/* Copyright (c) 2010-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MRC(reg, processor, op1, crn, crm, op2) \ __asm__ __volatile__ ( \ " mrc " #processor "," #op1 ", %0," #crn "," #crm "," #op2 "\n" \ : "=r" (reg)) #define RCP15_PRRR(reg) MRC(reg, p15, 0, c10, c2, 0) #define RCP15_NMRR(reg) MRC(reg, p15, 0, c10, c2, 1) /* Sharability attributes of MSM IOMMU mappings */ #define MSM_IOMMU_ATTR_NON_SH 0x0 #define MSM_IOMMU_ATTR_SH 0x4 /* Cacheability attributes of MSM IOMMU mappings */ #define MSM_IOMMU_ATTR_NONCACHED 0x0 #define MSM_IOMMU_ATTR_CACHED_WB_WA 0x1 #define MSM_IOMMU_ATTR_CACHED_WB_NWA 0x2 #define MSM_IOMMU_ATTR_CACHED_WT 0x3 static int msm_iommu_unmap_range(struct iommu_domain *domain, unsigned int va, unsigned int len); static inline void clean_pte(unsigned long *start, unsigned long *end, int redirect) { if (!redirect) dmac_flush_range(start, end); } /* bitmap of the page sizes currently supported */ #define MSM_IOMMU_PGSIZES (SZ_4K | SZ_64K | SZ_1M | SZ_16M) static int msm_iommu_tex_class[4]; DEFINE_MUTEX(msm_iommu_lock); /** * Remote spinlock implementation based on Peterson's algorithm to be used * to synchronize IOMMU config port access between CPU and GPU. * This implements Process 0 of the spin lock algorithm. GPU implements * Process 1. Flag and turn is stored in shared memory to allow GPU to * access these. */ struct msm_iommu_remote_lock { int initialized; struct remote_iommu_petersons_spinlock *lock; }; static struct msm_iommu_remote_lock msm_iommu_remote_lock; #ifdef CONFIG_MSM_IOMMU_GPU_SYNC static void _msm_iommu_remote_spin_lock_init(void) { msm_iommu_remote_lock.lock = smem_alloc(SMEM_SPINLOCK_ARRAY, 32); memset(msm_iommu_remote_lock.lock, 0, sizeof(*msm_iommu_remote_lock.lock)); } void msm_iommu_remote_p0_spin_lock(void) { msm_iommu_remote_lock.lock->flag[PROC_APPS] = 1; msm_iommu_remote_lock.lock->turn = 1; smp_mb(); while (msm_iommu_remote_lock.lock->flag[PROC_GPU] == 1 && msm_iommu_remote_lock.lock->turn == 1) cpu_relax(); } void msm_iommu_remote_p0_spin_unlock(void) { smp_mb(); msm_iommu_remote_lock.lock->flag[PROC_APPS] = 0; } #endif inline void msm_iommu_mutex_lock(void) { mutex_lock(&msm_iommu_lock); } inline void msm_iommu_mutex_unlock(void) { mutex_unlock(&msm_iommu_lock); } void *msm_iommu_lock_initialize(void) { mutex_lock(&msm_iommu_lock); if (!msm_iommu_remote_lock.initialized) { msm_iommu_remote_lock_init(); msm_iommu_remote_lock.initialized = 1; } mutex_unlock(&msm_iommu_lock); return msm_iommu_remote_lock.lock; } static int apply_bus_vote(struct msm_iommu_drvdata *drvdata, unsigned int vote) { int ret = 0; if (drvdata->bus_client) { ret = msm_bus_scale_client_update_request(drvdata->bus_client, vote); if (ret) pr_err("%s: Failed to vote for bus: %d\n", __func__, vote); } return ret; } static int __enable_clocks(struct msm_iommu_drvdata *drvdata) { int ret; ret = clk_prepare_enable(drvdata->pclk); if (ret) goto fail; if (drvdata->clk) { ret = clk_prepare_enable(drvdata->clk); if (ret) clk_disable_unprepare(drvdata->pclk); } if (ret) goto fail; if (drvdata->aclk) { ret = clk_prepare_enable(drvdata->aclk); if (ret) { clk_disable_unprepare(drvdata->clk); clk_disable_unprepare(drvdata->pclk); } } fail: return ret; } static void __disable_clocks(struct msm_iommu_drvdata *drvdata) { if (drvdata->aclk) clk_disable_unprepare(drvdata->aclk); if (drvdata->clk) clk_disable_unprepare(drvdata->clk); clk_disable_unprepare(drvdata->pclk); } static int __enable_regulators(struct msm_iommu_drvdata *drvdata) { /* No need to do anything. IOMMUv0 is always on. */ return 0; } static void __disable_regulators(struct msm_iommu_drvdata *drvdata) { /* No need to do anything. IOMMUv0 is always on. */ } static void *_iommu_lock_initialize(void) { return msm_iommu_lock_initialize(); } static void _iommu_lock_acquire(void) { msm_iommu_lock(); } static void _iommu_lock_release(void) { msm_iommu_unlock(); } struct iommu_access_ops iommu_access_ops_v0 = { .iommu_power_on = __enable_regulators, .iommu_power_off = __disable_regulators, .iommu_bus_vote = apply_bus_vote, .iommu_clk_on = __enable_clocks, .iommu_clk_off = __disable_clocks, .iommu_lock_initialize = _iommu_lock_initialize, .iommu_lock_acquire = _iommu_lock_acquire, .iommu_lock_release = _iommu_lock_release, }; static int __flush_iotlb_va(struct iommu_domain *domain, unsigned int va) { struct msm_iommu_priv *priv = domain->priv; struct msm_iommu_drvdata *iommu_drvdata; struct msm_iommu_ctx_drvdata *ctx_drvdata; int ret = 0; int asid; list_for_each_entry(ctx_drvdata, &priv->list_attached, attached_elm) { if (!ctx_drvdata->pdev || !ctx_drvdata->pdev->dev.parent) BUG(); iommu_drvdata = dev_get_drvdata(ctx_drvdata->pdev->dev.parent); if (!iommu_drvdata) BUG(); ret = __enable_clocks(iommu_drvdata); if (ret) goto fail; msm_iommu_remote_spin_lock(); asid = GET_CONTEXTIDR_ASID(iommu_drvdata->base, ctx_drvdata->num); SET_TLBIVA(iommu_drvdata->base, ctx_drvdata->num, asid | (va & TLBIVA_VA)); mb(); msm_iommu_remote_spin_unlock(); __disable_clocks(iommu_drvdata); } fail: return ret; } static int __flush_iotlb(struct iommu_domain *domain) { struct msm_iommu_priv *priv = domain->priv; struct msm_iommu_drvdata *iommu_drvdata; struct msm_iommu_ctx_drvdata *ctx_drvdata; int ret = 0; int asid; list_for_each_entry(ctx_drvdata, &priv->list_attached, attached_elm) { if (!ctx_drvdata->pdev || !ctx_drvdata->pdev->dev.parent) BUG(); iommu_drvdata = dev_get_drvdata(ctx_drvdata->pdev->dev.parent); if (!iommu_drvdata) BUG(); ret = __enable_clocks(iommu_drvdata); if (ret) goto fail; msm_iommu_remote_spin_lock(); asid = GET_CONTEXTIDR_ASID(iommu_drvdata->base, ctx_drvdata->num); SET_TLBIASID(iommu_drvdata->base, ctx_drvdata->num, asid); mb(); msm_iommu_remote_spin_unlock(); __disable_clocks(iommu_drvdata); } fail: return ret; } static void __reset_context(void __iomem *base, void __iomem *glb_base, int ctx) { SET_BPRCOSH(glb_base, ctx, 0); SET_BPRCISH(glb_base, ctx, 0); SET_BPRCNSH(glb_base, ctx, 0); SET_BPSHCFG(glb_base, ctx, 0); SET_BPMTCFG(glb_base, ctx, 0); SET_ACTLR(base, ctx, 0); SET_SCTLR(base, ctx, 0); SET_FSRRESTORE(base, ctx, 0); SET_TTBR0(base, ctx, 0); SET_TTBR1(base, ctx, 0); SET_TTBCR(base, ctx, 0); SET_BFBCR(base, ctx, 0); SET_PAR(base, ctx, 0); SET_FAR(base, ctx, 0); SET_TLBFLPTER(base, ctx, 0); SET_TLBSLPTER(base, ctx, 0); SET_TLBLKCR(base, ctx, 0); SET_PRRR(base, ctx, 0); SET_NMRR(base, ctx, 0); mb(); } static void __program_context(void __iomem *base, void __iomem *glb_base, int ctx, int ncb, phys_addr_t pgtable, int redirect, int ttbr_split) { unsigned int prrr, nmrr; int i, j, found; msm_iommu_remote_spin_lock(); __reset_context(base, glb_base, ctx); /* Set up HTW mode */ /* TLB miss configuration: perform HTW on miss */ SET_TLBMCFG(base, ctx, 0x3); /* V2P configuration: HTW for access */ SET_V2PCFG(base, ctx, 0x3); SET_TTBCR(base, ctx, ttbr_split); SET_TTBR0_PA(base, ctx, (pgtable >> TTBR0_PA_SHIFT)); if (ttbr_split) SET_TTBR1_PA(base, ctx, (pgtable >> TTBR1_PA_SHIFT)); /* Enable context fault interrupt */ SET_CFEIE(base, ctx, 1); /* Stall access on a context fault and let the handler deal with it */ SET_CFCFG(base, ctx, 1); /* Redirect all cacheable requests to L2 slave port. */ SET_RCISH(base, ctx, 1); SET_RCOSH(base, ctx, 1); SET_RCNSH(base, ctx, 1); /* Turn on TEX Remap */ SET_TRE(base, ctx, 1); /* Set TEX remap attributes */ RCP15_PRRR(prrr); RCP15_NMRR(nmrr); SET_PRRR(base, ctx, prrr); SET_NMRR(base, ctx, nmrr); /* Turn on BFB prefetch */ SET_BFBDFE(base, ctx, 1); /* Configure page tables as inner-cacheable and shareable to reduce * the TLB miss penalty. */ if (redirect) { SET_TTBR0_SH(base, ctx, 1); SET_TTBR1_SH(base, ctx, 1); SET_TTBR0_NOS(base, ctx, 1); SET_TTBR1_NOS(base, ctx, 1); SET_TTBR0_IRGNH(base, ctx, 0); /* WB, WA */ SET_TTBR0_IRGNL(base, ctx, 1); SET_TTBR1_IRGNH(base, ctx, 0); /* WB, WA */ SET_TTBR1_IRGNL(base, ctx, 1); SET_TTBR0_ORGN(base, ctx, 1); /* WB, WA */ SET_TTBR1_ORGN(base, ctx, 1); /* WB, WA */ } /* Find if this page table is used elsewhere, and re-use ASID */ found = 0; for (i = 0; i < ncb; i++) if (GET_TTBR0_PA(base, i) == (pgtable >> TTBR0_PA_SHIFT) && i != ctx) { SET_CONTEXTIDR_ASID(base, ctx, \ GET_CONTEXTIDR_ASID(base, i)); found = 1; break; } /* If page table is new, find an unused ASID */ if (!found) { for (i = 0; i < ncb; i++) { found = 0; for (j = 0; j < ncb; j++) { if (GET_CONTEXTIDR_ASID(base, j) == i && j != ctx) found = 1; } if (!found) { SET_CONTEXTIDR_ASID(base, ctx, i); break; } } BUG_ON(found); } /* Enable the MMU */ SET_M(base, ctx, 1); mb(); msm_iommu_remote_spin_unlock(); } static int msm_iommu_domain_init(struct iommu_domain *domain, int flags) { struct msm_iommu_priv *priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) goto fail_nomem; INIT_LIST_HEAD(&priv->list_attached); priv->pt.fl_table = (unsigned long *)__get_free_pages(GFP_KERNEL, get_order(SZ_16K)); if (!priv->pt.fl_table) goto fail_nomem; #ifdef CONFIG_IOMMU_PGTABLES_L2 priv->pt.redirect = flags & MSM_IOMMU_DOMAIN_PT_CACHEABLE; #endif memset(priv->pt.fl_table, 0, SZ_16K); domain->priv = priv; clean_pte(priv->pt.fl_table, priv->pt.fl_table + NUM_FL_PTE, priv->pt.redirect); return 0; fail_nomem: kfree(priv); return -ENOMEM; } static void msm_iommu_domain_destroy(struct iommu_domain *domain) { struct msm_iommu_priv *priv; unsigned long *fl_table; int i; mutex_lock(&msm_iommu_lock); priv = domain->priv; domain->priv = NULL; if (priv) { fl_table = priv->pt.fl_table; for (i = 0; i < NUM_FL_PTE; i++) if ((fl_table[i] & 0x03) == FL_TYPE_TABLE) free_page((unsigned long) __va(((fl_table[i]) & FL_BASE_MASK))); free_pages((unsigned long)priv->pt.fl_table, get_order(SZ_16K)); priv->pt.fl_table = NULL; } kfree(priv); mutex_unlock(&msm_iommu_lock); } static int msm_iommu_attach_dev(struct iommu_domain *domain, struct device *dev) { struct msm_iommu_priv *priv; struct msm_iommu_drvdata *iommu_drvdata; struct msm_iommu_ctx_drvdata *ctx_drvdata; struct msm_iommu_ctx_drvdata *tmp_drvdata; int ret = 0; mutex_lock(&msm_iommu_lock); priv = domain->priv; if (!priv || !dev) { ret = -EINVAL; goto unlock; } iommu_drvdata = dev_get_drvdata(dev->parent); ctx_drvdata = dev_get_drvdata(dev); if (!iommu_drvdata || !ctx_drvdata) { ret = -EINVAL; goto unlock; } ++ctx_drvdata->attach_count; if (ctx_drvdata->attach_count > 1) goto unlock; if (!list_empty(&ctx_drvdata->attached_elm)) { ret = -EBUSY; goto unlock; } list_for_each_entry(tmp_drvdata, &priv->list_attached, attached_elm) if (tmp_drvdata == ctx_drvdata) { ret = -EBUSY; goto unlock; } ret = apply_bus_vote(iommu_drvdata, 1); if (ret) goto unlock; ret = __enable_clocks(iommu_drvdata); if (ret) goto unlock; __program_context(iommu_drvdata->base, iommu_drvdata->glb_base, ctx_drvdata->num, iommu_drvdata->ncb, __pa(priv->pt.fl_table), priv->pt.redirect, iommu_drvdata->ttbr_split); __disable_clocks(iommu_drvdata); list_add(&(ctx_drvdata->attached_elm), &priv->list_attached); ctx_drvdata->attached_domain = domain; mutex_unlock(&msm_iommu_lock); msm_iommu_attached(dev->parent); return ret; unlock: mutex_unlock(&msm_iommu_lock); return ret; } static void msm_iommu_detach_dev(struct iommu_domain *domain, struct device *dev) { struct msm_iommu_priv *priv; struct msm_iommu_drvdata *iommu_drvdata; struct msm_iommu_ctx_drvdata *ctx_drvdata; int ret; msm_iommu_detached(dev->parent); mutex_lock(&msm_iommu_lock); priv = domain->priv; if (!priv || !dev) goto unlock; iommu_drvdata = dev_get_drvdata(dev->parent); ctx_drvdata = dev_get_drvdata(dev); if (!iommu_drvdata || !ctx_drvdata) goto unlock; --ctx_drvdata->attach_count; BUG_ON(ctx_drvdata->attach_count < 0); if (ctx_drvdata->attach_count > 0) goto unlock; ret = __enable_clocks(iommu_drvdata); if (ret) goto unlock; msm_iommu_remote_spin_lock(); SET_TLBIASID(iommu_drvdata->base, ctx_drvdata->num, GET_CONTEXTIDR_ASID(iommu_drvdata->base, ctx_drvdata->num)); __reset_context(iommu_drvdata->base, iommu_drvdata->glb_base, ctx_drvdata->num); msm_iommu_remote_spin_unlock(); __disable_clocks(iommu_drvdata); apply_bus_vote(iommu_drvdata, 0); list_del_init(&ctx_drvdata->attached_elm); ctx_drvdata->attached_domain = NULL; unlock: mutex_unlock(&msm_iommu_lock); } static int __get_pgprot(int prot, int len) { unsigned int pgprot; int tex; if (!(prot & (IOMMU_READ | IOMMU_WRITE))) { prot |= IOMMU_READ | IOMMU_WRITE; WARN_ONCE(1, "No attributes in iommu mapping; assuming RW\n"); } if ((prot & IOMMU_WRITE) && !(prot & IOMMU_READ)) { prot |= IOMMU_READ; WARN_ONCE(1, "Write-only iommu mappings unsupported; falling back to RW\n"); } if (prot & IOMMU_CACHE) tex = (pgprot_kernel >> 2) & 0x07; else tex = msm_iommu_tex_class[MSM_IOMMU_ATTR_NONCACHED]; if (tex < 0 || tex > NUM_TEX_CLASS - 1) return 0; if (len == SZ_16M || len == SZ_1M) { pgprot = FL_SHARED; pgprot |= tex & 0x01 ? FL_BUFFERABLE : 0; pgprot |= tex & 0x02 ? FL_CACHEABLE : 0; pgprot |= tex & 0x04 ? FL_TEX0 : 0; pgprot |= FL_AP0 | FL_AP1; pgprot |= prot & IOMMU_WRITE ? 0 : FL_AP2; } else { pgprot = SL_SHARED; pgprot |= tex & 0x01 ? SL_BUFFERABLE : 0; pgprot |= tex & 0x02 ? SL_CACHEABLE : 0; pgprot |= tex & 0x04 ? SL_TEX0 : 0; pgprot |= SL_AP0 | SL_AP1; pgprot |= prot & IOMMU_WRITE ? 0 : SL_AP2; } return pgprot; } static unsigned long *make_second_level(struct msm_iommu_priv *priv, unsigned long *fl_pte) { unsigned long *sl; sl = (unsigned long *) __get_free_pages(GFP_KERNEL, get_order(SZ_4K)); if (!sl) { pr_debug("Could not allocate second level table\n"); goto fail; } memset(sl, 0, SZ_4K); clean_pte(sl, sl + NUM_SL_PTE, priv->pt.redirect); *fl_pte = ((((int)__pa(sl)) & FL_BASE_MASK) | \ FL_TYPE_TABLE); clean_pte(fl_pte, fl_pte + 1, priv->pt.redirect); fail: return sl; } static int sl_4k(unsigned long *sl_pte, phys_addr_t pa, unsigned int pgprot) { int ret = 0; if (*sl_pte) { ret = -EBUSY; goto fail; } *sl_pte = (pa & SL_BASE_MASK_SMALL) | SL_NG | SL_SHARED | SL_TYPE_SMALL | pgprot; fail: return ret; } static int sl_64k(unsigned long *sl_pte, phys_addr_t pa, unsigned int pgprot) { int ret = 0; int i; for (i = 0; i < 16; i++) if (*(sl_pte+i)) { ret = -EBUSY; goto fail; } for (i = 0; i < 16; i++) *(sl_pte+i) = (pa & SL_BASE_MASK_LARGE) | SL_NG | SL_SHARED | SL_TYPE_LARGE | pgprot; fail: return ret; } static inline int fl_1m(unsigned long *fl_pte, phys_addr_t pa, int pgprot) { if (*fl_pte) return -EBUSY; *fl_pte = (pa & 0xFFF00000) | FL_NG | FL_TYPE_SECT | FL_SHARED | pgprot; return 0; } static inline int fl_16m(unsigned long *fl_pte, phys_addr_t pa, int pgprot) { int i; int ret = 0; for (i = 0; i < 16; i++) if (*(fl_pte+i)) { ret = -EBUSY; goto fail; } for (i = 0; i < 16; i++) *(fl_pte+i) = (pa & 0xFF000000) | FL_SUPERSECTION | FL_TYPE_SECT | FL_SHARED | FL_NG | pgprot; fail: return ret; } static int msm_iommu_map(struct iommu_domain *domain, unsigned long va, phys_addr_t pa, size_t len, int prot) { struct msm_iommu_priv *priv; unsigned long *fl_table; unsigned long *fl_pte; unsigned long fl_offset; unsigned long *sl_table; unsigned long *sl_pte; unsigned long sl_offset; unsigned int pgprot; int ret = 0; mutex_lock(&msm_iommu_lock); priv = domain->priv; if (!priv) { ret = -EINVAL; goto fail; } fl_table = priv->pt.fl_table; if (len != SZ_16M && len != SZ_1M && len != SZ_64K && len != SZ_4K) { pr_debug("Bad size: %d\n", len); ret = -EINVAL; goto fail; } if (!fl_table) { pr_debug("Null page table\n"); ret = -EINVAL; goto fail; } pgprot = __get_pgprot(prot, len); if (!pgprot) { ret = -EINVAL; goto fail; } fl_offset = FL_OFFSET(va); /* Upper 12 bits */ fl_pte = fl_table + fl_offset; /* int pointers, 4 bytes */ if (len == SZ_16M) { ret = fl_16m(fl_pte, pa, pgprot); if (ret) goto fail; clean_pte(fl_pte, fl_pte + 16, priv->pt.redirect); } if (len == SZ_1M) { ret = fl_1m(fl_pte, pa, pgprot); if (ret) goto fail; clean_pte(fl_pte, fl_pte + 1, priv->pt.redirect); } /* Need a 2nd level table */ if (len == SZ_4K || len == SZ_64K) { if (*fl_pte == 0) { if (make_second_level(priv, fl_pte) == NULL) { ret = -ENOMEM; goto fail; } } if (!(*fl_pte & FL_TYPE_TABLE)) { ret = -EBUSY; goto fail; } } sl_table = (unsigned long *) __va(((*fl_pte) & FL_BASE_MASK)); sl_offset = SL_OFFSET(va); sl_pte = sl_table + sl_offset; if (len == SZ_4K) { ret = sl_4k(sl_pte, pa, pgprot); if (ret) goto fail; clean_pte(sl_pte, sl_pte + 1, priv->pt.redirect); } if (len == SZ_64K) { ret = sl_64k(sl_pte, pa, pgprot); if (ret) goto fail; clean_pte(sl_pte, sl_pte + 16, priv->pt.redirect); } ret = __flush_iotlb_va(domain, va); fail: mutex_unlock(&msm_iommu_lock); return ret; } static size_t msm_iommu_unmap(struct iommu_domain *domain, unsigned long va, size_t len) { struct msm_iommu_priv *priv; unsigned long *fl_table; unsigned long *fl_pte; unsigned long fl_offset; unsigned long *sl_table; unsigned long *sl_pte; unsigned long sl_offset; int i, ret = 0; mutex_lock(&msm_iommu_lock); priv = domain->priv; if (!priv) goto fail; fl_table = priv->pt.fl_table; if (len != SZ_16M && len != SZ_1M && len != SZ_64K && len != SZ_4K) { pr_debug("Bad length: %d\n", len); goto fail; } if (!fl_table) { pr_debug("Null page table\n"); goto fail; } fl_offset = FL_OFFSET(va); /* Upper 12 bits */ fl_pte = fl_table + fl_offset; /* int pointers, 4 bytes */ if (*fl_pte == 0) { pr_debug("First level PTE is 0\n"); goto fail; } /* Unmap supersection */ if (len == SZ_16M) { for (i = 0; i < 16; i++) *(fl_pte+i) = 0; clean_pte(fl_pte, fl_pte + 16, priv->pt.redirect); } if (len == SZ_1M) { *fl_pte = 0; clean_pte(fl_pte, fl_pte + 1, priv->pt.redirect); } sl_table = (unsigned long *) __va(((*fl_pte) & FL_BASE_MASK)); sl_offset = SL_OFFSET(va); sl_pte = sl_table + sl_offset; if (len == SZ_64K) { for (i = 0; i < 16; i++) *(sl_pte+i) = 0; clean_pte(sl_pte, sl_pte + 16, priv->pt.redirect); } if (len == SZ_4K) { *sl_pte = 0; clean_pte(sl_pte, sl_pte + 1, priv->pt.redirect); } if (len == SZ_4K || len == SZ_64K) { int used = 0; for (i = 0; i < NUM_SL_PTE; i++) if (sl_table[i]) used = 1; if (!used) { free_page((unsigned long)sl_table); *fl_pte = 0; clean_pte(fl_pte, fl_pte + 1, priv->pt.redirect); } } ret = __flush_iotlb_va(domain, va); fail: mutex_unlock(&msm_iommu_lock); /* the IOMMU API requires us to return how many bytes were unmapped */ len = ret ? 0 : len; return len; } static unsigned int get_phys_addr(struct scatterlist *sg) { /* * Try sg_dma_address first so that we can * map carveout regions that do not have a * struct page associated with them. */ unsigned int pa = sg_dma_address(sg); if (pa == 0) pa = sg_phys(sg); return pa; } static inline int is_fully_aligned(unsigned int va, phys_addr_t pa, size_t len, int align) { return IS_ALIGNED(va, align) && IS_ALIGNED(pa, align) && (len >= align); } static int check_range(unsigned long *fl_table, unsigned int va, unsigned int len) { unsigned int offset = 0; unsigned long *fl_pte; unsigned long fl_offset; unsigned long *sl_table; unsigned long sl_start, sl_end; int i; fl_offset = FL_OFFSET(va); /* Upper 12 bits */ fl_pte = fl_table + fl_offset; /* int pointers, 4 bytes */ while (offset < len) { if (*fl_pte & FL_TYPE_TABLE) { sl_start = SL_OFFSET(va); sl_table = __va(((*fl_pte) & FL_BASE_MASK)); sl_end = ((len - offset) / SZ_4K) + sl_start; if (sl_end > NUM_SL_PTE) sl_end = NUM_SL_PTE; for (i = sl_start; i < sl_end; i++) { if (sl_table[i] != 0) { pr_err("%08x - %08x already mapped\n", va, va + SZ_4K); return -EBUSY; } offset += SZ_4K; va += SZ_4K; } sl_start = 0; } else { if (*fl_pte != 0) { pr_err("%08x - %08x already mapped\n", va, va + SZ_1M); return -EBUSY; } va += SZ_1M; offset += SZ_1M; sl_start = 0; } fl_pte++; } return 0; } static int msm_iommu_map_range(struct iommu_domain *domain, unsigned int va, struct scatterlist *sg, unsigned int len, int prot) { unsigned int pa; unsigned int start_va = va; unsigned int offset = 0; unsigned long *fl_table; unsigned long *fl_pte; unsigned long fl_offset; unsigned long *sl_table = NULL; unsigned long sl_offset, sl_start; unsigned int chunk_size, chunk_offset = 0; int ret = 0; struct msm_iommu_priv *priv; unsigned int pgprot4k, pgprot64k, pgprot1m, pgprot16m; mutex_lock(&msm_iommu_lock); BUG_ON(len & (SZ_4K - 1)); priv = domain->priv; fl_table = priv->pt.fl_table; pgprot4k = __get_pgprot(prot, SZ_4K); pgprot64k = __get_pgprot(prot, SZ_64K); pgprot1m = __get_pgprot(prot, SZ_1M); pgprot16m = __get_pgprot(prot, SZ_16M); if (!pgprot4k || !pgprot64k || !pgprot1m || !pgprot16m) { ret = -EINVAL; goto fail; } ret = check_range(fl_table, va, len); if (ret) goto fail; fl_offset = FL_OFFSET(va); /* Upper 12 bits */ fl_pte = fl_table + fl_offset; /* int pointers, 4 bytes */ pa = get_phys_addr(sg); while (offset < len) { chunk_size = SZ_4K; if (is_fully_aligned(va, pa, sg->length - chunk_offset, SZ_16M)) chunk_size = SZ_16M; else if (is_fully_aligned(va, pa, sg->length - chunk_offset, SZ_1M)) chunk_size = SZ_1M; /* 64k or 4k determined later */ /* for 1M and 16M, only first level entries are required */ if (chunk_size >= SZ_1M) { if (chunk_size == SZ_16M) { ret = fl_16m(fl_pte, pa, pgprot16m); if (ret) goto fail; clean_pte(fl_pte, fl_pte + 16, priv->pt.redirect); fl_pte += 16; } else if (chunk_size == SZ_1M) { ret = fl_1m(fl_pte, pa, pgprot1m); if (ret) goto fail; clean_pte(fl_pte, fl_pte + 1, priv->pt.redirect); fl_pte++; } offset += chunk_size; chunk_offset += chunk_size; va += chunk_size; pa += chunk_size; if (chunk_offset >= sg->length && offset < len) { chunk_offset = 0; sg = sg_next(sg); pa = get_phys_addr(sg); } continue; } /* for 4K or 64K, make sure there is a second level table */ if (*fl_pte == 0) { if (!make_second_level(priv, fl_pte)) { ret = -ENOMEM; goto fail; } } if (!(*fl_pte & FL_TYPE_TABLE)) { ret = -EBUSY; goto fail; } sl_table = __va(((*fl_pte) & FL_BASE_MASK)); sl_offset = SL_OFFSET(va); /* Keep track of initial position so we * don't clean more than we have to */ sl_start = sl_offset; /* Build the 2nd level page table */ while (offset < len && sl_offset < NUM_SL_PTE) { /* Map a large 64K page if the chunk is large enough and * the pa and va are aligned */ if (is_fully_aligned(va, pa, sg->length - chunk_offset, SZ_64K)) chunk_size = SZ_64K; else chunk_size = SZ_4K; if (chunk_size == SZ_4K) { sl_4k(&sl_table[sl_offset], pa, pgprot4k); sl_offset++; } else { BUG_ON(sl_offset + 16 > NUM_SL_PTE); sl_64k(&sl_table[sl_offset], pa, pgprot64k); sl_offset += 16; } offset += chunk_size; chunk_offset += chunk_size; va += chunk_size; pa += chunk_size; if (chunk_offset >= sg->length && offset < len) { chunk_offset = 0; sg = sg_next(sg); pa = get_phys_addr(sg); } } clean_pte(sl_table + sl_start, sl_table + sl_offset, priv->pt.redirect); fl_pte++; sl_offset = 0; } __flush_iotlb(domain); fail: mutex_unlock(&msm_iommu_lock); if (ret && offset > 0) msm_iommu_unmap_range(domain, start_va, offset); return ret; } static int msm_iommu_unmap_range(struct iommu_domain *domain, unsigned int va, unsigned int len) { unsigned int offset = 0; unsigned long *fl_table; unsigned long *fl_pte; unsigned long fl_offset; unsigned long *sl_table; unsigned long sl_start, sl_end; int used, i; struct msm_iommu_priv *priv; mutex_lock(&msm_iommu_lock); BUG_ON(len & (SZ_4K - 1)); priv = domain->priv; fl_table = priv->pt.fl_table; fl_offset = FL_OFFSET(va); /* Upper 12 bits */ fl_pte = fl_table + fl_offset; /* int pointers, 4 bytes */ while (offset < len) { if (*fl_pte & FL_TYPE_TABLE) { sl_start = SL_OFFSET(va); sl_table = __va(((*fl_pte) & FL_BASE_MASK)); sl_end = ((len - offset) / SZ_4K) + sl_start; if (sl_end > NUM_SL_PTE) sl_end = NUM_SL_PTE; memset(sl_table + sl_start, 0, (sl_end - sl_start) * 4); clean_pte(sl_table + sl_start, sl_table + sl_end, priv->pt.redirect); offset += (sl_end - sl_start) * SZ_4K; va += (sl_end - sl_start) * SZ_4K; /* Unmap and free the 2nd level table if all mappings * in it were removed. This saves memory, but the table * will need to be re-allocated the next time someone * tries to map these VAs. */ used = 0; /* If we just unmapped the whole table, don't bother * seeing if there are still used entries left. */ if (sl_end - sl_start != NUM_SL_PTE) for (i = 0; i < NUM_SL_PTE; i++) if (sl_table[i]) { used = 1; break; } if (!used) { free_page((unsigned long)sl_table); *fl_pte = 0; clean_pte(fl_pte, fl_pte + 1, priv->pt.redirect); } sl_start = 0; } else { *fl_pte = 0; clean_pte(fl_pte, fl_pte + 1, priv->pt.redirect); va += SZ_1M; offset += SZ_1M; sl_start = 0; } fl_pte++; } __flush_iotlb(domain); mutex_unlock(&msm_iommu_lock); return 0; } static phys_addr_t msm_iommu_iova_to_phys(struct iommu_domain *domain, unsigned long va) { struct msm_iommu_priv *priv; struct msm_iommu_drvdata *iommu_drvdata; struct msm_iommu_ctx_drvdata *ctx_drvdata; unsigned int par; void __iomem *base; phys_addr_t ret = 0; int ctx; mutex_lock(&msm_iommu_lock); priv = domain->priv; if (list_empty(&priv->list_attached)) goto fail; ctx_drvdata = list_entry(priv->list_attached.next, struct msm_iommu_ctx_drvdata, attached_elm); iommu_drvdata = dev_get_drvdata(ctx_drvdata->pdev->dev.parent); base = iommu_drvdata->base; ctx = ctx_drvdata->num; ret = __enable_clocks(iommu_drvdata); if (ret) goto fail; msm_iommu_remote_spin_lock(); SET_V2PPR(base, ctx, va & V2Pxx_VA); mb(); par = GET_PAR(base, ctx); /* We are dealing with a supersection */ if (GET_NOFAULT_SS(base, ctx)) ret = (par & 0xFF000000) | (va & 0x00FFFFFF); else /* Upper 20 bits from PAR, lower 12 from VA */ ret = (par & 0xFFFFF000) | (va & 0x00000FFF); if (GET_FAULT(base, ctx)) ret = 0; msm_iommu_remote_spin_unlock(); __disable_clocks(iommu_drvdata); fail: mutex_unlock(&msm_iommu_lock); return ret; } static int msm_iommu_domain_has_cap(struct iommu_domain *domain, unsigned long cap) { return 0; } static void __print_ctx_regs(void __iomem *base, int ctx) { unsigned int fsr = GET_FSR(base, ctx); pr_err("FAR = %08x PAR = %08x\n", GET_FAR(base, ctx), GET_PAR(base, ctx)); pr_err("FSR = %08x [%s%s%s%s%s%s%s%s%s%s]\n", fsr, (fsr & 0x02) ? "TF " : "", (fsr & 0x04) ? "AFF " : "", (fsr & 0x08) ? "APF " : "", (fsr & 0x10) ? "TLBMF " : "", (fsr & 0x20) ? "HTWDEEF " : "", (fsr & 0x40) ? "HTWSEEF " : "", (fsr & 0x80) ? "MHF " : "", (fsr & 0x10000) ? "SL " : "", (fsr & 0x40000000) ? "SS " : "", (fsr & 0x80000000) ? "MULTI " : ""); pr_err("FSYNR0 = %08x FSYNR1 = %08x\n", GET_FSYNR0(base, ctx), GET_FSYNR1(base, ctx)); pr_err("TTBR0 = %08x TTBR1 = %08x\n", GET_TTBR0(base, ctx), GET_TTBR1(base, ctx)); pr_err("SCTLR = %08x ACTLR = %08x\n", GET_SCTLR(base, ctx), GET_ACTLR(base, ctx)); pr_err("PRRR = %08x NMRR = %08x\n", GET_PRRR(base, ctx), GET_NMRR(base, ctx)); } irqreturn_t msm_iommu_fault_handler(int irq, void *dev_id) { struct msm_iommu_ctx_drvdata *ctx_drvdata = dev_id; struct msm_iommu_drvdata *drvdata; void __iomem *base; unsigned int fsr, num; int ret; mutex_lock(&msm_iommu_lock); BUG_ON(!ctx_drvdata); drvdata = dev_get_drvdata(ctx_drvdata->pdev->dev.parent); BUG_ON(!drvdata); base = drvdata->base; num = ctx_drvdata->num; ret = __enable_clocks(drvdata); if (ret) goto fail; msm_iommu_remote_spin_lock(); fsr = GET_FSR(base, num); if (fsr) { if (!ctx_drvdata->attached_domain) { pr_err("Bad domain in interrupt handler\n"); ret = -ENOSYS; } else ret = report_iommu_fault(ctx_drvdata->attached_domain, &ctx_drvdata->pdev->dev, GET_FAR(base, num), 0); if (ret == -ENOSYS) { pr_err("Unexpected IOMMU page fault!\n"); pr_err("name = %s\n", drvdata->name); pr_err("context = %s (%d)\n", ctx_drvdata->name, num); pr_err("Interesting registers:\n"); __print_ctx_regs(base, num); } SET_FSR(base, num, fsr); /* * Only resume fetches if the registered fault handler * allows it */ if (ret != -EBUSY) SET_RESUME(base, num, 1); ret = IRQ_HANDLED; } else ret = IRQ_NONE; msm_iommu_remote_spin_unlock(); __disable_clocks(drvdata); fail: mutex_unlock(&msm_iommu_lock); return ret; } static phys_addr_t msm_iommu_get_pt_base_addr(struct iommu_domain *domain) { struct msm_iommu_priv *priv = domain->priv; return __pa(priv->pt.fl_table); } static struct iommu_ops msm_iommu_ops = { .domain_init = msm_iommu_domain_init, .domain_destroy = msm_iommu_domain_destroy, .attach_dev = msm_iommu_attach_dev, .detach_dev = msm_iommu_detach_dev, .map = msm_iommu_map, .unmap = msm_iommu_unmap, .map_range = msm_iommu_map_range, .unmap_range = msm_iommu_unmap_range, .iova_to_phys = msm_iommu_iova_to_phys, .domain_has_cap = msm_iommu_domain_has_cap, .get_pt_base_addr = msm_iommu_get_pt_base_addr, .pgsize_bitmap = MSM_IOMMU_PGSIZES, }; static int __init get_tex_class(int icp, int ocp, int mt, int nos) { int i = 0; unsigned int prrr = 0; unsigned int nmrr = 0; int c_icp, c_ocp, c_mt, c_nos; RCP15_PRRR(prrr); RCP15_NMRR(nmrr); for (i = 0; i < NUM_TEX_CLASS; i++) { c_nos = PRRR_NOS(prrr, i); c_mt = PRRR_MT(prrr, i); c_icp = NMRR_ICP(nmrr, i); c_ocp = NMRR_OCP(nmrr, i); if (icp == c_icp && ocp == c_ocp && c_mt == mt && c_nos == nos) return i; } return -ENODEV; } static void __init setup_iommu_tex_classes(void) { msm_iommu_tex_class[MSM_IOMMU_ATTR_NONCACHED] = get_tex_class(CP_NONCACHED, CP_NONCACHED, MT_NORMAL, 1); msm_iommu_tex_class[MSM_IOMMU_ATTR_CACHED_WB_WA] = get_tex_class(CP_WB_WA, CP_WB_WA, MT_NORMAL, 1); msm_iommu_tex_class[MSM_IOMMU_ATTR_CACHED_WB_NWA] = get_tex_class(CP_WB_NWA, CP_WB_NWA, MT_NORMAL, 1); msm_iommu_tex_class[MSM_IOMMU_ATTR_CACHED_WT] = get_tex_class(CP_WT, CP_WT, MT_NORMAL, 1); } static int __init msm_iommu_init(void) { if (!msm_soc_version_supports_iommu_v0()) return -ENODEV; msm_iommu_lock_initialize(); setup_iommu_tex_classes(); bus_set_iommu(&platform_bus_type, &msm_iommu_ops); return 0; } subsys_initcall(msm_iommu_init); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Stepan Moskovchenko ");