/* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CHG_BUCK_CLOCK_CTRL 0x14 #define CHG_BUCK_CLOCK_CTRL_8038 0xD #define PBL_ACCESS1 0x04 #define PBL_ACCESS2 0x05 #define SYS_CONFIG_1 0x06 #define SYS_CONFIG_2 0x07 #define CHG_CNTRL 0x204 #define CHG_IBAT_MAX 0x205 #define CHG_TEST 0x206 #define CHG_BUCK_CTRL_TEST1 0x207 #define CHG_BUCK_CTRL_TEST2 0x208 #define CHG_BUCK_CTRL_TEST3 0x209 #define COMPARATOR_OVERRIDE 0x20A #define PSI_TXRX_SAMPLE_DATA_0 0x20B #define PSI_TXRX_SAMPLE_DATA_1 0x20C #define PSI_TXRX_SAMPLE_DATA_2 0x20D #define PSI_TXRX_SAMPLE_DATA_3 0x20E #define PSI_CONFIG_STATUS 0x20F #define CHG_IBAT_SAFE 0x210 #define CHG_ITRICKLE 0x211 #define CHG_CNTRL_2 0x212 #define CHG_VBAT_DET 0x213 #define CHG_VTRICKLE 0x214 #define CHG_ITERM 0x215 #define CHG_CNTRL_3 0x216 #define CHG_VIN_MIN 0x217 #define CHG_TWDOG 0x218 #define CHG_TTRKL_MAX 0x219 #define CHG_TEMP_THRESH 0x21A #define CHG_TCHG_MAX 0x21B #define USB_OVP_CONTROL 0x21C #define DC_OVP_CONTROL 0x21D #define USB_OVP_TEST 0x21E #define DC_OVP_TEST 0x21F #define CHG_VDD_MAX 0x220 #define CHG_VDD_SAFE 0x221 #define CHG_VBAT_BOOT_THRESH 0x222 #define USB_OVP_TRIM 0x355 #define BUCK_CONTROL_TRIM1 0x356 #define BUCK_CONTROL_TRIM2 0x357 #define BUCK_CONTROL_TRIM3 0x358 #define BUCK_CONTROL_TRIM4 0x359 #define CHG_DEFAULTS_TRIM 0x35A #define CHG_ITRIM 0x35B #define CHG_TTRIM 0x35C #define CHG_COMP_OVR 0x20A #define IUSB_FINE_RES 0x2B6 #define OVP_USB_UVD 0x2B7 #define PM8921_USB_TRIM_SEL 0x339 /* check EOC every 10 seconds */ #define EOC_CHECK_PERIOD_MS 10000 /* check for USB unplug every 200 msecs */ #define UNPLUG_CHECK_WAIT_PERIOD_MS 200 #define UNPLUG_CHECK_RAMP_MS 25 #define USB_TRIM_ENTRIES 16 enum chg_fsm_state { FSM_STATE_OFF_0 = 0, FSM_STATE_BATFETDET_START_12 = 12, FSM_STATE_BATFETDET_END_16 = 16, FSM_STATE_ON_CHG_HIGHI_1 = 1, FSM_STATE_ATC_2A = 2, FSM_STATE_ATC_2B = 18, FSM_STATE_ON_BAT_3 = 3, FSM_STATE_ATC_FAIL_4 = 4 , FSM_STATE_DELAY_5 = 5, FSM_STATE_ON_CHG_AND_BAT_6 = 6, FSM_STATE_FAST_CHG_7 = 7, FSM_STATE_TRKL_CHG_8 = 8, FSM_STATE_CHG_FAIL_9 = 9, FSM_STATE_EOC_10 = 10, FSM_STATE_ON_CHG_VREGOK_11 = 11, FSM_STATE_ATC_PAUSE_13 = 13, FSM_STATE_FAST_CHG_PAUSE_14 = 14, FSM_STATE_TRKL_CHG_PAUSE_15 = 15, FSM_STATE_START_BOOT = 20, FSM_STATE_FLCB_VREGOK = 21, FSM_STATE_FLCB = 22, }; struct fsm_state_to_batt_status { enum chg_fsm_state fsm_state; int batt_state; }; static struct fsm_state_to_batt_status map[] = { {FSM_STATE_OFF_0, POWER_SUPPLY_STATUS_UNKNOWN}, {FSM_STATE_BATFETDET_START_12, POWER_SUPPLY_STATUS_UNKNOWN}, {FSM_STATE_BATFETDET_END_16, POWER_SUPPLY_STATUS_UNKNOWN}, /* * for CHG_HIGHI_1 report NOT_CHARGING if battery missing, * too hot/cold, charger too hot */ {FSM_STATE_ON_CHG_HIGHI_1, POWER_SUPPLY_STATUS_FULL}, {FSM_STATE_ATC_2A, POWER_SUPPLY_STATUS_CHARGING}, {FSM_STATE_ATC_2B, POWER_SUPPLY_STATUS_CHARGING}, {FSM_STATE_ON_BAT_3, POWER_SUPPLY_STATUS_DISCHARGING}, {FSM_STATE_ATC_FAIL_4, POWER_SUPPLY_STATUS_DISCHARGING}, {FSM_STATE_DELAY_5, POWER_SUPPLY_STATUS_UNKNOWN }, {FSM_STATE_ON_CHG_AND_BAT_6, POWER_SUPPLY_STATUS_CHARGING}, {FSM_STATE_FAST_CHG_7, POWER_SUPPLY_STATUS_CHARGING}, {FSM_STATE_TRKL_CHG_8, POWER_SUPPLY_STATUS_CHARGING}, {FSM_STATE_CHG_FAIL_9, POWER_SUPPLY_STATUS_DISCHARGING}, {FSM_STATE_EOC_10, POWER_SUPPLY_STATUS_FULL}, {FSM_STATE_ON_CHG_VREGOK_11, POWER_SUPPLY_STATUS_NOT_CHARGING}, {FSM_STATE_ATC_PAUSE_13, POWER_SUPPLY_STATUS_NOT_CHARGING}, {FSM_STATE_FAST_CHG_PAUSE_14, POWER_SUPPLY_STATUS_NOT_CHARGING}, {FSM_STATE_TRKL_CHG_PAUSE_15, POWER_SUPPLY_STATUS_NOT_CHARGING}, {FSM_STATE_START_BOOT, POWER_SUPPLY_STATUS_NOT_CHARGING}, {FSM_STATE_FLCB_VREGOK, POWER_SUPPLY_STATUS_NOT_CHARGING}, {FSM_STATE_FLCB, POWER_SUPPLY_STATUS_NOT_CHARGING}, }; enum chg_regulation_loop { VDD_LOOP = BIT(3), BAT_CURRENT_LOOP = BIT(2), INPUT_CURRENT_LOOP = BIT(1), INPUT_VOLTAGE_LOOP = BIT(0), CHG_ALL_LOOPS = VDD_LOOP | BAT_CURRENT_LOOP | INPUT_CURRENT_LOOP | INPUT_VOLTAGE_LOOP, }; enum pmic_chg_interrupts { USBIN_VALID_IRQ = 0, USBIN_OV_IRQ, BATT_INSERTED_IRQ, VBATDET_LOW_IRQ, USBIN_UV_IRQ, VBAT_OV_IRQ, CHGWDOG_IRQ, VCP_IRQ, ATCDONE_IRQ, ATCFAIL_IRQ, CHGDONE_IRQ, CHGFAIL_IRQ, CHGSTATE_IRQ, LOOP_CHANGE_IRQ, FASTCHG_IRQ, TRKLCHG_IRQ, BATT_REMOVED_IRQ, BATTTEMP_HOT_IRQ, CHGHOT_IRQ, BATTTEMP_COLD_IRQ, CHG_GONE_IRQ, BAT_TEMP_OK_IRQ, COARSE_DET_LOW_IRQ, VDD_LOOP_IRQ, VREG_OV_IRQ, VBATDET_IRQ, BATFET_IRQ, PSI_IRQ, DCIN_VALID_IRQ, DCIN_OV_IRQ, DCIN_UV_IRQ, PM_CHG_MAX_INTS, }; struct bms_notify { int is_battery_full; int is_charging; struct work_struct work; }; /** * struct pm8921_chg_chip -device information * @dev: device pointer to access the parent * @usb_present: present status of usb * @dc_present: present status of dc * @usb_charger_current: usb current to charge the battery with used when * the usb path is enabled or charging is resumed * @update_time: how frequently the userland needs to be updated * @max_voltage_mv: the max volts the batt should be charged up to * @min_voltage_mv: the min battery voltage before turning the FETon * @uvd_voltage_mv: (PM8917 only) the falling UVD threshold voltage * @alarm_low_mv: the battery alarm voltage low * @alarm_high_mv: the battery alarm voltage high * @cool_temp_dc: the cool temp threshold in deciCelcius * @warm_temp_dc: the warm temp threshold in deciCelcius * @hysteresis_temp_dc: the hysteresis between temp thresholds in * deciCelcius * @resume_voltage_delta: the voltage delta from vdd max at which the * battery should resume charging * @term_current: The charging based term current * */ struct pm8921_chg_chip { struct device *dev; unsigned int usb_present; unsigned int dc_present; unsigned int usb_charger_current; unsigned int max_bat_chg_current; unsigned int pmic_chg_irq[PM_CHG_MAX_INTS]; unsigned int ttrkl_time; unsigned int update_time; unsigned int max_voltage_mv; unsigned int min_voltage_mv; unsigned int uvd_voltage_mv; unsigned int safe_current_ma; unsigned int alarm_low_mv; unsigned int alarm_high_mv; int cool_temp_dc; int warm_temp_dc; int hysteresis_temp_dc; unsigned int temp_check_period; unsigned int cool_bat_chg_current; unsigned int warm_bat_chg_current; unsigned int cool_bat_voltage; unsigned int warm_bat_voltage; unsigned int is_bat_cool; unsigned int is_bat_warm; unsigned int resume_voltage_delta; int resume_charge_percent; unsigned int term_current; unsigned int vbat_channel; unsigned int batt_temp_channel; unsigned int batt_id_channel; struct power_supply usb_psy; struct power_supply dc_psy; struct power_supply *ext_psy; struct power_supply batt_psy; struct dentry *dent; struct bms_notify bms_notify; int *usb_trim_table; bool ext_charging; bool ext_charge_done; bool iusb_fine_res; DECLARE_BITMAP(enabled_irqs, PM_CHG_MAX_INTS); struct work_struct battery_id_valid_work; int64_t batt_id_min; int64_t batt_id_max; int trkl_voltage; int weak_voltage; int trkl_current; int weak_current; int vin_min; unsigned int *thermal_mitigation; int thermal_levels; struct delayed_work update_heartbeat_work; struct delayed_work eoc_work; struct delayed_work unplug_check_work; struct delayed_work vin_collapse_check_work; struct delayed_work btc_override_work; struct wake_lock eoc_wake_lock; enum pm8921_chg_cold_thr cold_thr; enum pm8921_chg_hot_thr hot_thr; int rconn_mohm; enum pm8921_chg_led_src_config led_src_config; bool host_mode; bool has_dc_supply; u8 active_path; int recent_reported_soc; int battery_less_hardware; int ibatmax_max_adj_ma; int btc_override; int btc_override_cold_decidegc; int btc_override_hot_decidegc; int btc_delay_ms; bool btc_panic_if_cant_stop_chg; int stop_chg_upon_expiry; bool disable_aicl; int usb_type; bool disable_chg_rmvl_wrkarnd; }; /* user space parameter to limit usb current */ static unsigned int usb_max_current; /* * usb_target_ma is used for wall charger * adaptive input current limiting only. Use * pm_iusbmax_get() to get current maximum usb current setting. */ static int usb_target_ma; static int charging_disabled; static int thermal_mitigation; static struct pm8921_chg_chip *the_chip; static void check_temp_thresholds(struct pm8921_chg_chip *chip); #define LPM_ENABLE_BIT BIT(2) static int pm8921_chg_set_lpm(struct pm8921_chg_chip *chip, int enable) { int rc; u8 reg; rc = pm8xxx_readb(chip->dev->parent, CHG_CNTRL, ®); if (rc) { pr_err("pm8xxx_readb failed: addr=%03X, rc=%d\n", CHG_CNTRL, rc); return rc; } reg &= ~LPM_ENABLE_BIT; reg |= (enable ? LPM_ENABLE_BIT : 0); rc = pm8xxx_writeb(chip->dev->parent, CHG_CNTRL, reg); if (rc) { pr_err("pm_chg_write failed: addr=%03X, rc=%d\n", CHG_CNTRL, rc); return rc; } return rc; } static int pm_chg_write(struct pm8921_chg_chip *chip, u16 addr, u8 reg) { int rc; rc = pm8xxx_writeb(chip->dev->parent, addr, reg); if (rc) pr_err("failed: addr=%03X, rc=%d\n", addr, rc); return rc; } static int pm_chg_masked_write(struct pm8921_chg_chip *chip, u16 addr, u8 mask, u8 val) { int rc; u8 reg; rc = pm8xxx_readb(chip->dev->parent, addr, ®); if (rc) { pr_err("pm8xxx_readb failed: addr=%03X, rc=%d\n", addr, rc); return rc; } reg &= ~mask; reg |= val & mask; rc = pm_chg_write(chip, addr, reg); if (rc) { pr_err("pm_chg_write failed: addr=%03X, rc=%d\n", addr, rc); return rc; } return 0; } static int pm_chg_get_rt_status(struct pm8921_chg_chip *chip, int irq_id) { return pm8xxx_read_irq_stat(chip->dev->parent, chip->pmic_chg_irq[irq_id]); } /* Treat OverVoltage/UnderVoltage as source missing */ static int is_usb_chg_plugged_in(struct pm8921_chg_chip *chip) { return pm_chg_get_rt_status(chip, USBIN_VALID_IRQ); } /* Treat OverVoltage/UnderVoltage as source missing */ static int is_dc_chg_plugged_in(struct pm8921_chg_chip *chip) { return pm_chg_get_rt_status(chip, DCIN_VALID_IRQ); } static int is_batfet_closed(struct pm8921_chg_chip *chip) { return pm_chg_get_rt_status(chip, BATFET_IRQ); } #define CAPTURE_FSM_STATE_CMD 0xC2 #define READ_BANK_7 0x70 #define READ_BANK_4 0x40 static int pm_chg_get_fsm_state(struct pm8921_chg_chip *chip) { u8 temp; int err = 0, ret = 0; temp = CAPTURE_FSM_STATE_CMD; err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); goto err_out; } temp = READ_BANK_7; err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); goto err_out; } err = pm8xxx_readb(chip->dev->parent, CHG_TEST, &temp); if (err) { pr_err("pm8xxx_readb fail: addr=%03X, rc=%d\n", CHG_TEST, err); goto err_out; } /* get the lower 4 bits */ ret = temp & 0xF; temp = READ_BANK_4; err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); goto err_out; } err = pm8xxx_readb(chip->dev->parent, CHG_TEST, &temp); if (err) { pr_err("pm8xxx_readb fail: addr=%03X, rc=%d\n", CHG_TEST, err); goto err_out; } /* get the upper 1 bit */ ret |= (temp & 0x1) << 4; err_out: if (err) return err; return ret; } #define READ_BANK_6 0x60 static int pm_chg_get_regulation_loop(struct pm8921_chg_chip *chip) { u8 temp, data; int err = 0; temp = READ_BANK_6; err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); goto err_out; } err = pm8xxx_readb(chip->dev->parent, CHG_TEST, &data); if (err) { pr_err("pm8xxx_readb fail: addr=%03X, rc=%d\n", CHG_TEST, err); goto err_out; } err_out: if (err) return err; /* return the lower 4 bits */ return data & CHG_ALL_LOOPS; } #define CHG_USB_SUSPEND_BIT BIT(2) static int pm_chg_usb_suspend_enable(struct pm8921_chg_chip *chip, int enable) { return pm_chg_masked_write(chip, CHG_CNTRL_3, CHG_USB_SUSPEND_BIT, enable ? CHG_USB_SUSPEND_BIT : 0); } #define CHG_EN_BIT BIT(7) static int pm_chg_auto_enable(struct pm8921_chg_chip *chip, int enable) { return pm_chg_masked_write(chip, CHG_CNTRL_3, CHG_EN_BIT, enable ? CHG_EN_BIT : 0); } #define CHG_FAILED_CLEAR BIT(0) #define ATC_FAILED_CLEAR BIT(1) static int pm_chg_failed_clear(struct pm8921_chg_chip *chip, int clear) { int rc; rc = pm_chg_masked_write(chip, CHG_CNTRL_3, ATC_FAILED_CLEAR, clear ? ATC_FAILED_CLEAR : 0); rc |= pm_chg_masked_write(chip, CHG_CNTRL_3, CHG_FAILED_CLEAR, clear ? CHG_FAILED_CLEAR : 0); return rc; } #define CHG_CHARGE_DIS_BIT BIT(1) static int pm_chg_charge_dis(struct pm8921_chg_chip *chip, int disable) { return pm_chg_masked_write(chip, CHG_CNTRL, CHG_CHARGE_DIS_BIT, disable ? CHG_CHARGE_DIS_BIT : 0); } static int pm_is_chg_charge_dis(struct pm8921_chg_chip *chip) { u8 temp; pm8xxx_readb(chip->dev->parent, CHG_CNTRL, &temp); return temp & CHG_CHARGE_DIS_BIT; } #define PM8921_CHG_V_MIN_MV 3240 #define PM8921_CHG_V_STEP_MV 20 #define PM8921_CHG_V_STEP_10MV_OFFSET_BIT BIT(7) #define PM8921_CHG_VDDMAX_MAX 4500 #define PM8921_CHG_VDDMAX_MIN 3400 #define PM8921_CHG_V_MASK 0x7F static int __pm_chg_vddmax_set(struct pm8921_chg_chip *chip, int voltage) { int remainder; u8 temp = 0; if (voltage < PM8921_CHG_VDDMAX_MIN || voltage > PM8921_CHG_VDDMAX_MAX) { pr_err("bad mV=%d asked to set\n", voltage); return -EINVAL; } temp = (voltage - PM8921_CHG_V_MIN_MV) / PM8921_CHG_V_STEP_MV; remainder = voltage % 20; if (remainder >= 10) { temp |= PM8921_CHG_V_STEP_10MV_OFFSET_BIT; } pr_debug("voltage=%d setting %02x\n", voltage, temp); return pm_chg_write(chip, CHG_VDD_MAX, temp); } static int pm_chg_vddmax_get(struct pm8921_chg_chip *chip, int *voltage) { u8 temp; int rc; rc = pm8xxx_readb(chip->dev->parent, CHG_VDD_MAX, &temp); if (rc) { pr_err("rc = %d while reading vdd max\n", rc); *voltage = 0; return rc; } *voltage = (int)(temp & PM8921_CHG_V_MASK) * PM8921_CHG_V_STEP_MV + PM8921_CHG_V_MIN_MV; if (temp & PM8921_CHG_V_STEP_10MV_OFFSET_BIT) *voltage = *voltage + 10; return 0; } static int pm_chg_vddmax_set(struct pm8921_chg_chip *chip, int voltage) { int current_mv, ret, steps, i; bool increase; ret = 0; if (voltage < PM8921_CHG_VDDMAX_MIN || voltage > PM8921_CHG_VDDMAX_MAX) { pr_err("bad mV=%d asked to set\n", voltage); return -EINVAL; } ret = pm_chg_vddmax_get(chip, ¤t_mv); if (ret) { pr_err("Failed to read vddmax rc=%d\n", ret); return -EINVAL; } if (current_mv == voltage) return 0; /* Only change in increments when USB is present */ if (is_usb_chg_plugged_in(chip)) { if (current_mv < voltage) { steps = (voltage - current_mv) / PM8921_CHG_V_STEP_MV; increase = true; } else { steps = (current_mv - voltage) / PM8921_CHG_V_STEP_MV; increase = false; } for (i = 0; i < steps; i++) { if (increase) current_mv += PM8921_CHG_V_STEP_MV; else current_mv -= PM8921_CHG_V_STEP_MV; ret |= __pm_chg_vddmax_set(chip, current_mv); } } ret |= __pm_chg_vddmax_set(chip, voltage); return ret; } #define PM8921_CHG_VDDSAFE_MIN 3400 #define PM8921_CHG_VDDSAFE_MAX 4500 static int pm_chg_vddsafe_set(struct pm8921_chg_chip *chip, int voltage) { u8 temp; if (voltage < PM8921_CHG_VDDSAFE_MIN || voltage > PM8921_CHG_VDDSAFE_MAX) { pr_err("bad mV=%d asked to set\n", voltage); return -EINVAL; } temp = (voltage - PM8921_CHG_V_MIN_MV) / PM8921_CHG_V_STEP_MV; pr_debug("voltage=%d setting %02x\n", voltage, temp); return pm_chg_masked_write(chip, CHG_VDD_SAFE, PM8921_CHG_V_MASK, temp); } #define PM8921_CHG_VBATDET_MIN 3240 #define PM8921_CHG_VBATDET_MAX 5780 static int pm_chg_vbatdet_set(struct pm8921_chg_chip *chip, int voltage) { u8 temp; if (voltage < PM8921_CHG_VBATDET_MIN || voltage > PM8921_CHG_VBATDET_MAX) { pr_err("bad mV=%d asked to set\n", voltage); return -EINVAL; } temp = (voltage - PM8921_CHG_V_MIN_MV) / PM8921_CHG_V_STEP_MV; pr_debug("voltage=%d setting %02x\n", voltage, temp); return pm_chg_masked_write(chip, CHG_VBAT_DET, PM8921_CHG_V_MASK, temp); } #define PM8921_CHG_VINMIN_MIN_MV 3800 #define PM8921_CHG_VINMIN_STEP_MV 100 #define PM8921_CHG_VINMIN_USABLE_MAX 6500 #define PM8921_CHG_VINMIN_USABLE_MIN 4300 #define PM8921_CHG_VINMIN_MASK 0x1F static int pm_chg_vinmin_set(struct pm8921_chg_chip *chip, int voltage) { u8 temp; if (voltage < PM8921_CHG_VINMIN_USABLE_MIN || voltage > PM8921_CHG_VINMIN_USABLE_MAX) { pr_err("bad mV=%d asked to set\n", voltage); return -EINVAL; } temp = (voltage - PM8921_CHG_VINMIN_MIN_MV) / PM8921_CHG_VINMIN_STEP_MV; pr_debug("voltage=%d setting %02x\n", voltage, temp); return pm_chg_masked_write(chip, CHG_VIN_MIN, PM8921_CHG_VINMIN_MASK, temp); } static int pm_chg_vinmin_get(struct pm8921_chg_chip *chip) { u8 temp; int rc, voltage_mv; rc = pm8xxx_readb(chip->dev->parent, CHG_VIN_MIN, &temp); temp &= PM8921_CHG_VINMIN_MASK; voltage_mv = PM8921_CHG_VINMIN_MIN_MV + (int)temp * PM8921_CHG_VINMIN_STEP_MV; return voltage_mv; } #define PM8917_USB_UVD_MIN_MV 3850 #define PM8917_USB_UVD_MAX_MV 4350 #define PM8917_USB_UVD_STEP_MV 100 #define PM8917_USB_UVD_MASK 0x7 static int pm_chg_uvd_threshold_set(struct pm8921_chg_chip *chip, int thresh_mv) { u8 temp; if (thresh_mv < PM8917_USB_UVD_MIN_MV || thresh_mv > PM8917_USB_UVD_MAX_MV) { pr_err("bad mV=%d asked to set\n", thresh_mv); return -EINVAL; } temp = (thresh_mv - PM8917_USB_UVD_MIN_MV) / PM8917_USB_UVD_STEP_MV; return pm_chg_masked_write(chip, OVP_USB_UVD, PM8917_USB_UVD_MASK, temp); } #define PM8921_CHG_IBATMAX_MIN 325 #define PM8921_CHG_IBATMAX_MAX 3025 #define PM8921_CHG_I_MIN_MA 225 #define PM8921_CHG_I_STEP_MA 50 #define PM8921_CHG_I_MASK 0x3F static int pm_chg_ibatmax_get(struct pm8921_chg_chip *chip, int *ibat_ma) { u8 temp; int rc; rc = pm8xxx_readb(chip->dev->parent, CHG_IBAT_MAX, &temp); if (rc) { pr_err("rc = %d while reading ibat max\n", rc); *ibat_ma = 0; return rc; } *ibat_ma = (int)(temp & PM8921_CHG_I_MASK) * PM8921_CHG_I_STEP_MA + PM8921_CHG_I_MIN_MA; return 0; } static int pm_chg_ibatmax_set(struct pm8921_chg_chip *chip, int chg_current) { u8 temp; if (chg_current < PM8921_CHG_IBATMAX_MIN || chg_current > PM8921_CHG_IBATMAX_MAX) { pr_err("bad mA=%d asked to set\n", chg_current); return -EINVAL; } temp = (chg_current - PM8921_CHG_I_MIN_MA) / PM8921_CHG_I_STEP_MA; return pm_chg_masked_write(chip, CHG_IBAT_MAX, PM8921_CHG_I_MASK, temp); } #define PM8921_CHG_IBATSAFE_MIN 225 #define PM8921_CHG_IBATSAFE_MAX 3375 static int pm_chg_ibatsafe_set(struct pm8921_chg_chip *chip, int chg_current) { u8 temp; if (chg_current < PM8921_CHG_IBATSAFE_MIN || chg_current > PM8921_CHG_IBATSAFE_MAX) { pr_err("bad mA=%d asked to set\n", chg_current); return -EINVAL; } temp = (chg_current - PM8921_CHG_I_MIN_MA) / PM8921_CHG_I_STEP_MA; return pm_chg_masked_write(chip, CHG_IBAT_SAFE, PM8921_CHG_I_MASK, temp); } #define PM8921_CHG_ITERM_MIN_MA 50 #define PM8921_CHG_ITERM_MAX_MA 200 #define PM8921_CHG_ITERM_STEP_MA 10 #define PM8921_CHG_ITERM_MASK 0xF static int pm_chg_iterm_set(struct pm8921_chg_chip *chip, int chg_current) { u8 temp; if (chg_current < PM8921_CHG_ITERM_MIN_MA || chg_current > PM8921_CHG_ITERM_MAX_MA) { pr_err("bad mA=%d asked to set\n", chg_current); return -EINVAL; } temp = (chg_current - PM8921_CHG_ITERM_MIN_MA) / PM8921_CHG_ITERM_STEP_MA; return pm_chg_masked_write(chip, CHG_ITERM, PM8921_CHG_ITERM_MASK, temp); } static int pm_chg_iterm_get(struct pm8921_chg_chip *chip, int *chg_current) { u8 temp; int rc; rc = pm8xxx_readb(chip->dev->parent, CHG_ITERM, &temp); if (rc) { pr_err("err=%d reading CHG_ITEM\n", rc); *chg_current = 0; return rc; } temp &= PM8921_CHG_ITERM_MASK; *chg_current = (int)temp * PM8921_CHG_ITERM_STEP_MA + PM8921_CHG_ITERM_MIN_MA; return 0; } struct usb_ma_limit_entry { int usb_ma; u8 value; }; /* USB Trim tables */ static int usb_trim_pm8921_table_1[USB_TRIM_ENTRIES] = { 0x0, 0x0, -0x5, 0x0, -0x7, 0x0, -0x9, -0xA, 0x0, 0x0, -0xE, 0x0, -0xF, 0x0, -0x10, 0x0 }; static int usb_trim_pm8921_table_2[USB_TRIM_ENTRIES] = { 0x0, 0x0, -0x2, 0x0, -0x4, 0x0, -0x4, -0x5, 0x0, 0x0, -0x6, 0x0, -0x6, 0x0, -0x6, 0x0 }; static int usb_trim_8038_table[USB_TRIM_ENTRIES] = { 0x0, 0x0, -0x9, 0x0, -0xD, 0x0, -0x10, -0x11, 0x0, 0x0, -0x25, 0x0, -0x28, 0x0, -0x32, 0x0 }; static int usb_trim_8917_table[USB_TRIM_ENTRIES] = { 0x0, 0x0, 0xA, 0xC, 0x10, 0x10, 0x13, 0x14, 0x13, 0x3, 0x1A, 0x1D, 0x1D, 0x21, 0x24, 0x26 }; /* Maximum USB setting table */ static struct usb_ma_limit_entry usb_ma_table[] = { {100, 0x0}, {200, 0x1}, {500, 0x2}, {600, 0x3}, {700, 0x4}, {800, 0x5}, {850, 0x6}, {900, 0x8}, {950, 0x7}, {1000, 0x9}, {1100, 0xA}, {1200, 0xB}, {1300, 0xC}, {1400, 0xD}, {1500, 0xE}, {1600, 0xF}, }; #define REG_SBI_CONFIG 0x04F #define PAGE3_ENABLE_MASK 0x6 #define USB_OVP_TRIM_MASK 0x3F #define USB_OVP_TRIM_PM8917_MASK 0x7F #define USB_OVP_TRIM_MIN 0x00 #define REG_USB_OVP_TRIM_ORIG_LSB 0x10A #define REG_USB_OVP_TRIM_ORIG_MSB 0x09C #define REG_USB_OVP_TRIM_PM8917 0x2B5 #define REG_USB_OVP_TRIM_PM8917_BIT BIT(0) #define USB_TRIM_MAX_DATA_PM8917 0x3F #define USB_TRIM_POLARITY_PM8917_BIT BIT(6) static int pm_chg_usb_trim(struct pm8921_chg_chip *chip, int index) { u8 temp, sbi_config, msb, lsb, mask; s8 trim; int rc = 0; static u8 usb_trim_reg_orig = 0xFF; /* No trim data for PM8921 */ if (!chip->usb_trim_table) return 0; if (usb_trim_reg_orig == 0xFF) { rc = pm8xxx_readb(chip->dev->parent, REG_USB_OVP_TRIM_ORIG_MSB, &msb); if (rc) { pr_err("error = %d reading sbi config reg\n", rc); return rc; } rc = pm8xxx_readb(chip->dev->parent, REG_USB_OVP_TRIM_ORIG_LSB, &lsb); if (rc) { pr_err("error = %d reading sbi config reg\n", rc); return rc; } msb = msb >> 5; lsb = lsb >> 5; usb_trim_reg_orig = msb << 3 | lsb; if (pm8xxx_get_version(chip->dev->parent) == PM8XXX_VERSION_8917) { rc = pm8xxx_readb(chip->dev->parent, REG_USB_OVP_TRIM_PM8917, &msb); if (rc) { pr_err("error = %d reading config reg\n", rc); return rc; } msb = msb & REG_USB_OVP_TRIM_PM8917_BIT; usb_trim_reg_orig |= msb << 6; } } /* use the original trim value */ trim = usb_trim_reg_orig; trim += chip->usb_trim_table[index]; if (trim < 0) trim = 0; pr_debug("trim_orig %d write 0x%x index=%d value 0x%x to USB_OVP_TRIM\n", usb_trim_reg_orig, trim, index, chip->usb_trim_table[index]); rc = pm8xxx_readb(chip->dev->parent, REG_SBI_CONFIG, &sbi_config); if (rc) { pr_err("error = %d reading sbi config reg\n", rc); return rc; } temp = sbi_config | PAGE3_ENABLE_MASK; rc = pm_chg_write(chip, REG_SBI_CONFIG, temp); if (rc) { pr_err("error = %d writing sbi config reg\n", rc); return rc; } mask = USB_OVP_TRIM_MASK; if (pm8xxx_get_version(chip->dev->parent) == PM8XXX_VERSION_8917) mask = USB_OVP_TRIM_PM8917_MASK; rc = pm_chg_masked_write(chip, USB_OVP_TRIM, mask, trim); if (rc) { pr_err("error = %d writing USB_OVP_TRIM\n", rc); return rc; } rc = pm_chg_write(chip, REG_SBI_CONFIG, sbi_config); if (rc) { pr_err("error = %d writing sbi config reg\n", rc); return rc; } return rc; } #define PM8921_CHG_IUSB_MASK 0x1C #define PM8921_CHG_IUSB_SHIFT 2 #define PM8921_CHG_IUSB_MAX 7 #define PM8921_CHG_IUSB_MIN 0 #define PM8917_IUSB_FINE_RES BIT(0) static int pm_chg_iusbmax_set(struct pm8921_chg_chip *chip, int index) { u8 temp, fineres, reg_val; int rc; reg_val = usb_ma_table[index].value >> 1; fineres = PM8917_IUSB_FINE_RES & usb_ma_table[index].value; if (reg_val < PM8921_CHG_IUSB_MIN || reg_val > PM8921_CHG_IUSB_MAX) { pr_err("bad mA=%d asked to set\n", reg_val); return -EINVAL; } temp = reg_val << PM8921_CHG_IUSB_SHIFT; /* IUSB_FINE_RES */ if (chip->iusb_fine_res) { /* Clear IUSB_FINE_RES bit to avoid overshoot */ rc = pm_chg_masked_write(chip, IUSB_FINE_RES, PM8917_IUSB_FINE_RES, 0); rc |= pm_chg_masked_write(chip, PBL_ACCESS2, PM8921_CHG_IUSB_MASK, temp); if (rc) { pr_err("Failed to write PBL_ACCESS2 rc=%d\n", rc); return rc; } if (fineres) { rc = pm_chg_masked_write(chip, IUSB_FINE_RES, PM8917_IUSB_FINE_RES, fineres); if (rc) { pr_err("Failed to write ISUB_FINE_RES rc=%d\n", rc); return rc; } } } else { rc = pm_chg_masked_write(chip, PBL_ACCESS2, PM8921_CHG_IUSB_MASK, temp); if (rc) { pr_err("Failed to write PBL_ACCESS2 rc=%d\n", rc); return rc; } } rc = pm_chg_usb_trim(chip, index); if (rc) pr_err("unable to set usb trim rc = %d\n", rc); return rc; } static int pm_chg_iusbmax_get(struct pm8921_chg_chip *chip, int *mA) { u8 temp, fineres; int rc, i; fineres = 0; *mA = 0; rc = pm8xxx_readb(chip->dev->parent, PBL_ACCESS2, &temp); if (rc) { pr_err("err=%d reading PBL_ACCESS2\n", rc); return rc; } if (chip->iusb_fine_res) { rc = pm8xxx_readb(chip->dev->parent, IUSB_FINE_RES, &fineres); if (rc) { pr_err("err=%d reading IUSB_FINE_RES\n", rc); return rc; } } temp &= PM8921_CHG_IUSB_MASK; temp = temp >> PM8921_CHG_IUSB_SHIFT; temp = (temp << 1) | (fineres & PM8917_IUSB_FINE_RES); for (i = ARRAY_SIZE(usb_ma_table) - 1; i >= 0; i--) { if (usb_ma_table[i].value == temp) break; } if (i < 0) { pr_err("can't find %d in usb_ma_table. Use min.\n", temp); i = 0; } *mA = usb_ma_table[i].usb_ma; return rc; } #define PM8921_CHG_WD_MASK 0x1F static int pm_chg_disable_wd(struct pm8921_chg_chip *chip) { /* writing 0 to the wd timer disables it */ return pm_chg_masked_write(chip, CHG_TWDOG, PM8921_CHG_WD_MASK, 0); } #define PM8921_CHG_TCHG_MASK 0x7F #define PM8921_CHG_TCHG_MIN 4 #define PM8921_CHG_TCHG_MAX 512 #define PM8921_CHG_TCHG_STEP 4 static int pm_chg_tchg_max_set(struct pm8921_chg_chip *chip, int minutes) { u8 temp; if (minutes < PM8921_CHG_TCHG_MIN || minutes > PM8921_CHG_TCHG_MAX) { pr_err("bad max minutes =%d asked to set\n", minutes); return -EINVAL; } temp = (minutes - 1)/PM8921_CHG_TCHG_STEP; return pm_chg_masked_write(chip, CHG_TCHG_MAX, PM8921_CHG_TCHG_MASK, temp); } #define PM8921_CHG_TTRKL_MASK 0x3F #define PM8921_CHG_TTRKL_MIN 1 #define PM8921_CHG_TTRKL_MAX 64 static int pm_chg_ttrkl_max_set(struct pm8921_chg_chip *chip, int minutes) { u8 temp; if (minutes < PM8921_CHG_TTRKL_MIN || minutes > PM8921_CHG_TTRKL_MAX) { pr_err("bad max minutes =%d asked to set\n", minutes); return -EINVAL; } temp = minutes - 1; return pm_chg_masked_write(chip, CHG_TTRKL_MAX, PM8921_CHG_TTRKL_MASK, temp); } #define PM8921_CHG_VTRKL_MIN_MV 2050 #define PM8921_CHG_VTRKL_MAX_MV 2800 #define PM8921_CHG_VTRKL_STEP_MV 50 #define PM8921_CHG_VTRKL_SHIFT 4 #define PM8921_CHG_VTRKL_MASK 0xF0 static int pm_chg_vtrkl_low_set(struct pm8921_chg_chip *chip, int millivolts) { u8 temp; if (millivolts < PM8921_CHG_VTRKL_MIN_MV || millivolts > PM8921_CHG_VTRKL_MAX_MV) { pr_err("bad voltage = %dmV asked to set\n", millivolts); return -EINVAL; } temp = (millivolts - PM8921_CHG_VTRKL_MIN_MV)/PM8921_CHG_VTRKL_STEP_MV; temp = temp << PM8921_CHG_VTRKL_SHIFT; return pm_chg_masked_write(chip, CHG_VTRICKLE, PM8921_CHG_VTRKL_MASK, temp); } #define PM8921_CHG_VWEAK_MIN_MV 2100 #define PM8921_CHG_VWEAK_MAX_MV 3600 #define PM8921_CHG_VWEAK_STEP_MV 100 #define PM8921_CHG_VWEAK_MASK 0x0F static int pm_chg_vweak_set(struct pm8921_chg_chip *chip, int millivolts) { u8 temp; if (millivolts < PM8921_CHG_VWEAK_MIN_MV || millivolts > PM8921_CHG_VWEAK_MAX_MV) { pr_err("bad voltage = %dmV asked to set\n", millivolts); return -EINVAL; } temp = (millivolts - PM8921_CHG_VWEAK_MIN_MV)/PM8921_CHG_VWEAK_STEP_MV; return pm_chg_masked_write(chip, CHG_VTRICKLE, PM8921_CHG_VWEAK_MASK, temp); } #define PM8921_CHG_ITRKL_MIN_MA 50 #define PM8921_CHG_ITRKL_MAX_MA 200 #define PM8921_CHG_ITRKL_MASK 0x0F #define PM8921_CHG_ITRKL_STEP_MA 10 static int pm_chg_itrkl_set(struct pm8921_chg_chip *chip, int milliamps) { u8 temp; if (milliamps < PM8921_CHG_ITRKL_MIN_MA || milliamps > PM8921_CHG_ITRKL_MAX_MA) { pr_err("bad current = %dmA asked to set\n", milliamps); return -EINVAL; } temp = (milliamps - PM8921_CHG_ITRKL_MIN_MA)/PM8921_CHG_ITRKL_STEP_MA; return pm_chg_masked_write(chip, CHG_ITRICKLE, PM8921_CHG_ITRKL_MASK, temp); } #define PM8921_CHG_IWEAK_MIN_MA 325 #define PM8921_CHG_IWEAK_MAX_MA 525 #define PM8921_CHG_IWEAK_SHIFT 7 #define PM8921_CHG_IWEAK_MASK 0x80 static int pm_chg_iweak_set(struct pm8921_chg_chip *chip, int milliamps) { u8 temp; if (milliamps < PM8921_CHG_IWEAK_MIN_MA || milliamps > PM8921_CHG_IWEAK_MAX_MA) { pr_err("bad current = %dmA asked to set\n", milliamps); return -EINVAL; } if (milliamps < PM8921_CHG_IWEAK_MAX_MA) temp = 0; else temp = 1; temp = temp << PM8921_CHG_IWEAK_SHIFT; return pm_chg_masked_write(chip, CHG_ITRICKLE, PM8921_CHG_IWEAK_MASK, temp); } #define PM8921_CHG_BATT_TEMP_THR_COLD BIT(1) #define PM8921_CHG_BATT_TEMP_THR_COLD_SHIFT 1 static int pm_chg_batt_cold_temp_config(struct pm8921_chg_chip *chip, enum pm8921_chg_cold_thr cold_thr) { u8 temp; temp = cold_thr << PM8921_CHG_BATT_TEMP_THR_COLD_SHIFT; temp = temp & PM8921_CHG_BATT_TEMP_THR_COLD; return pm_chg_masked_write(chip, CHG_CNTRL_2, PM8921_CHG_BATT_TEMP_THR_COLD, temp); } #define PM8921_CHG_BATT_TEMP_THR_HOT BIT(0) #define PM8921_CHG_BATT_TEMP_THR_HOT_SHIFT 0 static int pm_chg_batt_hot_temp_config(struct pm8921_chg_chip *chip, enum pm8921_chg_hot_thr hot_thr) { u8 temp; temp = hot_thr << PM8921_CHG_BATT_TEMP_THR_HOT_SHIFT; temp = temp & PM8921_CHG_BATT_TEMP_THR_HOT; return pm_chg_masked_write(chip, CHG_CNTRL_2, PM8921_CHG_BATT_TEMP_THR_HOT, temp); } #define PM8921_CHG_LED_SRC_CONFIG_SHIFT 4 #define PM8921_CHG_LED_SRC_CONFIG_MASK 0x30 static int pm_chg_led_src_config(struct pm8921_chg_chip *chip, enum pm8921_chg_led_src_config led_src_config) { u8 temp; if (led_src_config < LED_SRC_GND || led_src_config > LED_SRC_BYPASS) return -EINVAL; if (led_src_config == LED_SRC_BYPASS) return 0; temp = led_src_config << PM8921_CHG_LED_SRC_CONFIG_SHIFT; return pm_chg_masked_write(chip, CHG_CNTRL_3, PM8921_CHG_LED_SRC_CONFIG_MASK, temp); } static int64_t read_battery_id(struct pm8921_chg_chip *chip) { int rc; struct pm8xxx_adc_chan_result result; rc = pm8xxx_adc_read(chip->batt_id_channel, &result); if (rc) { pr_err("error reading batt id channel = %d, rc = %d\n", chip->vbat_channel, rc); return rc; } pr_debug("batt_id phy = %lld meas = 0x%llx\n", result.physical, result.measurement); return result.physical; } static int is_battery_valid(struct pm8921_chg_chip *chip) { int64_t rc; if (chip->batt_id_min == 0 && chip->batt_id_max == 0) return 1; rc = read_battery_id(chip); if (rc < 0) { pr_err("error reading batt id channel = %d, rc = %lld\n", chip->vbat_channel, rc); /* assume battery id is valid when adc error happens */ return 1; } if (rc < chip->batt_id_min || rc > chip->batt_id_max) { pr_err("batt_id phy =%lld is not valid\n", rc); return 0; } return 1; } static void check_battery_valid(struct pm8921_chg_chip *chip) { if (is_battery_valid(chip) == 0) { pr_err("batt_id not valid, disbling charging\n"); pm_chg_auto_enable(chip, 0); } else { pm_chg_auto_enable(chip, !charging_disabled); } } static void battery_id_valid(struct work_struct *work) { struct pm8921_chg_chip *chip = container_of(work, struct pm8921_chg_chip, battery_id_valid_work); check_battery_valid(chip); } static void pm8921_chg_enable_irq(struct pm8921_chg_chip *chip, int interrupt) { if (!__test_and_set_bit(interrupt, chip->enabled_irqs)) { dev_dbg(chip->dev, "%d\n", chip->pmic_chg_irq[interrupt]); enable_irq(chip->pmic_chg_irq[interrupt]); } } static void pm8921_chg_disable_irq(struct pm8921_chg_chip *chip, int interrupt) { if (__test_and_clear_bit(interrupt, chip->enabled_irqs)) { dev_dbg(chip->dev, "%d\n", chip->pmic_chg_irq[interrupt]); disable_irq_nosync(chip->pmic_chg_irq[interrupt]); } } static int pm8921_chg_is_enabled(struct pm8921_chg_chip *chip, int interrupt) { return test_bit(interrupt, chip->enabled_irqs); } static bool is_ext_charging(struct pm8921_chg_chip *chip) { union power_supply_propval ret = {0,}; if (!chip->ext_psy) return false; if (chip->ext_psy->get_property(chip->ext_psy, POWER_SUPPLY_PROP_CHARGE_TYPE, &ret)) return false; if (ret.intval > POWER_SUPPLY_CHARGE_TYPE_NONE) return ret.intval; return false; } static bool is_ext_trickle_charging(struct pm8921_chg_chip *chip) { union power_supply_propval ret = {0,}; if (!chip->ext_psy) return false; if (chip->ext_psy->get_property(chip->ext_psy, POWER_SUPPLY_PROP_CHARGE_TYPE, &ret)) return false; if (ret.intval == POWER_SUPPLY_CHARGE_TYPE_TRICKLE) return true; return false; } static int is_battery_charging(int fsm_state) { if (is_ext_charging(the_chip)) return 1; switch (fsm_state) { case FSM_STATE_ATC_2A: case FSM_STATE_ATC_2B: case FSM_STATE_ON_CHG_AND_BAT_6: case FSM_STATE_FAST_CHG_7: case FSM_STATE_TRKL_CHG_8: return 1; } return 0; } static void bms_notify(struct work_struct *work) { struct bms_notify *n = container_of(work, struct bms_notify, work); if (n->is_charging) { pm8921_bms_charging_began(); } else { pm8921_bms_charging_end(n->is_battery_full); n->is_battery_full = 0; } } static void bms_notify_check(struct pm8921_chg_chip *chip) { int fsm_state, new_is_charging; fsm_state = pm_chg_get_fsm_state(chip); new_is_charging = is_battery_charging(fsm_state); if (chip->bms_notify.is_charging ^ new_is_charging) { chip->bms_notify.is_charging = new_is_charging; schedule_work(&(chip->bms_notify.work)); } } static enum power_supply_property pm_power_props_usb[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_SCOPE, POWER_SUPPLY_PROP_HEALTH, }; static enum power_supply_property pm_power_props_mains[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, }; static char *pm_power_supplied_to[] = { "battery", }; #define USB_WALL_THRESHOLD_MA 500 static int pm_power_get_property_mains(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int type; /* Check if called before init */ if (!the_chip) return -EINVAL; switch (psp) { case POWER_SUPPLY_PROP_PRESENT: case POWER_SUPPLY_PROP_ONLINE: val->intval = 0; if (the_chip->has_dc_supply) { val->intval = 1; return 0; } if (the_chip->dc_present) { val->intval = 1; return 0; } type = the_chip->usb_type; if (type == POWER_SUPPLY_TYPE_USB_DCP || type == POWER_SUPPLY_TYPE_USB_ACA || type == POWER_SUPPLY_TYPE_USB_CDP) val->intval = is_usb_chg_plugged_in(the_chip); break; default: return -EINVAL; } return 0; } static int disable_aicl(int disable) { if (disable != POWER_SUPPLY_HEALTH_UNKNOWN && disable != POWER_SUPPLY_HEALTH_GOOD) { pr_err("called with invalid param :%d\n", disable); return -EINVAL; } if (!the_chip) { pr_err("%s called before init\n", __func__); return -EINVAL; } pr_debug("Disable AICL = %d\n", disable); the_chip->disable_aicl = disable; return 0; } static int switch_usb_to_charge_mode(struct pm8921_chg_chip *chip) { int rc; if (!chip->host_mode) return 0; /* enable usbin valid comparator and remove force usb ovp fet off */ rc = pm_chg_write(chip, USB_OVP_TEST, 0xB2); if (rc < 0) { pr_err("Failed to write 0xB2 to USB_OVP_TEST rc = %d\n", rc); return rc; } chip->host_mode = 0; return 0; } static int switch_usb_to_host_mode(struct pm8921_chg_chip *chip) { int rc; if (chip->host_mode) return 0; /* disable usbin valid comparator and force usb ovp fet off */ rc = pm_chg_write(chip, USB_OVP_TEST, 0xB3); if (rc < 0) { pr_err("Failed to write 0xB3 to USB_OVP_TEST rc = %d\n", rc); return rc; } chip->host_mode = 1; return 0; } static int pm_power_set_property_usb(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { /* Check if called before init */ if (!the_chip) return -EINVAL; switch (psp) { case POWER_SUPPLY_PROP_SCOPE: if (val->intval == POWER_SUPPLY_SCOPE_SYSTEM) return switch_usb_to_host_mode(the_chip); if (val->intval == POWER_SUPPLY_SCOPE_DEVICE) return switch_usb_to_charge_mode(the_chip); else return -EINVAL; break; case POWER_SUPPLY_PROP_TYPE: return pm8921_set_usb_power_supply_type(val->intval); case POWER_SUPPLY_PROP_HEALTH: /* UNKNOWN(0) means enable aicl, GOOD(1) means disable aicl */ return disable_aicl(val->intval); default: return -EINVAL; } return 0; } static int usb_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_HEALTH: return 1; default: break; } return 0; } static int pm_power_get_property_usb(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int current_max; /* Check if called before init */ if (!the_chip) return -EINVAL; switch (psp) { case POWER_SUPPLY_PROP_CURRENT_MAX: if (pm_is_chg_charge_dis(the_chip)) { val->intval = 0; } else { pm_chg_iusbmax_get(the_chip, ¤t_max); val->intval = current_max; } break; case POWER_SUPPLY_PROP_PRESENT: case POWER_SUPPLY_PROP_ONLINE: val->intval = 0; if (the_chip->usb_type == POWER_SUPPLY_TYPE_USB) val->intval = is_usb_chg_plugged_in(the_chip); break; case POWER_SUPPLY_PROP_SCOPE: if (the_chip->host_mode) val->intval = POWER_SUPPLY_SCOPE_SYSTEM; else val->intval = POWER_SUPPLY_SCOPE_DEVICE; break; case POWER_SUPPLY_PROP_HEALTH: /* UNKNOWN(0) means enable aicl, GOOD(1) means disable aicl */ val->intval = the_chip->disable_aicl; break; default: return -EINVAL; } return 0; } static enum power_supply_property msm_batt_power_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, }; static int get_prop_battery_uvolts(struct pm8921_chg_chip *chip) { int rc; struct pm8xxx_adc_chan_result result; rc = pm8xxx_adc_read(chip->vbat_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", chip->vbat_channel, rc); return rc; } pr_debug("mvolts phy = %lld meas = 0x%llx\n", result.physical, result.measurement); return (int)result.physical; } static int voltage_based_capacity(struct pm8921_chg_chip *chip) { int current_voltage_uv = get_prop_battery_uvolts(chip); int current_voltage_mv = current_voltage_uv / 1000; unsigned int low_voltage = chip->min_voltage_mv; unsigned int high_voltage = chip->max_voltage_mv; if (current_voltage_uv < 0) { pr_err("Error reading current voltage\n"); return -EIO; } if (current_voltage_mv <= low_voltage) return 0; else if (current_voltage_mv >= high_voltage) return 100; else return (current_voltage_mv - low_voltage) * 100 / (high_voltage - low_voltage); } static int get_prop_batt_present(struct pm8921_chg_chip *chip) { return pm_chg_get_rt_status(chip, BATT_INSERTED_IRQ); } static int get_prop_batt_status(struct pm8921_chg_chip *chip) { int batt_state = POWER_SUPPLY_STATUS_DISCHARGING; int fsm_state = pm_chg_get_fsm_state(chip); int i; if (chip->ext_psy) { if (chip->ext_charge_done) return POWER_SUPPLY_STATUS_FULL; if (chip->ext_charging) return POWER_SUPPLY_STATUS_CHARGING; } for (i = 0; i < ARRAY_SIZE(map); i++) if (map[i].fsm_state == fsm_state) batt_state = map[i].batt_state; if (fsm_state == FSM_STATE_ON_CHG_HIGHI_1) { if (!pm_chg_get_rt_status(chip, BATT_INSERTED_IRQ) || !pm_chg_get_rt_status(chip, BAT_TEMP_OK_IRQ) || pm_chg_get_rt_status(chip, CHGHOT_IRQ) || pm_chg_get_rt_status(chip, VBATDET_LOW_IRQ)) batt_state = POWER_SUPPLY_STATUS_NOT_CHARGING; } return batt_state; } static int get_prop_batt_capacity(struct pm8921_chg_chip *chip) { int percent_soc; if (chip->battery_less_hardware) return 100; if (!get_prop_batt_present(chip)) percent_soc = voltage_based_capacity(chip); else percent_soc = pm8921_bms_get_percent_charge(); if (percent_soc == -ENXIO) percent_soc = voltage_based_capacity(chip); if (percent_soc < 0) { pr_err("Unable to read battery voltage\n"); goto fail_voltage; } if (percent_soc <= 10) pr_warn_ratelimited("low battery charge = %d%%\n", percent_soc); if (percent_soc <= chip->resume_charge_percent && get_prop_batt_status(chip) == POWER_SUPPLY_STATUS_FULL) { pr_debug("soc fell below %d. charging enabled.\n", chip->resume_charge_percent); if (chip->is_bat_warm) pr_warn_ratelimited("battery is warm = %d, do not resume charging at %d%%.\n", chip->is_bat_warm, chip->resume_charge_percent); else if (chip->is_bat_cool) pr_warn_ratelimited("battery is cool = %d, do not resume charging at %d%%.\n", chip->is_bat_cool, chip->resume_charge_percent); else pm_chg_vbatdet_set(the_chip, PM8921_CHG_VBATDET_MAX); } fail_voltage: chip->recent_reported_soc = percent_soc; return percent_soc; } static int get_prop_batt_current_max(struct pm8921_chg_chip *chip, int *curr) { *curr = 0; *curr = pm8921_bms_get_current_max(); if (*curr == -EINVAL) return -EINVAL; return 0; } static int get_prop_batt_current(struct pm8921_chg_chip *chip, int *curr) { int rc; *curr = 0; rc = pm8921_bms_get_battery_current(curr); if (rc == -ENXIO) { rc = pm8xxx_ccadc_get_battery_current(curr); } if (rc) pr_err("unable to get batt current rc = %d\n", rc); return rc; } static int get_prop_batt_fcc(struct pm8921_chg_chip *chip) { int rc; rc = pm8921_bms_get_fcc(); if (rc < 0) pr_err("unable to get batt fcc rc = %d\n", rc); return rc; } static int get_prop_batt_charge_now(struct pm8921_chg_chip *chip, int *cc_uah) { int rc; *cc_uah = 0; rc = pm8921_bms_cc_uah(cc_uah); if (rc) pr_err("unable to get batt fcc rc = %d\n", rc); return rc; } static int get_prop_batt_health(struct pm8921_chg_chip *chip) { int temp; temp = pm_chg_get_rt_status(chip, BATTTEMP_HOT_IRQ); if (temp) return POWER_SUPPLY_HEALTH_OVERHEAT; temp = pm_chg_get_rt_status(chip, BATTTEMP_COLD_IRQ); if (temp) return POWER_SUPPLY_HEALTH_COLD; return POWER_SUPPLY_HEALTH_GOOD; } static int get_prop_charge_type(struct pm8921_chg_chip *chip) { int temp; if (!get_prop_batt_present(chip)) return POWER_SUPPLY_CHARGE_TYPE_NONE; if (is_ext_trickle_charging(chip)) return POWER_SUPPLY_CHARGE_TYPE_TRICKLE; if (is_ext_charging(chip)) return POWER_SUPPLY_CHARGE_TYPE_FAST; temp = pm_chg_get_rt_status(chip, TRKLCHG_IRQ); if (temp) return POWER_SUPPLY_CHARGE_TYPE_TRICKLE; temp = pm_chg_get_rt_status(chip, FASTCHG_IRQ); if (temp) return POWER_SUPPLY_CHARGE_TYPE_FAST; return POWER_SUPPLY_CHARGE_TYPE_NONE; } #define MAX_TOLERABLE_BATT_TEMP_DDC 680 static int get_prop_batt_temp(struct pm8921_chg_chip *chip, int *temp) { int rc; struct pm8xxx_adc_chan_result result; if (chip->battery_less_hardware) { *temp = 300; return 0; } rc = pm8xxx_adc_read(chip->batt_temp_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", chip->vbat_channel, rc); return rc; } pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, result.measurement); if (result.physical > MAX_TOLERABLE_BATT_TEMP_DDC) pr_err("BATT_TEMP= %d > 68degC, device will be shutdown\n", (int) result.physical); *temp = (int)result.physical; return rc; } static int pm_batt_power_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int rc = 0; int value; struct pm8921_chg_chip *chip = container_of(psy, struct pm8921_chg_chip, batt_psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = get_prop_batt_status(chip); break; case POWER_SUPPLY_PROP_CHARGE_TYPE: val->intval = get_prop_charge_type(chip); break; case POWER_SUPPLY_PROP_HEALTH: val->intval = get_prop_batt_health(chip); break; case POWER_SUPPLY_PROP_PRESENT: rc = get_prop_batt_present(chip); if (rc >= 0) { val->intval = rc; rc = 0; } break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = chip->max_voltage_mv * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: val->intval = chip->min_voltage_mv * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: rc = get_prop_battery_uvolts(chip); if (rc >= 0) { val->intval = rc; rc = 0; } break; case POWER_SUPPLY_PROP_CAPACITY: rc = get_prop_batt_capacity(chip); if (rc >= 0) { val->intval = rc; rc = 0; } break; case POWER_SUPPLY_PROP_CURRENT_NOW: rc = get_prop_batt_current(chip, &value); if (!rc) val->intval = value; break; case POWER_SUPPLY_PROP_CURRENT_MAX: rc = get_prop_batt_current_max(chip, &value); if (!rc) val->intval = value; break; case POWER_SUPPLY_PROP_TEMP: rc = get_prop_batt_temp(chip, &value); if (!rc) val->intval = value; break; case POWER_SUPPLY_PROP_CHARGE_FULL: rc = get_prop_batt_fcc(chip); if (rc >= 0) { val->intval = rc; rc = 0; } break; case POWER_SUPPLY_PROP_CHARGE_NOW: rc = get_prop_batt_charge_now(chip, &value); if (!rc) { val->intval = value; rc = 0; } break; default: rc = -EINVAL; } return rc; } static void (*notify_vbus_state_func_ptr)(int); static int usb_chg_current; int pm8921_charger_register_vbus_sn(void (*callback)(int)) { pr_debug("%p\n", callback); notify_vbus_state_func_ptr = callback; return 0; } EXPORT_SYMBOL_GPL(pm8921_charger_register_vbus_sn); /* this is passed to the hsusb via platform_data msm_otg_pdata */ void pm8921_charger_unregister_vbus_sn(void (*callback)(int)) { pr_debug("%p\n", callback); notify_vbus_state_func_ptr = NULL; } EXPORT_SYMBOL_GPL(pm8921_charger_unregister_vbus_sn); static void notify_usb_of_the_plugin_event(int plugin) { plugin = !!plugin; if (notify_vbus_state_func_ptr) { pr_debug("notifying plugin\n"); (*notify_vbus_state_func_ptr) (plugin); } else { pr_debug("unable to notify plugin\n"); } } static void __pm8921_charger_vbus_draw(unsigned int mA) { int i, rc; if (!the_chip) { pr_err("called before init\n"); return; } if (usb_max_current && mA > usb_max_current) { pr_debug("restricting usb current to %d instead of %d\n", usb_max_current, mA); mA = usb_max_current; } if (mA <= 2) { usb_chg_current = 0; rc = pm_chg_iusbmax_set(the_chip, 0); if (rc) { pr_err("unable to set iusb to %d rc = %d\n", 0, rc); } rc = pm_chg_usb_suspend_enable(the_chip, 1); if (rc) pr_err("fail to set suspend bit rc=%d\n", rc); } else { rc = pm_chg_usb_suspend_enable(the_chip, 0); if (rc) pr_err("fail to reset suspend bit rc=%d\n", rc); for (i = ARRAY_SIZE(usb_ma_table) - 1; i >= 0; i--) { if (usb_ma_table[i].usb_ma <= mA) break; } if (i < 0) { pr_err("can't find %dmA in usb_ma_table. Use min.\n", mA); i = 0; } /* Check if IUSB_FINE_RES is available */ while ((usb_ma_table[i].value & PM8917_IUSB_FINE_RES) && !the_chip->iusb_fine_res) i--; if (i < 0) i = 0; rc = pm_chg_iusbmax_set(the_chip, i); if (rc) pr_err("unable to set iusb to %d rc = %d\n", i, rc); } } /* USB calls these to tell us how much max usb current the system can draw */ void pm8921_charger_vbus_draw(unsigned int mA) { int set_usb_now_ma; pr_debug("Enter charge=%d\n", mA); /* * Reject VBUS requests if USB connection is the only available * power source. This makes sure that if booting without * battery the iusb_max value is not decreased avoiding potential * brown_outs. * * This would also apply when the battery has been * removed from the running system. */ if (mA == 0 && the_chip && !get_prop_batt_present(the_chip) && !is_dc_chg_plugged_in(the_chip)) { if (!the_chip->has_dc_supply) { pr_err("rejected: no other power source mA = %d\n", mA); return; } } if (usb_max_current && mA > usb_max_current) { pr_warn("restricting usb current to %d instead of %d\n", usb_max_current, mA); mA = usb_max_current; } if (usb_target_ma == 0 && mA > USB_WALL_THRESHOLD_MA) usb_target_ma = mA; if (usb_target_ma) usb_target_ma = mA; if (mA > USB_WALL_THRESHOLD_MA) set_usb_now_ma = USB_WALL_THRESHOLD_MA; else set_usb_now_ma = mA; if (the_chip && the_chip->disable_aicl) set_usb_now_ma = mA; if (the_chip) __pm8921_charger_vbus_draw(set_usb_now_ma); else /* * called before pmic initialized, * save this value and use it at probe */ usb_chg_current = set_usb_now_ma; } EXPORT_SYMBOL_GPL(pm8921_charger_vbus_draw); int pm8921_is_usb_chg_plugged_in(void) { if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } return is_usb_chg_plugged_in(the_chip); } EXPORT_SYMBOL(pm8921_is_usb_chg_plugged_in); int pm8921_is_dc_chg_plugged_in(void) { if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } return is_dc_chg_plugged_in(the_chip); } EXPORT_SYMBOL(pm8921_is_dc_chg_plugged_in); int pm8921_is_battery_present(void) { if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } return get_prop_batt_present(the_chip); } EXPORT_SYMBOL(pm8921_is_battery_present); int pm8921_is_batfet_closed(void) { if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } return is_batfet_closed(the_chip); } EXPORT_SYMBOL(pm8921_is_batfet_closed); /* * Disabling the charge current limit causes current * current limits to have no monitoring. An adequate charger * capable of supplying high current while sustaining VIN_MIN * is required if the limiting is disabled. */ int pm8921_disable_input_current_limit(bool disable) { if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } if (disable) { pr_warn("Disabling input current limit!\n"); return pm_chg_write(the_chip, CHG_BUCK_CTRL_TEST3, 0xF2); } return 0; } EXPORT_SYMBOL(pm8921_disable_input_current_limit); int pm8917_set_under_voltage_detection_threshold(int mv) { if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } return pm_chg_uvd_threshold_set(the_chip, mv); } EXPORT_SYMBOL(pm8917_set_under_voltage_detection_threshold); int pm8921_set_max_battery_charge_current(int ma) { if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } return pm_chg_ibatmax_set(the_chip, ma); } EXPORT_SYMBOL(pm8921_set_max_battery_charge_current); int pm8921_disable_source_current(bool disable) { if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } if (disable) pr_warn("current drawn from chg=0, battery provides current\n"); pm_chg_usb_suspend_enable(the_chip, disable); return pm_chg_charge_dis(the_chip, disable); } EXPORT_SYMBOL(pm8921_disable_source_current); int pm8921_regulate_input_voltage(int voltage) { int rc; if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } rc = pm_chg_vinmin_set(the_chip, voltage); if (rc == 0) the_chip->vin_min = voltage; return rc; } #define USB_OV_THRESHOLD_MASK 0x60 #define USB_OV_THRESHOLD_SHIFT 5 int pm8921_usb_ovp_set_threshold(enum pm8921_usb_ov_threshold ov) { u8 temp; if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } if (ov > PM_USB_OV_7V) { pr_err("limiting to over voltage threshold to 7volts\n"); ov = PM_USB_OV_7V; } temp = USB_OV_THRESHOLD_MASK & (ov << USB_OV_THRESHOLD_SHIFT); return pm_chg_masked_write(the_chip, USB_OVP_CONTROL, USB_OV_THRESHOLD_MASK, temp); } EXPORT_SYMBOL(pm8921_usb_ovp_set_threshold); #define USB_DEBOUNCE_TIME_MASK 0x06 #define USB_DEBOUNCE_TIME_SHIFT 1 int pm8921_usb_ovp_set_hystersis(enum pm8921_usb_debounce_time ms) { u8 temp; if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } if (ms > PM_USB_DEBOUNCE_80P5MS) { pr_err("limiting debounce to 80.5ms\n"); ms = PM_USB_DEBOUNCE_80P5MS; } temp = USB_DEBOUNCE_TIME_MASK & (ms << USB_DEBOUNCE_TIME_SHIFT); return pm_chg_masked_write(the_chip, USB_OVP_CONTROL, USB_DEBOUNCE_TIME_MASK, temp); } EXPORT_SYMBOL(pm8921_usb_ovp_set_hystersis); #define USB_OVP_DISABLE_MASK 0x80 int pm8921_usb_ovp_disable(int disable) { u8 temp = 0; if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } if (disable) temp = USB_OVP_DISABLE_MASK; return pm_chg_masked_write(the_chip, USB_OVP_CONTROL, USB_OVP_DISABLE_MASK, temp); } bool pm8921_is_battery_charging(int *source) { int fsm_state, is_charging, dc_present, usb_present; if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } fsm_state = pm_chg_get_fsm_state(the_chip); is_charging = is_battery_charging(fsm_state); if (is_charging == 0) { *source = PM8921_CHG_SRC_NONE; return is_charging; } if (source == NULL) return is_charging; /* the battery is charging, the source is requested, find it */ dc_present = is_dc_chg_plugged_in(the_chip); usb_present = is_usb_chg_plugged_in(the_chip); if (dc_present && !usb_present) *source = PM8921_CHG_SRC_DC; if (usb_present && !dc_present) *source = PM8921_CHG_SRC_USB; if (usb_present && dc_present) /* * The system always chooses dc for charging since it has * higher priority. */ *source = PM8921_CHG_SRC_DC; return is_charging; } EXPORT_SYMBOL(pm8921_is_battery_charging); int pm8921_set_usb_power_supply_type(enum power_supply_type type) { if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } if (type < POWER_SUPPLY_TYPE_USB && type > POWER_SUPPLY_TYPE_BATTERY) return -EINVAL; the_chip->usb_type = type; power_supply_changed(&the_chip->usb_psy); power_supply_changed(&the_chip->dc_psy); return 0; } EXPORT_SYMBOL_GPL(pm8921_set_usb_power_supply_type); int pm8921_batt_temperature(void) { int temp = 0, rc = 0; if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } rc = get_prop_batt_temp(the_chip, &temp); if (rc) { pr_err("Unable to read temperature"); return rc; } return temp; } static void handle_usb_insertion_removal(struct pm8921_chg_chip *chip) { int usb_present; pm_chg_failed_clear(chip, 1); usb_present = is_usb_chg_plugged_in(chip); if (chip->usb_present ^ usb_present) { notify_usb_of_the_plugin_event(usb_present); chip->usb_present = usb_present; power_supply_changed(&chip->usb_psy); power_supply_changed(&chip->batt_psy); pm8921_bms_calibrate_hkadc(); } if (usb_present) { schedule_delayed_work(&chip->unplug_check_work, msecs_to_jiffies(UNPLUG_CHECK_RAMP_MS)); pm8921_chg_enable_irq(chip, CHG_GONE_IRQ); } else { /* USB unplugged reset target current */ usb_target_ma = 0; pm8921_chg_disable_irq(chip, CHG_GONE_IRQ); } bms_notify_check(chip); } static void handle_stop_ext_chg(struct pm8921_chg_chip *chip) { if (!chip->ext_psy) { pr_debug("external charger not registered.\n"); return; } if (!chip->ext_charging) { pr_debug("already not charging.\n"); return; } power_supply_set_charge_type(chip->ext_psy, POWER_SUPPLY_CHARGE_TYPE_NONE); pm8921_disable_source_current(false); /* release BATFET */ power_supply_changed(&chip->dc_psy); chip->ext_charging = false; chip->ext_charge_done = false; bms_notify_check(chip); /* Update battery charging LEDs and user space battery info */ power_supply_changed(&chip->batt_psy); } static void handle_start_ext_chg(struct pm8921_chg_chip *chip) { int dc_present; int batt_present; int batt_temp_ok; unsigned long delay = round_jiffies_relative(msecs_to_jiffies(EOC_CHECK_PERIOD_MS)); if (!chip->ext_psy) { pr_debug("external charger not registered.\n"); return; } if (chip->ext_charging) { pr_debug("already charging.\n"); return; } dc_present = is_dc_chg_plugged_in(chip); batt_present = pm_chg_get_rt_status(chip, BATT_INSERTED_IRQ); batt_temp_ok = pm_chg_get_rt_status(chip, BAT_TEMP_OK_IRQ); if (!dc_present) { pr_warn("%s. dc not present.\n", __func__); return; } if (!batt_present) { pr_warn("%s. battery not present.\n", __func__); return; } if (!batt_temp_ok) { pr_warn("%s. battery temperature not ok.\n", __func__); return; } /* Force BATFET=ON */ pm8921_disable_source_current(true); schedule_delayed_work(&chip->unplug_check_work, msecs_to_jiffies(UNPLUG_CHECK_RAMP_MS)); power_supply_set_online(chip->ext_psy, dc_present); power_supply_set_charge_type(chip->ext_psy, POWER_SUPPLY_CHARGE_TYPE_FAST); chip->ext_charging = true; chip->ext_charge_done = false; bms_notify_check(chip); /* * since we wont get a fastchg irq from external charger * use eoc worker to detect end of charging */ schedule_delayed_work(&chip->eoc_work, delay); wake_lock(&chip->eoc_wake_lock); if (chip->btc_override) schedule_delayed_work(&chip->btc_override_work, round_jiffies_relative(msecs_to_jiffies (chip->btc_delay_ms))); /* Update battery charging LEDs and user space battery info */ power_supply_changed(&chip->batt_psy); } static void turn_off_ovp_fet(struct pm8921_chg_chip *chip, u16 ovptestreg) { u8 temp; int rc; rc = pm_chg_write(chip, ovptestreg, 0x30); if (rc) { pr_err("Failed to write 0x30 to ovptestreg rc = %d\n", rc); return; } rc = pm8xxx_readb(chip->dev->parent, ovptestreg, &temp); if (rc) { pr_err("Failed to read from ovptestreg rc = %d\n", rc); return; } /* set ovp fet disable bit and the write bit */ temp |= 0x81; rc = pm_chg_write(chip, ovptestreg, temp); if (rc) { pr_err("Failed to write 0x%x ovptestreg rc=%d\n", temp, rc); return; } } static void turn_on_ovp_fet(struct pm8921_chg_chip *chip, u16 ovptestreg) { u8 temp; int rc; rc = pm_chg_write(chip, ovptestreg, 0x30); if (rc) { pr_err("Failed to write 0x30 to OVP_TEST rc = %d\n", rc); return; } rc = pm8xxx_readb(chip->dev->parent, ovptestreg, &temp); if (rc) { pr_err("Failed to read from OVP_TEST rc = %d\n", rc); return; } /* unset ovp fet disable bit and set the write bit */ temp &= 0xFE; temp |= 0x80; rc = pm_chg_write(chip, ovptestreg, temp); if (rc) { pr_err("Failed to write 0x%x to OVP_TEST rc = %d\n", temp, rc); return; } } static int param_open_ovp_counter = 10; module_param(param_open_ovp_counter, int, 0644); #define USB_ACTIVE_BIT BIT(5) #define DC_ACTIVE_BIT BIT(6) static int is_active_chg_plugged_in(struct pm8921_chg_chip *chip, u8 active_chg_mask) { if (active_chg_mask & USB_ACTIVE_BIT) return pm_chg_get_rt_status(chip, USBIN_VALID_IRQ); else if (active_chg_mask & DC_ACTIVE_BIT) return pm_chg_get_rt_status(chip, DCIN_VALID_IRQ); else return 0; } #define WRITE_BANK_4 0xC0 #define OVP_DEBOUNCE_TIME 0x06 static void unplug_ovp_fet_open(struct pm8921_chg_chip *chip) { int chg_gone = 0, active_chg_plugged_in = 0; int count = 0; u8 active_mask = 0; u16 ovpreg, ovptestreg; if (is_usb_chg_plugged_in(chip) && (chip->active_path & USB_ACTIVE_BIT)) { ovpreg = USB_OVP_CONTROL; ovptestreg = USB_OVP_TEST; active_mask = USB_ACTIVE_BIT; } else if (is_dc_chg_plugged_in(chip) && (chip->active_path & DC_ACTIVE_BIT)) { ovpreg = DC_OVP_CONTROL; ovptestreg = DC_OVP_TEST; active_mask = DC_ACTIVE_BIT; } else { return; } while (count++ < param_open_ovp_counter) { pm_chg_masked_write(chip, ovpreg, OVP_DEBOUNCE_TIME, 0x0); usleep(10); active_chg_plugged_in = is_active_chg_plugged_in(chip, active_mask); chg_gone = pm_chg_get_rt_status(chip, CHG_GONE_IRQ); pr_debug("OVP FET count = %d chg_gone=%d, active_valid = %d\n", count, chg_gone, active_chg_plugged_in); /* note usb_chg_plugged_in=0 => chg_gone=1 */ if (chg_gone == 1 && active_chg_plugged_in == 1) { pr_debug("since chg_gone = 1 dis ovp_fet for 20msec\n"); turn_off_ovp_fet(chip, ovptestreg); msleep(20); turn_on_ovp_fet(chip, ovptestreg); } else { break; } } if (pm8xxx_get_version(chip->dev->parent) == PM8XXX_VERSION_8917) pm_chg_masked_write(chip, ovpreg, OVP_DEBOUNCE_TIME, 0x6); else pm_chg_masked_write(chip, ovpreg, OVP_DEBOUNCE_TIME, 0x2); pr_debug("Exit count=%d chg_gone=%d, active_valid=%d\n", count, chg_gone, active_chg_plugged_in); return; } static int find_usb_ma_value(int value) { int i; for (i = ARRAY_SIZE(usb_ma_table) - 1; i >= 0; i--) { if (value >= usb_ma_table[i].usb_ma) break; } return i; } static void decrease_usb_ma_value(int *value) { int i; if (value) { i = find_usb_ma_value(*value); if (i > 0) i--; while (!the_chip->iusb_fine_res && i > 0 && (usb_ma_table[i].value & PM8917_IUSB_FINE_RES)) i--; if (i < 0) { pr_err("can't find %dmA in usb_ma_table. Use min.\n", *value); i = 0; } *value = usb_ma_table[i].usb_ma; } } static void increase_usb_ma_value(int *value) { int i; if (value) { i = find_usb_ma_value(*value); if (i < (ARRAY_SIZE(usb_ma_table) - 1)) i++; /* Get next correct entry if IUSB_FINE_RES is not available */ while (!the_chip->iusb_fine_res && (usb_ma_table[i].value & PM8917_IUSB_FINE_RES) && i < (ARRAY_SIZE(usb_ma_table) - 1)) i++; *value = usb_ma_table[i].usb_ma; } } static void vin_collapse_check_worker(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct pm8921_chg_chip *chip = container_of(dwork, struct pm8921_chg_chip, vin_collapse_check_work); /* * AICL only for wall-chargers. If the charger appears to be plugged * back in now, the corresponding unplug must have been because of we * were trying to draw more current than the charger can support. In * such a case reset usb current to 500mA and decrease the target. * The AICL algorithm will step up the current from 500mA to target */ if (is_usb_chg_plugged_in(chip) && usb_target_ma > USB_WALL_THRESHOLD_MA && !chip->disable_aicl) { /* decrease usb_target_ma */ decrease_usb_ma_value(&usb_target_ma); /* reset here, increase in unplug_check_worker */ __pm8921_charger_vbus_draw(USB_WALL_THRESHOLD_MA); pr_debug("usb_now=%d, usb_target = %d\n", USB_WALL_THRESHOLD_MA, usb_target_ma); if (!delayed_work_pending(&chip->unplug_check_work)) schedule_delayed_work(&chip->unplug_check_work, msecs_to_jiffies (UNPLUG_CHECK_WAIT_PERIOD_MS)); } else { handle_usb_insertion_removal(chip); } } #define VIN_MIN_COLLAPSE_CHECK_MS 50 static irqreturn_t usbin_valid_irq_handler(int irq, void *data) { if (usb_target_ma) schedule_delayed_work(&the_chip->vin_collapse_check_work, round_jiffies_relative(msecs_to_jiffies (VIN_MIN_COLLAPSE_CHECK_MS))); else handle_usb_insertion_removal(data); return IRQ_HANDLED; } static irqreturn_t batt_inserted_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; int status; status = pm_chg_get_rt_status(chip, BATT_INSERTED_IRQ); schedule_work(&chip->battery_id_valid_work); handle_start_ext_chg(chip); pr_debug("battery present=%d", status); power_supply_changed(&chip->batt_psy); return IRQ_HANDLED; } /* * this interrupt used to restart charging a battery. * * Note: When DC-inserted the VBAT can't go low. * VPH_PWR is provided by the ext-charger. * After End-Of-Charging from DC, charging can be resumed only * if DC is removed and then inserted after the battery was in use. * Therefore the handle_start_ext_chg() is not called. */ static irqreturn_t vbatdet_low_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; int high_transition; high_transition = pm_chg_get_rt_status(chip, VBATDET_LOW_IRQ); if (high_transition) { /* enable auto charging */ pm_chg_auto_enable(chip, !charging_disabled); pr_info("batt fell below resume voltage %s\n", charging_disabled ? "" : "charger enabled"); } pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data)); power_supply_changed(&chip->batt_psy); power_supply_changed(&chip->usb_psy); power_supply_changed(&chip->dc_psy); return IRQ_HANDLED; } static irqreturn_t chgwdog_irq_handler(int irq, void *data) { pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data)); return IRQ_HANDLED; } static irqreturn_t vcp_irq_handler(int irq, void *data) { pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data)); return IRQ_HANDLED; } static irqreturn_t atcdone_irq_handler(int irq, void *data) { pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data)); return IRQ_HANDLED; } static irqreturn_t atcfail_irq_handler(int irq, void *data) { pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data)); return IRQ_HANDLED; } static irqreturn_t chgdone_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; pr_debug("state_changed_to=%d\n", pm_chg_get_fsm_state(data)); handle_stop_ext_chg(chip); power_supply_changed(&chip->batt_psy); power_supply_changed(&chip->usb_psy); power_supply_changed(&chip->dc_psy); bms_notify_check(chip); return IRQ_HANDLED; } static irqreturn_t chgfail_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; int ret; if (!chip->stop_chg_upon_expiry) { ret = pm_chg_failed_clear(chip, 1); if (ret) pr_err("Failed to write CHG_FAILED_CLEAR bit\n"); } pr_err("batt_present = %d, batt_temp_ok = %d, state_changed_to=%d\n", get_prop_batt_present(chip), pm_chg_get_rt_status(chip, BAT_TEMP_OK_IRQ), pm_chg_get_fsm_state(data)); power_supply_changed(&chip->batt_psy); power_supply_changed(&chip->usb_psy); power_supply_changed(&chip->dc_psy); return IRQ_HANDLED; } static irqreturn_t chgstate_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; pr_debug("state_changed_to=%d\n", pm_chg_get_fsm_state(data)); power_supply_changed(&chip->batt_psy); power_supply_changed(&chip->usb_psy); power_supply_changed(&chip->dc_psy); bms_notify_check(chip); return IRQ_HANDLED; } enum { PON_TIME_25NS = 0x04, PON_TIME_50NS = 0x08, PON_TIME_100NS = 0x0C, }; static void set_min_pon_time(struct pm8921_chg_chip *chip, int pon_time_ns) { u8 temp; int rc; rc = pm_chg_write(chip, CHG_BUCK_CTRL_TEST3, 0x40); if (rc) { pr_err("Failed to write 0x70 to CTRL_TEST3 rc = %d\n", rc); return; } rc = pm8xxx_readb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, &temp); if (rc) { pr_err("Failed to read CTRL_TEST3 rc = %d\n", rc); return; } /* clear the min pon time select bit */ temp &= 0xF3; /* set the pon time */ temp |= (u8)pon_time_ns; /* write enable bank 4 */ temp |= 0x80; rc = pm_chg_write(chip, CHG_BUCK_CTRL_TEST3, temp); if (rc) { pr_err("Failed to write 0x%x to CTRL_TEST3 rc=%d\n", temp, rc); return; } } static void attempt_reverse_boost_fix(struct pm8921_chg_chip *chip) { pr_debug("Start\n"); set_min_pon_time(chip, PON_TIME_100NS); pm_chg_vinmin_set(chip, chip->vin_min + 200); msleep(250); pm_chg_vinmin_set(chip, chip->vin_min); set_min_pon_time(chip, PON_TIME_25NS); pr_debug("End\n"); } #define VIN_ACTIVE_BIT BIT(0) #define UNPLUG_WRKARND_RESTORE_WAIT_PERIOD_US 200 #define VIN_MIN_INCREASE_MV 100 static void unplug_check_worker(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct pm8921_chg_chip *chip = container_of(dwork, struct pm8921_chg_chip, unplug_check_work); u8 reg_loop = 0, active_path; int rc, ibat, active_chg_plugged_in, usb_ma; int chg_gone = 0; bool ramp = false; rc = pm8xxx_readb(chip->dev->parent, PBL_ACCESS1, &active_path); if (rc) { pr_err("Failed to read PBL_ACCESS1 rc=%d\n", rc); return; } chip->active_path = active_path; active_chg_plugged_in = is_active_chg_plugged_in(chip, active_path); pr_debug("active_path = 0x%x, active_chg_plugged_in = %d\n", active_path, active_chg_plugged_in); if (active_path & USB_ACTIVE_BIT) { pr_debug("USB charger active\n"); pm_chg_iusbmax_get(chip, &usb_ma); if (usb_ma <= 100) { pr_debug( "Unenumerated or suspended usb_ma = %d skip\n", usb_ma); goto check_again_later; } } else if (active_path & DC_ACTIVE_BIT) { pr_debug("DC charger active\n"); } else { /* No charger active */ if (!(is_usb_chg_plugged_in(chip) && !(is_dc_chg_plugged_in(chip)))) { get_prop_batt_current(chip, &ibat); pr_debug( "Stop: chg removed reg_loop = %d, fsm = %d ibat = %d\n", pm_chg_get_regulation_loop(chip), pm_chg_get_fsm_state(chip), ibat); return; } else { goto check_again_later; } } /* AICL only for usb wall charger */ if ((active_path & USB_ACTIVE_BIT) && usb_target_ma > 0 && !chip->disable_aicl) { reg_loop = pm_chg_get_regulation_loop(chip); pr_debug("reg_loop=0x%x usb_ma = %d\n", reg_loop, usb_ma); if ((reg_loop & VIN_ACTIVE_BIT) && (usb_ma > USB_WALL_THRESHOLD_MA) && !charging_disabled) { decrease_usb_ma_value(&usb_ma); usb_target_ma = usb_ma; /* end AICL here */ __pm8921_charger_vbus_draw(usb_ma); pr_debug("usb_now=%d, usb_target = %d\n", usb_ma, usb_target_ma); } } reg_loop = pm_chg_get_regulation_loop(chip); pr_debug("reg_loop=0x%x usb_ma = %d\n", reg_loop, usb_ma); rc = get_prop_batt_current(chip, &ibat); if ((reg_loop & VIN_ACTIVE_BIT) && !chip->disable_chg_rmvl_wrkarnd) { if (ibat > 0 && !rc) { pr_debug("revboost ibat = %d fsm = %d loop = 0x%x\n", ibat, pm_chg_get_fsm_state(chip), reg_loop); attempt_reverse_boost_fix(chip); /* after reverse boost fix check if the active * charger was detected as removed */ active_chg_plugged_in = is_active_chg_plugged_in(chip, active_path); pr_debug("revboost post: active_chg_plugged_in = %d\n", active_chg_plugged_in); } } active_chg_plugged_in = is_active_chg_plugged_in(chip, active_path); pr_debug("active_path = 0x%x, active_chg = %d\n", active_path, active_chg_plugged_in); chg_gone = pm_chg_get_rt_status(chip, CHG_GONE_IRQ); if (chg_gone == 1 && active_chg_plugged_in == 1 && !chip->disable_chg_rmvl_wrkarnd) { pr_debug("chg_gone=%d, active_chg_plugged_in = %d\n", chg_gone, active_chg_plugged_in); unplug_ovp_fet_open(chip); } /* AICL only for usb wall charger */ if (!(reg_loop & VIN_ACTIVE_BIT) && (active_path & USB_ACTIVE_BIT) && usb_target_ma > 0 && !charging_disabled && !chip->disable_aicl) { /* only increase iusb_max if vin loop not active */ if (usb_ma < usb_target_ma) { increase_usb_ma_value(&usb_ma); if (usb_ma > usb_target_ma) usb_ma = usb_target_ma; __pm8921_charger_vbus_draw(usb_ma); pr_debug("usb_now=%d, usb_target = %d\n", usb_ma, usb_target_ma); ramp = true; } else { usb_target_ma = usb_ma; } } check_again_later: pr_debug("ramp: %d\n", ramp); /* schedule to check again later */ if (ramp) schedule_delayed_work(&chip->unplug_check_work, msecs_to_jiffies(UNPLUG_CHECK_RAMP_MS)); else schedule_delayed_work(&chip->unplug_check_work, msecs_to_jiffies(UNPLUG_CHECK_WAIT_PERIOD_MS)); } static irqreturn_t loop_change_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; pr_debug("fsm_state=%d reg_loop=0x%x\n", pm_chg_get_fsm_state(data), pm_chg_get_regulation_loop(data)); schedule_work(&chip->unplug_check_work.work); return IRQ_HANDLED; } struct ibatmax_max_adj_entry { int ibat_max_ma; int max_adj_ma; }; static struct ibatmax_max_adj_entry ibatmax_adj_table[] = { {975, 300}, {1475, 150}, {1975, 200}, {2475, 250}, }; static int find_ibat_max_adj_ma(int ibat_target_ma) { int i = 0; for (i = ARRAY_SIZE(ibatmax_adj_table); i > 0; i--) { if (ibat_target_ma >= ibatmax_adj_table[i - 1].ibat_max_ma) break; } if (i > 0) i--; return ibatmax_adj_table[i].max_adj_ma; } static irqreturn_t fastchg_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; int high_transition; high_transition = pm_chg_get_rt_status(chip, FASTCHG_IRQ); if (high_transition && !delayed_work_pending(&chip->eoc_work)) { wake_lock(&chip->eoc_wake_lock); schedule_delayed_work(&chip->eoc_work, round_jiffies_relative(msecs_to_jiffies (EOC_CHECK_PERIOD_MS))); } if (high_transition && chip->btc_override && !delayed_work_pending(&chip->btc_override_work)) { schedule_delayed_work(&chip->btc_override_work, round_jiffies_relative(msecs_to_jiffies (chip->btc_delay_ms))); } power_supply_changed(&chip->batt_psy); bms_notify_check(chip); return IRQ_HANDLED; } static irqreturn_t trklchg_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; power_supply_changed(&chip->batt_psy); return IRQ_HANDLED; } static irqreturn_t batt_removed_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; int status; status = pm_chg_get_rt_status(chip, BATT_REMOVED_IRQ); pr_debug("battery present=%d state=%d", !status, pm_chg_get_fsm_state(data)); handle_stop_ext_chg(chip); power_supply_changed(&chip->batt_psy); return IRQ_HANDLED; } static irqreturn_t batttemp_hot_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; handle_stop_ext_chg(chip); power_supply_changed(&chip->batt_psy); return IRQ_HANDLED; } static irqreturn_t chghot_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; pr_debug("Chg hot fsm_state=%d\n", pm_chg_get_fsm_state(data)); power_supply_changed(&chip->batt_psy); power_supply_changed(&chip->usb_psy); handle_stop_ext_chg(chip); return IRQ_HANDLED; } static irqreturn_t batttemp_cold_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; pr_debug("Batt cold fsm_state=%d\n", pm_chg_get_fsm_state(data)); handle_stop_ext_chg(chip); power_supply_changed(&chip->batt_psy); power_supply_changed(&chip->usb_psy); return IRQ_HANDLED; } static irqreturn_t chg_gone_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; int chg_gone, usb_chg_plugged_in; usb_chg_plugged_in = is_usb_chg_plugged_in(chip); chg_gone = pm_chg_get_rt_status(chip, CHG_GONE_IRQ); pr_debug("chg_gone=%d, usb_valid = %d\n", chg_gone, usb_chg_plugged_in); pr_debug("Chg gone fsm_state=%d\n", pm_chg_get_fsm_state(data)); power_supply_changed(&chip->batt_psy); power_supply_changed(&chip->usb_psy); return IRQ_HANDLED; } /* * * bat_temp_ok_irq_handler - is edge triggered, hence it will * fire for two cases: * * If the interrupt line switches to high temperature is okay * and thus charging begins. * If bat_temp_ok is low this means the temperature is now * too hot or cold, so charging is stopped. * */ static irqreturn_t bat_temp_ok_irq_handler(int irq, void *data) { int bat_temp_ok; struct pm8921_chg_chip *chip = data; bat_temp_ok = pm_chg_get_rt_status(chip, BAT_TEMP_OK_IRQ); pr_debug("batt_temp_ok = %d fsm_state%d\n", bat_temp_ok, pm_chg_get_fsm_state(data)); if (bat_temp_ok) handle_start_ext_chg(chip); else handle_stop_ext_chg(chip); power_supply_changed(&chip->batt_psy); power_supply_changed(&chip->usb_psy); bms_notify_check(chip); return IRQ_HANDLED; } static irqreturn_t coarse_det_low_irq_handler(int irq, void *data) { pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data)); return IRQ_HANDLED; } static irqreturn_t vdd_loop_irq_handler(int irq, void *data) { pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data)); return IRQ_HANDLED; } static irqreturn_t vreg_ov_irq_handler(int irq, void *data) { pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data)); return IRQ_HANDLED; } static irqreturn_t vbatdet_irq_handler(int irq, void *data) { pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data)); return IRQ_HANDLED; } static irqreturn_t batfet_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; pr_debug("vreg ov\n"); power_supply_changed(&chip->batt_psy); return IRQ_HANDLED; } static irqreturn_t dcin_valid_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; int dc_present; pm_chg_failed_clear(chip, 1); dc_present = pm_chg_get_rt_status(chip, DCIN_VALID_IRQ); if (chip->dc_present ^ dc_present) pm8921_bms_calibrate_hkadc(); if (dc_present) pm8921_chg_enable_irq(chip, CHG_GONE_IRQ); else pm8921_chg_disable_irq(chip, CHG_GONE_IRQ); chip->dc_present = dc_present; if (chip->ext_psy) { if (dc_present) handle_start_ext_chg(chip); else handle_stop_ext_chg(chip); } else { if (dc_present) schedule_delayed_work(&chip->unplug_check_work, msecs_to_jiffies(UNPLUG_CHECK_WAIT_PERIOD_MS)); power_supply_changed(&chip->dc_psy); } power_supply_changed(&chip->batt_psy); return IRQ_HANDLED; } static irqreturn_t dcin_ov_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; handle_stop_ext_chg(chip); return IRQ_HANDLED; } static irqreturn_t dcin_uv_irq_handler(int irq, void *data) { struct pm8921_chg_chip *chip = data; handle_stop_ext_chg(chip); return IRQ_HANDLED; } static int __pm_batt_external_power_changed_work(struct device *dev, void *data) { struct power_supply *psy = &the_chip->batt_psy; struct power_supply *epsy = dev_get_drvdata(dev); int i, dcin_irq; /* Only search for external supply if none is registered */ if (!the_chip->ext_psy) { dcin_irq = the_chip->pmic_chg_irq[DCIN_VALID_IRQ]; for (i = 0; i < epsy->num_supplicants; i++) { if (!strncmp(epsy->supplied_to[i], psy->name, 7)) { if (!strncmp(epsy->name, "dc", 2)) { the_chip->ext_psy = epsy; dcin_valid_irq_handler(dcin_irq, the_chip); } } } } return 0; } static void pm_batt_external_power_changed(struct power_supply *psy) { if (!the_chip) return; /* Only look for an external supply if it hasn't been registered */ if (!the_chip->ext_psy) class_for_each_device(power_supply_class, NULL, psy, __pm_batt_external_power_changed_work); } /** * update_heartbeat - internal function to update userspace * per update_time minutes * */ #define LOW_SOC_HEARTBEAT_MS 20000 static void update_heartbeat(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct pm8921_chg_chip *chip = container_of(dwork, struct pm8921_chg_chip, update_heartbeat_work); bool chg_present = chip->usb_present || chip->dc_present; /* for battery health when charger is not connected */ if (chip->btc_override && !chg_present) schedule_delayed_work(&chip->btc_override_work, round_jiffies_relative(msecs_to_jiffies (chip->btc_delay_ms))); /* * check temp thresholds when charger is present and * and battery is FULL. The temperature here can impact * the charging restart conditions. */ if (chip->btc_override && chg_present && !wake_lock_active(&chip->eoc_wake_lock)) check_temp_thresholds(chip); power_supply_changed(&chip->batt_psy); if (chip->recent_reported_soc <= 20) schedule_delayed_work(&chip->update_heartbeat_work, round_jiffies_relative(msecs_to_jiffies (LOW_SOC_HEARTBEAT_MS))); else schedule_delayed_work(&chip->update_heartbeat_work, round_jiffies_relative(msecs_to_jiffies (chip->update_time))); } #define VDD_LOOP_ACTIVE_BIT BIT(3) #define VDD_MAX_INCREASE_MV 400 static int vdd_max_increase_mv = VDD_MAX_INCREASE_MV; module_param(vdd_max_increase_mv, int, 0644); static int ichg_threshold_ua = -400000; module_param(ichg_threshold_ua, int, 0644); #define MIN_DELTA_MV_TO_INCREASE_VDD_MAX 13 #define PM8921_CHG_VDDMAX_RES_MV 10 static void adjust_vdd_max_for_fastchg(struct pm8921_chg_chip *chip, int vbat_batt_terminal_uv) { int adj_vdd_max_mv, programmed_vdd_max; int vbat_batt_terminal_mv; int reg_loop; int delta_mv = 0; if (chip->rconn_mohm == 0) { pr_debug("Exiting as rconn_mohm is 0\n"); return; } /* adjust vdd_max only in normal temperature zone */ if (chip->is_bat_cool || chip->is_bat_warm) { pr_debug("Exiting is_bat_cool = %d is_batt_warm = %d\n", chip->is_bat_cool, chip->is_bat_warm); return; } reg_loop = pm_chg_get_regulation_loop(chip); if (!(reg_loop & VDD_LOOP_ACTIVE_BIT)) { pr_debug("Exiting Vdd loop is not active reg loop=0x%x\n", reg_loop); return; } vbat_batt_terminal_mv = vbat_batt_terminal_uv/1000; pm_chg_vddmax_get(the_chip, &programmed_vdd_max); delta_mv = chip->max_voltage_mv - vbat_batt_terminal_mv; if (delta_mv > 0) /* meaning we want to increase the vddmax */ { if (delta_mv < MIN_DELTA_MV_TO_INCREASE_VDD_MAX) { pr_debug("vterm = %d is not low enough to inc vdd\n", vbat_batt_terminal_mv); return; } } adj_vdd_max_mv = programmed_vdd_max + delta_mv; pr_debug("vdd_max needs to be changed by %d mv from %d to %d\n", delta_mv, programmed_vdd_max, adj_vdd_max_mv); if (adj_vdd_max_mv < chip->max_voltage_mv) { pr_debug("adj vdd_max lower than default max voltage\n"); return; } adj_vdd_max_mv = (adj_vdd_max_mv / PM8921_CHG_VDDMAX_RES_MV) * PM8921_CHG_VDDMAX_RES_MV; if (adj_vdd_max_mv > (chip->max_voltage_mv + vdd_max_increase_mv)) adj_vdd_max_mv = chip->max_voltage_mv + vdd_max_increase_mv; pr_debug("adjusting vdd_max_mv to %d to make " "vbat_batt_termial_uv = %d to %d\n", adj_vdd_max_mv, vbat_batt_terminal_uv, chip->max_voltage_mv); pm_chg_vddmax_set(chip, adj_vdd_max_mv); } static void set_appropriate_vbatdet(struct pm8921_chg_chip *chip) { if (chip->is_bat_cool) pm_chg_vbatdet_set(the_chip, the_chip->cool_bat_voltage - the_chip->resume_voltage_delta); else if (chip->is_bat_warm) pm_chg_vbatdet_set(the_chip, the_chip->warm_bat_voltage - the_chip->resume_voltage_delta); else pm_chg_vbatdet_set(the_chip, the_chip->max_voltage_mv - the_chip->resume_voltage_delta); } static void set_appropriate_battery_current(struct pm8921_chg_chip *chip) { unsigned int chg_current = chip->max_bat_chg_current; if (chip->is_bat_cool) chg_current = min(chg_current, chip->cool_bat_chg_current); if (chip->is_bat_warm) chg_current = min(chg_current, chip->warm_bat_chg_current); if (thermal_mitigation != 0 && chip->thermal_mitigation) chg_current = min(chg_current, chip->thermal_mitigation[thermal_mitigation]); pm_chg_ibatmax_set(the_chip, chg_current); } #define TEMP_HYSTERISIS_DECIDEGC 20 static void battery_cool(bool enter) { pr_debug("enter = %d\n", enter); if (enter == the_chip->is_bat_cool) return; the_chip->is_bat_cool = enter; if (enter) pm_chg_vddmax_set(the_chip, the_chip->cool_bat_voltage); else pm_chg_vddmax_set(the_chip, the_chip->max_voltage_mv); set_appropriate_battery_current(the_chip); set_appropriate_vbatdet(the_chip); } static void battery_warm(bool enter) { pr_debug("enter = %d\n", enter); if (enter == the_chip->is_bat_warm) return; the_chip->is_bat_warm = enter; if (enter) pm_chg_vddmax_set(the_chip, the_chip->warm_bat_voltage); else pm_chg_vddmax_set(the_chip, the_chip->max_voltage_mv); set_appropriate_battery_current(the_chip); set_appropriate_vbatdet(the_chip); } static void check_temp_thresholds(struct pm8921_chg_chip *chip) { int temp = 0, rc; rc = get_prop_batt_temp(chip, &temp); pr_debug("temp = %d, warm_thr_temp = %d, cool_thr_temp = %d\n", temp, chip->warm_temp_dc, chip->cool_temp_dc); if (chip->warm_temp_dc != INT_MIN) { if (chip->is_bat_warm && temp < chip->warm_temp_dc - chip->hysteresis_temp_dc) battery_warm(false); else if (!chip->is_bat_warm && temp >= chip->warm_temp_dc) battery_warm(true); } if (chip->cool_temp_dc != INT_MIN) { if (chip->is_bat_cool && temp > chip->cool_temp_dc + chip->hysteresis_temp_dc) battery_cool(false); else if (!chip->is_bat_cool && temp <= chip->cool_temp_dc) battery_cool(true); } } enum { CHG_IN_PROGRESS, CHG_NOT_IN_PROGRESS, CHG_FINISHED, }; #define VBAT_TOLERANCE_MV 70 #define CHG_DISABLE_MSLEEP 100 static int is_charging_finished(struct pm8921_chg_chip *chip, int vbat_batt_terminal_uv, int ichg_meas_ma) { int vbat_programmed, iterm_programmed, vbat_intended; int regulation_loop, fast_chg, vcp; int rc; static int last_vbat_programmed = -EINVAL; if (!is_ext_charging(chip)) { /* return if the battery is not being fastcharged */ fast_chg = pm_chg_get_rt_status(chip, FASTCHG_IRQ); pr_debug("fast_chg = %d\n", fast_chg); if (fast_chg == 0) return CHG_NOT_IN_PROGRESS; vcp = pm_chg_get_rt_status(chip, VCP_IRQ); pr_debug("vcp = %d\n", vcp); if (vcp == 1) return CHG_IN_PROGRESS; /* reset count if battery is hot/cold */ rc = pm_chg_get_rt_status(chip, BAT_TEMP_OK_IRQ); pr_debug("batt_temp_ok = %d\n", rc); if (rc == 0) return CHG_IN_PROGRESS; rc = pm_chg_vddmax_get(chip, &vbat_programmed); if (rc) { pr_err("couldnt read vddmax rc = %d\n", rc); return CHG_IN_PROGRESS; } pr_debug("vddmax = %d vbat_batt_terminal_uv=%d\n", vbat_programmed, vbat_batt_terminal_uv); if (last_vbat_programmed == -EINVAL) last_vbat_programmed = vbat_programmed; if (last_vbat_programmed != vbat_programmed) { /* vddmax changed, reset and check again */ pr_debug("vddmax = %d last_vdd_max=%d\n", vbat_programmed, last_vbat_programmed); last_vbat_programmed = vbat_programmed; return CHG_IN_PROGRESS; } if (chip->is_bat_cool) vbat_intended = chip->cool_bat_voltage; else if (chip->is_bat_warm) vbat_intended = chip->warm_bat_voltage; else vbat_intended = chip->max_voltage_mv; if (vbat_batt_terminal_uv / 1000 < vbat_intended - MIN_DELTA_MV_TO_INCREASE_VDD_MAX) { pr_debug("terminal_uv:%d < vbat_intended:%d-hyst:%d\n", vbat_batt_terminal_uv, vbat_intended, vbat_intended); return CHG_IN_PROGRESS; } regulation_loop = pm_chg_get_regulation_loop(chip); if (regulation_loop < 0) { pr_err("couldnt read the regulation loop err=%d\n", regulation_loop); return CHG_IN_PROGRESS; } pr_debug("regulation_loop=%d\n", regulation_loop); if (regulation_loop != 0 && regulation_loop != VDD_LOOP) return CHG_IN_PROGRESS; } /* !is_ext_charging */ /* reset count if battery chg current is more than iterm */ rc = pm_chg_iterm_get(chip, &iterm_programmed); if (rc) { pr_err("couldnt read iterm rc = %d\n", rc); return CHG_IN_PROGRESS; } pr_debug("iterm_programmed = %d ichg_meas_ma=%d\n", iterm_programmed, ichg_meas_ma); /* * ichg_meas_ma < 0 means battery is drawing current * ichg_meas_ma > 0 means battery is providing current */ if (ichg_meas_ma > 0) return CHG_IN_PROGRESS; if (ichg_meas_ma * -1 > iterm_programmed) return CHG_IN_PROGRESS; return CHG_FINISHED; } #define COMP_OVERRIDE_HOT_BANK 6 #define COMP_OVERRIDE_COLD_BANK 7 #define COMP_OVERRIDE_BIT BIT(1) static int pm_chg_override_cold(struct pm8921_chg_chip *chip, int flag) { u8 val; int rc = 0; val = 0x80 | COMP_OVERRIDE_COLD_BANK << 2 | COMP_OVERRIDE_BIT; if (flag) val |= 0x01; rc = pm_chg_write(chip, COMPARATOR_OVERRIDE, val); if (rc < 0) pr_err("Could not write 0x%x to override rc = %d\n", val, rc); pr_debug("btc cold = %d val = 0x%x\n", flag, val); return rc; } static int pm_chg_override_hot(struct pm8921_chg_chip *chip, int flag) { u8 val; int rc = 0; val = 0x80 | COMP_OVERRIDE_HOT_BANK << 2 | COMP_OVERRIDE_BIT; if (flag) val |= 0x01; rc = pm_chg_write(chip, COMPARATOR_OVERRIDE, val); if (rc < 0) pr_err("Could not write 0x%x to override rc = %d\n", val, rc); pr_debug("btc hot = %d val = 0x%x\n", flag, val); return rc; } static void __devinit pm8921_chg_btc_override_init(struct pm8921_chg_chip *chip) { int rc = 0; u8 reg; u8 val; val = COMP_OVERRIDE_HOT_BANK << 2; rc = pm_chg_write(chip, COMPARATOR_OVERRIDE, val); if (rc < 0) { pr_err("Could not write 0x%x to override rc = %d\n", val, rc); goto cold_init; } rc = pm8xxx_readb(chip->dev->parent, COMPARATOR_OVERRIDE, ®); if (rc < 0) { pr_err("Could not read bank %d of override rc = %d\n", COMP_OVERRIDE_HOT_BANK, rc); goto cold_init; } if ((reg & COMP_OVERRIDE_BIT) != COMP_OVERRIDE_BIT) { /* for now override it as not hot */ rc = pm_chg_override_hot(chip, 0); if (rc < 0) pr_err("Could not override hot rc = %d\n", rc); } cold_init: val = COMP_OVERRIDE_COLD_BANK << 2; rc = pm_chg_write(chip, COMPARATOR_OVERRIDE, val); if (rc < 0) { pr_err("Could not write 0x%x to override rc = %d\n", val, rc); return; } rc = pm8xxx_readb(chip->dev->parent, COMPARATOR_OVERRIDE, ®); if (rc < 0) { pr_err("Could not read bank %d of override rc = %d\n", COMP_OVERRIDE_COLD_BANK, rc); return; } if ((reg & COMP_OVERRIDE_BIT) != COMP_OVERRIDE_BIT) { /* for now override it as not cold */ rc = pm_chg_override_cold(chip, 0); if (rc < 0) pr_err("Could not override cold rc = %d\n", rc); } } static void btc_override_worker(struct work_struct *work) { int decidegc; int temp; int rc = 0; struct delayed_work *dwork = to_delayed_work(work); struct pm8921_chg_chip *chip = container_of(dwork, struct pm8921_chg_chip, btc_override_work); if (!chip->btc_override) { pr_err("called when not enabled\n"); return; } rc = get_prop_batt_temp(chip, &decidegc); if (rc) { pr_info("Failed to read temperature\n"); goto fail_btc_temp; } pr_debug("temp=%d\n", decidegc); temp = pm_chg_get_rt_status(chip, BATTTEMP_HOT_IRQ); if (temp) { if (decidegc < chip->btc_override_hot_decidegc - chip->hysteresis_temp_dc) /* stop forcing batt hot */ rc = pm_chg_override_hot(chip, 0); if (rc) pr_err("Couldnt write 0 to hot comp\n"); } else { if (decidegc >= chip->btc_override_hot_decidegc) /* start forcing batt hot */ rc = pm_chg_override_hot(chip, 1); if (rc && chip->btc_panic_if_cant_stop_chg) panic("Couldnt override comps to stop chg\n"); } temp = pm_chg_get_rt_status(chip, BATTTEMP_COLD_IRQ); if (temp) { if (decidegc > chip->btc_override_cold_decidegc + chip->hysteresis_temp_dc) /* stop forcing batt cold */ rc = pm_chg_override_cold(chip, 0); if (rc) pr_err("Couldnt write 0 to cold comp\n"); } else { if (decidegc <= chip->btc_override_cold_decidegc) /* start forcing batt cold */ rc = pm_chg_override_cold(chip, 1); if (rc && chip->btc_panic_if_cant_stop_chg) panic("Couldnt override comps to stop chg\n"); } if ((is_dc_chg_plugged_in(the_chip) || is_usb_chg_plugged_in(the_chip)) && get_prop_batt_status(chip) != POWER_SUPPLY_STATUS_FULL) { schedule_delayed_work(&chip->btc_override_work, round_jiffies_relative(msecs_to_jiffies (chip->btc_delay_ms))); return; } fail_btc_temp: rc = pm_chg_override_hot(chip, 0); if (rc) pr_err("Couldnt write 0 to hot comp\n"); rc = pm_chg_override_cold(chip, 0); if (rc) pr_err("Couldnt write 0 to cold comp\n"); } /** * eoc_worker - internal function to check if battery EOC * has happened * * If all conditions favouring, if the charge current is * less than the term current for three consecutive times * an EOC has happened. * The wakelock is released if there is no need to reshedule * - this happens when the battery is removed or EOC has * happened */ #define CONSECUTIVE_COUNT 3 static void eoc_worker(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct pm8921_chg_chip *chip = container_of(dwork, struct pm8921_chg_chip, eoc_work); static int count; int end; int vbat_meas_uv, vbat_meas_mv; int ichg_meas_ua, ichg_meas_ma; int vbat_batt_terminal_uv; pm8921_bms_get_simultaneous_battery_voltage_and_current( &ichg_meas_ua, &vbat_meas_uv); vbat_meas_mv = vbat_meas_uv / 1000; /* rconn_mohm is in milliOhms */ ichg_meas_ma = ichg_meas_ua / 1000; vbat_batt_terminal_uv = vbat_meas_uv + ichg_meas_ma * the_chip->rconn_mohm; end = is_charging_finished(chip, vbat_batt_terminal_uv, ichg_meas_ma); if (end == CHG_NOT_IN_PROGRESS && (!chip->btc_override || !(chip->usb_present || chip->dc_present))) { count = 0; goto eoc_worker_stop; } if (end == CHG_FINISHED) { count++; } else { count = 0; } if (count == CONSECUTIVE_COUNT) { count = 0; pr_info("End of Charging\n"); pm_chg_auto_enable(chip, 0); if (is_ext_charging(chip)) chip->ext_charge_done = true; if (chip->is_bat_warm || chip->is_bat_cool) chip->bms_notify.is_battery_full = 0; else chip->bms_notify.is_battery_full = 1; /* declare end of charging by invoking chgdone interrupt */ chgdone_irq_handler(chip->pmic_chg_irq[CHGDONE_IRQ], chip); } else { check_temp_thresholds(chip); if (end != CHG_NOT_IN_PROGRESS) adjust_vdd_max_for_fastchg(chip, vbat_batt_terminal_uv); pr_debug("EOC count = %d\n", count); schedule_delayed_work(&chip->eoc_work, round_jiffies_relative(msecs_to_jiffies (EOC_CHECK_PERIOD_MS))); return; } eoc_worker_stop: /* set the vbatdet back, in case it was changed to trigger charging */ set_appropriate_vbatdet(chip); wake_unlock(&chip->eoc_wake_lock); } /** * set_disable_status_param - * * Internal function to disable battery charging and also disable drawing * any current from the source. The device is forced to run on a battery * after this. */ static int set_disable_status_param(const char *val, struct kernel_param *kp) { int ret; struct pm8921_chg_chip *chip = the_chip; ret = param_set_int(val, kp); if (ret) { pr_err("error setting value %d\n", ret); return ret; } pr_info("factory set disable param to %d\n", charging_disabled); if (chip) { pm_chg_auto_enable(chip, !charging_disabled); pm_chg_charge_dis(chip, charging_disabled); } return 0; } module_param_call(disabled, set_disable_status_param, param_get_uint, &charging_disabled, 0644); static int rconn_mohm; static int set_rconn_mohm(const char *val, struct kernel_param *kp) { int ret; struct pm8921_chg_chip *chip = the_chip; ret = param_set_int(val, kp); if (ret) { pr_err("error setting value %d\n", ret); return ret; } if (chip) chip->rconn_mohm = rconn_mohm; return 0; } module_param_call(rconn_mohm, set_rconn_mohm, param_get_uint, &rconn_mohm, 0644); /** * set_thermal_mitigation_level - * * Internal function to control battery charging current to reduce * temperature */ static int set_therm_mitigation_level(const char *val, struct kernel_param *kp) { int ret; struct pm8921_chg_chip *chip = the_chip; ret = param_set_int(val, kp); if (ret) { pr_err("error setting value %d\n", ret); return ret; } if (!chip) { pr_err("called before init\n"); return -EINVAL; } if (!chip->thermal_mitigation) { pr_err("no thermal mitigation\n"); return -EINVAL; } if (thermal_mitigation < 0 || thermal_mitigation >= chip->thermal_levels) { pr_err("out of bound level selected\n"); return -EINVAL; } set_appropriate_battery_current(chip); return ret; } module_param_call(thermal_mitigation, set_therm_mitigation_level, param_get_uint, &thermal_mitigation, 0644); static int set_usb_max_current(const char *val, struct kernel_param *kp) { int ret, mA; struct pm8921_chg_chip *chip = the_chip; ret = param_set_int(val, kp); if (ret) { pr_err("error setting value %d\n", ret); return ret; } if (chip) { pr_warn("setting current max to %d\n", usb_max_current); pm_chg_iusbmax_get(chip, &mA); if (mA > usb_max_current) pm8921_charger_vbus_draw(usb_max_current); return 0; } return -EINVAL; } module_param_call(usb_max_current, set_usb_max_current, param_get_uint, &usb_max_current, 0644); static void free_irqs(struct pm8921_chg_chip *chip) { int i; for (i = 0; i < PM_CHG_MAX_INTS; i++) if (chip->pmic_chg_irq[i]) { free_irq(chip->pmic_chg_irq[i], chip); chip->pmic_chg_irq[i] = 0; } } #define PM8921_USB_TRIM_SEL_BIT BIT(6) /* determines the initial present states */ static void __devinit determine_initial_state(struct pm8921_chg_chip *chip) { int fsm_state; int is_fast_chg; int rc = 0; u8 trim_sel_reg = 0, regsbi; chip->dc_present = !!is_dc_chg_plugged_in(chip); chip->usb_present = !!is_usb_chg_plugged_in(chip); notify_usb_of_the_plugin_event(chip->usb_present); if (chip->usb_present || chip->dc_present) { schedule_delayed_work(&chip->unplug_check_work, msecs_to_jiffies(UNPLUG_CHECK_WAIT_PERIOD_MS)); pm8921_chg_enable_irq(chip, CHG_GONE_IRQ); if (chip->btc_override) schedule_delayed_work(&chip->btc_override_work, round_jiffies_relative(msecs_to_jiffies (chip->btc_delay_ms))); } pm8921_chg_enable_irq(chip, DCIN_VALID_IRQ); pm8921_chg_enable_irq(chip, USBIN_VALID_IRQ); pm8921_chg_enable_irq(chip, BATT_REMOVED_IRQ); pm8921_chg_enable_irq(chip, BATT_INSERTED_IRQ); pm8921_chg_enable_irq(chip, DCIN_OV_IRQ); pm8921_chg_enable_irq(chip, DCIN_UV_IRQ); pm8921_chg_enable_irq(chip, CHGFAIL_IRQ); pm8921_chg_enable_irq(chip, FASTCHG_IRQ); pm8921_chg_enable_irq(chip, VBATDET_LOW_IRQ); pm8921_chg_enable_irq(chip, BAT_TEMP_OK_IRQ); if (get_prop_batt_present(the_chip) || is_dc_chg_plugged_in(the_chip)) if (usb_chg_current) /* * Reissue a vbus draw call only if a battery * or DC is present. We don't want to brown out the * device if usb is its only source */ __pm8921_charger_vbus_draw(usb_chg_current); usb_chg_current = 0; /* * The bootloader could have started charging, a fastchg interrupt * might not happen. Check the real time status and if it is fast * charging invoke the handler so that the eoc worker could be * started */ is_fast_chg = pm_chg_get_rt_status(chip, FASTCHG_IRQ); if (is_fast_chg) fastchg_irq_handler(chip->pmic_chg_irq[FASTCHG_IRQ], chip); fsm_state = pm_chg_get_fsm_state(chip); if (is_battery_charging(fsm_state)) { chip->bms_notify.is_charging = 1; pm8921_bms_charging_began(); } check_battery_valid(chip); pr_debug("usb = %d, dc = %d batt = %d state=%d\n", chip->usb_present, chip->dc_present, get_prop_batt_present(chip), fsm_state); /* Determine which USB trim column to use */ if (pm8xxx_get_version(chip->dev->parent) == PM8XXX_VERSION_8917) { chip->usb_trim_table = usb_trim_8917_table; } else if (pm8xxx_get_version(chip->dev->parent) == PM8XXX_VERSION_8038) { chip->usb_trim_table = usb_trim_8038_table; } else if (pm8xxx_get_version(chip->dev->parent) == PM8XXX_VERSION_8921) { rc = pm8xxx_readb(chip->dev->parent, REG_SBI_CONFIG, ®sbi); rc |= pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, 0x5E); rc |= pm8xxx_readb(chip->dev->parent, PM8921_USB_TRIM_SEL, &trim_sel_reg); rc |= pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, regsbi); if (rc) pr_err("Failed to read trim sel register rc=%d\n", rc); if (trim_sel_reg & PM8921_USB_TRIM_SEL_BIT) chip->usb_trim_table = usb_trim_pm8921_table_1; else chip->usb_trim_table = usb_trim_pm8921_table_2; } } struct pm_chg_irq_init_data { unsigned int irq_id; char *name; unsigned long flags; irqreturn_t (*handler)(int, void *); }; #define CHG_IRQ(_id, _flags, _handler) \ { \ .irq_id = _id, \ .name = #_id, \ .flags = _flags, \ .handler = _handler, \ } struct pm_chg_irq_init_data chg_irq_data[] = { CHG_IRQ(USBIN_VALID_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, usbin_valid_irq_handler), CHG_IRQ(BATT_INSERTED_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, batt_inserted_irq_handler), CHG_IRQ(VBATDET_LOW_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, vbatdet_low_irq_handler), CHG_IRQ(CHGWDOG_IRQ, IRQF_TRIGGER_RISING, chgwdog_irq_handler), CHG_IRQ(VCP_IRQ, IRQF_TRIGGER_RISING, vcp_irq_handler), CHG_IRQ(ATCDONE_IRQ, IRQF_TRIGGER_RISING, atcdone_irq_handler), CHG_IRQ(ATCFAIL_IRQ, IRQF_TRIGGER_RISING, atcfail_irq_handler), CHG_IRQ(CHGDONE_IRQ, IRQF_TRIGGER_RISING, chgdone_irq_handler), CHG_IRQ(CHGFAIL_IRQ, IRQF_TRIGGER_RISING, chgfail_irq_handler), CHG_IRQ(CHGSTATE_IRQ, IRQF_TRIGGER_RISING, chgstate_irq_handler), CHG_IRQ(LOOP_CHANGE_IRQ, IRQF_TRIGGER_RISING, loop_change_irq_handler), CHG_IRQ(FASTCHG_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, fastchg_irq_handler), CHG_IRQ(TRKLCHG_IRQ, IRQF_TRIGGER_RISING, trklchg_irq_handler), CHG_IRQ(BATT_REMOVED_IRQ, IRQF_TRIGGER_RISING, batt_removed_irq_handler), CHG_IRQ(BATTTEMP_HOT_IRQ, IRQF_TRIGGER_RISING, batttemp_hot_irq_handler), CHG_IRQ(CHGHOT_IRQ, IRQF_TRIGGER_RISING, chghot_irq_handler), CHG_IRQ(BATTTEMP_COLD_IRQ, IRQF_TRIGGER_RISING, batttemp_cold_irq_handler), CHG_IRQ(CHG_GONE_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, chg_gone_irq_handler), CHG_IRQ(BAT_TEMP_OK_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, bat_temp_ok_irq_handler), CHG_IRQ(COARSE_DET_LOW_IRQ, IRQF_TRIGGER_RISING, coarse_det_low_irq_handler), CHG_IRQ(VDD_LOOP_IRQ, IRQF_TRIGGER_RISING, vdd_loop_irq_handler), CHG_IRQ(VREG_OV_IRQ, IRQF_TRIGGER_RISING, vreg_ov_irq_handler), CHG_IRQ(VBATDET_IRQ, IRQF_TRIGGER_RISING, vbatdet_irq_handler), CHG_IRQ(BATFET_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, batfet_irq_handler), CHG_IRQ(DCIN_VALID_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, dcin_valid_irq_handler), CHG_IRQ(DCIN_OV_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, dcin_ov_irq_handler), CHG_IRQ(DCIN_UV_IRQ, IRQF_TRIGGER_RISING, dcin_uv_irq_handler), }; static int __devinit request_irqs(struct pm8921_chg_chip *chip, struct platform_device *pdev) { struct resource *res; int ret, i; ret = 0; bitmap_fill(chip->enabled_irqs, PM_CHG_MAX_INTS); for (i = 0; i < ARRAY_SIZE(chg_irq_data); i++) { res = platform_get_resource_byname(pdev, IORESOURCE_IRQ, chg_irq_data[i].name); if (res == NULL) { pr_err("couldn't find %s\n", chg_irq_data[i].name); goto err_out; } chip->pmic_chg_irq[chg_irq_data[i].irq_id] = res->start; ret = request_irq(res->start, chg_irq_data[i].handler, chg_irq_data[i].flags, chg_irq_data[i].name, chip); if (ret < 0) { pr_err("couldn't request %d (%s) %d\n", res->start, chg_irq_data[i].name, ret); chip->pmic_chg_irq[chg_irq_data[i].irq_id] = 0; goto err_out; } pm8921_chg_disable_irq(chip, chg_irq_data[i].irq_id); } return 0; err_out: free_irqs(chip); return -EINVAL; } static void pm8921_chg_force_19p2mhz_clk(struct pm8921_chg_chip *chip) { int err; u8 temp; temp = 0xD1; err = pm_chg_write(chip, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); return; } temp = 0xD3; err = pm_chg_write(chip, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); return; } temp = 0xD1; err = pm_chg_write(chip, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); return; } temp = 0xD5; err = pm_chg_write(chip, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); return; } udelay(183); temp = 0xD1; err = pm_chg_write(chip, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); return; } temp = 0xD0; err = pm_chg_write(chip, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); return; } udelay(32); temp = 0xD1; err = pm_chg_write(chip, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); return; } temp = 0xD3; err = pm_chg_write(chip, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); return; } } static void pm8921_chg_set_hw_clk_switching(struct pm8921_chg_chip *chip) { int err; u8 temp; temp = 0xD1; err = pm_chg_write(chip, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); return; } temp = 0xD0; err = pm_chg_write(chip, CHG_TEST, temp); if (err) { pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST); return; } } #define VREF_BATT_THERM_FORCE_ON BIT(7) static void detect_battery_removal(struct pm8921_chg_chip *chip) { u8 temp; pm8xxx_readb(chip->dev->parent, CHG_CNTRL, &temp); pr_debug("upon restart CHG_CNTRL = 0x%x\n", temp); if (!(temp & VREF_BATT_THERM_FORCE_ON)) /* * batt therm force on bit is battery backed and is default 0 * The charger sets this bit at init time. If this bit is found * 0 that means the battery was removed. Tell the bms about it */ pm8921_bms_invalidate_shutdown_soc(); } #define ENUM_TIMER_STOP_BIT BIT(1) #define BOOT_DONE_BIT BIT(6) #define CHG_BATFET_ON_BIT BIT(3) #define CHG_VCP_EN BIT(0) #define CHG_BAT_TEMP_DIS_BIT BIT(2) #define SAFE_CURRENT_MA 1500 #define PM_SUB_REV 0x001 #define MIN_CHARGE_CURRENT_MA 350 #define DEFAULT_SAFETY_MINUTES 500 static int __devinit pm8921_chg_hw_init(struct pm8921_chg_chip *chip) { u8 subrev; int rc, vdd_safe, fcc_uah, safety_time = DEFAULT_SAFETY_MINUTES; /* forcing 19p2mhz before accessing any charger registers */ pm8921_chg_force_19p2mhz_clk(chip); detect_battery_removal(chip); rc = pm_chg_masked_write(chip, SYS_CONFIG_2, BOOT_DONE_BIT, BOOT_DONE_BIT); if (rc) { pr_err("Failed to set BOOT_DONE_BIT rc=%d\n", rc); return rc; } vdd_safe = chip->max_voltage_mv + VDD_MAX_INCREASE_MV; if (vdd_safe > PM8921_CHG_VDDSAFE_MAX) vdd_safe = PM8921_CHG_VDDSAFE_MAX; rc = pm_chg_vddsafe_set(chip, vdd_safe); if (rc) { pr_err("Failed to set safe voltage to %d rc=%d\n", chip->max_voltage_mv, rc); return rc; } rc = pm_chg_vbatdet_set(chip, chip->max_voltage_mv - chip->resume_voltage_delta); if (rc) { pr_err("Failed to set vbatdet comprator voltage to %d rc=%d\n", chip->max_voltage_mv - chip->resume_voltage_delta, rc); return rc; } rc = pm_chg_vddmax_set(chip, chip->max_voltage_mv); if (rc) { pr_err("Failed to set max voltage to %d rc=%d\n", chip->max_voltage_mv, rc); return rc; } if (chip->safe_current_ma == 0) chip->safe_current_ma = SAFE_CURRENT_MA; rc = pm_chg_ibatsafe_set(chip, chip->safe_current_ma); if (rc) { pr_err("Failed to set max voltage to %d rc=%d\n", SAFE_CURRENT_MA, rc); return rc; } rc = pm_chg_ibatmax_set(chip, chip->max_bat_chg_current); if (rc) { pr_err("Failed to set max current to 400 rc=%d\n", rc); return rc; } rc = pm_chg_iterm_set(chip, chip->term_current); if (rc) { pr_err("Failed to set term current to %d rc=%d\n", chip->term_current, rc); return rc; } /* Disable the ENUM TIMER */ rc = pm_chg_masked_write(chip, PBL_ACCESS2, ENUM_TIMER_STOP_BIT, ENUM_TIMER_STOP_BIT); if (rc) { pr_err("Failed to set enum timer stop rc=%d\n", rc); return rc; } fcc_uah = pm8921_bms_get_fcc(); if (fcc_uah > 0) { safety_time = div_s64((s64)fcc_uah * 60, 1000 * MIN_CHARGE_CURRENT_MA); /* add 20 minutes of buffer time */ safety_time += 20; /* make sure we do not exceed the maximum programmable time */ if (safety_time > PM8921_CHG_TCHG_MAX) safety_time = PM8921_CHG_TCHG_MAX; } rc = pm_chg_tchg_max_set(chip, safety_time); if (rc) { pr_err("Failed to set max time to %d minutes rc=%d\n", safety_time, rc); return rc; } if (chip->ttrkl_time != 0) { rc = pm_chg_ttrkl_max_set(chip, chip->ttrkl_time); if (rc) { pr_err("Failed to set trkl time to %d minutes rc=%d\n", chip->ttrkl_time, rc); return rc; } } if (chip->vin_min != 0) { rc = pm_chg_vinmin_set(chip, chip->vin_min); if (rc) { pr_err("Failed to set vin min to %d mV rc=%d\n", chip->vin_min, rc); return rc; } } else { chip->vin_min = pm_chg_vinmin_get(chip); } rc = pm_chg_disable_wd(chip); if (rc) { pr_err("Failed to disable wd rc=%d\n", rc); return rc; } rc = pm_chg_masked_write(chip, CHG_CNTRL_2, CHG_BAT_TEMP_DIS_BIT, 0); if (rc) { pr_err("Failed to enable temp control chg rc=%d\n", rc); return rc; } /* switch to a 3.2Mhz for the buck */ if (pm8xxx_get_revision(chip->dev->parent) >= PM8XXX_REVISION_8038_1p0) rc = pm_chg_write(chip, CHG_BUCK_CLOCK_CTRL_8038, 0x15); else rc = pm_chg_write(chip, CHG_BUCK_CLOCK_CTRL, 0x15); if (rc) { pr_err("Failed to switch buck clk rc=%d\n", rc); return rc; } if (chip->trkl_voltage != 0) { rc = pm_chg_vtrkl_low_set(chip, chip->trkl_voltage); if (rc) { pr_err("Failed to set trkl voltage to %dmv rc=%d\n", chip->trkl_voltage, rc); return rc; } } if (chip->weak_voltage != 0) { rc = pm_chg_vweak_set(chip, chip->weak_voltage); if (rc) { pr_err("Failed to set weak voltage to %dmv rc=%d\n", chip->weak_voltage, rc); return rc; } } if (chip->trkl_current != 0) { rc = pm_chg_itrkl_set(chip, chip->trkl_current); if (rc) { pr_err("Failed to set trkl current to %dmA rc=%d\n", chip->trkl_voltage, rc); return rc; } } if (chip->weak_current != 0) { rc = pm_chg_iweak_set(chip, chip->weak_current); if (rc) { pr_err("Failed to set weak current to %dmA rc=%d\n", chip->weak_current, rc); return rc; } } rc = pm_chg_batt_cold_temp_config(chip, chip->cold_thr); if (rc) { pr_err("Failed to set cold config %d rc=%d\n", chip->cold_thr, rc); } rc = pm_chg_batt_hot_temp_config(chip, chip->hot_thr); if (rc) { pr_err("Failed to set hot config %d rc=%d\n", chip->hot_thr, rc); } rc = pm_chg_led_src_config(chip, chip->led_src_config); if (rc) { pr_err("Failed to set charger LED src config %d rc=%d\n", chip->led_src_config, rc); } /* Workarounds for die 3.0 */ if (pm8xxx_get_revision(chip->dev->parent) == PM8XXX_REVISION_8921_3p0 && pm8xxx_get_version(chip->dev->parent) == PM8XXX_VERSION_8921) { rc = pm8xxx_readb(chip->dev->parent, PM_SUB_REV, &subrev); if (rc) { pr_err("read failed: addr=%03X, rc=%d\n", PM_SUB_REV, rc); return rc; } /* Check if die 3.0.1 is present */ if (subrev & 0x1) pm_chg_write(chip, CHG_BUCK_CTRL_TEST3, 0xA4); else pm_chg_write(chip, CHG_BUCK_CTRL_TEST3, 0xAC); } if (pm8xxx_get_version(chip->dev->parent) == PM8XXX_VERSION_8917) { /* Set PM8917 USB_OVP debounce time to 15 ms */ rc = pm_chg_masked_write(chip, USB_OVP_CONTROL, OVP_DEBOUNCE_TIME, 0x6); if (rc) { pr_err("Failed to set USB OVP db rc=%d\n", rc); return rc; } /* Enable isub_fine resolution AICL for PM8917 */ chip->iusb_fine_res = true; if (chip->uvd_voltage_mv) { rc = pm_chg_uvd_threshold_set(chip, chip->uvd_voltage_mv); if (rc) { pr_err("Failed to set UVD threshold %drc=%d\n", chip->uvd_voltage_mv, rc); return rc; } } } pm_chg_write(chip, CHG_BUCK_CTRL_TEST3, 0xD9); /* Disable EOC FSM processing */ pm_chg_write(chip, CHG_BUCK_CTRL_TEST3, 0x91); rc = pm_chg_masked_write(chip, CHG_CNTRL, VREF_BATT_THERM_FORCE_ON, VREF_BATT_THERM_FORCE_ON); if (rc) pr_err("Failed to Force Vref therm rc=%d\n", rc); rc = pm_chg_charge_dis(chip, charging_disabled); if (rc) { pr_err("Failed to disable CHG_CHARGE_DIS bit rc=%d\n", rc); return rc; } rc = pm_chg_auto_enable(chip, !charging_disabled); if (rc) { pr_err("Failed to enable charging rc=%d\n", rc); return rc; } return 0; } static int get_rt_status(void *data, u64 * val) { int i = (int)data; int ret; /* global irq number is passed in via data */ ret = pm_chg_get_rt_status(the_chip, i); *val = ret; return 0; } DEFINE_SIMPLE_ATTRIBUTE(rt_fops, get_rt_status, NULL, "%llu\n"); static int get_fsm_status(void *data, u64 * val) { u8 temp; temp = pm_chg_get_fsm_state(the_chip); *val = temp; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fsm_fops, get_fsm_status, NULL, "%llu\n"); static int get_reg_loop(void *data, u64 * val) { u8 temp; if (!the_chip) { pr_err("%s called before init\n", __func__); return -EINVAL; } temp = pm_chg_get_regulation_loop(the_chip); *val = temp; return 0; } DEFINE_SIMPLE_ATTRIBUTE(reg_loop_fops, get_reg_loop, NULL, "0x%02llx\n"); static int get_reg(void *data, u64 * val) { int addr = (int)data; int ret; u8 temp; ret = pm8xxx_readb(the_chip->dev->parent, addr, &temp); if (ret) { pr_err("pm8xxx_readb to %x value =%d errored = %d\n", addr, temp, ret); return -EAGAIN; } *val = temp; return 0; } static int set_reg(void *data, u64 val) { int addr = (int)data; int ret; u8 temp; temp = (u8) val; ret = pm_chg_write(the_chip, addr, temp); if (ret) { pr_err("pm_chg_write to %x value =%d errored = %d\n", addr, temp, ret); return -EAGAIN; } return 0; } DEFINE_SIMPLE_ATTRIBUTE(reg_fops, get_reg, set_reg, "0x%02llx\n"); static int reg_loop; #define MAX_REG_LOOP_CHAR 10 static int get_reg_loop_param(char *buf, struct kernel_param *kp) { u8 temp; if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } temp = pm_chg_get_regulation_loop(the_chip); return snprintf(buf, MAX_REG_LOOP_CHAR, "%d", temp); } module_param_call(reg_loop, NULL, get_reg_loop_param, ®_loop, 0644); static int max_chg_ma; #define MAX_MA_CHAR 10 static int get_max_chg_ma_param(char *buf, struct kernel_param *kp) { if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } return snprintf(buf, MAX_MA_CHAR, "%d", the_chip->max_bat_chg_current); } module_param_call(max_chg_ma, NULL, get_max_chg_ma_param, &max_chg_ma, 0644); static int ibatmax_ma; static int set_ibat_max(const char *val, struct kernel_param *kp) { int rc; if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } rc = param_set_int(val, kp); if (rc) { pr_err("error setting value %d\n", rc); return rc; } if (abs(ibatmax_ma - the_chip->max_bat_chg_current) <= the_chip->ibatmax_max_adj_ma) { rc = pm_chg_ibatmax_set(the_chip, ibatmax_ma); if (rc) { pr_err("Failed to set ibatmax rc = %d\n", rc); return rc; } } return 0; } static int get_ibat_max(char *buf, struct kernel_param *kp) { int ibat_ma; int rc; if (!the_chip) { pr_err("called before init\n"); return -EINVAL; } rc = pm_chg_ibatmax_get(the_chip, &ibat_ma); if (rc) { pr_err("ibatmax_get error = %d\n", rc); return rc; } return snprintf(buf, MAX_MA_CHAR, "%d", ibat_ma); } module_param_call(ibatmax_ma, set_ibat_max, get_ibat_max, &ibatmax_ma, 0644); enum { BAT_WARM_ZONE, BAT_COOL_ZONE, }; static int get_warm_cool(void *data, u64 * val) { if (!the_chip) { pr_err("%s called before init\n", __func__); return -EINVAL; } if ((int)data == BAT_WARM_ZONE) *val = the_chip->is_bat_warm; if ((int)data == BAT_COOL_ZONE) *val = the_chip->is_bat_cool; return 0; } DEFINE_SIMPLE_ATTRIBUTE(warm_cool_fops, get_warm_cool, NULL, "0x%lld\n"); static void create_debugfs_entries(struct pm8921_chg_chip *chip) { int i; chip->dent = debugfs_create_dir("pm8921_chg", NULL); if (IS_ERR(chip->dent)) { pr_err("pmic charger couldnt create debugfs dir\n"); return; } debugfs_create_file("CHG_CNTRL", 0644, chip->dent, (void *)CHG_CNTRL, ®_fops); debugfs_create_file("CHG_CNTRL_2", 0644, chip->dent, (void *)CHG_CNTRL_2, ®_fops); debugfs_create_file("CHG_CNTRL_3", 0644, chip->dent, (void *)CHG_CNTRL_3, ®_fops); debugfs_create_file("PBL_ACCESS1", 0644, chip->dent, (void *)PBL_ACCESS1, ®_fops); debugfs_create_file("PBL_ACCESS2", 0644, chip->dent, (void *)PBL_ACCESS2, ®_fops); debugfs_create_file("SYS_CONFIG_1", 0644, chip->dent, (void *)SYS_CONFIG_1, ®_fops); debugfs_create_file("SYS_CONFIG_2", 0644, chip->dent, (void *)SYS_CONFIG_2, ®_fops); debugfs_create_file("CHG_VDD_MAX", 0644, chip->dent, (void *)CHG_VDD_MAX, ®_fops); debugfs_create_file("CHG_VDD_SAFE", 0644, chip->dent, (void *)CHG_VDD_SAFE, ®_fops); debugfs_create_file("CHG_VBAT_DET", 0644, chip->dent, (void *)CHG_VBAT_DET, ®_fops); debugfs_create_file("CHG_IBAT_MAX", 0644, chip->dent, (void *)CHG_IBAT_MAX, ®_fops); debugfs_create_file("CHG_IBAT_SAFE", 0644, chip->dent, (void *)CHG_IBAT_SAFE, ®_fops); debugfs_create_file("CHG_VIN_MIN", 0644, chip->dent, (void *)CHG_VIN_MIN, ®_fops); debugfs_create_file("CHG_VTRICKLE", 0644, chip->dent, (void *)CHG_VTRICKLE, ®_fops); debugfs_create_file("CHG_ITRICKLE", 0644, chip->dent, (void *)CHG_ITRICKLE, ®_fops); debugfs_create_file("CHG_ITERM", 0644, chip->dent, (void *)CHG_ITERM, ®_fops); debugfs_create_file("CHG_TCHG_MAX", 0644, chip->dent, (void *)CHG_TCHG_MAX, ®_fops); debugfs_create_file("CHG_TWDOG", 0644, chip->dent, (void *)CHG_TWDOG, ®_fops); debugfs_create_file("CHG_TEMP_THRESH", 0644, chip->dent, (void *)CHG_TEMP_THRESH, ®_fops); debugfs_create_file("CHG_COMP_OVR", 0644, chip->dent, (void *)CHG_COMP_OVR, ®_fops); debugfs_create_file("CHG_BUCK_CTRL_TEST1", 0644, chip->dent, (void *)CHG_BUCK_CTRL_TEST1, ®_fops); debugfs_create_file("CHG_BUCK_CTRL_TEST2", 0644, chip->dent, (void *)CHG_BUCK_CTRL_TEST2, ®_fops); debugfs_create_file("CHG_BUCK_CTRL_TEST3", 0644, chip->dent, (void *)CHG_BUCK_CTRL_TEST3, ®_fops); debugfs_create_file("CHG_TEST", 0644, chip->dent, (void *)CHG_TEST, ®_fops); debugfs_create_file("FSM_STATE", 0644, chip->dent, NULL, &fsm_fops); debugfs_create_file("REGULATION_LOOP_CONTROL", 0644, chip->dent, NULL, ®_loop_fops); debugfs_create_file("BAT_WARM_ZONE", 0644, chip->dent, (void *)BAT_WARM_ZONE, &warm_cool_fops); debugfs_create_file("BAT_COOL_ZONE", 0644, chip->dent, (void *)BAT_COOL_ZONE, &warm_cool_fops); for (i = 0; i < ARRAY_SIZE(chg_irq_data); i++) { if (chip->pmic_chg_irq[chg_irq_data[i].irq_id]) debugfs_create_file(chg_irq_data[i].name, 0444, chip->dent, (void *)chg_irq_data[i].irq_id, &rt_fops); } } static int pm8921_charger_suspend_noirq(struct device *dev) { int rc; struct pm8921_chg_chip *chip = dev_get_drvdata(dev); rc = pm_chg_masked_write(chip, CHG_CNTRL, VREF_BATT_THERM_FORCE_ON, 0); if (rc) pr_err("Failed to Force Vref therm off rc=%d\n", rc); rc = pm8921_chg_set_lpm(chip, 1); if (rc) pr_err("Failed to set lpm rc=%d\n", rc); pm8921_chg_set_hw_clk_switching(chip); return 0; } static int pm8921_charger_resume_noirq(struct device *dev) { int rc; struct pm8921_chg_chip *chip = dev_get_drvdata(dev); rc = pm8921_chg_set_lpm(chip, 0); if (rc) pr_err("Failed to set lpm rc=%d\n", rc); pm8921_chg_force_19p2mhz_clk(chip); rc = pm_chg_masked_write(chip, CHG_CNTRL, VREF_BATT_THERM_FORCE_ON, VREF_BATT_THERM_FORCE_ON); if (rc) pr_err("Failed to Force Vref therm on rc=%d\n", rc); return 0; } static int pm8921_charger_resume(struct device *dev) { struct pm8921_chg_chip *chip = dev_get_drvdata(dev); if (pm8921_chg_is_enabled(chip, LOOP_CHANGE_IRQ)) { disable_irq_wake(chip->pmic_chg_irq[LOOP_CHANGE_IRQ]); pm8921_chg_disable_irq(chip, LOOP_CHANGE_IRQ); } if (chip->btc_override && (is_dc_chg_plugged_in(the_chip) || is_usb_chg_plugged_in(the_chip))) schedule_delayed_work(&chip->btc_override_work, 0); schedule_delayed_work(&chip->update_heartbeat_work, 0); return 0; } static int pm8921_charger_suspend(struct device *dev) { struct pm8921_chg_chip *chip = dev_get_drvdata(dev); cancel_delayed_work_sync(&chip->update_heartbeat_work); if (chip->btc_override) cancel_delayed_work_sync(&chip->btc_override_work); if (is_usb_chg_plugged_in(chip)) { pm8921_chg_enable_irq(chip, LOOP_CHANGE_IRQ); enable_irq_wake(chip->pmic_chg_irq[LOOP_CHANGE_IRQ]); } return 0; } static int __devinit pm8921_charger_probe(struct platform_device *pdev) { int rc = 0; struct pm8921_chg_chip *chip; const struct pm8921_charger_platform_data *pdata = pdev->dev.platform_data; if (!pdata) { pr_err("missing platform data\n"); return -EINVAL; } chip = kzalloc(sizeof(struct pm8921_chg_chip), GFP_KERNEL); if (!chip) { pr_err("Cannot allocate pm_chg_chip\n"); return -ENOMEM; } chip->dev = &pdev->dev; chip->ttrkl_time = pdata->ttrkl_time; chip->update_time = pdata->update_time; chip->max_voltage_mv = pdata->max_voltage; chip->alarm_low_mv = pdata->alarm_low_mv; chip->alarm_high_mv = pdata->alarm_high_mv; chip->min_voltage_mv = pdata->min_voltage; chip->safe_current_ma = pdata->safe_current_ma; chip->uvd_voltage_mv = pdata->uvd_thresh_voltage; chip->resume_voltage_delta = pdata->resume_voltage_delta; chip->resume_charge_percent = pdata->resume_charge_percent; chip->term_current = pdata->term_current; chip->vbat_channel = pdata->charger_cdata.vbat_channel; chip->batt_temp_channel = pdata->charger_cdata.batt_temp_channel; chip->batt_id_channel = pdata->charger_cdata.batt_id_channel; chip->batt_id_min = pdata->batt_id_min; chip->batt_id_max = pdata->batt_id_max; if (pdata->cool_temp != INT_MIN) chip->cool_temp_dc = pdata->cool_temp * 10; else chip->cool_temp_dc = INT_MIN; if (pdata->warm_temp != INT_MIN) chip->warm_temp_dc = pdata->warm_temp * 10; else chip->warm_temp_dc = INT_MIN; if (pdata->hysteresis_temp) chip->hysteresis_temp_dc = pdata->hysteresis_temp * 10; else chip->hysteresis_temp_dc = TEMP_HYSTERISIS_DECIDEGC; chip->temp_check_period = pdata->temp_check_period; chip->max_bat_chg_current = pdata->max_bat_chg_current; /* Assign to corresponding module parameter */ usb_max_current = pdata->usb_max_current; chip->cool_bat_chg_current = pdata->cool_bat_chg_current; chip->warm_bat_chg_current = pdata->warm_bat_chg_current; chip->cool_bat_voltage = pdata->cool_bat_voltage; chip->warm_bat_voltage = pdata->warm_bat_voltage; chip->trkl_voltage = pdata->trkl_voltage; chip->weak_voltage = pdata->weak_voltage; chip->trkl_current = pdata->trkl_current; chip->weak_current = pdata->weak_current; chip->vin_min = pdata->vin_min; chip->thermal_mitigation = pdata->thermal_mitigation; chip->thermal_levels = pdata->thermal_levels; chip->disable_chg_rmvl_wrkarnd = pdata->disable_chg_rmvl_wrkarnd; chip->cold_thr = pdata->cold_thr; chip->hot_thr = pdata->hot_thr; chip->rconn_mohm = pdata->rconn_mohm; chip->led_src_config = pdata->led_src_config; chip->has_dc_supply = pdata->has_dc_supply; chip->battery_less_hardware = pdata->battery_less_hardware; chip->btc_override = pdata->btc_override; if (chip->btc_override) { chip->btc_delay_ms = pdata->btc_delay_ms; chip->btc_override_cold_decidegc = pdata->btc_override_cold_degc * 10; chip->btc_override_hot_decidegc = pdata->btc_override_hot_degc * 10; chip->btc_panic_if_cant_stop_chg = pdata->btc_panic_if_cant_stop_chg; } if (chip->battery_less_hardware) charging_disabled = 1; chip->ibatmax_max_adj_ma = find_ibat_max_adj_ma( chip->max_bat_chg_current); rc = pm8921_chg_hw_init(chip); if (rc) { pr_err("couldn't init hardware rc=%d\n", rc); goto free_chip; } if (chip->btc_override) pm8921_chg_btc_override_init(chip); chip->stop_chg_upon_expiry = pdata->stop_chg_upon_expiry; chip->usb_type = POWER_SUPPLY_TYPE_UNKNOWN; chip->usb_psy.name = "usb"; chip->usb_psy.type = POWER_SUPPLY_TYPE_USB; chip->usb_psy.supplied_to = pm_power_supplied_to; chip->usb_psy.num_supplicants = ARRAY_SIZE(pm_power_supplied_to); chip->usb_psy.properties = pm_power_props_usb; chip->usb_psy.num_properties = ARRAY_SIZE(pm_power_props_usb); chip->usb_psy.get_property = pm_power_get_property_usb; chip->usb_psy.set_property = pm_power_set_property_usb; chip->usb_psy.property_is_writeable = usb_property_is_writeable; chip->dc_psy.name = "pm8921-dc"; chip->dc_psy.type = POWER_SUPPLY_TYPE_MAINS; chip->dc_psy.supplied_to = pm_power_supplied_to; chip->dc_psy.num_supplicants = ARRAY_SIZE(pm_power_supplied_to); chip->dc_psy.properties = pm_power_props_mains; chip->dc_psy.num_properties = ARRAY_SIZE(pm_power_props_mains); chip->dc_psy.get_property = pm_power_get_property_mains; chip->batt_psy.name = "battery"; chip->batt_psy.type = POWER_SUPPLY_TYPE_BATTERY; chip->batt_psy.properties = msm_batt_power_props; chip->batt_psy.num_properties = ARRAY_SIZE(msm_batt_power_props); chip->batt_psy.get_property = pm_batt_power_get_property; chip->batt_psy.external_power_changed = pm_batt_external_power_changed; rc = power_supply_register(chip->dev, &chip->usb_psy); if (rc < 0) { pr_err("power_supply_register usb failed rc = %d\n", rc); goto free_chip; } rc = power_supply_register(chip->dev, &chip->dc_psy); if (rc < 0) { pr_err("power_supply_register usb failed rc = %d\n", rc); goto unregister_usb; } rc = power_supply_register(chip->dev, &chip->batt_psy); if (rc < 0) { pr_err("power_supply_register batt failed rc = %d\n", rc); goto unregister_dc; } platform_set_drvdata(pdev, chip); the_chip = chip; wake_lock_init(&chip->eoc_wake_lock, WAKE_LOCK_SUSPEND, "pm8921_eoc"); INIT_DELAYED_WORK(&chip->eoc_work, eoc_worker); INIT_DELAYED_WORK(&chip->vin_collapse_check_work, vin_collapse_check_worker); INIT_DELAYED_WORK(&chip->unplug_check_work, unplug_check_worker); INIT_WORK(&chip->bms_notify.work, bms_notify); INIT_WORK(&chip->battery_id_valid_work, battery_id_valid); INIT_DELAYED_WORK(&chip->update_heartbeat_work, update_heartbeat); INIT_DELAYED_WORK(&chip->btc_override_work, btc_override_worker); rc = request_irqs(chip, pdev); if (rc) { pr_err("couldn't register interrupts rc=%d\n", rc); goto unregister_batt; } enable_irq_wake(chip->pmic_chg_irq[USBIN_VALID_IRQ]); enable_irq_wake(chip->pmic_chg_irq[DCIN_VALID_IRQ]); enable_irq_wake(chip->pmic_chg_irq[VBATDET_LOW_IRQ]); enable_irq_wake(chip->pmic_chg_irq[FASTCHG_IRQ]); create_debugfs_entries(chip); /* determine what state the charger is in */ determine_initial_state(chip); if (chip->update_time) schedule_delayed_work(&chip->update_heartbeat_work, round_jiffies_relative(msecs_to_jiffies (chip->update_time))); return 0; unregister_batt: wake_lock_destroy(&chip->eoc_wake_lock); power_supply_unregister(&chip->batt_psy); unregister_dc: power_supply_unregister(&chip->dc_psy); unregister_usb: power_supply_unregister(&chip->usb_psy); free_chip: kfree(chip); return rc; } static int __devexit pm8921_charger_remove(struct platform_device *pdev) { struct pm8921_chg_chip *chip = platform_get_drvdata(pdev); free_irqs(chip); platform_set_drvdata(pdev, NULL); the_chip = NULL; kfree(chip); return 0; } static const struct dev_pm_ops pm8921_pm_ops = { .suspend = pm8921_charger_suspend, .suspend_noirq = pm8921_charger_suspend_noirq, .resume_noirq = pm8921_charger_resume_noirq, .resume = pm8921_charger_resume, }; static struct platform_driver pm8921_charger_driver = { .probe = pm8921_charger_probe, .remove = __devexit_p(pm8921_charger_remove), .driver = { .name = PM8921_CHARGER_DEV_NAME, .owner = THIS_MODULE, .pm = &pm8921_pm_ops, }, }; static int __init pm8921_charger_init(void) { return platform_driver_register(&pm8921_charger_driver); } static void __exit pm8921_charger_exit(void) { platform_driver_unregister(&pm8921_charger_driver); } late_initcall(pm8921_charger_init); module_exit(pm8921_charger_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("PMIC8921 charger/battery driver"); MODULE_VERSION("1.0"); MODULE_ALIAS("platform:" PM8921_CHARGER_DEV_NAME);