("DAC3 MUX", SND_SOC_NOPM, 0, 0, &rx_dac3_mux), SND_SOC_DAPM_MUX("DAC4 MUX", SND_SOC_NOPM, 0, 0, &rx_dac4_mux), SND_SOC_DAPM_MIXER_E("RX1 CHAIN", SND_SOC_NOPM, 0, 0, NULL, 0, sitar_codec_dem_input_selection, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD), SND_SOC_DAPM_MIXER_E("RX2 CHAIN", SND_SOC_NOPM, 1, 0, NULL, 0, sitar_codec_dem_input_selection, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD), SND_SOC_DAPM_MIXER_E("RX3 CHAIN", SND_SOC_NOPM, 2, 0, NULL, 0, sitar_codec_dem_input_selection, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD), SND_SOC_DAPM_MUX("RX1 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX1 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp2_mux), SND_SOC_DAPM_SUPPLY("CP", SITAR_A_CP_EN, 0, 0, sitar_codec_enable_charge_pump, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_SUPPLY("RX_BIAS", SND_SOC_NOPM, 0, 0, sitar_codec_enable_rx_bias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("LDO_H", SITAR_A_LDO_H_MODE_1, 7, 0, sitar_codec_enable_ldo_h, SND_SOC_DAPM_POST_PMU), /* TX */ SND_SOC_DAPM_SUPPLY("CDC_CONN", SITAR_A_CDC_CLK_OTHR_CTL, 2, 0, NULL, 0), SND_SOC_DAPM_INPUT("AMIC1"), SND_SOC_DAPM_INPUT("AMIC2"), SND_SOC_DAPM_INPUT("AMIC3"), SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 External", SITAR_A_MICB_1_CTL, 7, 0, sitar_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 Internal1", SITAR_A_MICB_1_CTL, 7, 0, sitar_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 External", SITAR_A_MICB_2_CTL, 7, 0, sitar_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal1", SITAR_A_MICB_2_CTL, 7, 0, sitar_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal2", SITAR_A_MICB_2_CTL, 7, 0, sitar_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("ADC1", NULL, SITAR_A_TX_1_2_EN, 7, 0, sitar_codec_enable_adc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("ADC2", NULL, SITAR_A_TX_1_2_EN, 3, 0, sitar_codec_enable_adc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("ADC3", NULL, SITAR_A_TX_3_EN, 7, 0, sitar_codec_enable_adc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC1 MUX", SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL, 0, 0, &dec1_mux, sitar_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC2 MUX", SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL, 1, 0, &dec2_mux, sitar_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC3 MUX", SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL, 2, 0, &dec3_mux, sitar_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC4 MUX", SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL, 3, 0, &dec4_mux, sitar_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX("ANC1 MUX", SND_SOC_NOPM, 0, 0, &anc1_mux), SND_SOC_DAPM_MUX("ANC2 MUX", SND_SOC_NOPM, 0, 0, &anc2_mux), SND_SOC_DAPM_MIXER_E("ANC", SND_SOC_NOPM, 0, 0, NULL, 0, sitar_codec_enable_anc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX("ANC1 FB MUX", SND_SOC_NOPM, 0, 0, &anc1_fb_mux), SND_SOC_DAPM_AIF_OUT_E("AIF1 CAP", "AIF1 Capture", 0, SND_SOC_NOPM, AIF1_CAP, 0, sitar_codec_enable_slimtx, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER("AIF1_CAP Mixer", SND_SOC_NOPM, AIF1_CAP, 0, sitar_aif_cap_mixer, ARRAY_SIZE(sitar_aif_cap_mixer)), SND_SOC_DAPM_MUX("SLIM TX1 MUX", SND_SOC_NOPM, SITAR_TX1, 0, &sb_tx1_mux), SND_SOC_DAPM_MUX("SLIM TX2 MUX", SND_SOC_NOPM, SITAR_TX2, 0, &sb_tx2_mux), SND_SOC_DAPM_MUX("SLIM TX3 MUX", SND_SOC_NOPM, SITAR_TX3, 0, &sb_tx3_mux), SND_SOC_DAPM_MUX("SLIM TX4 MUX", SND_SOC_NOPM, SITAR_TX3, 0, &sb_tx4_mux), SND_SOC_DAPM_MUX("SLIM TX5 MUX", SND_SOC_NOPM, SITAR_TX3, 0, &sb_tx5_mux), SND_SOC_DAPM_AIF_OUT_E("SLIM TX5", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0, sitar_codec_enable_slimtx, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), /* Digital Mic Inputs */ SND_SOC_DAPM_ADC_E("DMIC1", NULL, SND_SOC_NOPM, 0, 0, sitar_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC2", NULL, SND_SOC_NOPM, 0, 0, sitar_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC3", NULL, SND_SOC_NOPM, 0, 0, sitar_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC4", NULL, SND_SOC_NOPM, 0, 0, sitar_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("COMP1_CLK", SND_SOC_NOPM, COMPANDER_1, 0, sitar_config_compander, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("COMP2_CLK", SND_SOC_NOPM, COMPANDER_2, 0, sitar_config_compander, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), /* Sidetone */ SND_SOC_DAPM_MUX("IIR1 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir1_inp1_mux), SND_SOC_DAPM_PGA("IIR1", SITAR_A_CDC_CLK_SD_CTL, 0, 0, NULL, 0), SND_SOC_DAPM_MUX("IIR2 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir2_inp1_mux), SND_SOC_DAPM_PGA("IIR2", SITAR_A_CDC_CLK_SD_CTL, 1, 0, NULL, 0), }; static const struct snd_soc_dapm_route audio_i2s_map[] = { {"RX_I2S_CLK", NULL, "CP"}, {"RX_I2S_CLK", NULL, "CDC_CONN"}, {"SLIM RX1", NULL, "RX_I2S_CLK"}, {"SLIM RX2", NULL, "RX_I2S_CLK"}, {"SLIM RX3", NULL, "RX_I2S_CLK"}, {"SLIM RX4", NULL, "RX_I2S_CLK"}, {"SLIM TX1", NULL, "TX_I2S_CLK"}, {"SLIM TX2", NULL, "TX_I2S_CLK"}, {"SLIM TX3", NULL, "TX_I2S_CLK"}, {"SLIM TX4", NULL, "TX_I2S_CLK"}, }; #define SLIM_MIXER(x) (\ {x, "SLIM TX1", "SLIM TX1 MUX"}, \ {x, "SLIM TX2", "SLIM TX2 MUX"}, \ {x, "SLIM TX3", "SLIM TX3 MUX"}, \ {x, "SLIM TX4", "SLIM TX4 MUX"}) #define SLIM_MUX(x, y) (\ {"SLIM RX1 MUX", x, y}, \ {"SLIM RX2 MUX", x, y}, \ {"SLIM RX3 MUX", x, y}, \ {"SLIM RX4 MUX", x, y}) static const struct snd_soc_dapm_route audio_map[] = { /* Earpiece (RX MIX1) */ {"EAR", NULL, "EAR PA"}, {"EAR PA", "NULL", "DAC1"}, {"DAC1", "Switch", "DAC1 MUX"}, {"DAC1", NULL, "CP"}, {"DAC1", NULL, "EAR DRIVER"}, {"CP", NULL, "RX_BIAS"}, {"LINEOUT1 DAC", NULL, "RX_BIAS"}, {"LINEOUT2 DAC", NULL, "RX_BIAS"}, {"LINEOUT2", NULL, "LINEOUT2 PA"}, {"LINEOUT2 PA", NULL, "CP"}, {"LINEOUT2 PA", NULL, "LINEOUT2 DAC"}, {"LINEOUT2 DAC", NULL, "DAC3 MUX"}, {"LINEOUT1", NULL, "LINEOUT1 PA"}, {"LINEOUT2 PA", NULL, "CP"}, {"LINEOUT1 PA", NULL, "LINEOUT1 DAC"}, {"LINEOUT1 DAC", NULL, "DAC2 MUX"}, {"ANC1 FB MUX", "EAR_HPH_L", "RX2 MIX1"}, {"ANC1 FB MUX", "EAR_LINE_1", "RX3 MIX1"}, {"ANC", NULL, "ANC1 FB MUX"}, /* Headset (RX MIX1 and RX MIX2) */ {"HEADPHONE", NULL, "HPHL"}, {"HEADPHONE", NULL, "HPHR"}, {"HPHL DAC", NULL, "CP"}, {"HPHR DAC", NULL, "CP"}, {"HPHL", NULL, "HPHL DAC"}, {"HPHL DAC", "NULL", "RX2 CHAIN"}, {"RX2 CHAIN", NULL, "DAC4 MUX"}, {"HPHR", NULL, "HPHR DAC"}, {"HPHR DAC", NULL, "RX3 CHAIN"}, {"RX3 CHAIN", NULL, "RX3 MIX1"}, {"DAC1 MUX", "RX1", "RX1 CHAIN"}, {"DAC2 MUX", "RX1", "RX1 CHAIN"}, {"DAC3 MUX", "RX1", "RX1 CHAIN"}, {"DAC3 MUX", "INV_RX1", "RX1 CHAIN"}, {"DAC3 MUX", "RX2", "RX2 MIX1"}, {"DAC4 MUX", "ON", "RX2 MIX1"}, {"RX1 CHAIN", NULL, "RX1 MIX1"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP1"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP2"}, {"RX2 MIX1", NULL, "RX2 MIX1 INP1"}, {"RX2 MIX1", NULL, "RX2 MIX1 INP2"}, {"RX3 MIX1", NULL, "RX3 MIX1 INP1"}, {"RX3 MIX1", NULL, "RX3 MIX1 INP2"}, /* ANC */ {"ANC", NULL, "ANC1 MUX"}, {"ANC", NULL, "ANC2 MUX"}, {"ANC1 MUX", "ADC1", "ADC1"}, {"ANC1 MUX", "ADC2", "ADC2"}, {"ANC1 MUX", "ADC3", "ADC3"}, {"ANC2 MUX", "ADC1", "ADC1"}, {"ANC2 MUX", "ADC2", "ADC2"}, {"ANC2 MUX", "ADC3", "ADC3"}, {"ANC", NULL, "CDC_CONN"}, {"RX2 MIX1", NULL, "ANC"}, {"RX3 MIX1", NULL, "ANC"}, /* SLIMBUS Connections */ {"AIF1 CAP", NULL, "AIF1_CAP Mixer"}, /* SLIM_MIXER("AIF1_CAP Mixer"),*/ {"AIF1_CAP Mixer", "SLIM TX1", "SLIM TX1 MUX"}, {"AIF1_CAP Mixer", "SLIM TX2", "SLIM TX2 MUX"}, {"AIF1_CAP Mixer", "SLIM TX3", "SLIM TX3 MUX"}, {"AIF1_CAP Mixer", "SLIM TX4", "SLIM TX4 MUX"}, /* SLIM_MUX("AIF1_PB", "AIF1 PB"), */ {"SLIM RX1 MUX", "AIF1_PB", "AIF1 PB"}, {"SLIM RX2 MUX", "AIF1_PB", "AIF1 PB"}, {"SLIM RX3 MUX", "AIF1_PB", "AIF1 PB"}, {"SLIM RX4 MUX", "AIF1_PB", "AIF1 PB"}, {"SLIM RX1", NULL, "SLIM RX1 MUX"}, {"SLIM RX2", NULL, "SLIM RX2 MUX"}, {"SLIM RX3", NULL, "SLIM RX3 MUX"}, {"SLIM RX4", NULL, "SLIM RX4 MUX"}, {"RX1 MIX1", NULL, "COMP2_CLK"}, {"RX2 MIX1", NULL, "COMP1_CLK"}, {"RX3 MIX1", NULL, "COMP1_CLK"}, /* Slimbus port 5 is non functional in Sitar 1.0 */ {"RX1 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX1 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX1 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX1 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX1 MIX1 INP1", "IIR1", "IIR1"}, {"RX1 MIX1 INP1", "IIR2", "IIR2"}, {"RX1 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX1 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX1 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX1 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX1 MIX1 INP2", "IIR1", "IIR1"}, {"RX1 MIX1 INP2", "IIR2", "IIR2"}, {"RX2 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX2 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX2 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX2 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX2 MIX1 INP1", "IIR1", "IIR1"}, {"RX2 MIX1 INP1", "IIR2", "IIR2"}, {"RX2 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX2 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX2 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX2 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX2 MIX1 INP2", "IIR1", "IIR1"}, {"RX2 MIX1 INP2", "IIR2", "IIR2"}, {"RX3 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX3 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX3 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX3 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX3 MIX1 INP1", "IIR1", "IIR1"}, {"RX3 MIX1 INP1", "IIR2", "IIR2"}, {"RX3 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX3 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX3 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX3 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX3 MIX1 INP2", "IIR1", "IIR1"}, {"RX3 MIX1 INP2", "IIR2", "IIR2"}, /* TX */ {"SLIM TX1 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX2 MUX", "DEC2", "DEC2 MUX"}, {"SLIM TX3 MUX", "DEC3", "DEC3 MUX"}, {"SLIM TX4 MUX", "DEC4", "DEC4 MUX"}, {"SLIM TX5 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX5 MUX", "DEC2", "DEC2 MUX"}, {"SLIM TX5 MUX", "DEC3", "DEC3 MUX"}, {"SLIM TX5 MUX", "DEC4", "DEC4 MUX"}, /* Decimator Inputs */ {"DEC1 MUX", "DMIC1", "DMIC1"}, {"DEC1 MUX", "DMIC4", "DMIC4"}, {"DEC1 MUX", "ADC1", "ADC1"}, {"DEC1 MUX", "ADC2", "ADC2"}, {"DEC1 MUX", "ADC3", "ADC3"}, {"DEC1 MUX", NULL, "CDC_CONN"}, {"DEC2 MUX", "DMIC2", "DMIC2"}, {"DEC2 MUX", "DMIC3", "DMIC3"}, {"DEC2 MUX", "ADC1", "ADC1"}, {"DEC2 MUX", "ADC2", "ADC2"}, {"DEC2 MUX", "ADC3", "ADC3"}, {"DEC2 MUX", NULL, "CDC_CONN"}, {"DEC3 MUX", "DMIC3", "DMIC3"}, {"DEC3 MUX", "ADC1", "ADC1"}, {"DEC3 MUX", "ADC2", "ADC2"}, {"DEC3 MUX", "ADC3", "ADC3"}, {"DEC3 MUX", "DMIC2", "DMIC2"}, {"DEC3 MUX", "DMIC4", "DMIC4"}, {"DEC3 MUX", NULL, "CDC_CONN"}, {"DEC4 MUX", "DMIC4", "DMIC4"}, {"DEC4 MUX", "ADC1", "ADC1"}, {"DEC4 MUX", "ADC2", "ADC2"}, {"DEC4 MUX", "ADC3", "ADC3"}, {"DEC4 MUX", "DMIC3", "DMIC3"}, {"DEC4 MUX", "DMIC2", "DMIC2"}, {"DEC4 MUX", "DMIC1", "DMIC1"}, {"DEC4 MUX", NULL, "CDC_CONN"}, /* ADC Connections */ {"ADC1", NULL, "AMIC1"}, {"ADC2", NULL, "AMIC2"}, {"ADC3", NULL, "AMIC3"}, /* IIR */ {"IIR1", NULL, "IIR1 INP1 MUX"}, {"IIR1 INP1 MUX", "DEC1", "DEC1 MUX"}, {"IIR1 INP1 MUX", "DEC2", "DEC2 MUX"}, {"IIR1 INP1 MUX", "DEC3", "DEC3 MUX"}, {"IIR1 INP1 MUX", "DEC4", "DEC4 MUX"}, {"IIR1 INP1 MUX", "RX1", "SLIM RX1"}, {"IIR1 INP1 MUX", "RX2", "SLIM RX2"}, {"IIR1 INP1 MUX", "RX3", "SLIM RX3"}, {"IIR1 INP1 MUX", "RX4", "SLIM RX4"}, {"IIR1 INP1 MUX", "RX5", "SLIM RX5"}, {"IIR2", NULL, "IIR2 INP1 MUX"}, {"IIR2 INP1 MUX", "DEC1", "DEC1 MUX"}, {"IIR2 INP1 MUX", "DEC2", "DEC2 MUX"}, {"IIR2 INP1 MUX", "DEC3", "DEC3 MUX"}, {"IIR2 INP1 MUX", "DEC4", "DEC4 MUX"}, {"IIR2 INP1 MUX", "RX1", "SLIM RX1"}, {"IIR2 INP1 MUX", "RX2", "SLIM RX2"}, {"IIR2 INP1 MUX", "RX3", "SLIM RX3"}, {"IIR2 INP1 MUX", "RX4", "SLIM RX4"}, {"IIR2 INP1 MUX", "RX5", "SLIM RX5"}, {"MIC BIAS1 Internal1", NULL, "LDO_H"}, {"MIC BIAS1 External", NULL, "LDO_H"}, {"MIC BIAS2 Internal1", NULL, "LDO_H"}, {"MIC BIAS2 External", NULL, "LDO_H"}, }; static int sitar_readable(struct snd_soc_codec *ssc, unsigned int reg) { return sitar_reg_readable[reg]; } static int sitar_volatile(struct snd_soc_codec *ssc, unsigned int reg) { int i; /* Registers lower than 0x100 are top level registers which can be * written by the Sitar core driver. */ if ((reg >= SITAR_A_CDC_MBHC_EN_CTL) || (reg < 0x100)) return 1; /* IIR Coeff registers are not cacheable */ if ((reg >= SITAR_A_CDC_IIR1_COEF_B1_CTL) && (reg <= SITAR_A_CDC_IIR1_COEF_B5_CTL)) return 1; for (i = 0; i < NUM_DECIMATORS; i++) { if (reg == SITAR_A_CDC_TX1_VOL_CTL_GAIN + (8 * i)) return 1; } for (i = 0; i < NUM_INTERPOLATORS; i++) { if (reg == SITAR_A_CDC_RX1_VOL_CTL_B2_CTL + (8 * i)) return 1; } if ((reg == SITAR_A_CDC_COMP1_SHUT_DOWN_STATUS) || (reg == SITAR_A_CDC_COMP2_SHUT_DOWN_STATUS)) return 1; return 0; } #define SITAR_FORMATS (SNDRV_PCM_FMTBIT_S16_LE) static int sitar_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { int ret; if (reg == SND_SOC_NOPM) return 0; BUG_ON(reg > SITAR_MAX_REGISTER); if (!sitar_volatile(codec, reg)) { ret = snd_soc_cache_write(codec, reg, value); if (ret != 0) dev_err(codec->dev, "Cache write to %x failed: %d\n", reg, ret); } return wcd9xxx_reg_write(codec->control_data, reg, value); } static unsigned int sitar_read(struct snd_soc_codec *codec, unsigned int reg) { unsigned int val; int ret; if (reg == SND_SOC_NOPM) return 0; BUG_ON(reg > SITAR_MAX_REGISTER); if (!sitar_volatile(codec, reg) && sitar_readable(codec, reg) && reg < codec->driver->reg_cache_size) { ret = snd_soc_cache_read(codec, reg, &val); if (ret >= 0) { return val; } else dev_err(codec->dev, "Cache read from %x failed: %d\n", reg, ret); } val = wcd9xxx_reg_read(codec->control_data, reg); return val; } static void sitar_codec_enable_audio_mode_bandgap(struct snd_soc_codec *codec) { struct wcd9xxx *sitar_core = dev_get_drvdata(codec->dev->parent); if (SITAR_IS_1P0(sitar_core->version)) snd_soc_update_bits(codec, SITAR_A_LDO_H_MODE_1, 0x80, 0x80); snd_soc_update_bits(codec, SITAR_A_BIAS_CURR_CTL_2, 0x0C, 0x08); usleep_range(1000, 1000); snd_soc_write(codec, SITAR_A_BIAS_REF_CTL, 0x1C); snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x80); snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x04, 0x04); snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x01, 0x01); usleep_range(1000, 1000); snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x00); } static void sitar_codec_enable_bandgap(struct snd_soc_codec *codec, enum sitar_bandgap_type choice) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); struct wcd9xxx *sitar_core = dev_get_drvdata(codec->dev->parent); /* TODO lock resources accessed by audio streams and threaded * interrupt handlers */ pr_debug("%s, choice is %d, current is %d\n", __func__, choice, sitar->bandgap_type); if (sitar->bandgap_type == choice) return; if ((sitar->bandgap_type == SITAR_BANDGAP_OFF) && (choice == SITAR_BANDGAP_AUDIO_MODE)) { sitar_codec_enable_audio_mode_bandgap(codec); } else if (choice == SITAR_BANDGAP_MBHC_MODE) { snd_soc_update_bits(codec, SITAR_A_BIAS_CURR_CTL_2, 0x0C, 0x08); snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x2, 0x2); snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x80); snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x4, 0x4); snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x01, 0x1); usleep_range(1000, 1000); snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x00); } else if ((sitar->bandgap_type == SITAR_BANDGAP_MBHC_MODE) && (choice == SITAR_BANDGAP_AUDIO_MODE)) { snd_soc_write(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x50); usleep_range(100, 100); sitar_codec_enable_audio_mode_bandgap(codec); } else if (choice == SITAR_BANDGAP_OFF) { snd_soc_update_bits(codec, SITAR_A_BIAS_CURR_CTL_2, 0x0C, 0x00); snd_soc_write(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x50); if (SITAR_IS_1P0(sitar_core->version)) snd_soc_update_bits(codec, SITAR_A_LDO_H_MODE_1, 0xF3, 0x61); usleep_range(1000, 1000); } else { pr_err("%s: Error, Invalid bandgap settings\n", __func__); } sitar->bandgap_type = choice; } static int sitar_codec_enable_config_mode(struct snd_soc_codec *codec, int enable) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); if (enable) { snd_soc_update_bits(codec, SITAR_A_RC_OSC_FREQ, 0x10, 0); snd_soc_write(codec, SITAR_A_BIAS_OSC_BG_CTL, 0x17); usleep_range(5, 5); snd_soc_update_bits(codec, SITAR_A_RC_OSC_FREQ, 0x80, 0x80); snd_soc_update_bits(codec, SITAR_A_RC_OSC_TEST, 0x80, 0x80); usleep_range(10, 10); snd_soc_update_bits(codec, SITAR_A_RC_OSC_TEST, 0x80, 0); usleep_range(20, 20); snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x08, 0x08); } else { snd_soc_update_bits(codec, SITAR_A_BIAS_OSC_BG_CTL, 0x1, 0); snd_soc_update_bits(codec, SITAR_A_RC_OSC_FREQ, 0x80, 0); snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x08, 0x00); } sitar->config_mode_active = enable ? true : false; return 0; } static int sitar_codec_enable_clock_block(struct snd_soc_codec *codec, int config_mode) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); pr_debug("%s\n", __func__); if (config_mode) { sitar_codec_enable_config_mode(codec, 1); snd_soc_write(codec, SITAR_A_CLK_BUFF_EN2, 0x00); snd_soc_write(codec, SITAR_A_CLK_BUFF_EN2, 0x02); snd_soc_write(codec, SITAR_A_CLK_BUFF_EN1, 0x0D); usleep_range(1000, 1000); } else snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x08, 0x00); if (!config_mode && sitar->mbhc_polling_active) { snd_soc_write(codec, SITAR_A_CLK_BUFF_EN2, 0x02); sitar_codec_enable_config_mode(codec, 0); } snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x05, 0x05); snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN2, 0x02, 0x00); snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN2, 0x04, 0x04); usleep_range(50, 50); sitar->clock_active = true; return 0; } static void sitar_codec_disable_clock_block(struct snd_soc_codec *codec) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); pr_debug("%s\n", __func__); snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN2, 0x04, 0x00); ndelay(160); snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN2, 0x02, 0x02); snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x05, 0x00); sitar->clock_active = false; } static int sitar_codec_mclk_index(const struct sitar_priv *sitar) { if (sitar->mbhc_cfg.mclk_rate == SITAR_MCLK_RATE_12288KHZ) return 0; else if (sitar->mbhc_cfg.mclk_rate == SITAR_MCLK_RATE_9600KHZ) return 1; else { BUG_ON(1); return -EINVAL; } } static void sitar_codec_calibrate_hs_polling(struct snd_soc_codec *codec) { u8 *n_ready, *n_cic; struct sitar_mbhc_btn_detect_cfg *btn_det; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); btn_det = SITAR_MBHC_CAL_BTN_DET_PTR(sitar->mbhc_cfg.calibration); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B1_CTL, sitar->mbhc_data.v_ins_hu & 0xFF); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B2_CTL, (sitar->mbhc_data.v_ins_hu >> 8) & 0xFF); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B3_CTL, sitar->mbhc_data.v_b1_hu & 0xFF); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B4_CTL, (sitar->mbhc_data.v_b1_hu >> 8) & 0xFF); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B5_CTL, sitar->mbhc_data.v_b1_h & 0xFF); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B6_CTL, (sitar->mbhc_data.v_b1_h >> 8) & 0xFF); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B9_CTL, sitar->mbhc_data.v_brh & 0xFF); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B10_CTL, (sitar->mbhc_data.v_brh >> 8) & 0xFF); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B11_CTL, sitar->mbhc_data.v_brl & 0xFF); snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B12_CTL, (sitar->mbhc_data.v_brl >> 8) & 0xFF); n_ready = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_N_READY); snd_soc_write(codec, SITAR_A_CDC_MBHC_TIMER_B1_CTL, n_ready[sitar_codec_mclk_index(sitar)]); snd_soc_write(codec, SITAR_A_CDC_MBHC_TIMER_B2_CTL, sitar->mbhc_data.npoll); snd_soc_write(codec, SITAR_A_CDC_MBHC_TIMER_B3_CTL, sitar->mbhc_data.nbounce_wait); n_cic = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_N_CIC); snd_soc_write(codec, SITAR_A_CDC_MBHC_TIMER_B6_CTL, n_cic[sitar_codec_mclk_index(sitar)]); } static int sitar_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct wcd9xxx *wcd9xxx = dev_get_drvdata(dai->codec->dev->parent); if ((wcd9xxx != NULL) && (wcd9xxx->dev != NULL) && (wcd9xxx->dev->parent != NULL)) pm_runtime_get_sync(wcd9xxx->dev->parent); pr_debug("%s(): substream = %s stream = %d\n" , __func__, substream->name, substream->stream); return 0; } static void sitar_codec_pm_runtime_put(struct wcd9xxx *sitar) { if (sitar->dev != NULL && sitar->dev->parent != NULL) { pm_runtime_mark_last_busy(sitar->dev->parent); pm_runtime_put(sitar->dev->parent); } } static void sitar_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct wcd9xxx *sitar_core = dev_get_drvdata(dai->codec->dev->parent); struct sitar_priv *sitar = snd_soc_codec_get_drvdata(dai->codec); u32 active = 0; pr_debug("%s(): substream = %s stream = %d\n" , __func__, substream->name, substream->stream); if (sitar->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) return; if (dai->id <= NUM_CODEC_DAIS) { if (sitar->dai[dai->id].ch_mask) { active = 1; pr_debug("%s(): Codec DAI: chmask[%d] = 0x%lx\n", __func__, dai->id, sitar->dai[dai->id].ch_mask); } } if (sitar_core != NULL && active == 0) sitar_codec_pm_runtime_put(sitar_core); } int sitar_mclk_enable(struct snd_soc_codec *codec, int mclk_enable, bool dapm) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); pr_debug("%s() mclk_enable = %u\n", __func__, mclk_enable); if (dapm) SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock); if (mclk_enable) { sitar->mclk_enabled = true; if (sitar->mbhc_polling_active && (sitar->mclk_enabled)) { sitar_codec_pause_hs_polling(codec); sitar_codec_enable_bandgap(codec, SITAR_BANDGAP_AUDIO_MODE); sitar_codec_enable_clock_block(codec, 0); sitar_codec_calibrate_hs_polling(codec); sitar_codec_start_hs_polling(codec); } else { sitar_codec_enable_bandgap(codec, SITAR_BANDGAP_AUDIO_MODE); sitar_codec_enable_clock_block(codec, 0); } } else { if (!sitar->mclk_enabled) { if (dapm) SITAR_RELEASE_LOCK(sitar->codec_resource_lock); pr_err("Error, MCLK already diabled\n"); return -EINVAL; } sitar->mclk_enabled = false; if (sitar->mbhc_polling_active) { if (!sitar->mclk_enabled) { sitar_codec_pause_hs_polling(codec); sitar_codec_enable_bandgap(codec, SITAR_BANDGAP_MBHC_MODE); sitar_enable_rx_bias(codec, 1); sitar_codec_enable_clock_block(codec, 1); sitar_codec_calibrate_hs_polling(codec); sitar_codec_start_hs_polling(codec); } snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x05, 0x01); } else { sitar_codec_disable_clock_block(codec); sitar_codec_enable_bandgap(codec, SITAR_BANDGAP_OFF); } } if (dapm) SITAR_RELEASE_LOCK(sitar->codec_resource_lock); return 0; } static int sitar_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { pr_debug("%s\n", __func__); return 0; } static int sitar_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { u8 val = 0; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(dai->codec); pr_debug("%s\n", __func__); switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: /* CPU is master */ if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) { if (dai->id == AIF1_CAP) snd_soc_update_bits(dai->codec, SITAR_A_CDC_CLK_TX_I2S_CTL, SITAR_I2S_MASTER_MODE_MASK, 0); else if (dai->id == AIF1_PB) snd_soc_update_bits(dai->codec, SITAR_A_CDC_CLK_RX_I2S_CTL, SITAR_I2S_MASTER_MODE_MASK, 0); } break; case SND_SOC_DAIFMT_CBM_CFM: /* CPU is slave */ if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) { val = SITAR_I2S_MASTER_MODE_MASK; if (dai->id == AIF1_CAP) snd_soc_update_bits(dai->codec, SITAR_A_CDC_CLK_TX_I2S_CTL, val, val); else if (dai->id == AIF1_PB) snd_soc_update_bits(dai->codec, SITAR_A_CDC_CLK_RX_I2S_CTL, val, val); } break; default: return -EINVAL; } return 0; } static int sitar_set_channel_map(struct snd_soc_dai *dai, unsigned int tx_num, unsigned int *tx_slot, unsigned int rx_num, unsigned int *rx_slot) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(dai->codec); struct wcd9xxx *core = dev_get_drvdata(dai->codec->dev->parent); if (!tx_slot && !rx_slot) { pr_err("%s: Invalid\n", __func__); return -EINVAL; } pr_debug("%s: DAI-ID %x %d %d\n", __func__, dai->id, tx_num, rx_num); if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_SLIMBUS) wcd9xxx_init_slimslave(core, core->slim->laddr, tx_num, tx_slot, rx_num, rx_slot); return 0; } static int sitar_get_channel_map(struct snd_soc_dai *dai, unsigned int *tx_num, unsigned int *tx_slot, unsigned int *rx_num, unsigned int *rx_slot) { struct sitar_priv *sitar_p = snd_soc_codec_get_drvdata(dai->codec); u32 i = 0; struct wcd9xxx_ch *ch; switch (dai->id) { case AIF1_PB: if (!rx_slot || !rx_num) { pr_err("%s: Invalid rx_slot 0x%x or rx_num 0x%x\n", __func__, (u32) rx_slot, (u32) rx_num); return -EINVAL; } list_for_each_entry(ch, &sitar_p->dai[dai->id].wcd9xxx_ch_list, list) { rx_slot[i++] = ch->ch_num; } *rx_num = i; break; case AIF1_CAP: if (!tx_slot || !tx_num) { pr_err("%s: Invalid tx_slot 0x%x or tx_num 0x%x\n", __func__, (u32) tx_slot, (u32) tx_num); return -EINVAL; } list_for_each_entry(ch, &sitar_p->dai[dai->id].wcd9xxx_ch_list, list) { tx_slot[i++] = ch->ch_num; } *tx_num = i; break; default: pr_err("%s: Invalid dai %d", __func__, dai->id); return -EINVAL; } return 0; } static int sitar_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_codec *codec = dai->codec; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(dai->codec); u8 path, shift; u32 compander_fs; u16 tx_fs_reg, rx_fs_reg; u8 tx_fs_rate, rx_fs_rate, rx_state, tx_state; pr_debug("%s: DAI-ID %x\n", __func__, dai->id); switch (params_rate(params)) { case 8000: tx_fs_rate = 0x00; rx_fs_rate = 0x00; compander_fs = COMPANDER_FS_8KHZ; break; case 16000: tx_fs_rate = 0x01; rx_fs_rate = 0x20; compander_fs = COMPANDER_FS_16KHZ; break; case 32000: tx_fs_rate = 0x02; rx_fs_rate = 0x40; compander_fs = COMPANDER_FS_32KHZ; break; case 48000: tx_fs_rate = 0x03; rx_fs_rate = 0x60; compander_fs = COMPANDER_FS_48KHZ; break; case 96000: tx_fs_rate = 0x04; rx_fs_rate = 0x80; compander_fs = COMPANDER_FS_96KHZ; break; case 192000: tx_fs_rate = 0x05; rx_fs_rate = 0xa0; compander_fs = COMPANDER_FS_192KHZ; break; default: pr_err("%s: Invalid sampling rate %d\n", __func__, params_rate(params)); return -EINVAL; } /** * If current dai is a tx dai, set sample rate to * all the txfe paths that are currently not active */ if (dai->id == AIF1_CAP) { tx_state = snd_soc_read(codec, SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL); for (path = 1, shift = 0; path <= NUM_DECIMATORS; path++, shift++) { if (!(tx_state & (1 << shift))) { tx_fs_reg = SITAR_A_CDC_TX1_CLK_FS_CTL + (BITS_PER_REG*(path-1)); snd_soc_update_bits(codec, tx_fs_reg, 0x03, tx_fs_rate); } } if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) { switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: snd_soc_update_bits(codec, SITAR_A_CDC_CLK_TX_I2S_CTL, 0x20, 0x20); break; case SNDRV_PCM_FORMAT_S32_LE: snd_soc_update_bits(codec, SITAR_A_CDC_CLK_TX_I2S_CTL, 0x20, 0x00); break; default: pr_err("%s: Unsupport format %d\n", __func__, params_format(params)); return -EINVAL; } snd_soc_update_bits(codec, SITAR_A_CDC_CLK_TX_I2S_CTL, 0x03, tx_fs_rate); } else { sitar->dai[dai->id].rate = params_rate(params); } } /** * TODO: Need to handle case where same RX chain takes 2 or more inputs * with varying sample rates */ /** * If current dai is a rx dai, set sample rate to * all the rx paths that are currently not active */ if (dai->id == AIF1_PB) { rx_state = snd_soc_read(codec, SITAR_A_CDC_CLK_RX_B1_CTL); for (path = 1, shift = 0; path <= NUM_INTERPOLATORS; path++, shift++) { if (!(rx_state & (1 << shift))) { rx_fs_reg = SITAR_A_CDC_RX1_B5_CTL + (BITS_PER_REG*(path-1)); snd_soc_update_bits(codec, rx_fs_reg, 0xE0, rx_fs_rate); if (comp_rx_path[shift] < COMPANDER_MAX) sitar->comp_fs[comp_rx_path[shift]] = compander_fs; } } if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) { switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: snd_soc_update_bits(codec, SITAR_A_CDC_CLK_RX_I2S_CTL, 0x20, 0x20); break; case SNDRV_PCM_FORMAT_S32_LE: snd_soc_update_bits(codec, SITAR_A_CDC_CLK_RX_I2S_CTL, 0x20, 0x00); break; default: pr_err("%s: Unsupport format %d\n", __func__, params_format(params)); break; } snd_soc_update_bits(codec, SITAR_A_CDC_CLK_RX_I2S_CTL, 0x03, (rx_fs_rate >> 0x05)); } else { sitar->dai[dai->id].rate = params_rate(params); } } return 0; } static struct snd_soc_dai_ops sitar_dai_ops = { .startup = sitar_startup, .shutdown = sitar_shutdown, .hw_params = sitar_hw_params, .set_sysclk = sitar_set_dai_sysclk, .set_fmt = sitar_set_dai_fmt, .set_channel_map = sitar_set_channel_map, .get_channel_map = sitar_get_channel_map, }; static struct snd_soc_dai_driver sitar_dai[] = { { .name = "sitar_rx1", .id = AIF1_PB, .playback = { .stream_name = "AIF1 Playback", .rates = WCD9304_RATES, .formats = SITAR_FORMATS, .rate_max = 48000, .rate_min = 8000, .channels_min = 1, .channels_max = 2, }, .ops = &sitar_dai_ops, }, { .name = "sitar_tx1", .id = AIF1_CAP, .capture = { .stream_name = "AIF1 Capture", .rates = WCD9304_RATES, .formats = SITAR_FORMATS, .rate_max = 48000, .rate_min = 8000, .channels_min = 1, .channels_max = 2, }, .ops = &sitar_dai_ops, }, }; static struct snd_soc_dai_driver sitar_i2s_dai[] = { { .name = "sitar_i2s_rx1", .id = AIF1_PB, .playback = { .stream_name = "AIF1 Playback", .rates = WCD9304_RATES, .formats = SITAR_FORMATS, .rate_max = 192000, .rate_min = 8000, .channels_min = 1, .channels_max = 4, }, .ops = &sitar_dai_ops, }, { .name = "sitar_i2s_tx1", .id = AIF1_CAP, .capture = { .stream_name = "AIF1 Capture", .rates = WCD9304_RATES, .formats = SITAR_FORMATS, .rate_max = 192000, .rate_min = 8000, .channels_min = 1, .channels_max = 4, }, .ops = &sitar_dai_ops, }, }; static int sitar_codec_enable_chmask(struct sitar_priv *sitar, int event, int index) { int ret = 0; struct wcd9xxx_ch *ch; switch (event) { case SND_SOC_DAPM_POST_PMU: list_for_each_entry(ch, &sitar->dai[index].wcd9xxx_ch_list, list) { ret = wcd9xxx_get_slave_port(ch->ch_num); if (ret < 0) { pr_err("%s: Invalid slave port ID: %d\n", __func__, ret); ret = -EINVAL; break; } sitar->dai[index].ch_mask |= 1 << ret; } break; case SND_SOC_DAPM_POST_PMD: ret = wait_event_timeout(sitar->dai[index].dai_wait, (sitar->dai[index].ch_mask == 0), msecs_to_jiffies(SLIM_CLOSE_TIMEOUT)); if (!ret) { pr_err("%s: Slim close tx/rx wait timeout\n", __func__); ret = -EINVAL; } else { ret = 0; } break; } return ret; } static int sitar_codec_enable_slimrx(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct wcd9xxx *core; struct snd_soc_codec *codec = w->codec; struct sitar_priv *sitar_p = snd_soc_codec_get_drvdata(codec); int ret = 0; struct wcd9xxx_codec_dai_data *dai; core = dev_get_drvdata(codec->dev->parent); /* Execute the callback only if interface type is slimbus */ if (sitar_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) { if (event == SND_SOC_DAPM_POST_PMD && (core != NULL)) sitar_codec_pm_runtime_put(core); return 0; } dai = &sitar_p->dai[w->shift]; switch (event) { case SND_SOC_DAPM_POST_PMU: ret = sitar_codec_enable_chmask(sitar_p, SND_SOC_DAPM_POST_PMU, w->shift); ret = wcd9xxx_cfg_slim_sch_rx(core, &dai->wcd9xxx_ch_list, dai->rate, dai->bit_width, &dai->grph); break; case SND_SOC_DAPM_POST_PMD: ret = wcd9xxx_close_slim_sch_rx(core, &dai->wcd9xxx_ch_list, dai->grph); ret = sitar_codec_enable_chmask(sitar_p, SND_SOC_DAPM_POST_PMD, w->shift); if (ret < 0) { ret = wcd9xxx_disconnect_port(core, &dai->wcd9xxx_ch_list, dai->grph); pr_info("%s: Disconnect RX port ret = %d\n", __func__, ret); } if (core != NULL) sitar_codec_pm_runtime_put(core); break; } return ret; } static int sitar_codec_enable_slimtx(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct wcd9xxx *core; struct snd_soc_codec *codec = w->codec; struct sitar_priv *sitar_p = snd_soc_codec_get_drvdata(codec); struct wcd9xxx_codec_dai_data *dai; int ret = 0; core = dev_get_drvdata(codec->dev->parent); /* Execute the callback only if interface type is slimbus */ if (sitar_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) { if (event == SND_SOC_DAPM_POST_PMD && (core != NULL)) sitar_codec_pm_runtime_put(core); return 0; } dai = &sitar_p->dai[w->shift]; switch (event) { case SND_SOC_DAPM_POST_PMU: ret = sitar_codec_enable_chmask(sitar_p, SND_SOC_DAPM_POST_PMU, w->shift); ret = wcd9xxx_cfg_slim_sch_tx(core, &dai->wcd9xxx_ch_list, dai->rate, dai->bit_width, &dai->grph); break; case SND_SOC_DAPM_POST_PMD: ret = wcd9xxx_close_slim_sch_tx(core, &dai->wcd9xxx_ch_list, dai->grph); ret = sitar_codec_enable_chmask(sitar_p, SND_SOC_DAPM_POST_PMD, w->shift); if (ret < 0) { ret = wcd9xxx_disconnect_port(core, &dai->wcd9xxx_ch_list, dai->grph); pr_info("%s: Disconnect RX port ret = %d\n", __func__, ret); } if (core != NULL) sitar_codec_pm_runtime_put(core); break; } return ret; } static short sitar_codec_read_sta_result(struct snd_soc_codec *codec) { u8 bias_msb, bias_lsb; short bias_value; bias_msb = snd_soc_read(codec, SITAR_A_CDC_MBHC_B3_STATUS); bias_lsb = snd_soc_read(codec, SITAR_A_CDC_MBHC_B2_STATUS); bias_value = (bias_msb << 8) | bias_lsb; return bias_value; } static short sitar_codec_read_dce_result(struct snd_soc_codec *codec) { u8 bias_msb, bias_lsb; short bias_value; bias_msb = snd_soc_read(codec, SITAR_A_CDC_MBHC_B5_STATUS); bias_lsb = snd_soc_read(codec, SITAR_A_CDC_MBHC_B4_STATUS); bias_value = (bias_msb << 8) | bias_lsb; return bias_value; } static void sitar_turn_onoff_rel_detection(struct snd_soc_codec *codec, bool on) { snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x02, on << 1); } static short __sitar_codec_sta_dce(struct snd_soc_codec *codec, int dce, bool override_bypass, bool noreldetection) { short bias_value; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL); if (noreldetection) sitar_turn_onoff_rel_detection(codec, false); /* Turn on the override */ if (!override_bypass) snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x4, 0x4); if (dce) { snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x4); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x0); usleep_range(sitar->mbhc_data.t_sta_dce, sitar->mbhc_data.t_sta_dce); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x4); usleep_range(sitar->mbhc_data.t_dce, sitar->mbhc_data.t_dce); bias_value = sitar_codec_read_dce_result(codec); } else { snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x2); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x0); usleep_range(sitar->mbhc_data.t_sta_dce, sitar->mbhc_data.t_sta_dce); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x2); usleep_range(sitar->mbhc_data.t_sta, sitar->mbhc_data.t_sta); bias_value = sitar_codec_read_sta_result(codec); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x0); } /* Turn off the override after measuring mic voltage */ if (!override_bypass) snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x04, 0x00); if (noreldetection) sitar_turn_onoff_rel_detection(codec, true); wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL); return bias_value; } static short sitar_codec_sta_dce(struct snd_soc_codec *codec, int dce, bool norel) { return __sitar_codec_sta_dce(codec, dce, false, norel); } static void sitar_codec_shutdown_hs_removal_detect(struct snd_soc_codec *codec) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); const struct sitar_mbhc_general_cfg *generic = SITAR_MBHC_CAL_GENERAL_PTR(sitar->mbhc_cfg.calibration); if (!sitar->mclk_enabled && !sitar->mbhc_polling_active) sitar_codec_enable_config_mode(codec, 1); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x2, 0x2); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x6, 0x0); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.mbhc_reg, 0x80, 0x00); usleep_range(generic->t_shutdown_plug_rem, generic->t_shutdown_plug_rem); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0xA, 0x8); if (!sitar->mclk_enabled && !sitar->mbhc_polling_active) sitar_codec_enable_config_mode(codec, 0); snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x00); } static void sitar_codec_cleanup_hs_polling(struct snd_soc_codec *codec) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); sitar_codec_shutdown_hs_removal_detect(codec); if (!sitar->mclk_enabled) { sitar_codec_disable_clock_block(codec); sitar_codec_enable_bandgap(codec, SITAR_BANDGAP_OFF); } sitar->mbhc_polling_active = false; sitar->mbhc_state = MBHC_STATE_NONE; } /* called only from interrupt which is under codec_resource_lock acquisition */ static short sitar_codec_setup_hs_polling(struct snd_soc_codec *codec) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); short bias_value; u8 cfilt_mode; if (!sitar->mbhc_cfg.calibration) { pr_err("Error, no sitar calibration\n"); return -ENODEV; } if (!sitar->mclk_enabled) { sitar_codec_enable_bandgap(codec, SITAR_BANDGAP_MBHC_MODE); sitar_enable_rx_bias(codec, 1); sitar_codec_enable_clock_block(codec, 1); } snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x05, 0x01); /* Make sure CFILT is in fast mode, save current mode */ cfilt_mode = snd_soc_read(codec, sitar->mbhc_bias_regs.cfilt_ctl); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_ctl, 0x70, 0x00); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.ctl_reg, 0x1F, 0x16); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x2, 0x2); snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x84); snd_soc_update_bits(codec, SITAR_A_TX_4_MBHC_EN, 0x80, 0x80); snd_soc_update_bits(codec, SITAR_A_TX_4_MBHC_EN, 0x1F, 0x1C); snd_soc_update_bits(codec, SITAR_A_TX_4_MBHC_TEST_CTL, 0x40, 0x40); snd_soc_update_bits(codec, SITAR_A_TX_4_MBHC_EN, 0x80, 0x00); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x00); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x2, 0x2); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); sitar_codec_calibrate_hs_polling(codec); /* don't flip override */ bias_value = __sitar_codec_sta_dce(codec, 1, true, true); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_ctl, 0x40, cfilt_mode); snd_soc_update_bits(codec, SITAR_A_MBHC_HPH, 0x13, 0x00); return bias_value; } static int sitar_cancel_btn_work(struct sitar_priv *sitar) { int r = 0; struct wcd9xxx *core = dev_get_drvdata(sitar->codec->dev->parent); if (cancel_delayed_work_sync(&sitar->mbhc_btn_dwork)) { /* if scheduled mbhc_btn_dwork is canceled from here, * we have to unlock from here instead btn_work */ wcd9xxx_unlock_sleep(core); r = 1; } return r; } static u16 sitar_codec_v_sta_dce(struct snd_soc_codec *codec, bool dce, s16 vin_mv) { short diff, zero; struct sitar_priv *sitar; u32 mb_mv, in; sitar = snd_soc_codec_get_drvdata(codec); mb_mv = sitar->mbhc_data.micb_mv; if (mb_mv == 0) { pr_err("%s: Mic Bias voltage is set to zero\n", __func__); return -EINVAL; } if (dce) { diff = sitar->mbhc_data.dce_mb - sitar->mbhc_data.dce_z; zero = sitar->mbhc_data.dce_z; } else { diff = sitar->mbhc_data.sta_mb - sitar->mbhc_data.sta_z; zero = sitar->mbhc_data.sta_z; } in = (u32) diff * vin_mv; return (u16) (in / mb_mv) + zero; } static s32 sitar_codec_sta_dce_v(struct snd_soc_codec *codec, s8 dce, u16 bias_value) { struct sitar_priv *sitar; s16 value, z, mb; s32 mv; sitar = snd_soc_codec_get_drvdata(codec); value = bias_value; if (dce) { z = (sitar->mbhc_data.dce_z); mb = (sitar->mbhc_data.dce_mb); mv = (value - z) * (s32)sitar->mbhc_data.micb_mv / (mb - z); } else { z = (sitar->mbhc_data.sta_z); mb = (sitar->mbhc_data.sta_mb); mv = (value - z) * (s32)sitar->mbhc_data.micb_mv / (mb - z); } return mv; } static void btn_lpress_fn(struct work_struct *work) { struct delayed_work *delayed_work; struct sitar_priv *sitar; short bias_value; int dce_mv, sta_mv; struct wcd9xxx *core; pr_debug("%s:\n", __func__); delayed_work = to_delayed_work(work); sitar = container_of(delayed_work, struct sitar_priv, mbhc_btn_dwork); core = dev_get_drvdata(sitar->codec->dev->parent); if (sitar) { if (sitar->mbhc_cfg.button_jack) { bias_value = sitar_codec_read_sta_result(sitar->codec); sta_mv = sitar_codec_sta_dce_v(sitar->codec, 0, bias_value); bias_value = sitar_codec_read_dce_result(sitar->codec); dce_mv = sitar_codec_sta_dce_v(sitar->codec, 1, bias_value); pr_debug("%s: Reporting long button press event" " STA: %d, DCE: %d\n", __func__, sta_mv, dce_mv); sitar_snd_soc_jack_report(sitar, sitar->mbhc_cfg.button_jack, sitar->buttons_pressed, sitar->buttons_pressed); } } else { pr_err("%s: Bad sitar private data\n", __func__); } pr_debug("%s: leave\n", __func__); wcd9xxx_unlock_sleep(core); } void sitar_mbhc_cal(struct snd_soc_codec *codec) { struct sitar_priv *sitar; struct sitar_mbhc_btn_detect_cfg *btn_det; u8 cfilt_mode, bg_mode; u8 ncic, nmeas, navg; u32 mclk_rate; u32 dce_wait, sta_wait; u8 *n_cic; void *calibration; sitar = snd_soc_codec_get_drvdata(codec); calibration = sitar->mbhc_cfg.calibration; wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL); sitar_turn_onoff_rel_detection(codec, false); /* First compute the DCE / STA wait times * depending on tunable parameters. * The value is computed in microseconds */ btn_det = SITAR_MBHC_CAL_BTN_DET_PTR(calibration); n_cic = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_N_CIC); ncic = n_cic[sitar_codec_mclk_index(sitar)]; nmeas = SITAR_MBHC_CAL_BTN_DET_PTR(calibration)->n_meas; navg = SITAR_MBHC_CAL_GENERAL_PTR(calibration)->mbhc_navg; mclk_rate = sitar->mbhc_cfg.mclk_rate; dce_wait = (1000 * 512 * 60 * (nmeas + 1)) / (mclk_rate / 1000); sta_wait = (1000 * 128 * (navg + 1)) / (mclk_rate / 1000); sitar->mbhc_data.t_dce = DEFAULT_DCE_WAIT; sitar->mbhc_data.t_sta = DEFAULT_STA_WAIT; /* LDOH and CFILT are already configured during pdata handling. * Only need to make sure CFILT and bandgap are in Fast mode. * Need to restore defaults once calculation is done. */ cfilt_mode = snd_soc_read(codec, sitar->mbhc_bias_regs.cfilt_ctl); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_ctl, 0x40, 0x00); bg_mode = snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x02, 0x02); /* Micbias, CFILT, LDOH, MBHC MUX mode settings * to perform ADC calibration */ snd_soc_update_bits(codec, sitar->mbhc_bias_regs.ctl_reg, 0x60, sitar->mbhc_cfg.micbias << 5); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.ctl_reg, 0x01, 0x00); snd_soc_update_bits(codec, SITAR_A_LDO_H_MODE_1, 0x60, 0x60); snd_soc_write(codec, SITAR_A_TX_4_MBHC_TEST_CTL, 0x78); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x04, 0x04); /* DCE measurement for 0 volts */ snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x0A); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x04); snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x02); snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x81); usleep_range(100, 100); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x04); usleep_range(sitar->mbhc_data.t_dce, sitar->mbhc_data.t_dce); sitar->mbhc_data.dce_z = sitar_codec_read_dce_result(codec); /* DCE measurment for MB voltage */ snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x0A); snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x02); snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x82); usleep_range(100, 100); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x04); usleep_range(sitar->mbhc_data.t_dce, sitar->mbhc_data.t_dce); sitar->mbhc_data.dce_mb = sitar_codec_read_dce_result(codec); /* Sta measuremnt for 0 volts */ snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x0A); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x02); snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x02); snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x81); usleep_range(100, 100); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x02); usleep_range(sitar->mbhc_data.t_sta, sitar->mbhc_data.t_sta); sitar->mbhc_data.sta_z = sitar_codec_read_sta_result(codec); /* STA Measurement for MB Voltage */ snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x82); usleep_range(100, 100); snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x02); usleep_range(sitar->mbhc_data.t_sta, sitar->mbhc_data.t_sta); sitar->mbhc_data.sta_mb = sitar_codec_read_sta_result(codec); /* Restore default settings. */ snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x04, 0x00); snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_ctl, 0x40, cfilt_mode); snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x02, bg_mode); snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x84); usleep_range(100, 100); wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL); sitar_turn_onoff_rel_detection(codec, true); } void *sitar_mbhc_cal_btn_det_mp(const struct sitar_mbhc_btn_detect_cfg* btn_det, const enum sitar_mbhc_btn_det_mem mem) { void *ret = &btn_det->_v_btn_low; switch (mem) { case SITAR_BTN_DET_GAIN: ret += sizeof(btn_det->_n_cic); case SITAR_BTN_DET_N_CIC: ret += sizeof(btn_det->_n_ready); case SITAR_BTN_DET_N_READY: ret += sizeof(btn_det->_v_btn_high[0]) * btn_det->num_btn; case SITAR_BTN_DET_V_BTN_HIGH: ret += sizeof(btn_det->_v_btn_low[0]) * btn_det->num_btn; case SITAR_BTN_DET_V_BTN_LOW: /* do nothing */ break; default: ret = NULL; } return ret; } static void sitar_mbhc_calc_thres(struct snd_soc_codec *codec) { struct sitar_priv *sitar; s16 btn_mv = 0, btn_delta_mv; struct sitar_mbhc_btn_detect_cfg *btn_det; struct sitar_mbhc_plug_type_cfg *plug_type; u16 *btn_high; u8 *n_ready; int i; sitar = snd_soc_codec_get_drvdata(codec); btn_det = SITAR_MBHC_CAL_BTN_DET_PTR(sitar->mbhc_cfg.calibration); plug_type = SITAR_MBHC_CAL_PLUG_TYPE_PTR(sitar->mbhc_cfg.calibration); n_ready = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_N_READY); if (sitar->mbhc_cfg.mclk_rate == SITAR_MCLK_RATE_12288KHZ) { sitar->mbhc_data.npoll = 9; sitar->mbhc_data.nbounce_wait = 30; } else if (sitar->mbhc_cfg.mclk_rate == SITAR_MCLK_RATE_9600KHZ) { sitar->mbhc_data.npoll = 7; sitar->mbhc_data.nbounce_wait = 23; } sitar->mbhc_data.t_sta_dce = ((1000 * 256) / (sitar->mbhc_cfg.mclk_rate / 1000) * n_ready[sitar_codec_mclk_index(sitar)]) + 10; sitar->mbhc_data.v_ins_hu = sitar_codec_v_sta_dce(codec, STA, plug_type->v_hs_max); sitar->mbhc_data.v_ins_h = sitar_codec_v_sta_dce(codec, DCE, plug_type->v_hs_max); btn_high = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_V_BTN_HIGH); for (i = 0; i < btn_det->num_btn; i++) btn_mv = btn_high[i] > btn_mv ? btn_high[i] : btn_mv; sitar->mbhc_data.v_b1_h = sitar_codec_v_sta_dce(codec, DCE, btn_mv); btn_delta_mv = btn_mv + btn_det->v_btn_press_delta_sta; sitar->mbhc_data.v_b1_hu = sitar_codec_v_sta_dce(codec, STA, btn_delta_mv); btn_delta_mv = btn_mv + btn_det->v_btn_press_delta_cic; sitar->mbhc_data.v_b1_huc = sitar_codec_v_sta_dce(codec, DCE, btn_delta_mv); sitar->mbhc_data.v_brh = sitar->mbhc_data.v_b1_h; sitar->mbhc_data.v_brl = SITAR_MBHC_BUTTON_MIN; sitar->mbhc_data.v_no_mic = sitar_codec_v_sta_dce(codec, STA, plug_type->v_no_mic); } void sitar_mbhc_init(struct snd_soc_codec *codec) { struct sitar_priv *sitar; struct sitar_mbhc_general_cfg *generic; struct sitar_mbhc_btn_detect_cfg *btn_det; int n; u8 *n_cic, *gain; pr_err("%s(): ENTER\n", __func__); sitar = snd_soc_codec_get_drvdata(codec); generic = SITAR_MBHC_CAL_GENERAL_PTR(sitar->mbhc_cfg.calibration); btn_det = SITAR_MBHC_CAL_BTN_DET_PTR(sitar->mbhc_cfg.calibration); for (n = 0; n < 8; n++) { if (n != 7) { snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_FIR_B1_CFG, 0x07, n); snd_soc_write(codec, SITAR_A_CDC_MBHC_FIR_B2_CFG, btn_det->c[n]); } } snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B2_CTL, 0x07, btn_det->nc); n_cic = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_N_CIC); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_TIMER_B6_CTL, 0xFF, n_cic[sitar_codec_mclk_index(sitar)]); gain = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_GAIN); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B2_CTL, 0x78, gain[sitar_codec_mclk_index(sitar)] << 3); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_TIMER_B4_CTL, 0x70, generic->mbhc_nsa << 4); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_TIMER_B4_CTL, 0x0F, btn_det->n_meas); snd_soc_write(codec, SITAR_A_CDC_MBHC_TIMER_B5_CTL, generic->mbhc_navg); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x80, 0x80); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x78, btn_det->mbhc_nsc << 3); snd_soc_update_bits(codec, SITAR_A_MICB_1_MBHC, 0x03, sitar->mbhc_cfg.micbias); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x02, 0x02); snd_soc_update_bits(codec, SITAR_A_MBHC_SCALING_MUX_2, 0xF0, 0xF0); } static bool sitar_mbhc_fw_validate(const struct firmware *fw) { u32 cfg_offset; struct sitar_mbhc_imped_detect_cfg *imped_cfg; struct sitar_mbhc_btn_detect_cfg *btn_cfg; if (fw->size < SITAR_MBHC_CAL_MIN_SIZE) return false; /* previous check guarantees that there is enough fw data up * to num_btn */ btn_cfg = SITAR_MBHC_CAL_BTN_DET_PTR(fw->data); cfg_offset = (u32) ((void *) btn_cfg - (void *) fw->data); if (fw->size < (cfg_offset + SITAR_MBHC_CAL_BTN_SZ(btn_cfg))) return false; /* previous check guarantees that there is enough fw data up * to start of impedance detection configuration */ imped_cfg = SITAR_MBHC_CAL_IMPED_DET_PTR(fw->data); cfg_offset = (u32) ((void *) imped_cfg - (void *) fw->data); if (fw->size < (cfg_offset + SITAR_MBHC_CAL_IMPED_MIN_SZ)) return false; if (fw->size < (cfg_offset + SITAR_MBHC_CAL_IMPED_SZ(imped_cfg))) return false; return true; } static void sitar_turn_onoff_override(struct snd_soc_codec *codec, bool on) { snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x04, on << 2); } /* called under codec_resource_lock acquisition */ void sitar_set_and_turnoff_hph_padac(struct snd_soc_codec *codec) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); u8 wg_time; wg_time = snd_soc_read(codec, SITAR_A_RX_HPH_CNP_WG_TIME) ; wg_time += 1; /* If headphone PA is on, check if userspace receives * removal event to sync-up PA's state */ if (sitar_is_hph_pa_on(codec)) { pr_debug("%s PA is on, setting PA_OFF_ACK\n", __func__); set_bit(SITAR_HPHL_PA_OFF_ACK, &sitar->hph_pa_dac_state); set_bit(SITAR_HPHR_PA_OFF_ACK, &sitar->hph_pa_dac_state); } else { pr_debug("%s PA is off\n", __func__); } if (sitar_is_hph_dac_on(codec, 1)) set_bit(SITAR_HPHL_DAC_OFF_ACK, &sitar->hph_pa_dac_state); if (sitar_is_hph_dac_on(codec, 0)) set_bit(SITAR_HPHR_DAC_OFF_ACK, &sitar->hph_pa_dac_state); snd_soc_update_bits(codec, SITAR_A_RX_HPH_CNP_EN, 0x30, 0x00); snd_soc_update_bits(codec, SITAR_A_RX_HPH_L_DAC_CTL, 0xC0, 0x00); snd_soc_update_bits(codec, SITAR_A_RX_HPH_R_DAC_CTL, 0xC0, 0x00); usleep_range(wg_time * 1000, wg_time * 1000); } static void sitar_clr_and_turnon_hph_padac(struct sitar_priv *sitar) { bool pa_turned_on = false; struct snd_soc_codec *codec = sitar->codec; u8 wg_time; wg_time = snd_soc_read(codec, SITAR_A_RX_HPH_CNP_WG_TIME) ; wg_time += 1; if (test_and_clear_bit(SITAR_HPHR_DAC_OFF_ACK, &sitar->hph_pa_dac_state)) { pr_debug("%s: HPHR clear flag and enable DAC\n", __func__); snd_soc_update_bits(sitar->codec, SITAR_A_RX_HPH_R_DAC_CTL, 0xC0, 0xC0); } if (test_and_clear_bit(SITAR_HPHL_DAC_OFF_ACK, &sitar->hph_pa_dac_state)) { pr_debug("%s: HPHL clear flag and enable DAC\n", __func__); snd_soc_update_bits(sitar->codec, SITAR_A_RX_HPH_L_DAC_CTL, 0xC0, 0xC0); } if (test_and_clear_bit(SITAR_HPHR_PA_OFF_ACK, &sitar->hph_pa_dac_state)) { pr_debug("%s: HPHR clear flag and enable PA\n", __func__); snd_soc_update_bits(sitar->codec, SITAR_A_RX_HPH_CNP_EN, 0x10, 1 << 4); pa_turned_on = true; } if (test_and_clear_bit(SITAR_HPHL_PA_OFF_ACK, &sitar->hph_pa_dac_state)) { pr_debug("%s: HPHL clear flag and enable PA\n", __func__); snd_soc_update_bits(sitar->codec, SITAR_A_RX_HPH_CNP_EN, 0x20, 1 << 5); pa_turned_on = true; } if (pa_turned_on) { pr_debug("%s: PA was turned off by MBHC and not by DAPM\n", __func__); usleep_range(wg_time * 1000, wg_time * 1000); } } static void sitar_codec_report_plug(struct snd_soc_codec *codec, int insertion, enum snd_jack_types jack_type) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); if (!insertion) { /* Report removal */ sitar->hph_status &= ~jack_type; if (sitar->mbhc_cfg.headset_jack) { /* cancel possibly scheduled btn work and * report release if we reported button press */ if (sitar_cancel_btn_work(sitar)) { pr_debug("%s: button press is canceled\n", __func__); } else if (sitar->buttons_pressed) { pr_debug("%s: Reporting release for reported " "button press %d\n", __func__, jack_type); sitar_snd_soc_jack_report(sitar, sitar->mbhc_cfg.button_jack, 0, sitar->buttons_pressed); sitar->buttons_pressed &= ~SITAR_JACK_BUTTON_MASK; } pr_debug("%s: Reporting removal %d\n", __func__, jack_type); sitar_snd_soc_jack_report(sitar, sitar->mbhc_cfg.headset_jack, sitar->hph_status, SITAR_JACK_MASK); } sitar_set_and_turnoff_hph_padac(codec); hphocp_off_report(sitar, SND_JACK_OC_HPHR, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); hphocp_off_report(sitar, SND_JACK_OC_HPHL, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); sitar->current_plug = PLUG_TYPE_NONE; sitar->mbhc_polling_active = false; } else { /* Report insertion */ sitar->hph_status |= jack_type; if (jack_type == SND_JACK_HEADPHONE) sitar->current_plug = PLUG_TYPE_HEADPHONE; else if (jack_type == SND_JACK_HEADSET) { sitar->mbhc_polling_active = true; sitar->current_plug = PLUG_TYPE_HEADSET; } if (sitar->mbhc_cfg.headset_jack) { pr_debug("%s: Reporting insertion %d\n", __func__, jack_type); sitar_snd_soc_jack_report(sitar, sitar->mbhc_cfg.headset_jack, sitar->hph_status, SITAR_JACK_MASK); } sitar_clr_and_turnon_hph_padac(sitar); } } static bool sitar_hs_gpio_level_remove(struct sitar_priv *sitar) { return (gpio_get_value_cansleep(sitar->mbhc_cfg.gpio) != sitar->mbhc_cfg.gpio_level_insert); } static bool sitar_is_invalid_insert_delta(struct snd_soc_codec *codec, int mic_volt, int mic_volt_prev) { int delta = abs(mic_volt - mic_volt_prev); if (delta > SITAR_MBHC_FAKE_INSERT_VOLT_DELTA_MV) { pr_debug("%s: volt delta %dmv\n", __func__, delta); return true; } return false; } static bool sitar_is_invalid_insertion_range(struct snd_soc_codec *codec, s32 mic_volt) { bool invalid = false; if (mic_volt < SITAR_MBHC_FAKE_INSERT_HIGH && (mic_volt > SITAR_MBHC_FAKE_INSERT_LOW)) { invalid = true; } return invalid; } static bool sitar_codec_is_invalid_plug(struct snd_soc_codec *codec, s32 mic_mv[MBHC_NUM_DCE_PLUG_DETECT], enum sitar_mbhc_plug_type plug_type[MBHC_NUM_DCE_PLUG_DETECT]) { int i; bool r = false; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); struct sitar_mbhc_plug_type_cfg *plug_type_ptr = SITAR_MBHC_CAL_PLUG_TYPE_PTR(sitar->mbhc_cfg.calibration); for (i = 0 ; i < MBHC_NUM_DCE_PLUG_DETECT && !r; i++) { if (mic_mv[i] < plug_type_ptr->v_no_mic) plug_type[i] = PLUG_TYPE_HEADPHONE; else if (mic_mv[i] < plug_type_ptr->v_hs_max) plug_type[i] = PLUG_TYPE_HEADSET; else if (mic_mv[i] > plug_type_ptr->v_hs_max) plug_type[i] = PLUG_TYPE_HIGH_HPH; r = sitar_is_invalid_insertion_range(codec, mic_mv[i]); if (!r && i > 0) { if (plug_type[i-1] != plug_type[i]) r = true; else r = sitar_is_invalid_insert_delta(codec, mic_mv[i], mic_mv[i - 1]); } } return r; } /* called under codec_resource_lock acquisition */ void sitar_find_plug_and_report(struct snd_soc_codec *codec, enum sitar_mbhc_plug_type plug_type) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); if (plug_type == PLUG_TYPE_HEADPHONE && sitar->current_plug == PLUG_TYPE_NONE) { /* Nothing was reported previously * reporte a headphone */ sitar_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); sitar_codec_cleanup_hs_polling(codec); } else if (plug_type == PLUG_TYPE_HEADSET) { /* If Headphone was reported previously, this will * only report the mic line */ sitar_codec_report_plug(codec, 1, SND_JACK_HEADSET); msleep(100); sitar_codec_start_hs_polling(codec); } else if (plug_type == PLUG_TYPE_HIGH_HPH) { if (sitar->current_plug == PLUG_TYPE_NONE) sitar_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); sitar_codec_cleanup_hs_polling(codec); pr_debug("setup mic trigger for further detection\n"); sitar->lpi_enabled = true; /* TODO ::: sitar_codec_enable_hs_detect */ pr_err("%s(): High impedence hph not supported\n", __func__); } } /* should be called under interrupt context that hold suspend */ static void sitar_schedule_hs_detect_plug(struct sitar_priv *sitar) { pr_debug("%s: scheduling sitar_hs_correct_gpio_plug\n", __func__); sitar->hs_detect_work_stop = false; wcd9xxx_lock_sleep(sitar->codec->control_data); schedule_work(&sitar->hs_correct_plug_work); } /* called under codec_resource_lock acquisition */ static void sitar_cancel_hs_detect_plug(struct sitar_priv *sitar) { pr_debug("%s: canceling hs_correct_plug_work\n", __func__); sitar->hs_detect_work_stop = true; wmb(); SITAR_RELEASE_LOCK(sitar->codec_resource_lock); if (cancel_work_sync(&sitar->hs_correct_plug_work)) { pr_debug("%s: hs_correct_plug_work is canceled\n", __func__); wcd9xxx_unlock_sleep(sitar->codec->control_data); } SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock); } static void sitar_hs_correct_gpio_plug(struct work_struct *work) { struct sitar_priv *sitar; struct snd_soc_codec *codec; int retry = 0, i; bool correction = false; s32 mic_mv[MBHC_NUM_DCE_PLUG_DETECT]; short mb_v[MBHC_NUM_DCE_PLUG_DETECT]; enum sitar_mbhc_plug_type plug_type[MBHC_NUM_DCE_PLUG_DETECT]; unsigned long timeout; sitar = container_of(work, struct sitar_priv, hs_correct_plug_work); codec = sitar->codec; pr_debug("%s: enter\n", __func__); sitar->mbhc_cfg.mclk_cb_fn(codec, 1, false); /* Keep override on during entire plug type correction work. * * This is okay under the assumption that any GPIO irqs which use * MBHC block cancel and sync this work so override is off again * prior to GPIO interrupt handler's MBHC block usage. * Also while this correction work is running, we can guarantee * DAPM doesn't use any MBHC block as this work only runs with * headphone detection. */ sitar_turn_onoff_override(codec, true); timeout = jiffies + msecs_to_jiffies(SITAR_HS_DETECT_PLUG_TIME_MS); while (!time_after(jiffies, timeout)) { ++retry; rmb(); if (sitar->hs_detect_work_stop) { pr_debug("%s: stop requested\n", __func__); break; } msleep(SITAR_HS_DETECT_PLUG_INERVAL_MS); if (sitar_hs_gpio_level_remove(sitar)) { pr_debug("%s: GPIO value is low\n", __func__); break; } /* can race with removal interrupt */ SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock); for (i = 0; i < MBHC_NUM_DCE_PLUG_DETECT; i++) { mb_v[i] = __sitar_codec_sta_dce(codec, 1, true, true); mic_mv[i] = sitar_codec_sta_dce_v(codec, 1 , mb_v[i]); pr_debug("%s : DCE run %d, mic_mv = %d(%x)\n", __func__, retry, mic_mv[i], mb_v[i]); } SITAR_RELEASE_LOCK(sitar->codec_resource_lock); if (sitar_codec_is_invalid_plug(codec, mic_mv, plug_type)) { pr_debug("Invalid plug in attempt # %d\n", retry); if (retry == NUM_ATTEMPTS_TO_REPORT && sitar->current_plug == PLUG_TYPE_NONE) { sitar_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); } } else if (!sitar_codec_is_invalid_plug(codec, mic_mv, plug_type) && plug_type[0] == PLUG_TYPE_HEADPHONE) { pr_debug("Good headphone detected, continue polling mic\n"); if (sitar->current_plug == PLUG_TYPE_NONE) { sitar_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); } } else { SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock); /* Turn off override */ sitar_turn_onoff_override(codec, false); sitar_find_plug_and_report(codec, plug_type[0]); SITAR_RELEASE_LOCK(sitar->codec_resource_lock); pr_debug("Attempt %d found correct plug %d\n", retry, plug_type[0]); correction = true; break; } } /* Turn off override */ if (!correction) sitar_turn_onoff_override(codec, false); sitar->mbhc_cfg.mclk_cb_fn(codec, 0, false); pr_debug("%s: leave\n", __func__); /* unlock sleep */ wcd9xxx_unlock_sleep(sitar->codec->control_data); } /* called under codec_resource_lock acquisition */ static void sitar_codec_decide_gpio_plug(struct snd_soc_codec *codec) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); short mb_v[MBHC_NUM_DCE_PLUG_DETECT]; s32 mic_mv[MBHC_NUM_DCE_PLUG_DETECT]; enum sitar_mbhc_plug_type plug_type[MBHC_NUM_DCE_PLUG_DETECT]; int i; pr_debug("%s: enter\n", __func__); sitar_turn_onoff_override(codec, true); mb_v[0] = sitar_codec_setup_hs_polling(codec); mic_mv[0] = sitar_codec_sta_dce_v(codec, 1, mb_v[0]); pr_debug("%s: DCE run 1, mic_mv = %d\n", __func__, mic_mv[0]); for (i = 1; i < MBHC_NUM_DCE_PLUG_DETECT; i++) { mb_v[i] = __sitar_codec_sta_dce(codec, 1, true, true); mic_mv[i] = sitar_codec_sta_dce_v(codec, 1 , mb_v[i]); pr_debug("%s: DCE run %d, mic_mv = %d\n", __func__, i + 1, mic_mv[i]); } sitar_turn_onoff_override(codec, false); if (sitar_hs_gpio_level_remove(sitar)) { pr_debug("%s: GPIO value is low when determining plug\n", __func__); return; } if (sitar_codec_is_invalid_plug(codec, mic_mv, plug_type)) { sitar_schedule_hs_detect_plug(sitar); } else if (plug_type[0] == PLUG_TYPE_HEADPHONE) { sitar_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); sitar_schedule_hs_detect_plug(sitar); } else if (plug_type[0] == PLUG_TYPE_HEADSET) { pr_debug("%s: Valid plug found, determine plug type\n", __func__); sitar_find_plug_and_report(codec, plug_type[0]); } } /* called under codec_resource_lock acquisition */ static void sitar_codec_detect_plug_type(struct snd_soc_codec *codec) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); const struct sitar_mbhc_plug_detect_cfg *plug_det = SITAR_MBHC_CAL_PLUG_DET_PTR(sitar->mbhc_cfg.calibration); if (plug_det->t_ins_complete > 20) msleep(plug_det->t_ins_complete); else usleep_range(plug_det->t_ins_complete * 1000, plug_det->t_ins_complete * 1000); if (sitar_hs_gpio_level_remove(sitar)) pr_debug("%s: GPIO value is low when determining " "plug\n", __func__); else sitar_codec_decide_gpio_plug(codec); return; } static void sitar_hs_gpio_handler(struct snd_soc_codec *codec) { bool insert; struct sitar_priv *priv = snd_soc_codec_get_drvdata(codec); bool is_removed = false; pr_debug("%s: enter\n", __func__); priv->in_gpio_handler = true; /* Wait here for debounce time */ usleep_range(SITAR_GPIO_IRQ_DEBOUNCE_TIME_US, SITAR_GPIO_IRQ_DEBOUNCE_TIME_US); SITAR_ACQUIRE_LOCK(priv->codec_resource_lock); /* cancel pending button press */ if (sitar_cancel_btn_work(priv)) pr_debug("%s: button press is canceled\n", __func__); insert = (gpio_get_value_cansleep(priv->mbhc_cfg.gpio) == priv->mbhc_cfg.gpio_level_insert); if ((priv->current_plug == PLUG_TYPE_NONE) && insert) { priv->lpi_enabled = false; wmb(); /* cancel detect plug */ sitar_cancel_hs_detect_plug(priv); /* Disable Mic Bias pull down and HPH Switch to GND */ snd_soc_update_bits(codec, priv->mbhc_bias_regs.ctl_reg, 0x01, 0x00); snd_soc_update_bits(codec, SITAR_A_MBHC_HPH, 0x01, 0x00); sitar_codec_detect_plug_type(codec); } else if ((priv->current_plug != PLUG_TYPE_NONE) && !insert) { priv->lpi_enabled = false; wmb(); /* cancel detect plug */ sitar_cancel_hs_detect_plug(priv); if (priv->current_plug == PLUG_TYPE_HEADPHONE) { sitar_codec_report_plug(codec, 0, SND_JACK_HEADPHONE); is_removed = true; } else if (priv->current_plug == PLUG_TYPE_HEADSET) { sitar_codec_pause_hs_polling(codec); sitar_codec_cleanup_hs_polling(codec); sitar_codec_report_plug(codec, 0, SND_JACK_HEADSET); is_removed = true; } if (is_removed) { /* Enable Mic Bias pull down and HPH Switch to GND */ snd_soc_update_bits(codec, priv->mbhc_bias_regs.ctl_reg, 0x01, 0x01); snd_soc_update_bits(codec, SITAR_A_MBHC_HPH, 0x01, 0x01); /* Make sure mic trigger is turned off */ snd_soc_update_bits(codec, priv->mbhc_bias_regs.ctl_reg, 0x01, 0x01); snd_soc_update_bits(codec, priv->mbhc_bias_regs.mbhc_reg, 0x90, 0x00); /* Reset MBHC State Machine */ snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x08, 0x08); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x08, 0x00); /* Turn off override */ sitar_turn_onoff_override(codec, false); } } priv->in_gpio_handler = false; SITAR_RELEASE_LOCK(priv->codec_resource_lock); pr_debug("%s: leave\n", __func__); } static irqreturn_t sitar_mechanical_plug_detect_irq(int irq, void *data) { int r = IRQ_HANDLED; struct snd_soc_codec *codec = data; if (unlikely(wcd9xxx_lock_sleep(codec->control_data) == false)) { pr_warn("%s(): Failed to hold suspend\n", __func__); r = IRQ_NONE; } else { sitar_hs_gpio_handler(codec); wcd9xxx_unlock_sleep(codec->control_data); } return r; } static int sitar_mbhc_init_and_calibrate(struct snd_soc_codec *codec) { int rc = 0; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); sitar->mbhc_cfg.mclk_cb_fn(codec, 1, false); sitar_mbhc_init(codec); sitar_mbhc_cal(codec); sitar_mbhc_calc_thres(codec); sitar->mbhc_cfg.mclk_cb_fn(codec, 0, false); sitar_codec_calibrate_hs_polling(codec); /* Enable Mic Bias pull down and HPH Switch to GND */ snd_soc_update_bits(codec, sitar->mbhc_bias_regs.ctl_reg, 0x01, 0x01); snd_soc_update_bits(codec, SITAR_A_MBHC_HPH, 0x01, 0x01); rc = request_threaded_irq(sitar->mbhc_cfg.gpio_irq, NULL, sitar_mechanical_plug_detect_irq, (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING), "sitar-hs-gpio", codec); if (!IS_ERR_VALUE(rc)) { rc = enable_irq_wake(sitar->mbhc_cfg.gpio_irq); snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10, 0x10); wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); /* Bootup time detection */ sitar_hs_gpio_handler(codec); } return rc; } static void mbhc_fw_read(struct work_struct *work) { struct delayed_work *dwork; struct sitar_priv *sitar; struct snd_soc_codec *codec; const struct firmware *fw; int ret = -1, retry = 0; dwork = to_delayed_work(work); sitar = container_of(dwork, struct sitar_priv, mbhc_firmware_dwork); codec = sitar->codec; while (retry < MBHC_FW_READ_ATTEMPTS) { retry++; pr_info("%s:Attempt %d to request MBHC firmware\n", __func__, retry); ret = request_firmware(&fw, "wcd9310/wcd9310_mbhc.bin", codec->dev); if (ret != 0) { usleep_range(MBHC_FW_READ_TIMEOUT, MBHC_FW_READ_TIMEOUT); } else { pr_info("%s: MBHC Firmware read succesful\n", __func__); break; } } if (ret != 0) { pr_err("%s: Cannot load MBHC firmware use default cal\n", __func__); } else if (sitar_mbhc_fw_validate(fw) == false) { pr_err("%s: Invalid MBHC cal data size use default cal\n", __func__); release_firmware(fw); } else { sitar->calibration = (void *)fw->data; sitar->mbhc_fw = fw; } sitar_mbhc_init_and_calibrate(codec); } int sitar_hs_detect(struct snd_soc_codec *codec, const struct sitar_mbhc_config *cfg) { struct sitar_priv *sitar; int rc = 0; if (!codec || !cfg->calibration) { pr_err("Error: no codec or calibration\n"); return -EINVAL; } if (cfg->mclk_rate != SITAR_MCLK_RATE_12288KHZ) { if (cfg->mclk_rate == SITAR_MCLK_RATE_9600KHZ) pr_err("Error: clock rate %dHz is not yet supported\n", cfg->mclk_rate); else pr_err("Error: unsupported clock rate %d\n", cfg->mclk_rate); return -EINVAL; } sitar = snd_soc_codec_get_drvdata(codec); sitar->mbhc_cfg = *cfg; sitar->in_gpio_handler = false; sitar->current_plug = PLUG_TYPE_NONE; sitar->lpi_enabled = false; sitar_get_mbhc_micbias_regs(codec, &sitar->mbhc_bias_regs); /* Put CFILT in fast mode by default */ snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_ctl, 0x40, SITAR_CFILT_FAST_MODE); INIT_DELAYED_WORK(&sitar->mbhc_firmware_dwork, mbhc_fw_read); INIT_DELAYED_WORK(&sitar->mbhc_btn_dwork, btn_lpress_fn); INIT_WORK(&sitar->hphlocp_work, hphlocp_off_report); INIT_WORK(&sitar->hphrocp_work, hphrocp_off_report); INIT_WORK(&sitar->hs_correct_plug_work, sitar_hs_correct_gpio_plug); if (!sitar->mbhc_cfg.read_fw_bin) { rc = sitar_mbhc_init_and_calibrate(codec); } else { schedule_delayed_work(&sitar->mbhc_firmware_dwork, usecs_to_jiffies(MBHC_FW_READ_TIMEOUT)); } return rc; } EXPORT_SYMBOL_GPL(sitar_hs_detect); static int sitar_determine_button(const struct sitar_priv *priv, const s32 bias_mv) { s16 *v_btn_low, *v_btn_high; struct sitar_mbhc_btn_detect_cfg *btn_det; int i, btn = -1; btn_det = SITAR_MBHC_CAL_BTN_DET_PTR(priv->mbhc_cfg.calibration); v_btn_low = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_V_BTN_LOW); v_btn_high = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_V_BTN_HIGH); for (i = 0; i < btn_det->num_btn; i++) { if ((v_btn_low[i] <= bias_mv) && (v_btn_high[i] >= bias_mv)) { btn = i; break; } } if (btn == -1) pr_debug("%s: couldn't find button number for mic mv %d\n", __func__, bias_mv); return btn; } static int sitar_get_button_mask(const int btn) { int mask = 0; switch (btn) { case 0: mask = SND_JACK_BTN_0; break; case 1: mask = SND_JACK_BTN_1; break; case 2: mask = SND_JACK_BTN_2; break; case 3: mask = SND_JACK_BTN_3; break; case 4: mask = SND_JACK_BTN_4; break; case 5: mask = SND_JACK_BTN_5; break; case 6: mask = SND_JACK_BTN_6; break; case 7: mask = SND_JACK_BTN_7; break; } return mask; } static irqreturn_t sitar_dce_handler(int irq, void *data) { int i, mask; short dce, sta, bias_value_dce; s32 mv, stamv, bias_mv_dce; int btn = -1, meas = 0; struct sitar_priv *priv = data; const struct sitar_mbhc_btn_detect_cfg *d = SITAR_MBHC_CAL_BTN_DET_PTR(priv->mbhc_cfg.calibration); short btnmeas[d->n_btn_meas + 1]; struct snd_soc_codec *codec = priv->codec; struct wcd9xxx *core = dev_get_drvdata(priv->codec->dev->parent); int n_btn_meas = d->n_btn_meas; u8 mbhc_status = snd_soc_read(codec, SITAR_A_CDC_MBHC_B1_STATUS) & 0x3E; pr_debug("%s: enter\n", __func__); SITAR_ACQUIRE_LOCK(priv->codec_resource_lock); if (priv->mbhc_state == MBHC_STATE_POTENTIAL_RECOVERY) { pr_debug("%s: mbhc is being recovered, skip button press\n", __func__); goto done; } priv->mbhc_state = MBHC_STATE_POTENTIAL; if (!priv->mbhc_polling_active) { pr_warn("%s: mbhc polling is not active, skip button press\n", __func__); goto done; } dce = sitar_codec_read_dce_result(codec); mv = sitar_codec_sta_dce_v(codec, 1, dce); /* If GPIO interrupt already kicked in, ignore button press */ if (priv->in_gpio_handler) { pr_debug("%s: GPIO State Changed, ignore button press\n", __func__); btn = -1; goto done; } if (mbhc_status != SITAR_MBHC_STATUS_REL_DETECTION) { if (priv->mbhc_last_resume && !time_after(jiffies, priv->mbhc_last_resume + HZ)) { pr_debug("%s: Button is already released shortly after " "resume\n", __func__); n_btn_meas = 0; } else { pr_debug("%s: Button is already released without " "resume", __func__); sta = sitar_codec_read_sta_result(codec); stamv = sitar_codec_sta_dce_v(codec, 0, sta); btn = sitar_determine_button(priv, mv); if (btn != sitar_determine_button(priv, stamv)) btn = -1; goto done; } } /* determine pressed button */ btnmeas[meas++] = sitar_determine_button(priv, mv); pr_debug("%s: meas %d - DCE %d,%d, button %d\n", __func__, meas - 1, dce, mv, btnmeas[meas - 1]); if (n_btn_meas == 0) btn = btnmeas[0]; for (; ((d->n_btn_meas) && (meas < (d->n_btn_meas + 1))); meas++) { bias_value_dce = sitar_codec_sta_dce(codec, 1, false); bias_mv_dce = sitar_codec_sta_dce_v(codec, 1, bias_value_dce); btnmeas[meas] = sitar_determine_button(priv, bias_mv_dce); pr_debug("%s: meas %d - DCE %d,%d, button %d\n", __func__, meas, bias_value_dce, bias_mv_dce, btnmeas[meas]); /* if large enough measurements are collected, * start to check if last all n_btn_con measurements were * in same button low/high range */ if (meas + 1 >= d->n_btn_con) { for (i = 0; i < d->n_btn_con; i++) if ((btnmeas[meas] < 0) || (btnmeas[meas] != btnmeas[meas - i])) break; if (i == d->n_btn_con) { /* button pressed */ btn = btnmeas[meas]; break; } else if ((n_btn_meas - meas) < (d->n_btn_con - 1)) { /* if left measurements are less than n_btn_con, * it's impossible to find button number */ break; } } } if (btn >= 0) { if (priv->in_gpio_handler) { pr_debug("%s: GPIO already triggered, ignore button " "press\n", __func__); goto done; } mask = sitar_get_button_mask(btn); priv->buttons_pressed |= mask; wcd9xxx_lock_sleep(core); if (schedule_delayed_work(&priv->mbhc_btn_dwork, msecs_to_jiffies(400)) == 0) { WARN(1, "Button pressed twice without release" "event\n"); wcd9xxx_unlock_sleep(core); } } else { pr_debug("%s: bogus button press, too short press?\n", __func__); } done: pr_debug("%s: leave\n", __func__); SITAR_RELEASE_LOCK(priv->codec_resource_lock); return IRQ_HANDLED; } static int sitar_is_fake_press(struct sitar_priv *priv) { int i; int r = 0; struct snd_soc_codec *codec = priv->codec; const int dces = MBHC_NUM_DCE_PLUG_DETECT; short mb_v; for (i = 0; i < dces; i++) { usleep_range(10000, 10000); if (i == 0) { mb_v = sitar_codec_sta_dce(codec, 0, true); pr_debug("%s: STA[0]: %d,%d\n", __func__, mb_v, sitar_codec_sta_dce_v(codec, 0, mb_v)); if (mb_v < (short)priv->mbhc_data.v_b1_hu || mb_v > (short)priv->mbhc_data.v_ins_hu) { r = 1; break; } } else { mb_v = sitar_codec_sta_dce(codec, 1, true); pr_debug("%s: DCE[%d]: %d,%d\n", __func__, i, mb_v, sitar_codec_sta_dce_v(codec, 1, mb_v)); if (mb_v < (short)priv->mbhc_data.v_b1_h || mb_v > (short)priv->mbhc_data.v_ins_h) { r = 1; break; } } } return r; } static irqreturn_t sitar_release_handler(int irq, void *data) { int ret; struct sitar_priv *priv = data; struct snd_soc_codec *codec = priv->codec; pr_debug("%s: enter\n", __func__); SITAR_ACQUIRE_LOCK(priv->codec_resource_lock); priv->mbhc_state = MBHC_STATE_RELEASE; if (priv->buttons_pressed & SITAR_JACK_BUTTON_MASK) { ret = sitar_cancel_btn_work(priv); if (ret == 0) { pr_debug("%s: Reporting long button release event\n", __func__); if (priv->mbhc_cfg.button_jack) sitar_snd_soc_jack_report(priv, priv->mbhc_cfg.button_jack, 0, priv->buttons_pressed); } else { if (sitar_is_fake_press(priv)) { pr_debug("%s: Fake button press interrupt\n", __func__); } else if (priv->mbhc_cfg.button_jack) { if (priv->in_gpio_handler) { pr_debug("%s: GPIO kicked in, ignore\n", __func__); } else { pr_debug("%s: Reporting short button 0 " "press and release\n", __func__); sitar_snd_soc_jack_report(priv, priv->mbhc_cfg.button_jack, priv->buttons_pressed, priv->buttons_pressed); sitar_snd_soc_jack_report(priv, priv->mbhc_cfg.button_jack, 0, priv->buttons_pressed); } } } priv->buttons_pressed &= ~SITAR_JACK_BUTTON_MASK; } sitar_codec_calibrate_hs_polling(codec); if (priv->mbhc_cfg.gpio) msleep(SITAR_MBHC_GPIO_REL_DEBOUNCE_TIME_MS); sitar_codec_start_hs_polling(codec); pr_debug("%s: leave\n", __func__); SITAR_RELEASE_LOCK(priv->codec_resource_lock); return IRQ_HANDLED; } static irqreturn_t sitar_hphl_ocp_irq(int irq, void *data) { struct sitar_priv *sitar = data; struct snd_soc_codec *codec; pr_info("%s: received HPHL OCP irq\n", __func__); if (sitar) { codec = sitar->codec; if ((sitar->hphlocp_cnt < SITAR_OCP_ATTEMPT) && (!sitar->hphrocp_cnt)) { pr_info("%s: retry\n", __func__); sitar->hphlocp_cnt++; snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10, 0x00); snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10, 0x10); } else { wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); sitar->hph_status |= SND_JACK_OC_HPHL; if (sitar->mbhc_cfg.headset_jack) sitar_snd_soc_jack_report(sitar, sitar->mbhc_cfg.headset_jack, sitar->hph_status, SITAR_JACK_MASK); } } else { pr_err("%s: Bad sitar private data\n", __func__); } return IRQ_HANDLED; } static irqreturn_t sitar_hphr_ocp_irq(int irq, void *data) { struct sitar_priv *sitar = data; struct snd_soc_codec *codec; pr_info("%s: received HPHR OCP irq\n", __func__); if (sitar) { codec = sitar->codec; if ((sitar->hphrocp_cnt < SITAR_OCP_ATTEMPT) && (!sitar->hphlocp_cnt)) { pr_info("%s: retry\n", __func__); sitar->hphrocp_cnt++; snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10, 0x00); snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10, 0x10); } else { wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); sitar->hph_status |= SND_JACK_OC_HPHR; if (sitar->mbhc_cfg.headset_jack) sitar_snd_soc_jack_report(sitar, sitar->mbhc_cfg.headset_jack, sitar->hph_status, SITAR_JACK_MASK); } } else { pr_err("%s: Bad sitar private data\n", __func__); } return IRQ_HANDLED; } static irqreturn_t sitar_hs_insert_irq(int irq, void *data) { struct sitar_priv *priv = data; struct snd_soc_codec *codec = priv->codec; pr_debug("%s: enter\n", __func__); SITAR_ACQUIRE_LOCK(priv->codec_resource_lock); wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION); snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_INT_CTL, 0x03, 0x00); /* Turn off both HPH and MIC line schmitt triggers */ snd_soc_update_bits(codec, priv->mbhc_bias_regs.mbhc_reg, 0x90, 0x00); snd_soc_update_bits(codec, SITAR_A_MBHC_HPH, 0x13, 0x00); snd_soc_update_bits(codec, priv->mbhc_bias_regs.ctl_reg, 0x01, 0x00); pr_debug("%s: MIC trigger insertion interrupt\n", __func__); rmb(); if (priv->lpi_enabled) msleep(100); rmb(); if (!priv->lpi_enabled) { pr_debug("%s: lpi is disabled\n", __func__); } else if (gpio_get_value_cansleep(priv->mbhc_cfg.gpio) == priv->mbhc_cfg.gpio_level_insert) { pr_debug("%s: Valid insertion, " "detect plug type\n", __func__); sitar_codec_decide_gpio_plug(codec); } else { pr_debug("%s: Invalid insertion, " "stop plug detection\n", __func__); } SITAR_RELEASE_LOCK(priv->codec_resource_lock); return IRQ_HANDLED; } static bool is_valid_mic_voltage(struct snd_soc_codec *codec, s32 mic_mv) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); struct sitar_mbhc_plug_type_cfg *plug_type = SITAR_MBHC_CAL_PLUG_TYPE_PTR(sitar->mbhc_cfg.calibration); return (!(mic_mv > SITAR_MBHC_FAKE_INSERT_LOW && mic_mv < SITAR_MBHC_FAKE_INSERT_HIGH) && (mic_mv > plug_type->v_no_mic) && (mic_mv < plug_type->v_hs_max)) ? true : false; } /* called under codec_resource_lock acquisition * returns true if mic voltage range is back to normal insertion * returns false either if timedout or removed */ static bool sitar_hs_remove_settle(struct snd_soc_codec *codec) { int i; bool timedout, settled = false; s32 mic_mv[MBHC_NUM_DCE_PLUG_DETECT]; short mb_v[MBHC_NUM_DCE_PLUG_DETECT]; unsigned long retry = 0, timeout; struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); timeout = jiffies + msecs_to_jiffies(SITAR_HS_DETECT_PLUG_TIME_MS); while (!(timedout = time_after(jiffies, timeout))) { retry++; if (sitar_hs_gpio_level_remove(sitar)) { pr_debug("%s: GPIO indicates removal\n", __func__); break; } if (retry > 1) msleep(250); else msleep(50); if (sitar_hs_gpio_level_remove(sitar)) { pr_debug("%s: GPIO indicates removal\n", __func__); break; } sitar_turn_onoff_override(codec, true); for (i = 0; i < MBHC_NUM_DCE_PLUG_DETECT; i++) { mb_v[i] = __sitar_codec_sta_dce(codec, 1, true, true); mic_mv[i] = sitar_codec_sta_dce_v(codec, 1 , mb_v[i]); pr_debug("%s : DCE run %lu, mic_mv = %d(%x)\n", __func__, retry, mic_mv[i], mb_v[i]); } sitar_turn_onoff_override(codec, false); if (sitar_hs_gpio_level_remove(sitar)) { pr_debug("%s: GPIO indicates removal\n", __func__); break; } for (i = 0; i < MBHC_NUM_DCE_PLUG_DETECT; i++) if (!is_valid_mic_voltage(codec, mic_mv[i])) break; if (i == MBHC_NUM_DCE_PLUG_DETECT) { pr_debug("%s: MIC voltage settled\n", __func__); settled = true; msleep(200); break; } } if (timedout) pr_debug("%s: Microphone did not settle in %d seconds\n", __func__, SITAR_HS_DETECT_PLUG_TIME_MS); return settled; } static irqreturn_t sitar_hs_remove_irq(int irq, void *data) { struct sitar_priv *priv = data; struct snd_soc_codec *codec = priv->codec; pr_debug("%s: enter, removal interrupt\n", __func__); SITAR_ACQUIRE_LOCK(priv->codec_resource_lock); if (sitar_hs_remove_settle(codec)) sitar_codec_start_hs_polling(codec); pr_debug("%s: remove settle done\n", __func__); SITAR_RELEASE_LOCK(priv->codec_resource_lock); return IRQ_HANDLED; } static irqreturn_t sitar_slimbus_irq(int irq, void *data) { struct sitar_priv *priv = data; struct snd_soc_codec *codec = priv->codec; unsigned long slimbus_value; int i, j, k, port_id, ch_mask_temp; u8 val; for (i = 0; i < WCD9XXX_SLIM_NUM_PORT_REG; i++) { slimbus_value = wcd9xxx_interface_reg_read(codec->control_data, SITAR_SLIM_PGD_PORT_INT_STATUS0 + i); for_each_set_bit(j, &slimbus_value, BITS_PER_BYTE) { port_id = i*8 + j; val = wcd9xxx_interface_reg_read(codec->control_data, SITAR_SLIM_PGD_PORT_INT_SOURCE0 + port_id); if (val & 0x1) pr_err_ratelimited("overflow error on port %x, value %x\n", port_id, val); if (val & 0x2) pr_err_ratelimited("underflow error on port %x,value %x\n", port_id, val); if (val & 0x4) { pr_debug("%s: port %x disconnect value %x\n", __func__, port_id, val); for (k = 0; k < ARRAY_SIZE(sitar_dai); k++) { ch_mask_temp = 1 << port_id; if (ch_mask_temp & priv->dai[k].ch_mask) { priv->dai[k].ch_mask &= ~ch_mask_temp; if (!priv->dai[k].ch_mask) wake_up( &priv->dai[k].dai_wait); } } } } wcd9xxx_interface_reg_write(codec->control_data, SITAR_SLIM_PGD_PORT_INT_CLR0 + i, slimbus_value); val = 0x0; } return IRQ_HANDLED; } static int sitar_handle_pdata(struct sitar_priv *sitar) { struct snd_soc_codec *codec = sitar->codec; struct wcd9xxx_pdata *pdata = sitar->pdata; int k1, k2, rc = 0; u8 leg_mode = pdata->amic_settings.legacy_mode; u8 txfe_bypass = pdata->amic_settings.txfe_enable; u8 txfe_buff = pdata->amic_settings.txfe_buff; u8 flag = pdata->amic_settings.use_pdata; u8 i = 0, j = 0; u8 val_txfe = 0, value = 0; int amic_reg_count = 0; if (!pdata) { rc = -ENODEV; goto done; } /* Make sure settings are correct */ if ((pdata->micbias.ldoh_v > SITAR_LDOH_2P85_V) || (pdata->micbias.bias1_cfilt_sel > SITAR_CFILT2_SEL) || (pdata->micbias.bias2_cfilt_sel > SITAR_CFILT2_SEL)) { rc = -EINVAL; goto done; } /* figure out k value */ k1 = sitar_find_k_value(pdata->micbias.ldoh_v, pdata->micbias.cfilt1_mv); k2 = sitar_find_k_value(pdata->micbias.ldoh_v, pdata->micbias.cfilt2_mv); if (IS_ERR_VALUE(k1) || IS_ERR_VALUE(k2)) { rc = -EINVAL; goto done; } /* Set voltage level and always use LDO */ snd_soc_update_bits(codec, SITAR_A_LDO_H_MODE_1, 0x0C, (pdata->micbias.ldoh_v << 2)); snd_soc_update_bits(codec, SITAR_A_MICB_CFILT_1_VAL, 0xFC, (k1 << 2)); snd_soc_update_bits(codec, SITAR_A_MICB_CFILT_2_VAL, 0xFC, (k2 << 2)); snd_soc_update_bits(codec, SITAR_A_MICB_1_CTL, 0x60, (pdata->micbias.bias1_cfilt_sel << 5)); snd_soc_update_bits(codec, SITAR_A_MICB_2_CTL, 0x60, (pdata->micbias.bias2_cfilt_sel << 5)); /* Set micbias capless mode */ snd_soc_update_bits(codec, SITAR_A_MICB_1_CTL, 0x10, (pdata->micbias.bias1_cap_mode << 4)); snd_soc_update_bits(codec, SITAR_A_MICB_2_CTL, 0x10, (pdata->micbias.bias2_cap_mode << 4)); amic_reg_count = (NUM_AMIC % 2) ? NUM_AMIC + 1 : NUM_AMIC; for (i = 0; i < amic_reg_count; j++, i += 2) { if (flag & (0x01 << i)) { value = (leg_mode & (0x01 << i)) ? 0x10 : 0x00; val_txfe = (txfe_bypass & (0x01 << i)) ? 0x20 : 0x00; val_txfe = val_txfe | ((txfe_buff & (0x01 << i)) ? 0x10 : 0x00); snd_soc_update_bits(codec, SITAR_A_TX_1_2_EN + j * 10, 0x10, value); snd_soc_update_bits(codec, SITAR_A_TX_1_2_TEST_EN + j * 10, 0x30, val_txfe); } if (flag & (0x01 << (i + 1))) { value = (leg_mode & (0x01 << (i + 1))) ? 0x01 : 0x00; val_txfe = (txfe_bypass & (0x01 << (i + 1))) ? 0x02 : 0x00; val_txfe |= (txfe_buff & (0x01 << (i + 1))) ? 0x01 : 0x00; snd_soc_update_bits(codec, SITAR_A_TX_1_2_EN + j * 10, 0x01, value); snd_soc_update_bits(codec, SITAR_A_TX_1_2_TEST_EN + j * 10, 0x03, val_txfe); } } if (flag & 0x40) { value = (leg_mode & 0x40) ? 0x10 : 0x00; value = value | ((txfe_bypass & 0x40) ? 0x02 : 0x00); value = value | ((txfe_buff & 0x40) ? 0x01 : 0x00); snd_soc_update_bits(codec, SITAR_A_TX_4_MBHC_EN, 0x13, value); } if (pdata->ocp.use_pdata) { /* not defined in CODEC specification */ if (pdata->ocp.hph_ocp_limit == 1 || pdata->ocp.hph_ocp_limit == 5) { rc = -EINVAL; goto done; } snd_soc_update_bits(codec, SITAR_A_RX_COM_OCP_CTL, 0x0F, pdata->ocp.num_attempts); snd_soc_write(codec, SITAR_A_RX_COM_OCP_COUNT, ((pdata->ocp.run_time << 4) | pdata->ocp.wait_time)); snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0xE0, (pdata->ocp.hph_ocp_limit << 5)); } done: return rc; } static const struct sitar_reg_mask_val sitar_1_1_reg_defaults[] = { SITAR_REG_VAL(SITAR_A_MICB_1_INT_RBIAS, 0x24), SITAR_REG_VAL(SITAR_A_MICB_2_INT_RBIAS, 0x24), SITAR_REG_VAL(SITAR_A_RX_HPH_BIAS_PA, 0x57), SITAR_REG_VAL(SITAR_A_RX_HPH_BIAS_LDO, 0x56), SITAR_REG_VAL(SITAR_A_RX_EAR_BIAS_PA, 0xA6), SITAR_REG_VAL(SITAR_A_RX_EAR_GAIN, 0x02), SITAR_REG_VAL(SITAR_A_RX_EAR_VCM, 0x03), SITAR_REG_VAL(SITAR_A_RX_LINE_BIAS_PA, 0xA7), SITAR_REG_VAL(SITAR_A_CDC_RX1_B5_CTL, 0x78), SITAR_REG_VAL(SITAR_A_CDC_RX2_B5_CTL, 0x78), SITAR_REG_VAL(SITAR_A_CDC_RX3_B5_CTL, 0x78), SITAR_REG_VAL(SITAR_A_CDC_RX1_B6_CTL, 0x80), SITAR_REG_VAL(SITAR_A_CDC_CLSG_FREQ_THRESH_B3_CTL, 0x1B), SITAR_REG_VAL(SITAR_A_CDC_CLSG_FREQ_THRESH_B4_CTL, 0x5B), }; static void sitar_update_reg_defaults(struct snd_soc_codec *codec) { u32 i; for (i = 0; i < ARRAY_SIZE(sitar_1_1_reg_defaults); i++) snd_soc_write(codec, sitar_1_1_reg_defaults[i].reg, sitar_1_1_reg_defaults[i].val); } static const struct sitar_reg_mask_val sitar_i2c_codec_reg_init_val[] = { {WCD9XXX_A_CHIP_CTL, 0x1, 0x1}, }; static const struct sitar_reg_mask_val sitar_codec_reg_init_val[] = { /* Initialize current threshold to 350MA * number of wait and run cycles to 4096 */ {SITAR_A_RX_HPH_OCP_CTL, 0xE0, 0x60}, {SITAR_A_RX_COM_OCP_COUNT, 0xFF, 0xFF}, {SITAR_A_QFUSE_CTL, 0xFF, 0x03}, /* Initialize gain registers to use register gain */ {SITAR_A_RX_HPH_L_GAIN, 0x10, 0x10}, {SITAR_A_RX_HPH_R_GAIN, 0x10, 0x10}, {SITAR_A_RX_LINE_1_GAIN, 0x10, 0x10}, {SITAR_A_RX_LINE_2_GAIN, 0x10, 0x10}, /* Set the MICBIAS default output as pull down*/ {SITAR_A_MICB_1_CTL, 0x01, 0x01}, {SITAR_A_MICB_2_CTL, 0x01, 0x01}, /* Initialize mic biases to differential mode */ {SITAR_A_MICB_1_INT_RBIAS, 0x24, 0x24}, {SITAR_A_MICB_2_INT_RBIAS, 0x24, 0x24}, {SITAR_A_CDC_CONN_CLSG_CTL, 0x3C, 0x14}, /* Use 16 bit sample size for TX1 to TX6 */ {SITAR_A_CDC_CONN_TX_SB_B1_CTL, 0x30, 0x20}, {SITAR_A_CDC_CONN_TX_SB_B2_CTL, 0x30, 0x20}, {SITAR_A_CDC_CONN_TX_SB_B3_CTL, 0x30, 0x20}, {SITAR_A_CDC_CONN_TX_SB_B4_CTL, 0x30, 0x20}, {SITAR_A_CDC_CONN_TX_SB_B5_CTL, 0x30, 0x20}, {SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL, 0x1, 0x1}, /* Use 16 bit sample size for RX */ {SITAR_A_CDC_CONN_RX_SB_B1_CTL, 0xFF, 0xAA}, {SITAR_A_CDC_CONN_RX_SB_B2_CTL, 0x02, 0x02}, /*enable HPF filter for TX paths */ {SITAR_A_CDC_TX1_MUX_CTL, 0x8, 0x0}, {SITAR_A_CDC_TX2_MUX_CTL, 0x8, 0x0}, /*enable External clock select*/ {SITAR_A_CDC_CLK_MCLK_CTL, 0x01, 0x01}, }; static void sitar_i2c_codec_init_reg(struct snd_soc_codec *codec) { u32 i; for (i = 0; i < ARRAY_SIZE(sitar_i2c_codec_reg_init_val); i++) snd_soc_update_bits(codec, sitar_i2c_codec_reg_init_val[i].reg, sitar_i2c_codec_reg_init_val[i].mask, sitar_i2c_codec_reg_init_val[i].val); } static void sitar_codec_init_reg(struct snd_soc_codec *codec) { u32 i; for (i = 0; i < ARRAY_SIZE(sitar_codec_reg_init_val); i++) snd_soc_update_bits(codec, sitar_codec_reg_init_val[i].reg, sitar_codec_reg_init_val[i].mask, sitar_codec_reg_init_val[i].val); } static int sitar_codec_probe(struct snd_soc_codec *codec) { struct wcd9xxx *core; struct sitar_priv *sitar; struct snd_soc_dapm_context *dapm = &codec->dapm; int ret = 0; int i; u8 sitar_version; void *ptr = NULL; codec->control_data = dev_get_drvdata(codec->dev->parent); core = codec->control_data; sitar = kzalloc(sizeof(struct sitar_priv), GFP_KERNEL); if (!sitar) { dev_err(codec->dev, "Failed to allocate private data\n"); return -ENOMEM; } for (i = 0; i < NUM_DECIMATORS; i++) { tx_hpf_work[i].sitar = sitar; tx_hpf_work[i].decimator = i + 1; INIT_DELAYED_WORK(&tx_hpf_work[i].dwork, tx_hpf_corner_freq_callback); } /* Make sure mbhc micbias register addresses are zeroed out */ memset(&sitar->mbhc_bias_regs, 0, sizeof(struct mbhc_micbias_regs)); sitar->cfilt_k_value = 0; sitar->mbhc_micbias_switched = false; /* Make sure mbhc intenal calibration data is zeroed out */ memset(&sitar->mbhc_data, 0, sizeof(struct mbhc_internal_cal_data)); sitar->mbhc_data.t_sta_dce = DEFAULT_DCE_STA_WAIT; sitar->mbhc_data.t_dce = DEFAULT_DCE_WAIT; sitar->mbhc_data.t_sta = DEFAULT_STA_WAIT; snd_soc_codec_set_drvdata(codec, sitar); sitar->mclk_enabled = false; sitar->bandgap_type = SITAR_BANDGAP_OFF; sitar->clock_active = false; sitar->config_mode_active = false; sitar->mbhc_polling_active = false; sitar->no_mic_headset_override = false; mutex_init(&sitar->codec_resource_lock); sitar->codec = codec; sitar->mbhc_state = MBHC_STATE_NONE; sitar->mbhc_last_resume = 0; sitar->pdata = dev_get_platdata(codec->dev->parent); sitar_update_reg_defaults(codec); sitar_codec_init_reg(codec); sitar->intf_type = wcd9xxx_get_intf_type(); if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) sitar_i2c_codec_init_reg(codec); for (i = 0; i < COMPANDER_MAX; i++) { sitar->comp_enabled[i] = 0; sitar->comp_fs[i] = COMPANDER_FS_48KHZ; } ret = sitar_handle_pdata(sitar); if (IS_ERR_VALUE(ret)) { pr_err("%s: bad pdata\n", __func__); goto err_pdata; } snd_soc_add_codec_controls(codec, sitar_snd_controls, ARRAY_SIZE(sitar_snd_controls)); snd_soc_dapm_new_controls(dapm, sitar_dapm_widgets, ARRAY_SIZE(sitar_dapm_widgets)); ptr = kmalloc((sizeof(sitar_rx_chs) + sizeof(sitar_tx_chs)), GFP_KERNEL); if (!ptr) { pr_err("%s: no mem for slim chan ctl data\n", __func__); ret = -ENOMEM; goto err_nomem_slimch; } if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) { snd_soc_dapm_new_controls(dapm, sitar_dapm_i2s_widgets, ARRAY_SIZE(sitar_dapm_i2s_widgets)); snd_soc_dapm_add_routes(dapm, audio_i2s_map, ARRAY_SIZE(audio_i2s_map)); for (i = 0; i < ARRAY_SIZE(sitar_i2s_dai); i++) INIT_LIST_HEAD(&sitar->dai[i].wcd9xxx_ch_list); } if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_SLIMBUS) { for (i = 0; i < NUM_CODEC_DAIS; i++) { INIT_LIST_HEAD(&sitar->dai[i].wcd9xxx_ch_list); init_waitqueue_head(&sitar->dai[i].dai_wait); } } core->num_rx_port = SITAR_RX_MAX; core->rx_chs = ptr; memcpy(core->rx_chs, sitar_rx_chs, sizeof(sitar_rx_chs)); core->num_tx_port = SITAR_TX_MAX; core->tx_chs = ptr + sizeof(sitar_rx_chs); memcpy(core->tx_chs, sitar_tx_chs, sizeof(sitar_tx_chs)); snd_soc_dapm_add_routes(dapm, audio_map, ARRAY_SIZE(audio_map)); sitar_version = snd_soc_read(codec, WCD9XXX_A_CHIP_VERSION); pr_info("%s : Sitar version reg 0x%2x\n", __func__, (u32)sitar_version); sitar_version &= 0x1F; pr_info("%s : Sitar version %u\n", __func__, (u32)sitar_version); snd_soc_dapm_sync(dapm); ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION, sitar_hs_insert_irq, "Headset insert detect", sitar); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_MBHC_INSERTION); goto err_insert_irq; } wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION); ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_MBHC_REMOVAL, sitar_hs_remove_irq, "Headset remove detect", sitar); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_MBHC_REMOVAL); goto err_remove_irq; } ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL, sitar_dce_handler, "DC Estimation detect", sitar); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_MBHC_POTENTIAL); goto err_potential_irq; } ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_MBHC_RELEASE, sitar_release_handler, "Button Release detect", sitar); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_MBHC_RELEASE); goto err_release_irq; } ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_SLIMBUS, sitar_slimbus_irq, "SLIMBUS Slave", sitar); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_SLIMBUS); goto err_slimbus_irq; } for (i = 0; i < WCD9XXX_SLIM_NUM_PORT_REG; i++) wcd9xxx_interface_reg_write(codec->control_data, SITAR_SLIM_PGD_PORT_INT_EN0 + i, 0xFF); ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT, sitar_hphl_ocp_irq, "HPH_L OCP detect", sitar); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); goto err_hphl_ocp_irq; } wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT, sitar_hphr_ocp_irq, "HPH_R OCP detect", sitar); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); goto err_hphr_ocp_irq; } wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); codec->ignore_pmdown_time = 1; #ifdef CONFIG_DEBUG_FS debug_sitar_priv = sitar; #endif return ret; err_hphr_ocp_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT, sitar); err_hphl_ocp_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_SLIMBUS, sitar); err_slimbus_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_RELEASE, sitar); err_release_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL, sitar); err_potential_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_REMOVAL, sitar); err_remove_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION, sitar); err_insert_irq: kfree(ptr); err_nomem_slimch: err_pdata: mutex_destroy(&sitar->codec_resource_lock); kfree(sitar); return ret; } static int sitar_codec_remove(struct snd_soc_codec *codec) { struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec); wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_SLIMBUS, sitar); wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_RELEASE, sitar); wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL, sitar); wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_REMOVAL, sitar); wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION, sitar); SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock); sitar_codec_disable_clock_block(codec); SITAR_RELEASE_LOCK(sitar->codec_resource_lock); sitar_codec_enable_bandgap(codec, SITAR_BANDGAP_OFF); if (sitar->mbhc_fw) release_firmware(sitar->mbhc_fw); mutex_destroy(&sitar->codec_resource_lock); kfree(sitar); return 0; } static struct snd_soc_codec_driver soc_codec_dev_sitar = { .probe = sitar_codec_probe, .remove = sitar_codec_remove, .read = sitar_read, .write = sitar_write, .readable_register = sitar_readable, .volatile_register = sitar_volatile, .reg_cache_size = SITAR_CACHE_SIZE, .reg_cache_default = sitar_reg_defaults, .reg_word_size = 1, }; #ifdef CONFIG_DEBUG_FS static struct dentry *debugfs_poke; static int codec_debug_open(struct inode *inode, struct file *file) { file->private_data = inode->i_private; return 0; } static ssize_t codec_debug_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char lbuf[32]; char *buf; int rc; if (cnt > sizeof(lbuf) - 1) return -EINVAL; rc = copy_from_user(lbuf, ubuf, cnt); if (rc) return -EFAULT; lbuf[cnt] = '\0'; buf = (char *)lbuf; debug_sitar_priv->no_mic_headset_override = (*strsep(&buf, " ") == '0') ? false : true; return rc; } static const struct file_operations codec_debug_ops = { .open = codec_debug_open, .write = codec_debug_write, }; #endif #ifdef CONFIG_PM static int sitar_suspend(struct device *dev) { dev_dbg(dev, "%s: system suspend\n", __func__); return 0; } static int sitar_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct sitar_priv *sitar = platform_get_drvdata(pdev); dev_dbg(dev, "%s: system resume\n", __func__); sitar->mbhc_last_resume = jiffies; return 0; } static const struct dev_pm_ops sitar_pm_ops = { .suspend = sitar_suspend, .resume = sitar_resume, }; #endif static int __devinit sitar_probe(struct platform_device *pdev) { int ret = 0; pr_err("%s\n", __func__); #ifdef CONFIG_DEBUG_FS debugfs_poke = debugfs_create_file("TRRS", S_IFREG | S_IRUGO, NULL, (void *) "TRRS", &codec_debug_ops); #endif if (wcd9xxx_get_intf_type() == WCD9XXX_INTERFACE_TYPE_SLIMBUS) ret = snd_soc_register_codec(&pdev->dev, &soc_codec_dev_sitar, sitar_dai, ARRAY_SIZE(sitar_dai)); else if (wcd9xxx_get_intf_type() == WCD9XXX_INTERFACE_TYPE_I2C) ret = snd_soc_register_codec(&pdev->dev, &soc_codec_dev_sitar, sitar_i2s_dai, ARRAY_SIZE(sitar_i2s_dai)); return ret; } static int __devexit sitar_remove(struct platform_device *pdev) { snd_soc_unregister_codec(&pdev->dev); #ifdef CONFIG_DEBUG_FS debugfs_remove(debugfs_poke); #endif return 0; } static struct platform_driver sitar_codec_driver = { .probe = sitar_probe, .remove = sitar_remove, .driver = { .name = "sitar_codec", .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &sitar_pm_ops, #endif }, }; static int __init sitar_codec_init(void) { return platform_driver_register(&sitar_codec_driver); } static void __exit sitar_codec_exit(void) { platform_driver_unregister(&sitar_codec_driver); } module_init(sitar_codec_init); module_exit(sitar_codec_exit); MODULE_DESCRIPTION("Sitar codec driver"); MODULE_VERSION("1.0"); MODULE_LICENSE("GPL v2");