/* ehci-msm2.c - HSUSB Host Controller Driver Implementation * * Copyright (c) 2008-2013, The Linux Foundation. All rights reserved. * * Partly derived from ehci-fsl.c and ehci-hcd.c * Copyright (c) 2000-2004 by David Brownell * Copyright (c) 2005 MontaVista Software * * All source code in this file is licensed under the following license except * where indicated. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, you can find it at http://www.fsf.org */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define MSM_USB_BASE (hcd->regs) #define PDEV_NAME_LEN 20 struct msm_hcd { struct ehci_hcd ehci; spinlock_t wakeup_lock; struct device *dev; struct clk *xo_clk; struct clk *iface_clk; struct clk *core_clk; struct clk *alt_core_clk; struct clk *phy_sleep_clk; struct regulator *hsusb_vddcx; struct regulator *hsusb_3p3; struct regulator *hsusb_1p8; struct regulator *vbus; struct msm_xo_voter *xo_handle; bool async_int; bool vbus_on; atomic_t in_lpm; int pmic_gpio_dp_irq; bool pmic_gpio_dp_irq_enabled; uint32_t pmic_gpio_int_cnt; atomic_t pm_usage_cnt; struct wake_lock wlock; struct work_struct phy_susp_fail_work; int async_irq; bool async_irq_enabled; uint32_t async_int_cnt; }; static inline struct msm_hcd *hcd_to_mhcd(struct usb_hcd *hcd) { return (struct msm_hcd *) (hcd->hcd_priv); } static inline struct usb_hcd *mhcd_to_hcd(struct msm_hcd *mhcd) { return container_of((void *) mhcd, struct usb_hcd, hcd_priv); } #define HSUSB_PHY_3P3_VOL_MIN 3050000 /* uV */ #define HSUSB_PHY_3P3_VOL_MAX 3300000 /* uV */ #define HSUSB_PHY_3P3_HPM_LOAD 50000 /* uA */ #define HSUSB_PHY_1P8_VOL_MIN 1800000 /* uV */ #define HSUSB_PHY_1P8_VOL_MAX 1800000 /* uV */ #define HSUSB_PHY_1P8_HPM_LOAD 50000 /* uA */ #define HSUSB_PHY_VDD_DIG_VOL_MIN 1045000 /* uV */ #define HSUSB_PHY_VDD_DIG_VOL_MAX 1320000 /* uV */ #define HSUSB_PHY_VDD_DIG_LOAD 49360 /* uA */ static int msm_ehci_init_vddcx(struct msm_hcd *mhcd, int init) { int ret = 0; if (!init) goto disable_reg; mhcd->hsusb_vddcx = devm_regulator_get(mhcd->dev, "HSUSB_VDDCX"); if (IS_ERR(mhcd->hsusb_vddcx)) { dev_err(mhcd->dev, "unable to get ehci vddcx\n"); return PTR_ERR(mhcd->hsusb_vddcx); } ret = regulator_set_voltage(mhcd->hsusb_vddcx, HSUSB_PHY_VDD_DIG_VOL_MIN, HSUSB_PHY_VDD_DIG_VOL_MAX); if (ret) { dev_err(mhcd->dev, "unable to set the voltage" "for ehci vddcx\n"); return ret; } ret = regulator_set_optimum_mode(mhcd->hsusb_vddcx, HSUSB_PHY_VDD_DIG_LOAD); if (ret < 0) { dev_err(mhcd->dev, "%s: Unable to set optimum mode of the" " regulator: VDDCX\n", __func__); goto reg_optimum_mode_err; } ret = regulator_enable(mhcd->hsusb_vddcx); if (ret) { dev_err(mhcd->dev, "unable to enable ehci vddcx\n"); goto reg_enable_err; } return 0; disable_reg: regulator_disable(mhcd->hsusb_vddcx); reg_enable_err: regulator_set_optimum_mode(mhcd->hsusb_vddcx, 0); reg_optimum_mode_err: regulator_set_voltage(mhcd->hsusb_vddcx, 0, HSUSB_PHY_VDD_DIG_VOL_MIN); return ret; } static int msm_ehci_ldo_init(struct msm_hcd *mhcd, int init) { int rc = 0; if (!init) goto put_1p8; mhcd->hsusb_3p3 = devm_regulator_get(mhcd->dev, "HSUSB_3p3"); if (IS_ERR(mhcd->hsusb_3p3)) { dev_err(mhcd->dev, "unable to get hsusb 3p3\n"); return PTR_ERR(mhcd->hsusb_3p3); } rc = regulator_set_voltage(mhcd->hsusb_3p3, HSUSB_PHY_3P3_VOL_MIN, HSUSB_PHY_3P3_VOL_MAX); if (rc) { dev_err(mhcd->dev, "unable to set voltage level for" "hsusb 3p3\n"); return rc; } mhcd->hsusb_1p8 = devm_regulator_get(mhcd->dev, "HSUSB_1p8"); if (IS_ERR(mhcd->hsusb_1p8)) { dev_err(mhcd->dev, "unable to get hsusb 1p8\n"); rc = PTR_ERR(mhcd->hsusb_1p8); goto put_3p3_lpm; } rc = regulator_set_voltage(mhcd->hsusb_1p8, HSUSB_PHY_1P8_VOL_MIN, HSUSB_PHY_1P8_VOL_MAX); if (rc) { dev_err(mhcd->dev, "unable to set voltage level for" "hsusb 1p8\n"); goto put_1p8; } return 0; put_1p8: regulator_set_voltage(mhcd->hsusb_1p8, 0, HSUSB_PHY_1P8_VOL_MAX); put_3p3_lpm: regulator_set_voltage(mhcd->hsusb_3p3, 0, HSUSB_PHY_3P3_VOL_MAX); return rc; } #ifdef CONFIG_PM_SLEEP #define HSUSB_PHY_SUSP_DIG_VOL_P50 500000 #define HSUSB_PHY_SUSP_DIG_VOL_P75 750000 static int msm_ehci_config_vddcx(struct msm_hcd *mhcd, int high) { struct msm_usb_host_platform_data *pdata; int max_vol = HSUSB_PHY_VDD_DIG_VOL_MAX; int min_vol; int ret; pdata = mhcd->dev->platform_data; if (high) min_vol = HSUSB_PHY_VDD_DIG_VOL_MIN; else if (pdata && pdata->dock_connect_irq && !irq_read_line(pdata->dock_connect_irq)) min_vol = HSUSB_PHY_SUSP_DIG_VOL_P75; else min_vol = HSUSB_PHY_SUSP_DIG_VOL_P50; ret = regulator_set_voltage(mhcd->hsusb_vddcx, min_vol, max_vol); if (ret) { dev_err(mhcd->dev, "%s: unable to set the voltage of regulator" " HSUSB_VDDCX\n", __func__); return ret; } dev_dbg(mhcd->dev, "%s: min_vol:%d max_vol:%d\n", __func__, min_vol, max_vol); return ret; } #else static int msm_ehci_config_vddcx(struct msm_hcd *mhcd, int high) { return 0; } #endif static void msm_ehci_vbus_power(struct msm_hcd *mhcd, bool on) { int ret; if (!mhcd->vbus) { pr_err("vbus is NULL."); return; } if (mhcd->vbus_on == on) return; if (on) { ret = regulator_enable(mhcd->vbus); if (ret) { pr_err("unable to enable vbus\n"); return; } mhcd->vbus_on = true; } else { ret = regulator_disable(mhcd->vbus); if (ret) { pr_err("unable to disable vbus\n"); return; } mhcd->vbus_on = false; } } static irqreturn_t msm_ehci_dock_connect_irq(int irq, void *data) { const struct msm_usb_host_platform_data *pdata; struct msm_hcd *mhcd = data; struct usb_hcd *hcd = mhcd_to_hcd(mhcd); pdata = mhcd->dev->platform_data; if (atomic_read(&mhcd->in_lpm)) usb_hcd_resume_root_hub(hcd); if (irq_read_line(pdata->dock_connect_irq)) { dev_dbg(mhcd->dev, "%s:Dock removed disable vbus\n", __func__); msm_ehci_vbus_power(mhcd, 0); } else { dev_dbg(mhcd->dev, "%s:Dock connected enable vbus\n", __func__); msm_ehci_vbus_power(mhcd, 1); } return IRQ_HANDLED; } static int msm_ehci_init_vbus(struct msm_hcd *mhcd, int init) { int rc = 0; struct usb_hcd *hcd = mhcd_to_hcd(mhcd); const struct msm_usb_host_platform_data *pdata; int ret = 0; pdata = mhcd->dev->platform_data; if (!init) { if (pdata && pdata->dock_connect_irq) free_irq(pdata->dock_connect_irq, mhcd); return rc; } mhcd->vbus = devm_regulator_get(mhcd->dev, "vbus"); ret = PTR_ERR(mhcd->vbus); if (ret == -EPROBE_DEFER) { pr_debug("failed to get vbus handle, defer probe\n"); return ret; } else if (IS_ERR(mhcd->vbus)) { pr_err("Unable to get vbus\n"); return -ENODEV; } if (pdata) { hcd->power_budget = pdata->power_budget; if (pdata->dock_connect_irq) { rc = request_threaded_irq(pdata->dock_connect_irq, NULL, msm_ehci_dock_connect_irq, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_ONESHOT, "msm_ehci_host", mhcd); if (!rc) enable_irq_wake(pdata->dock_connect_irq); } } return rc; } static int msm_ehci_ldo_enable(struct msm_hcd *mhcd, int on) { int ret = 0; if (IS_ERR(mhcd->hsusb_1p8)) { dev_err(mhcd->dev, "%s: HSUSB_1p8 is not initialized\n", __func__); return -ENODEV; } if (IS_ERR(mhcd->hsusb_3p3)) { dev_err(mhcd->dev, "%s: HSUSB_3p3 is not initialized\n", __func__); return -ENODEV; } if (on) { ret = regulator_set_optimum_mode(mhcd->hsusb_1p8, HSUSB_PHY_1P8_HPM_LOAD); if (ret < 0) { dev_err(mhcd->dev, "%s: Unable to set HPM of the" " regulator: HSUSB_1p8\n", __func__); return ret; } ret = regulator_enable(mhcd->hsusb_1p8); if (ret) { dev_err(mhcd->dev, "%s: unable to enable the hsusb" " 1p8\n", __func__); regulator_set_optimum_mode(mhcd->hsusb_1p8, 0); return ret; } ret = regulator_set_optimum_mode(mhcd->hsusb_3p3, HSUSB_PHY_3P3_HPM_LOAD); if (ret < 0) { dev_err(mhcd->dev, "%s: Unable to set HPM of the " "regulator: HSUSB_3p3\n", __func__); regulator_set_optimum_mode(mhcd->hsusb_1p8, 0); regulator_disable(mhcd->hsusb_1p8); return ret; } ret = regulator_enable(mhcd->hsusb_3p3); if (ret) { dev_err(mhcd->dev, "%s: unable to enable the " "hsusb 3p3\n", __func__); regulator_set_optimum_mode(mhcd->hsusb_3p3, 0); regulator_set_optimum_mode(mhcd->hsusb_1p8, 0); regulator_disable(mhcd->hsusb_1p8); return ret; } } else { ret = regulator_disable(mhcd->hsusb_1p8); if (ret) { dev_err(mhcd->dev, "%s: unable to disable the " "hsusb 1p8\n", __func__); return ret; } ret = regulator_set_optimum_mode(mhcd->hsusb_1p8, 0); if (ret < 0) dev_err(mhcd->dev, "%s: Unable to set LPM of the " "regulator: HSUSB_1p8\n", __func__); ret = regulator_disable(mhcd->hsusb_3p3); if (ret) { dev_err(mhcd->dev, "%s: unable to disable the " "hsusb 3p3\n", __func__); return ret; } ret = regulator_set_optimum_mode(mhcd->hsusb_3p3, 0); if (ret < 0) dev_err(mhcd->dev, "%s: Unable to set LPM of the " "regulator: HSUSB_3p3\n", __func__); } dev_dbg(mhcd->dev, "reg (%s)\n", on ? "HPM" : "LPM"); return ret < 0 ? ret : 0; } #define ULPI_IO_TIMEOUT_USECS (10 * 1000) static int msm_ulpi_read(struct msm_hcd *mhcd, u32 reg) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); unsigned long timeout; /* initiate read operation */ writel_relaxed(ULPI_RUN | ULPI_READ | ULPI_ADDR(reg), USB_ULPI_VIEWPORT); /* wait for completion */ timeout = jiffies + usecs_to_jiffies(ULPI_IO_TIMEOUT_USECS); while (readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_RUN) { if (time_after(jiffies, timeout)) { dev_err(mhcd->dev, "msm_ulpi_read: timeout %08x\n", readl_relaxed(USB_ULPI_VIEWPORT)); return -ETIMEDOUT; } udelay(1); } return ULPI_DATA_READ(readl_relaxed(USB_ULPI_VIEWPORT)); } static int msm_ulpi_write(struct msm_hcd *mhcd, u32 val, u32 reg) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); unsigned long timeout; /* initiate write operation */ writel_relaxed(ULPI_RUN | ULPI_WRITE | ULPI_ADDR(reg) | ULPI_DATA(val), USB_ULPI_VIEWPORT); /* wait for completion */ timeout = jiffies + usecs_to_jiffies(ULPI_IO_TIMEOUT_USECS); while (readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_RUN) { if (time_after(jiffies, timeout)) { dev_err(mhcd->dev, "msm_ulpi_write: timeout\n"); return -ETIMEDOUT; } udelay(1); } return 0; } /** * Do hard reset to USB hardware block using one of reset methodology based * on availablity of alt_core_clk. There are two kinds of hardware resets. * 1. Conventional synchronous reset where clocks to blocks to be ON while * issuing the reset. 2. Asynchronous reset which requires clocks to be OFF. */ static int msm_ehci_link_clk_reset(struct msm_hcd *mhcd, bool assert) { int ret; if (assert) { if (!IS_ERR(mhcd->alt_core_clk)) { ret = clk_reset(mhcd->alt_core_clk, CLK_RESET_ASSERT); } else { /* Using asynchronous block reset to the hardware */ clk_disable(mhcd->iface_clk); clk_disable(mhcd->core_clk); ret = clk_reset(mhcd->core_clk, CLK_RESET_ASSERT); } if (ret) dev_err(mhcd->dev, "usb clk assert failed\n"); } else { if (!IS_ERR(mhcd->alt_core_clk)) { ret = clk_reset(mhcd->alt_core_clk, CLK_RESET_DEASSERT); } else { ret = clk_reset(mhcd->core_clk, CLK_RESET_DEASSERT); ndelay(200); clk_enable(mhcd->core_clk); clk_enable(mhcd->iface_clk); } if (ret) dev_err(mhcd->dev, "usb clk deassert failed\n"); } return ret; } static int msm_ehci_phy_reset(struct msm_hcd *mhcd) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); struct msm_usb_host_platform_data *pdata; u32 val; int ret; int retries; ret = msm_ehci_link_clk_reset(mhcd, 1); if (ret) return ret; usleep_range(10, 12); ret = msm_ehci_link_clk_reset(mhcd, 0); if (ret) return ret; pdata = mhcd->dev->platform_data; if (pdata && pdata->use_sec_phy) /* select secondary phy if offset is set for USB operation */ writel_relaxed(readl_relaxed(USB_PHY_CTRL2) | (1<<16), USB_PHY_CTRL2); val = readl_relaxed(USB_PORTSC) & ~PORTSC_PTS_MASK; writel_relaxed(val | PORTSC_PTS_ULPI, USB_PORTSC); for (retries = 3; retries > 0; retries--) { ret = msm_ulpi_write(mhcd, ULPI_FUNC_CTRL_SUSPENDM, ULPI_CLR(ULPI_FUNC_CTRL)); if (!ret) break; } if (!retries) return -ETIMEDOUT; /* Wakeup the PHY with a reg-access for calibration */ for (retries = 3; retries > 0; retries--) { ret = msm_ulpi_read(mhcd, ULPI_DEBUG); if (ret != -ETIMEDOUT) break; } if (!retries) return -ETIMEDOUT; dev_info(mhcd->dev, "phy_reset: success\n"); return 0; } #define LINK_RESET_TIMEOUT_USEC (250 * 1000) static int msm_hsusb_reset(struct msm_hcd *mhcd) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); struct msm_usb_host_platform_data *pdata; unsigned long timeout; int ret; if (!IS_ERR(mhcd->alt_core_clk)) clk_prepare_enable(mhcd->alt_core_clk); ret = msm_ehci_phy_reset(mhcd); if (ret) { dev_err(mhcd->dev, "phy_reset failed\n"); return ret; } writel_relaxed(USBCMD_RESET, USB_USBCMD); timeout = jiffies + usecs_to_jiffies(LINK_RESET_TIMEOUT_USEC); while (readl_relaxed(USB_USBCMD) & USBCMD_RESET) { if (time_after(jiffies, timeout)) return -ETIMEDOUT; udelay(1); } /* select ULPI phy */ writel_relaxed(0x80000000, USB_PORTSC); pdata = mhcd->dev->platform_data; if (pdata && pdata->use_sec_phy) writel_relaxed(readl_relaxed(USB_PHY_CTRL2) | (1<<16), USB_PHY_CTRL2); msleep(100); writel_relaxed(0x0, USB_AHBBURST); writel_relaxed(0x08, USB_AHBMODE); /* Ensure that RESET operation is completed before turning off clock */ mb(); if (!IS_ERR(mhcd->alt_core_clk)) clk_disable_unprepare(mhcd->alt_core_clk); /*rising edge interrupts with Dp rise and fall enabled*/ msm_ulpi_write(mhcd, ULPI_INT_DP, ULPI_USB_INT_EN_RISE); msm_ulpi_write(mhcd, ULPI_INT_DP, ULPI_USB_INT_EN_FALL); /*Clear the PHY interrupts by reading the PHY interrupt latch register*/ msm_ulpi_read(mhcd, ULPI_USB_INT_LATCH); return 0; } static void msm_ehci_phy_susp_fail_work(struct work_struct *w) { struct msm_hcd *mhcd = container_of(w, struct msm_hcd, phy_susp_fail_work); struct usb_hcd *hcd = mhcd_to_hcd(mhcd); msm_ehci_vbus_power(mhcd, 0); usb_remove_hcd(hcd); msm_hsusb_reset(mhcd); usb_add_hcd(hcd, hcd->irq, IRQF_SHARED); msm_ehci_vbus_power(mhcd, 1); } #define PHY_SUSPEND_TIMEOUT_USEC (500 * 1000) #define PHY_RESUME_TIMEOUT_USEC (100 * 1000) #ifdef CONFIG_PM_SLEEP static int msm_ehci_suspend(struct msm_hcd *mhcd) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); unsigned long timeout; int ret; u32 portsc; if (atomic_read(&mhcd->in_lpm)) { dev_dbg(mhcd->dev, "%s called in lpm\n", __func__); return 0; } disable_irq(hcd->irq); /* Set the PHCD bit, only if it is not set by the controller. * PHY may take some time or even fail to enter into low power * mode (LPM). Hence poll for 500 msec and reset the PHY and link * in failure case. */ portsc = readl_relaxed(USB_PORTSC); if (!(portsc & PORTSC_PHCD)) { writel_relaxed(portsc | PORTSC_PHCD, USB_PORTSC); timeout = jiffies + usecs_to_jiffies(PHY_SUSPEND_TIMEOUT_USEC); while (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD)) { if (time_after(jiffies, timeout)) { dev_err(mhcd->dev, "Unable to suspend PHY\n"); schedule_work(&mhcd->phy_susp_fail_work); return -ETIMEDOUT; } udelay(1); } } /* * PHY has capability to generate interrupt asynchronously in low * power mode (LPM). This interrupt is level triggered. So USB IRQ * line must be disabled till async interrupt enable bit is cleared * in USBCMD register. Assert STP (ULPI interface STOP signal) to * block data communication from PHY. */ writel_relaxed(readl_relaxed(USB_USBCMD) | ASYNC_INTR_CTRL | ULPI_STP_CTRL, USB_USBCMD); /* * Ensure that hardware is put in low power mode before * clocks are turned OFF and VDD is allowed to minimize. */ mb(); clk_disable_unprepare(mhcd->iface_clk); clk_disable_unprepare(mhcd->core_clk); /* usb phy does not require TCXO clock, hence vote for TCXO disable */ if (!IS_ERR(mhcd->xo_clk)) { clk_disable_unprepare(mhcd->xo_clk); } else { ret = msm_xo_mode_vote(mhcd->xo_handle, MSM_XO_MODE_OFF); if (ret) dev_err(mhcd->dev, "%s failed to devote for TCXO %d\n", __func__, ret); } msm_ehci_config_vddcx(mhcd, 0); atomic_set(&mhcd->in_lpm, 1); enable_irq(hcd->irq); if (mhcd->pmic_gpio_dp_irq) { mhcd->pmic_gpio_dp_irq_enabled = 1; enable_irq_wake(mhcd->pmic_gpio_dp_irq); enable_irq(mhcd->pmic_gpio_dp_irq); } if (mhcd->async_irq) { mhcd->async_irq_enabled = 1; enable_irq_wake(mhcd->async_irq); enable_irq(mhcd->async_irq); } wake_unlock(&mhcd->wlock); dev_info(mhcd->dev, "EHCI USB in low power mode\n"); return 0; } static int msm_ehci_resume(struct msm_hcd *mhcd) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); unsigned long timeout; unsigned temp; int ret; unsigned long flags; if (!atomic_read(&mhcd->in_lpm)) { dev_dbg(mhcd->dev, "%s called in !in_lpm\n", __func__); return 0; } if (mhcd->pmic_gpio_dp_irq_enabled) { disable_irq_wake(mhcd->pmic_gpio_dp_irq); disable_irq_nosync(mhcd->pmic_gpio_dp_irq); mhcd->pmic_gpio_dp_irq_enabled = 0; } spin_lock_irqsave(&mhcd->wakeup_lock, flags); if (mhcd->async_irq_enabled) { disable_irq_wake(mhcd->async_irq); disable_irq_nosync(mhcd->async_irq); mhcd->async_irq_enabled = 0; } spin_unlock_irqrestore(&mhcd->wakeup_lock, flags); wake_lock(&mhcd->wlock); /* Vote for TCXO when waking up the phy */ if (!IS_ERR(mhcd->xo_clk)) { clk_prepare_enable(mhcd->xo_clk); } else { ret = msm_xo_mode_vote(mhcd->xo_handle, MSM_XO_MODE_ON); if (ret) dev_err(mhcd->dev, "%s failed to vote for TCXO D0 %d\n", __func__, ret); } clk_prepare_enable(mhcd->core_clk); clk_prepare_enable(mhcd->iface_clk); msm_ehci_config_vddcx(mhcd, 1); temp = readl_relaxed(USB_USBCMD); temp &= ~ASYNC_INTR_CTRL; temp &= ~ULPI_STP_CTRL; writel_relaxed(temp, USB_USBCMD); if (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD)) goto skip_phy_resume; temp = readl_relaxed(USB_PORTSC) & ~PORTSC_PHCD; writel_relaxed(temp, USB_PORTSC); timeout = jiffies + usecs_to_jiffies(PHY_RESUME_TIMEOUT_USEC); while ((readl_relaxed(USB_PORTSC) & PORTSC_PHCD) || !(readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_SYNC_STATE)) { if (time_after(jiffies, timeout)) { /*This is a fatal error. Reset the link and PHY*/ dev_err(mhcd->dev, "Unable to resume USB. Resetting the h/w\n"); msm_hsusb_reset(mhcd); break; } udelay(1); } skip_phy_resume: usb_hcd_resume_root_hub(hcd); atomic_set(&mhcd->in_lpm, 0); if (mhcd->async_int) { mhcd->async_int = false; pm_runtime_put_noidle(mhcd->dev); enable_irq(hcd->irq); } if (atomic_read(&mhcd->pm_usage_cnt)) { atomic_set(&mhcd->pm_usage_cnt, 0); pm_runtime_put_noidle(mhcd->dev); } dev_info(mhcd->dev, "EHCI USB exited from low power mode\n"); return 0; } #endif static irqreturn_t msm_ehci_irq(struct usb_hcd *hcd) { struct msm_hcd *mhcd = hcd_to_mhcd(hcd); if (atomic_read(&mhcd->in_lpm)) { disable_irq_nosync(hcd->irq); mhcd->async_int = true; pm_runtime_get(mhcd->dev); return IRQ_HANDLED; } return ehci_irq(hcd); } static irqreturn_t msm_async_irq(int irq, void *data) { struct msm_hcd *mhcd = data; int ret; mhcd->async_int_cnt++; dev_dbg(mhcd->dev, "%s: hsusb host remote wakeup interrupt cnt: %u\n", __func__, mhcd->async_int_cnt); wake_lock(&mhcd->wlock); spin_lock(&mhcd->wakeup_lock); if (mhcd->async_irq_enabled) { mhcd->async_irq_enabled = 0; disable_irq_wake(irq); disable_irq_nosync(irq); } spin_unlock(&mhcd->wakeup_lock); if (!atomic_read(&mhcd->pm_usage_cnt)) { ret = pm_runtime_get(mhcd->dev); if ((ret == 1) || (ret == -EINPROGRESS)) pm_runtime_put_noidle(mhcd->dev); else atomic_set(&mhcd->pm_usage_cnt, 1); } return IRQ_HANDLED; } static irqreturn_t msm_ehci_host_wakeup_irq(int irq, void *data) { struct msm_hcd *mhcd = data; mhcd->pmic_gpio_int_cnt++; dev_dbg(mhcd->dev, "%s: hsusb host remote wakeup interrupt cnt: %u\n", __func__, mhcd->pmic_gpio_int_cnt); wake_lock(&mhcd->wlock); if (mhcd->pmic_gpio_dp_irq_enabled) { mhcd->pmic_gpio_dp_irq_enabled = 0; disable_irq_wake(irq); disable_irq_nosync(irq); } if (!atomic_read(&mhcd->pm_usage_cnt)) { atomic_set(&mhcd->pm_usage_cnt, 1); pm_runtime_get(mhcd->dev); } return IRQ_HANDLED; } static int msm_ehci_reset(struct usb_hcd *hcd) { struct ehci_hcd *ehci = hcd_to_ehci(hcd); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); struct msm_usb_host_platform_data *pdata; int retval; ehci->caps = USB_CAPLENGTH; ehci->regs = USB_CAPLENGTH + HC_LENGTH(ehci, ehci_readl(ehci, &ehci->caps->hc_capbase)); dbg_hcs_params(ehci, "reset"); dbg_hcc_params(ehci, "reset"); /* cache the data to minimize the chip reads*/ ehci->hcs_params = ehci_readl(ehci, &ehci->caps->hcs_params); hcd->has_tt = 1; ehci->sbrn = HCD_USB2; retval = ehci_halt(ehci); if (retval) return retval; /* data structure init */ retval = ehci_init(hcd); if (retval) return retval; retval = ehci_reset(ehci); if (retval) return retval; /* bursts of unspecified length. */ writel_relaxed(0, USB_AHBBURST); /* Use the AHB transactor */ writel_relaxed(0x08, USB_AHBMODE); /* Disable streaming mode and select host mode */ writel_relaxed(0x13, USB_USBMODE); pdata = mhcd->dev->platform_data; if (pdata && pdata->use_sec_phy) writel_relaxed(readl_relaxed(USB_PHY_CTRL2) | (1<<16), USB_PHY_CTRL2); ehci_port_power(ehci, 1); return 0; } static struct hc_driver msm_hc2_driver = { .description = hcd_name, .product_desc = "Qualcomm EHCI Host Controller", .hcd_priv_size = sizeof(struct msm_hcd), /* * generic hardware linkage */ .irq = msm_ehci_irq, .flags = HCD_USB2 | HCD_MEMORY, .reset = msm_ehci_reset, .start = ehci_run, .stop = ehci_stop, .shutdown = ehci_shutdown, /* * managing i/o requests and associated device resources */ .urb_enqueue = ehci_urb_enqueue, .urb_dequeue = ehci_urb_dequeue, .endpoint_disable = ehci_endpoint_disable, .endpoint_reset = ehci_endpoint_reset, .clear_tt_buffer_complete = ehci_clear_tt_buffer_complete, /* * scheduling support */ .get_frame_number = ehci_get_frame, /* * root hub support */ .hub_status_data = ehci_hub_status_data, .hub_control = ehci_hub_control, .relinquish_port = ehci_relinquish_port, .port_handed_over = ehci_port_handed_over, /* * PM support */ .bus_suspend = ehci_bus_suspend, .bus_resume = ehci_bus_resume, }; static int msm_ehci_init_clocks(struct msm_hcd *mhcd, u32 init) { int ret = 0; if (!init) goto put_clocks; /* 60MHz alt_core_clk is for LINK to be used during PHY RESET */ mhcd->alt_core_clk = clk_get(mhcd->dev, "alt_core_clk"); if (IS_ERR(mhcd->alt_core_clk)) dev_dbg(mhcd->dev, "failed to get alt_core_clk\n"); else clk_set_rate(mhcd->alt_core_clk, 60000000); /* iface_clk is required for data transfers */ mhcd->iface_clk = clk_get(mhcd->dev, "iface_clk"); if (IS_ERR(mhcd->iface_clk)) { dev_err(mhcd->dev, "failed to get iface_clk\n"); ret = PTR_ERR(mhcd->iface_clk); goto put_alt_core_clk; } /* Link's protocol engine is based on pclk which must * be running >55Mhz and frequency should also not change. * Hence, vote for maximum clk frequency on its source */ mhcd->core_clk = clk_get(mhcd->dev, "core_clk"); if (IS_ERR(mhcd->core_clk)) { dev_err(mhcd->dev, "failed to get core_clk\n"); ret = PTR_ERR(mhcd->core_clk); goto put_iface_clk; } clk_set_rate(mhcd->core_clk, INT_MAX); mhcd->phy_sleep_clk = clk_get(mhcd->dev, "sleep_clk"); if (IS_ERR(mhcd->phy_sleep_clk)) dev_dbg(mhcd->dev, "failed to get sleep_clk\n"); else clk_prepare_enable(mhcd->phy_sleep_clk); clk_prepare_enable(mhcd->core_clk); clk_prepare_enable(mhcd->iface_clk); return 0; put_clocks: if (!atomic_read(&mhcd->in_lpm)) { clk_disable_unprepare(mhcd->iface_clk); clk_disable_unprepare(mhcd->core_clk); } clk_put(mhcd->core_clk); if (!IS_ERR(mhcd->phy_sleep_clk)) { clk_disable_unprepare(mhcd->phy_sleep_clk); clk_put(mhcd->phy_sleep_clk); } put_iface_clk: clk_put(mhcd->iface_clk); put_alt_core_clk: if (!IS_ERR(mhcd->alt_core_clk)) clk_put(mhcd->alt_core_clk); return ret; } struct msm_usb_host_platform_data *ehci_msm2_dt_to_pdata( struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct msm_usb_host_platform_data *pdata; pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { dev_err(&pdev->dev, "unable to allocate platform data\n"); return NULL; } pdata->use_sec_phy = of_property_read_bool(node, "qcom,usb2-enable-hsphy2"); of_property_read_u32(node, "qcom,usb2-power-budget", &pdata->power_budget); return pdata; } static u64 ehci_msm_dma_mask = DMA_BIT_MASK(64); static int __devinit ehci_msm2_probe(struct platform_device *pdev) { struct usb_hcd *hcd; struct resource *res; struct msm_hcd *mhcd; const struct msm_usb_host_platform_data *pdata; char pdev_name[PDEV_NAME_LEN]; int ret; dev_dbg(&pdev->dev, "ehci_msm2 probe\n"); if (pdev->dev.of_node) { dev_dbg(&pdev->dev, "device tree enabled\n"); pdev->dev.platform_data = ehci_msm2_dt_to_pdata(pdev); } if (!pdev->dev.platform_data) dev_dbg(&pdev->dev, "No platform data given\n"); if (!pdev->dev.dma_mask) pdev->dev.dma_mask = &ehci_msm_dma_mask; if (!pdev->dev.coherent_dma_mask) pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32); hcd = usb_create_hcd(&msm_hc2_driver, &pdev->dev, dev_name(&pdev->dev)); if (!hcd) { dev_err(&pdev->dev, "Unable to create HCD\n"); return -ENOMEM; } hcd_to_bus(hcd)->skip_resume = true; hcd->irq = platform_get_irq(pdev, 0); if (hcd->irq < 0) { dev_err(&pdev->dev, "Unable to get IRQ resource\n"); ret = hcd->irq; goto put_hcd; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "Unable to get memory resource\n"); ret = -ENODEV; goto put_hcd; } hcd->rsrc_start = res->start; hcd->rsrc_len = resource_size(res); hcd->regs = ioremap(hcd->rsrc_start, hcd->rsrc_len); if (!hcd->regs) { dev_err(&pdev->dev, "ioremap failed\n"); ret = -ENOMEM; goto put_hcd; } mhcd = hcd_to_mhcd(hcd); mhcd->dev = &pdev->dev; spin_lock_init(&mhcd->wakeup_lock); mhcd->async_irq = platform_get_irq_byname(pdev, "async_irq"); if (mhcd->async_irq < 0) { dev_dbg(&pdev->dev, "platform_get_irq for async_int failed\n"); mhcd->async_irq = 0; } else { ret = request_irq(mhcd->async_irq, msm_async_irq, IRQF_TRIGGER_RISING, "msm_ehci_host", mhcd); if (ret) { dev_err(&pdev->dev, "request irq failed (ASYNC INT)\n"); goto unmap; } disable_irq(mhcd->async_irq); } snprintf(pdev_name, PDEV_NAME_LEN, "%s.%d", pdev->name, pdev->id); mhcd->xo_clk = clk_get(&pdev->dev, "xo"); if (!IS_ERR(mhcd->xo_clk)) { ret = clk_prepare_enable(mhcd->xo_clk); } else { mhcd->xo_handle = msm_xo_get(MSM_XO_TCXO_D0, pdev_name); if (IS_ERR(mhcd->xo_handle)) { dev_err(&pdev->dev, "%s fail to get handle for X0 D0\n", __func__); ret = PTR_ERR(mhcd->xo_handle); goto free_async_irq; } else { ret = msm_xo_mode_vote(mhcd->xo_handle, MSM_XO_MODE_ON); } } if (ret) { dev_err(&pdev->dev, "%s failed to vote for TCXO %d\n", __func__, ret); goto free_xo_handle; } ret = msm_ehci_init_clocks(mhcd, 1); if (ret) { dev_err(&pdev->dev, "unable to initialize clocks\n"); ret = -ENODEV; goto devote_xo_handle; } ret = msm_ehci_init_vddcx(mhcd, 1); if (ret) { dev_err(&pdev->dev, "unable to initialize VDDCX\n"); ret = -ENODEV; goto deinit_clocks; } ret = msm_ehci_config_vddcx(mhcd, 1); if (ret) { dev_err(&pdev->dev, "hsusb vddcx configuration failed\n"); goto deinit_vddcx; } ret = msm_ehci_ldo_init(mhcd, 1); if (ret) { dev_err(&pdev->dev, "hsusb vreg configuration failed\n"); goto deinit_vddcx; } ret = msm_ehci_ldo_enable(mhcd, 1); if (ret) { dev_err(&pdev->dev, "hsusb vreg enable failed\n"); goto deinit_ldo; } ret = msm_ehci_init_vbus(mhcd, 1); if (ret) { dev_err(&pdev->dev, "unable to get vbus\n"); goto disable_ldo; } ret = msm_hsusb_reset(mhcd); if (ret) { dev_err(&pdev->dev, "hsusb PHY initialization failed\n"); goto vbus_deinit; } ret = usb_add_hcd(hcd, hcd->irq, IRQF_SHARED); if (ret) { dev_err(&pdev->dev, "unable to register HCD\n"); goto vbus_deinit; } pdata = mhcd->dev->platform_data; if (pdata && (!pdata->dock_connect_irq || !irq_read_line(pdata->dock_connect_irq))) msm_ehci_vbus_power(mhcd, 1); device_init_wakeup(&pdev->dev, 1); wake_lock_init(&mhcd->wlock, WAKE_LOCK_SUSPEND, dev_name(&pdev->dev)); wake_lock(&mhcd->wlock); INIT_WORK(&mhcd->phy_susp_fail_work, msm_ehci_phy_susp_fail_work); /* * This pdev->dev is assigned parent of root-hub by USB core, * hence, runtime framework automatically calls this driver's * runtime APIs based on root-hub's state. */ /* configure pmic_gpio_irq for D+ change */ if (pdata && pdata->pmic_gpio_dp_irq) mhcd->pmic_gpio_dp_irq = pdata->pmic_gpio_dp_irq; if (mhcd->pmic_gpio_dp_irq) { ret = request_threaded_irq(mhcd->pmic_gpio_dp_irq, NULL, msm_ehci_host_wakeup_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "msm_ehci_host_wakeup", mhcd); if (!ret) { disable_irq_nosync(mhcd->pmic_gpio_dp_irq); } else { dev_err(&pdev->dev, "request_irq(%d) failed: %d\n", mhcd->pmic_gpio_dp_irq, ret); mhcd->pmic_gpio_dp_irq = 0; } } pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); return 0; vbus_deinit: msm_ehci_init_vbus(mhcd, 0); disable_ldo: msm_ehci_ldo_enable(mhcd, 0); deinit_ldo: msm_ehci_ldo_init(mhcd, 0); deinit_vddcx: msm_ehci_init_vddcx(mhcd, 0); deinit_clocks: msm_ehci_init_clocks(mhcd, 0); devote_xo_handle: if (!IS_ERR(mhcd->xo_clk)) clk_disable_unprepare(mhcd->xo_clk); else msm_xo_mode_vote(mhcd->xo_handle, MSM_XO_MODE_OFF); free_xo_handle: if (!IS_ERR(mhcd->xo_clk)) clk_put(mhcd->xo_clk); else msm_xo_put(mhcd->xo_handle); free_async_irq: if (mhcd->async_irq) free_irq(mhcd->async_irq, mhcd); unmap: iounmap(hcd->regs); put_hcd: usb_put_hcd(hcd); return ret; } static int __devexit ehci_msm2_remove(struct platform_device *pdev) { struct usb_hcd *hcd = platform_get_drvdata(pdev); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); if (mhcd->pmic_gpio_dp_irq) { if (mhcd->pmic_gpio_dp_irq_enabled) disable_irq_wake(mhcd->pmic_gpio_dp_irq); free_irq(mhcd->pmic_gpio_dp_irq, mhcd); } if (mhcd->async_irq) { if (mhcd->async_irq_enabled) disable_irq_wake(mhcd->async_irq); free_irq(mhcd->async_irq, mhcd); } device_init_wakeup(&pdev->dev, 0); pm_runtime_set_suspended(&pdev->dev); usb_remove_hcd(hcd); if (!IS_ERR(mhcd->xo_clk)) { clk_disable_unprepare(mhcd->xo_clk); clk_put(mhcd->xo_clk); } else { msm_xo_put(mhcd->xo_handle); } msm_ehci_vbus_power(mhcd, 0); msm_ehci_init_vbus(mhcd, 0); msm_ehci_ldo_enable(mhcd, 0); msm_ehci_ldo_init(mhcd, 0); msm_ehci_init_vddcx(mhcd, 0); msm_ehci_init_clocks(mhcd, 0); wake_lock_destroy(&mhcd->wlock); iounmap(hcd->regs); usb_put_hcd(hcd); return 0; } #ifdef CONFIG_PM_SLEEP static int ehci_msm2_pm_suspend(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); dev_dbg(dev, "ehci-msm2 PM suspend\n"); if (device_may_wakeup(dev)) enable_irq_wake(hcd->irq); return msm_ehci_suspend(mhcd); } static int ehci_msm2_pm_resume(struct device *dev) { int ret; struct usb_hcd *hcd = dev_get_drvdata(dev); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); dev_dbg(dev, "ehci-msm2 PM resume\n"); if (device_may_wakeup(dev)) disable_irq_wake(hcd->irq); ret = msm_ehci_resume(mhcd); if (ret) return ret; /* Bring the device to full powered state upon system resume */ pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); return 0; } #endif #ifdef CONFIG_PM_RUNTIME static int ehci_msm2_runtime_idle(struct device *dev) { dev_dbg(dev, "EHCI runtime idle\n"); return 0; } static int ehci_msm2_runtime_suspend(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); dev_dbg(dev, "EHCI runtime suspend\n"); return msm_ehci_suspend(mhcd); } static int ehci_msm2_runtime_resume(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); dev_dbg(dev, "EHCI runtime resume\n"); return msm_ehci_resume(mhcd); } #endif #ifdef CONFIG_PM static const struct dev_pm_ops ehci_msm2_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(ehci_msm2_pm_suspend, ehci_msm2_pm_resume) SET_RUNTIME_PM_OPS(ehci_msm2_runtime_suspend, ehci_msm2_runtime_resume, ehci_msm2_runtime_idle) }; #endif static const struct of_device_id ehci_msm2_dt_match[] = { { .compatible = "qcom,ehci-host", }, {} }; static struct platform_driver ehci_msm2_driver = { .probe = ehci_msm2_probe, .remove = __devexit_p(ehci_msm2_remove), .driver = { .name = "msm_ehci_host", #ifdef CONFIG_PM .pm = &ehci_msm2_dev_pm_ops, #endif .of_match_table = ehci_msm2_dt_match, }, };