/* Qualcomm Crypto driver * * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qce.h" #define DEBUG_MAX_FNAME 16 #define DEBUG_MAX_RW_BUF 1024 struct crypto_stat { u32 aead_sha1_aes_enc; u32 aead_sha1_aes_dec; u32 aead_sha1_des_enc; u32 aead_sha1_des_dec; u32 aead_sha1_3des_enc; u32 aead_sha1_3des_dec; u32 aead_ccm_aes_enc; u32 aead_ccm_aes_dec; u32 aead_op_success; u32 aead_op_fail; u32 aead_bad_msg; u32 ablk_cipher_aes_enc; u32 ablk_cipher_aes_dec; u32 ablk_cipher_des_enc; u32 ablk_cipher_des_dec; u32 ablk_cipher_3des_enc; u32 ablk_cipher_3des_dec; u32 ablk_cipher_op_success; u32 ablk_cipher_op_fail; u32 sha1_digest; u32 sha256_digest; u32 sha_op_success; u32 sha_op_fail; u32 sha1_hmac_digest; u32 sha256_hmac_digest; u32 sha_hmac_op_success; u32 sha_hmac_op_fail; }; static struct crypto_stat _qcrypto_stat; static struct dentry *_debug_dent; static char _debug_read_buf[DEBUG_MAX_RW_BUF]; struct crypto_priv { /* CE features supported by target device*/ struct msm_ce_hw_support platform_support; /* CE features/algorithms supported by HW engine*/ struct ce_hw_support ce_support; uint32_t bus_scale_handle; /* the lock protects queue and req*/ spinlock_t lock; /* qce handle */ void *qce; /* list of registered algorithms */ struct list_head alg_list; /* platform device */ struct platform_device *pdev; /* current active request */ struct crypto_async_request *req; int res; /* request queue */ struct crypto_queue queue; uint32_t ce_lock_count; uint32_t high_bw_req_count; struct work_struct unlock_ce_ws; struct tasklet_struct done_tasklet; }; /*------------------------------------------------------------------------- * Resource Locking Service * ------------------------------------------------------------------------*/ #define QCRYPTO_CMD_ID 1 #define QCRYPTO_CE_LOCK_CMD 1 #define QCRYPTO_CE_UNLOCK_CMD 0 #define NUM_RETRY 1000 #define CE_BUSY 55 static DEFINE_MUTEX(qcrypto_sent_bw_req); static int qcrypto_scm_cmd(int resource, int cmd, int *response) { #ifdef CONFIG_MSM_SCM struct { int resource; int cmd; } cmd_buf; cmd_buf.resource = resource; cmd_buf.cmd = cmd; return scm_call(SCM_SVC_TZ, QCRYPTO_CMD_ID, &cmd_buf, sizeof(cmd_buf), response, sizeof(*response)); #else return 0; #endif } static void qcrypto_unlock_ce(struct work_struct *work) { int response = 0; unsigned long flags; struct crypto_priv *cp = container_of(work, struct crypto_priv, unlock_ce_ws); if (cp->ce_lock_count == 1) BUG_ON(qcrypto_scm_cmd(cp->platform_support.shared_ce_resource, QCRYPTO_CE_UNLOCK_CMD, &response) != 0); spin_lock_irqsave(&cp->lock, flags); cp->ce_lock_count--; spin_unlock_irqrestore(&cp->lock, flags); } static int qcrypto_lock_ce(struct crypto_priv *cp) { unsigned long flags; int response = -CE_BUSY; int i = 0; if (cp->ce_lock_count == 0) { do { if (qcrypto_scm_cmd( cp->platform_support.shared_ce_resource, QCRYPTO_CE_LOCK_CMD, &response)) { response = -EINVAL; break; } } while ((response == -CE_BUSY) && (i++ < NUM_RETRY)); if ((response == -CE_BUSY) && (i >= NUM_RETRY)) return -EUSERS; if (response < 0) return -EINVAL; } spin_lock_irqsave(&cp->lock, flags); cp->ce_lock_count++; spin_unlock_irqrestore(&cp->lock, flags); return 0; } enum qcrypto_alg_type { QCRYPTO_ALG_CIPHER = 0, QCRYPTO_ALG_SHA = 1, QCRYPTO_ALG_LAST }; struct qcrypto_alg { struct list_head entry; struct crypto_alg cipher_alg; struct ahash_alg sha_alg; enum qcrypto_alg_type alg_type; struct crypto_priv *cp; }; #define QCRYPTO_MAX_KEY_SIZE 64 /* max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */ #define QCRYPTO_MAX_IV_LENGTH 16 struct qcrypto_cipher_ctx { u8 auth_key[QCRYPTO_MAX_KEY_SIZE]; u8 iv[QCRYPTO_MAX_IV_LENGTH]; u8 enc_key[QCRYPTO_MAX_KEY_SIZE]; unsigned int enc_key_len; unsigned int authsize; unsigned int auth_key_len; struct crypto_priv *cp; unsigned int flags; }; struct qcrypto_cipher_req_ctx { u8 *iv; unsigned int ivsize; int aead; struct scatterlist asg; /* Formatted associated data sg */ unsigned char *assoc; /* Pointer to formatted assoc data */ unsigned int assoclen; /* Save Unformatted assoc data length */ struct scatterlist *assoc_sg; /* Save Unformatted assoc data sg */ enum qce_cipher_alg_enum alg; enum qce_cipher_dir_enum dir; enum qce_cipher_mode_enum mode; struct scatterlist *orig_src; /* Original src sg ptr */ struct scatterlist *orig_dst; /* Original dst sg ptr */ struct scatterlist dsg; /* Dest Data sg */ struct scatterlist ssg; /* Source Data sg */ unsigned char *data; /* Incoming data pointer*/ }; #define SHA_MAX_BLOCK_SIZE SHA256_BLOCK_SIZE #define SHA_MAX_STATE_SIZE (SHA256_DIGEST_SIZE / sizeof(u32)) #define SHA_MAX_DIGEST_SIZE SHA256_DIGEST_SIZE static uint8_t _std_init_vector_sha1_uint8[] = { 0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, 0x89, 0x98, 0xBA, 0xDC, 0xFE, 0x10, 0x32, 0x54, 0x76, 0xC3, 0xD2, 0xE1, 0xF0 }; /* standard initialization vector for SHA-256, source: FIPS 180-2 */ static uint8_t _std_init_vector_sha256_uint8[] = { 0x6A, 0x09, 0xE6, 0x67, 0xBB, 0x67, 0xAE, 0x85, 0x3C, 0x6E, 0xF3, 0x72, 0xA5, 0x4F, 0xF5, 0x3A, 0x51, 0x0E, 0x52, 0x7F, 0x9B, 0x05, 0x68, 0x8C, 0x1F, 0x83, 0xD9, 0xAB, 0x5B, 0xE0, 0xCD, 0x19 }; struct qcrypto_sha_ctx { enum qce_hash_alg_enum alg; uint32_t byte_count[4]; uint8_t digest[SHA_MAX_DIGEST_SIZE]; uint32_t diglen; uint8_t *tmp_tbuf; uint8_t *trailing_buf; uint8_t *in_buf; uint32_t authkey_in_len; uint32_t trailing_buf_len; uint8_t first_blk; uint8_t last_blk; uint8_t authkey[SHA_MAX_BLOCK_SIZE]; struct ahash_request *ahash_req; struct completion ahash_req_complete; struct scatterlist *sg; struct scatterlist tmp_sg; struct crypto_priv *cp; unsigned int flags; }; struct qcrypto_sha_req_ctx { union { struct sha1_state sha1_state_ctx; struct sha256_state sha256_state_ctx; }; struct scatterlist *src; uint32_t nbytes; struct scatterlist *orig_src; /* Original src sg ptr */ struct scatterlist dsg; /* Data sg */ unsigned char *data; /* Incoming data pointer*/ unsigned char *data2; /* Updated data pointer*/ }; static void _byte_stream_to_words(uint32_t *iv, unsigned char *b, unsigned int len) { unsigned n; n = len / sizeof(uint32_t) ; for (; n > 0; n--) { *iv = ((*b << 24) & 0xff000000) | (((*(b+1)) << 16) & 0xff0000) | (((*(b+2)) << 8) & 0xff00) | (*(b+3) & 0xff); b += sizeof(uint32_t); iv++; } n = len % sizeof(uint32_t); if (n == 3) { *iv = ((*b << 24) & 0xff000000) | (((*(b+1)) << 16) & 0xff0000) | (((*(b+2)) << 8) & 0xff00) ; } else if (n == 2) { *iv = ((*b << 24) & 0xff000000) | (((*(b+1)) << 16) & 0xff0000) ; } else if (n == 1) { *iv = ((*b << 24) & 0xff000000) ; } } static void _words_to_byte_stream(uint32_t *iv, unsigned char *b, unsigned int len) { unsigned n = len / sizeof(uint32_t); for (; n > 0; n--) { *b++ = (unsigned char) ((*iv >> 24) & 0xff); *b++ = (unsigned char) ((*iv >> 16) & 0xff); *b++ = (unsigned char) ((*iv >> 8) & 0xff); *b++ = (unsigned char) (*iv & 0xff); iv++; } n = len % sizeof(uint32_t); if (n == 3) { *b++ = (unsigned char) ((*iv >> 24) & 0xff); *b++ = (unsigned char) ((*iv >> 16) & 0xff); *b = (unsigned char) ((*iv >> 8) & 0xff); } else if (n == 2) { *b++ = (unsigned char) ((*iv >> 24) & 0xff); *b = (unsigned char) ((*iv >> 16) & 0xff); } else if (n == 1) { *b = (unsigned char) ((*iv >> 24) & 0xff); } } static void qcrypto_ce_high_bw_req(struct crypto_priv *cp, bool high_bw_req) { int ret = 0; mutex_lock(&qcrypto_sent_bw_req); if (high_bw_req) { if (cp->high_bw_req_count == 0) { ret = qce_enable_clk(cp->qce); if (ret) { pr_err("%s Unable enable clk\n", __func__); mutex_unlock(&qcrypto_sent_bw_req); return; } ret = msm_bus_scale_client_update_request( cp->bus_scale_handle, 1); if (ret) { pr_err("%s Unable to set to high bandwidth\n", __func__); qce_disable_clk(cp->qce); mutex_unlock(&qcrypto_sent_bw_req); return; } } cp->high_bw_req_count++; } else { if (cp->high_bw_req_count == 1) { ret = msm_bus_scale_client_update_request( cp->bus_scale_handle, 0); if (ret) { pr_err("%s Unable to set to low bandwidth\n", __func__); mutex_unlock(&qcrypto_sent_bw_req); return; } ret = qce_disable_clk(cp->qce); if (ret) { pr_err("%s Unable disable clk\n", __func__); ret = msm_bus_scale_client_update_request( cp->bus_scale_handle, 1); if (ret) pr_err("%s Unable to set to high bandwidth\n", __func__); mutex_unlock(&qcrypto_sent_bw_req); return; } } cp->high_bw_req_count--; } mutex_unlock(&qcrypto_sent_bw_req); } static int _start_qcrypto_process(struct crypto_priv *cp); static int qcrypto_count_sg(struct scatterlist *sg, int nbytes) { int i; for (i = 0; nbytes > 0; i++, sg = scatterwalk_sg_next(sg)) nbytes -= sg->length; return i; } size_t qcrypto_sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen) { int i; size_t offset, len; for (i = 0, offset = 0; i < nents; ++i) { len = sg_copy_from_buffer(sgl, 1, buf, buflen); buf += len; buflen -= len; offset += len; sgl = scatterwalk_sg_next(sgl); } return offset; } size_t qcrypto_sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen) { int i; size_t offset, len; for (i = 0, offset = 0; i < nents; ++i) { len = sg_copy_to_buffer(sgl, 1, buf, buflen); buf += len; buflen -= len; offset += len; sgl = scatterwalk_sg_next(sgl); } return offset; } static struct qcrypto_alg *_qcrypto_sha_alg_alloc(struct crypto_priv *cp, struct ahash_alg *template) { struct qcrypto_alg *q_alg; q_alg = kzalloc(sizeof(struct qcrypto_alg), GFP_KERNEL); if (!q_alg) { pr_err("qcrypto Memory allocation of q_alg FAIL, error %ld\n", PTR_ERR(q_alg)); return ERR_PTR(-ENOMEM); } q_alg->alg_type = QCRYPTO_ALG_SHA; q_alg->sha_alg = *template; q_alg->cp = cp; return q_alg; }; static struct qcrypto_alg *_qcrypto_cipher_alg_alloc(struct crypto_priv *cp, struct crypto_alg *template) { struct qcrypto_alg *q_alg; q_alg = kzalloc(sizeof(struct qcrypto_alg), GFP_KERNEL); if (!q_alg) { pr_err("qcrypto Memory allocation of q_alg FAIL, error %ld\n", PTR_ERR(q_alg)); return ERR_PTR(-ENOMEM); } q_alg->alg_type = QCRYPTO_ALG_CIPHER; q_alg->cipher_alg = *template; q_alg->cp = cp; return q_alg; }; static int _qcrypto_cipher_cra_init(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct qcrypto_alg *q_alg; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); q_alg = container_of(alg, struct qcrypto_alg, cipher_alg); /* update context with ptr to cp */ ctx->cp = q_alg->cp; /* random first IV */ get_random_bytes(ctx->iv, QCRYPTO_MAX_IV_LENGTH); if (ctx->cp->platform_support.bus_scale_table != NULL) qcrypto_ce_high_bw_req(ctx->cp, true); return 0; }; static int _qcrypto_ahash_cra_init(struct crypto_tfm *tfm) { struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm); struct ahash_alg *alg = container_of(crypto_hash_alg_common(ahash), struct ahash_alg, halg); struct qcrypto_alg *q_alg = container_of(alg, struct qcrypto_alg, sha_alg); crypto_ahash_set_reqsize(ahash, sizeof(struct qcrypto_sha_req_ctx)); /* update context with ptr to cp */ sha_ctx->cp = q_alg->cp; sha_ctx->sg = NULL; sha_ctx->tmp_tbuf = kzalloc(SHA_MAX_BLOCK_SIZE + SHA_MAX_DIGEST_SIZE, GFP_KERNEL); if (sha_ctx->tmp_tbuf == NULL) { pr_err("qcrypto Can't Allocate mem: sha_ctx->tmp_tbuf, error %ld\n", PTR_ERR(sha_ctx->tmp_tbuf)); return -ENOMEM; } sha_ctx->trailing_buf = kzalloc(SHA_MAX_BLOCK_SIZE, GFP_KERNEL); if (sha_ctx->trailing_buf == NULL) { kfree(sha_ctx->tmp_tbuf); sha_ctx->tmp_tbuf = NULL; pr_err("qcrypto Can't Allocate mem: sha_ctx->trailing_buf, error %ld\n", PTR_ERR(sha_ctx->trailing_buf)); return -ENOMEM; } sha_ctx->ahash_req = NULL; if (sha_ctx->cp->platform_support.bus_scale_table != NULL) qcrypto_ce_high_bw_req(sha_ctx->cp, true); return 0; }; static void _qcrypto_ahash_cra_exit(struct crypto_tfm *tfm) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm); kfree(sha_ctx->tmp_tbuf); sha_ctx->tmp_tbuf = NULL; kfree(sha_ctx->trailing_buf); sha_ctx->trailing_buf = NULL; if (sha_ctx->sg != NULL) { kfree(sha_ctx->sg); sha_ctx->sg = NULL; } if (sha_ctx->ahash_req != NULL) { ahash_request_free(sha_ctx->ahash_req); sha_ctx->ahash_req = NULL; } if (sha_ctx->cp->platform_support.bus_scale_table != NULL) qcrypto_ce_high_bw_req(sha_ctx->cp, false); }; static void _crypto_sha_hmac_ahash_req_complete( struct crypto_async_request *req, int err); static int _qcrypto_ahash_hmac_cra_init(struct crypto_tfm *tfm) { struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm); int ret = 0; ret = _qcrypto_ahash_cra_init(tfm); if (ret) return ret; sha_ctx->ahash_req = ahash_request_alloc(ahash, GFP_KERNEL); if (sha_ctx->ahash_req == NULL) { _qcrypto_ahash_cra_exit(tfm); return -ENOMEM; } init_completion(&sha_ctx->ahash_req_complete); ahash_request_set_callback(sha_ctx->ahash_req, CRYPTO_TFM_REQ_MAY_BACKLOG, _crypto_sha_hmac_ahash_req_complete, &sha_ctx->ahash_req_complete); crypto_ahash_clear_flags(ahash, ~0); return 0; }; static int _qcrypto_cra_ablkcipher_init(struct crypto_tfm *tfm) { tfm->crt_ablkcipher.reqsize = sizeof(struct qcrypto_cipher_req_ctx); return _qcrypto_cipher_cra_init(tfm); }; static int _qcrypto_cra_aead_init(struct crypto_tfm *tfm) { tfm->crt_aead.reqsize = sizeof(struct qcrypto_cipher_req_ctx); return _qcrypto_cipher_cra_init(tfm); }; static void _qcrypto_cra_ablkcipher_exit(struct crypto_tfm *tfm) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); if (ctx->cp->platform_support.bus_scale_table != NULL) qcrypto_ce_high_bw_req(ctx->cp, false); }; static void _qcrypto_cra_aead_exit(struct crypto_tfm *tfm) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); if (ctx->cp->platform_support.bus_scale_table != NULL) qcrypto_ce_high_bw_req(ctx->cp, false); }; static int _disp_stats(int id) { struct crypto_stat *pstat; int len = 0; pstat = &_qcrypto_stat; len = snprintf(_debug_read_buf, DEBUG_MAX_RW_BUF - 1, "\nQualcomm crypto accelerator %d Statistics:\n", id + 1); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK AES CIPHER encryption : %d\n", pstat->ablk_cipher_aes_enc); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK AES CIPHER decryption : %d\n", pstat->ablk_cipher_aes_dec); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK DES CIPHER encryption : %d\n", pstat->ablk_cipher_des_enc); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK DES CIPHER decryption : %d\n", pstat->ablk_cipher_des_dec); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK 3DES CIPHER encryption : %d\n", pstat->ablk_cipher_3des_enc); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK 3DES CIPHER decryption : %d\n", pstat->ablk_cipher_3des_dec); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK CIPHER operation success: %d\n", pstat->ablk_cipher_op_success); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " ABLK CIPHER operation fail : %d\n", pstat->ablk_cipher_op_fail); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-AES encryption : %d\n", pstat->aead_sha1_aes_enc); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-AES decryption : %d\n", pstat->aead_sha1_aes_dec); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-DES encryption : %d\n", pstat->aead_sha1_des_enc); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-DES decryption : %d\n", pstat->aead_sha1_des_dec); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-3DES encryption : %d\n", pstat->aead_sha1_3des_enc); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD SHA1-3DES decryption : %d\n", pstat->aead_sha1_3des_dec); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD CCM-AES encryption : %d\n", pstat->aead_ccm_aes_enc); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD CCM-AES decryption : %d\n", pstat->aead_ccm_aes_dec); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD operation success : %d\n", pstat->aead_op_success); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD operation fail : %d\n", pstat->aead_op_fail); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " AEAD bad message : %d\n", pstat->aead_bad_msg); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " SHA1 digest : %d\n", pstat->sha1_digest); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " SHA256 digest : %d\n", pstat->sha256_digest); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " SHA operation fail : %d\n", pstat->sha_op_fail); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " SHA operation success : %d\n", pstat->sha_op_success); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " SHA1 HMAC digest : %d\n", pstat->sha1_hmac_digest); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " SHA256 HMAC digest : %d\n", pstat->sha256_hmac_digest); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " SHA HMAC operation fail : %d\n", pstat->sha_hmac_op_fail); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " SHA HMAC operation success : %d\n", pstat->sha_hmac_op_success); return len; } static int _qcrypto_remove(struct platform_device *pdev) { struct crypto_priv *cp; struct qcrypto_alg *q_alg; struct qcrypto_alg *n; cp = platform_get_drvdata(pdev); if (!cp) return 0; if (cp->platform_support.bus_scale_table != NULL) msm_bus_scale_unregister_client(cp->bus_scale_handle); list_for_each_entry_safe(q_alg, n, &cp->alg_list, entry) { if (q_alg->alg_type == QCRYPTO_ALG_CIPHER) crypto_unregister_alg(&q_alg->cipher_alg); if (q_alg->alg_type == QCRYPTO_ALG_SHA) crypto_unregister_ahash(&q_alg->sha_alg); list_del(&q_alg->entry); kfree(q_alg); } if (cp->qce) qce_close(cp->qce); tasklet_kill(&cp->done_tasklet); kfree(cp); return 0; }; static int _qcrypto_check_aes_keylen(struct crypto_ablkcipher *cipher, struct crypto_priv *cp, unsigned int len) { switch (len) { case AES_KEYSIZE_128: case AES_KEYSIZE_256: break; case AES_KEYSIZE_192: if (cp->ce_support.aes_key_192) break; default: crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; }; return 0; } static int _qcrypto_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_priv *cp = ctx->cp; if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) return 0; if (_qcrypto_check_aes_keylen(cipher, cp, len)) { return -EINVAL; } else { ctx->enc_key_len = len; if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) { if (key != NULL) { memcpy(ctx->enc_key, key, len); } else { pr_err("%s Inavlid key pointer\n", __func__); return -EINVAL; } } } return 0; }; static int _qcrypto_setkey_aes_xts(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_priv *cp = ctx->cp; if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) return 0; if (_qcrypto_check_aes_keylen(cipher, cp, len/2)) { return -EINVAL; } else { ctx->enc_key_len = len; if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) { if (key != NULL) { memcpy(ctx->enc_key, key, len); } else { pr_err("%s Inavlid key pointer\n", __func__); return -EINVAL; } } } return 0; }; static int _qcrypto_setkey_des(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); u32 tmp[DES_EXPKEY_WORDS]; int ret = des_ekey(tmp, key); if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) { pr_err("%s HW KEY usage not supported for DES algorithm\n", __func__); return 0; }; if (len != DES_KEY_SIZE) { crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; }; if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; return -EINVAL; } ctx->enc_key_len = len; if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) { if (key != NULL) { memcpy(ctx->enc_key, key, len); } else { pr_err("%s Inavlid key pointer\n", __func__); return -EINVAL; } } return 0; }; static int _qcrypto_setkey_3des(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) { pr_err("%s HW KEY usage not supported for 3DES algorithm\n", __func__); return 0; }; if (len != DES3_EDE_KEY_SIZE) { crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; }; ctx->enc_key_len = len; if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) { if (key != NULL) { memcpy(ctx->enc_key, key, len); } else { pr_err("%s Inavlid key pointer\n", __func__); return -EINVAL; } } return 0; }; static void req_done(unsigned long data) { struct crypto_async_request *areq; struct crypto_priv *cp = (struct crypto_priv *)data; unsigned long flags; spin_lock_irqsave(&cp->lock, flags); areq = cp->req; cp->req = NULL; spin_unlock_irqrestore(&cp->lock, flags); if (areq) areq->complete(areq, cp->res); _start_qcrypto_process(cp); }; static void _update_sha1_ctx(struct ahash_request *req) { struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha1_state *sha_state_ctx = &rctx->sha1_state_ctx; struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); if (sha_ctx->last_blk == 1) memset(sha_state_ctx, 0x00, sizeof(struct sha1_state)); else { memset(sha_state_ctx->buffer, 0x00, SHA1_BLOCK_SIZE); memcpy(sha_state_ctx->buffer, sha_ctx->trailing_buf, sha_ctx->trailing_buf_len); _byte_stream_to_words(sha_state_ctx->state , sha_ctx->digest, SHA1_DIGEST_SIZE); } return; } static void _update_sha256_ctx(struct ahash_request *req) { struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha256_state *sha_state_ctx = &rctx->sha256_state_ctx; struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); if (sha_ctx->last_blk == 1) memset(sha_state_ctx, 0x00, sizeof(struct sha256_state)); else { memset(sha_state_ctx->buf, 0x00, SHA256_BLOCK_SIZE); memcpy(sha_state_ctx->buf, sha_ctx->trailing_buf, sha_ctx->trailing_buf_len); _byte_stream_to_words(sha_state_ctx->state, sha_ctx->digest, SHA256_DIGEST_SIZE); } return; } static void _qce_ahash_complete(void *cookie, unsigned char *digest, unsigned char *authdata, int ret) { struct ahash_request *areq = (struct ahash_request *) cookie; struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq); struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(areq->base.tfm); struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(areq); struct crypto_priv *cp = sha_ctx->cp; struct crypto_stat *pstat; uint32_t diglen = crypto_ahash_digestsize(ahash); uint32_t *auth32 = (uint32_t *)authdata; pstat = &_qcrypto_stat; #ifdef QCRYPTO_DEBUG dev_info(&cp->pdev->dev, "_qce_ahash_complete: %p ret %d\n", areq, ret); #endif if (digest) { memcpy(sha_ctx->digest, digest, diglen); memcpy(areq->result, digest, diglen); } if (authdata) { sha_ctx->byte_count[0] = auth32[0]; sha_ctx->byte_count[1] = auth32[1]; sha_ctx->byte_count[2] = auth32[2]; sha_ctx->byte_count[3] = auth32[3]; } areq->src = rctx->src; areq->nbytes = rctx->nbytes; if (sha_ctx->sg != NULL) { kfree(sha_ctx->sg); sha_ctx->sg = NULL; } if (sha_ctx->alg == QCE_HASH_SHA1) _update_sha1_ctx(areq); if (sha_ctx->alg == QCE_HASH_SHA256) _update_sha256_ctx(areq); sha_ctx->last_blk = 0; sha_ctx->first_blk = 0; if (ret) { cp->res = -ENXIO; pstat->sha_op_fail++; } else { cp->res = 0; pstat->sha_op_success++; } if (cp->ce_support.aligned_only) { areq->src = rctx->orig_src; kfree(rctx->data); } if (cp->platform_support.ce_shared) schedule_work(&cp->unlock_ce_ws); tasklet_schedule(&cp->done_tasklet); }; static void _qce_ablk_cipher_complete(void *cookie, unsigned char *icb, unsigned char *iv, int ret) { struct ablkcipher_request *areq = (struct ablkcipher_request *) cookie; struct crypto_ablkcipher *ablk = crypto_ablkcipher_reqtfm(areq); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; #ifdef QCRYPTO_DEBUG dev_info(&cp->pdev->dev, "_qce_ablk_cipher_complete: %p ret %d\n", areq, ret); #endif if (iv) memcpy(ctx->iv, iv, crypto_ablkcipher_ivsize(ablk)); if (ret) { cp->res = -ENXIO; pstat->ablk_cipher_op_fail++; } else { cp->res = 0; pstat->ablk_cipher_op_success++; } if (cp->ce_support.aligned_only) { struct qcrypto_cipher_req_ctx *rctx; uint32_t num_sg = 0; uint32_t bytes = 0; rctx = ablkcipher_request_ctx(areq); areq->src = rctx->orig_src; areq->dst = rctx->orig_dst; num_sg = qcrypto_count_sg(areq->dst, areq->nbytes); bytes = qcrypto_sg_copy_from_buffer(areq->dst, num_sg, rctx->data, areq->nbytes); if (bytes != areq->nbytes) pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, areq->nbytes); kfree(rctx->data); } if (cp->platform_support.ce_shared) schedule_work(&cp->unlock_ce_ws); tasklet_schedule(&cp->done_tasklet); }; static void _qce_aead_complete(void *cookie, unsigned char *icv, unsigned char *iv, int ret) { struct aead_request *areq = (struct aead_request *) cookie; struct crypto_aead *aead = crypto_aead_reqtfm(areq); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm); struct crypto_priv *cp = ctx->cp; struct qcrypto_cipher_req_ctx *rctx; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(areq); if (rctx->mode == QCE_MODE_CCM) { if (cp->ce_support.aligned_only) { struct qcrypto_cipher_req_ctx *rctx; uint32_t bytes = 0; uint32_t nbytes = 0; uint32_t num_sg = 0; rctx = aead_request_ctx(areq); areq->src = rctx->orig_src; areq->dst = rctx->orig_dst; if (rctx->dir == QCE_ENCRYPT) nbytes = areq->cryptlen + crypto_aead_authsize(aead); else nbytes = areq->cryptlen - crypto_aead_authsize(aead); num_sg = qcrypto_count_sg(areq->dst, nbytes); bytes = qcrypto_sg_copy_from_buffer(areq->dst, num_sg, ((char *)rctx->data + areq->assoclen), nbytes); if (bytes != nbytes) pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, nbytes); kfree(rctx->data); } kzfree(rctx->assoc); areq->assoc = rctx->assoc_sg; areq->assoclen = rctx->assoclen; } else { if (ret == 0) { if (rctx->dir == QCE_ENCRYPT) { /* copy the icv to dst */ scatterwalk_map_and_copy(icv, areq->dst, areq->cryptlen, ctx->authsize, 1); } else { unsigned char tmp[SHA256_DIGESTSIZE] = {0}; /* compare icv from src */ scatterwalk_map_and_copy(tmp, areq->src, areq->cryptlen - ctx->authsize, ctx->authsize, 0); ret = memcmp(icv, tmp, ctx->authsize); if (ret != 0) ret = -EBADMSG; } } else { ret = -ENXIO; } if (iv) memcpy(ctx->iv, iv, crypto_aead_ivsize(aead)); } if (ret == (-EBADMSG)) pstat->aead_bad_msg++; else if (ret) pstat->aead_op_fail++; else pstat->aead_op_success++; cp->res = ret; if (cp->platform_support.ce_shared) schedule_work(&cp->unlock_ce_ws); tasklet_schedule(&cp->done_tasklet); } static int aead_ccm_set_msg_len(u8 *block, unsigned int msglen, int csize) { __be32 data; memset(block, 0, csize); block += csize; if (csize >= 4) csize = 4; else if (msglen > (1 << (8 * csize))) return -EOVERFLOW; data = cpu_to_be32(msglen); memcpy(block - csize, (u8 *)&data + 4 - csize, csize); return 0; } static int qccrypto_set_aead_ccm_nonce(struct qce_req *qreq) { struct aead_request *areq = (struct aead_request *) qreq->areq; unsigned int i = ((unsigned int)qreq->iv[0]) + 1; memcpy(&qreq->nonce[0] , qreq->iv, qreq->ivsize); /* * Format control info per RFC 3610 and * NIST Special Publication 800-38C */ qreq->nonce[0] |= (8 * ((qreq->authsize - 2) / 2)); if (areq->assoclen) qreq->nonce[0] |= 64; if (i > MAX_NONCE) return -EINVAL; return aead_ccm_set_msg_len(qreq->nonce + 16 - i, qreq->cryptlen, i); } static int qcrypto_aead_ccm_format_adata(struct qce_req *qreq, uint32_t alen, struct scatterlist *sg) { unsigned char *adata; uint32_t len; uint32_t bytes = 0; uint32_t num_sg = 0; qreq->assoc = kzalloc((alen + 0x64), (GFP_KERNEL | __GFP_DMA)); if (!qreq->assoc) { pr_err("qcrypto Memory allocation of adata FAIL, error %ld\n", PTR_ERR(qreq->assoc)); return -ENOMEM; } adata = qreq->assoc; /* * Add control info for associated data * RFC 3610 and NIST Special Publication 800-38C */ if (alen < 65280) { *(__be16 *)adata = cpu_to_be16(alen); len = 2; } else { if ((alen >= 65280) && (alen <= 0xffffffff)) { *(__be16 *)adata = cpu_to_be16(0xfffe); *(__be32 *)&adata[2] = cpu_to_be32(alen); len = 6; } else { *(__be16 *)adata = cpu_to_be16(0xffff); *(__be32 *)&adata[6] = cpu_to_be32(alen); len = 10; } } adata += len; qreq->assoclen = ALIGN((alen + len), 16); num_sg = qcrypto_count_sg(sg, alen); bytes = qcrypto_sg_copy_to_buffer(sg, num_sg, adata, alen); if (bytes != alen) pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, alen); return 0; } static int _qcrypto_process_ablkcipher(struct crypto_priv *cp, struct crypto_async_request *async_req) { struct qce_req qreq; int ret; struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *cipher_ctx; struct ablkcipher_request *req; struct crypto_ablkcipher *tfm; req = container_of(async_req, struct ablkcipher_request, base); cipher_ctx = crypto_tfm_ctx(async_req->tfm); rctx = ablkcipher_request_ctx(req); tfm = crypto_ablkcipher_reqtfm(req); if (cp->ce_support.aligned_only) { uint32_t bytes = 0; uint32_t num_sg = 0; rctx->orig_src = req->src; rctx->orig_dst = req->dst; rctx->data = kzalloc((req->nbytes + 64), GFP_ATOMIC); if (rctx->data == NULL) { pr_err("Mem Alloc fail rctx->data, err %ld for 0x%x\n", PTR_ERR(rctx->data), (req->nbytes + 64)); return -ENOMEM; } num_sg = qcrypto_count_sg(req->src, req->nbytes); bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, rctx->data, req->nbytes); if (bytes != req->nbytes) pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, req->nbytes); sg_set_buf(&rctx->dsg, rctx->data, req->nbytes); sg_mark_end(&rctx->dsg); rctx->iv = req->info; req->src = &rctx->dsg; req->dst = &rctx->dsg; } qreq.op = QCE_REQ_ABLK_CIPHER; qreq.qce_cb = _qce_ablk_cipher_complete; qreq.areq = req; qreq.alg = rctx->alg; qreq.dir = rctx->dir; qreq.mode = rctx->mode; qreq.enckey = cipher_ctx->enc_key; qreq.encklen = cipher_ctx->enc_key_len; qreq.iv = req->info; qreq.ivsize = crypto_ablkcipher_ivsize(tfm); qreq.cryptlen = req->nbytes; qreq.use_pmem = 0; qreq.flags = cipher_ctx->flags; if ((cipher_ctx->enc_key_len == 0) && (cp->platform_support.hw_key_support == 0)) ret = -EINVAL; else ret = qce_ablk_cipher_req(cp->qce, &qreq); return ret; } static int _qcrypto_process_ahash(struct crypto_priv *cp, struct crypto_async_request *async_req) { struct ahash_request *req; struct qce_sha_req sreq; struct qcrypto_sha_ctx *sha_ctx; int ret = 0; req = container_of(async_req, struct ahash_request, base); sha_ctx = crypto_tfm_ctx(async_req->tfm); sreq.qce_cb = _qce_ahash_complete; sreq.digest = &sha_ctx->digest[0]; sreq.src = req->src; sreq.auth_data[0] = sha_ctx->byte_count[0]; sreq.auth_data[1] = sha_ctx->byte_count[1]; sreq.auth_data[2] = sha_ctx->byte_count[2]; sreq.auth_data[3] = sha_ctx->byte_count[3]; sreq.first_blk = sha_ctx->first_blk; sreq.last_blk = sha_ctx->last_blk; sreq.size = req->nbytes; sreq.areq = req; sreq.flags = sha_ctx->flags; switch (sha_ctx->alg) { case QCE_HASH_SHA1: sreq.alg = QCE_HASH_SHA1; sreq.authkey = NULL; break; case QCE_HASH_SHA256: sreq.alg = QCE_HASH_SHA256; sreq.authkey = NULL; break; case QCE_HASH_SHA1_HMAC: sreq.alg = QCE_HASH_SHA1_HMAC; sreq.authkey = &sha_ctx->authkey[0]; sreq.authklen = SHA_HMAC_KEY_SIZE; break; case QCE_HASH_SHA256_HMAC: sreq.alg = QCE_HASH_SHA256_HMAC; sreq.authkey = &sha_ctx->authkey[0]; sreq.authklen = SHA_HMAC_KEY_SIZE; break; default: pr_err("Algorithm %d not supported, exiting", sha_ctx->alg); ret = -1; break; }; ret = qce_process_sha_req(cp->qce, &sreq); return ret; } static int _qcrypto_process_aead(struct crypto_priv *cp, struct crypto_async_request *async_req) { struct qce_req qreq; int ret = 0; struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *cipher_ctx; struct aead_request *req = container_of(async_req, struct aead_request, base); struct crypto_aead *aead = crypto_aead_reqtfm(req); rctx = aead_request_ctx(req); cipher_ctx = crypto_tfm_ctx(async_req->tfm); qreq.op = QCE_REQ_AEAD; qreq.qce_cb = _qce_aead_complete; qreq.areq = req; qreq.alg = rctx->alg; qreq.dir = rctx->dir; qreq.mode = rctx->mode; qreq.iv = rctx->iv; qreq.enckey = cipher_ctx->enc_key; qreq.encklen = cipher_ctx->enc_key_len; qreq.authkey = cipher_ctx->auth_key; qreq.authklen = cipher_ctx->auth_key_len; qreq.authsize = crypto_aead_authsize(aead); qreq.ivsize = crypto_aead_ivsize(aead); qreq.flags = cipher_ctx->flags; if (qreq.mode == QCE_MODE_CCM) { if (qreq.dir == QCE_ENCRYPT) qreq.cryptlen = req->cryptlen; else qreq.cryptlen = req->cryptlen - qreq.authsize; /* Get NONCE */ ret = qccrypto_set_aead_ccm_nonce(&qreq); if (ret) return ret; /* Format Associated data */ ret = qcrypto_aead_ccm_format_adata(&qreq, req->assoclen, req->assoc); if (ret) return ret; if (cp->ce_support.aligned_only) { uint32_t bytes = 0; uint32_t num_sg = 0; rctx->orig_src = req->src; rctx->orig_dst = req->dst; rctx->data = kzalloc((req->cryptlen + qreq.assoclen + qreq.authsize + 64*2), GFP_ATOMIC); if (rctx->data == NULL) { pr_err("Mem Alloc fail rctx->data, err %ld\n", PTR_ERR(rctx->data)); kzfree(qreq.assoc); return -ENOMEM; } memcpy((char *)rctx->data, qreq.assoc, qreq.assoclen); num_sg = qcrypto_count_sg(req->src, req->cryptlen); bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, rctx->data + qreq.assoclen , req->cryptlen); if (bytes != req->cryptlen) pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, req->cryptlen); sg_set_buf(&rctx->ssg, rctx->data, req->cryptlen + qreq.assoclen); sg_mark_end(&rctx->ssg); if (qreq.dir == QCE_ENCRYPT) sg_set_buf(&rctx->dsg, rctx->data, qreq.assoclen + qreq.cryptlen + ALIGN(qreq.authsize, 64)); else sg_set_buf(&rctx->dsg, rctx->data, qreq.assoclen + req->cryptlen + qreq.authsize); sg_mark_end(&rctx->dsg); req->src = &rctx->ssg; req->dst = &rctx->dsg; } /* * Save the original associated data * length and sg */ rctx->assoc_sg = req->assoc; rctx->assoclen = req->assoclen; rctx->assoc = qreq.assoc; /* * update req with new formatted associated * data info */ req->assoc = &rctx->asg; req->assoclen = qreq.assoclen; sg_set_buf(req->assoc, qreq.assoc, req->assoclen); sg_mark_end(req->assoc); } ret = qce_aead_req(cp->qce, &qreq); return ret; } static int _start_qcrypto_process(struct crypto_priv *cp) { struct crypto_async_request *async_req = NULL; struct crypto_async_request *backlog = NULL; unsigned long flags; u32 type; int ret = 0; struct crypto_stat *pstat; pstat = &_qcrypto_stat; again: spin_lock_irqsave(&cp->lock, flags); if (cp->req == NULL) { backlog = crypto_get_backlog(&cp->queue); async_req = crypto_dequeue_request(&cp->queue); cp->req = async_req; } spin_unlock_irqrestore(&cp->lock, flags); if (!async_req) return ret; if (backlog) backlog->complete(backlog, -EINPROGRESS); type = crypto_tfm_alg_type(async_req->tfm); switch (type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: ret = _qcrypto_process_ablkcipher(cp, async_req); break; case CRYPTO_ALG_TYPE_AHASH: ret = _qcrypto_process_ahash(cp, async_req); break; case CRYPTO_ALG_TYPE_AEAD: ret = _qcrypto_process_aead(cp, async_req); break; default: ret = -EINVAL; }; if (ret) { spin_lock_irqsave(&cp->lock, flags); cp->req = NULL; spin_unlock_irqrestore(&cp->lock, flags); if (type == CRYPTO_ALG_TYPE_ABLKCIPHER) pstat->ablk_cipher_op_fail++; else if (type == CRYPTO_ALG_TYPE_AHASH) pstat->sha_op_fail++; else pstat->aead_op_fail++; async_req->complete(async_req, ret); goto again; }; return ret; }; static int _qcrypto_queue_req(struct crypto_priv *cp, struct crypto_async_request *req) { int ret; unsigned long flags; if (cp->platform_support.ce_shared) { ret = qcrypto_lock_ce(cp); if (ret) return ret; } spin_lock_irqsave(&cp->lock, flags); ret = crypto_enqueue_request(&cp->queue, req); spin_unlock_irqrestore(&cp->lock, flags); _start_qcrypto_process(cp); return ret; } static int _qcrypto_enc_aes_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&cp->pdev->dev, "_qcrypto_enc_aes_ecb: %p\n", req); #endif rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_aes_enc++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_enc_aes_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&cp->pdev->dev, "_qcrypto_enc_aes_cbc: %p\n", req); #endif rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_aes_enc++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_enc_aes_ctr(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&cp->pdev->dev, "_qcrypto_enc_aes_ctr: %p\n", req); #endif rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CTR; pstat->ablk_cipher_aes_enc++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_enc_aes_xts(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_XTS; pstat->ablk_cipher_aes_enc++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_aead_encrypt_aes_ccm(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; if ((ctx->authsize > 16) || (ctx->authsize < 4) || (ctx->authsize & 1)) return -EINVAL; if ((ctx->auth_key_len != AES_KEYSIZE_128) && (ctx->auth_key_len != AES_KEYSIZE_256)) return -EINVAL; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CCM; rctx->iv = req->iv; pstat->aead_ccm_aes_enc++; return _qcrypto_queue_req(cp, &req->base); } static int _qcrypto_enc_des_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_des_enc++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_enc_des_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_des_enc++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_enc_3des_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_3des_enc++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_enc_3des_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_3des_enc++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_dec_aes_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&cp->pdev->dev, "_qcrypto_dec_aes_ecb: %p\n", req); #endif rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_aes_dec++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_dec_aes_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&cp->pdev->dev, "_qcrypto_dec_aes_cbc: %p\n", req); #endif rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_aes_dec++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_dec_aes_ctr(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); #ifdef QCRYPTO_DEBUG dev_info(&cp->pdev->dev, "_qcrypto_dec_aes_ctr: %p\n", req); #endif rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->mode = QCE_MODE_CTR; /* Note. There is no such thing as aes/counter mode, decrypt */ rctx->dir = QCE_ENCRYPT; pstat->ablk_cipher_aes_dec++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_dec_des_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_des_dec++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_dec_des_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_des_dec++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_dec_3des_ecb(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_ECB; pstat->ablk_cipher_3des_dec++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_dec_3des_cbc(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; pstat->ablk_cipher_3des_dec++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_dec_aes_xts(struct ablkcipher_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; BUG_ON(crypto_tfm_alg_type(req->base.tfm) != CRYPTO_ALG_TYPE_ABLKCIPHER); rctx = ablkcipher_request_ctx(req); rctx->aead = 0; rctx->alg = CIPHER_ALG_AES; rctx->mode = QCE_MODE_XTS; rctx->dir = QCE_DECRYPT; pstat->ablk_cipher_aes_dec++; return _qcrypto_queue_req(cp, &req->base); }; static int _qcrypto_aead_decrypt_aes_ccm(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; if ((ctx->authsize > 16) || (ctx->authsize < 4) || (ctx->authsize & 1)) return -EINVAL; if ((ctx->auth_key_len != AES_KEYSIZE_128) && (ctx->auth_key_len != AES_KEYSIZE_256)) return -EINVAL; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CCM; rctx->iv = req->iv; pstat->aead_ccm_aes_dec++; return _qcrypto_queue_req(cp, &req->base); } static int _qcrypto_aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(authenc); ctx->authsize = authsize; return 0; } static int _qcrypto_aead_ccm_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(authenc); switch (authsize) { case 4: case 6: case 8: case 10: case 12: case 14: case 16: break; default: return -EINVAL; } ctx->authsize = authsize; return 0; } static int _qcrypto_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm); struct rtattr *rta = (struct rtattr *)key; struct crypto_authenc_key_param *param; if (!RTA_OK(rta, keylen)) goto badkey; if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) goto badkey; if (RTA_PAYLOAD(rta) < sizeof(*param)) goto badkey; param = RTA_DATA(rta); ctx->enc_key_len = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < ctx->enc_key_len) goto badkey; ctx->auth_key_len = keylen - ctx->enc_key_len; if (ctx->enc_key_len >= QCRYPTO_MAX_KEY_SIZE || ctx->auth_key_len >= QCRYPTO_MAX_KEY_SIZE) goto badkey; memset(ctx->auth_key, 0, QCRYPTO_MAX_KEY_SIZE); memcpy(ctx->enc_key, key + ctx->auth_key_len, ctx->enc_key_len); memcpy(ctx->auth_key, key, ctx->auth_key_len); return 0; badkey: ctx->enc_key_len = 0; crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } static int _qcrypto_aead_ccm_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_priv *cp = ctx->cp; switch (keylen) { case AES_KEYSIZE_128: case AES_KEYSIZE_256: break; case AES_KEYSIZE_192: if (cp->ce_support.aes_key_192) break; default: ctx->enc_key_len = 0; crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; }; ctx->enc_key_len = keylen; memcpy(ctx->enc_key, key, keylen); ctx->auth_key_len = keylen; memcpy(ctx->auth_key, key, keylen); return 0; } static int _qcrypto_aead_encrypt_aes_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; #ifdef QCRYPTO_DEBUG dev_info(&cp->pdev->dev, "_qcrypto_aead_encrypt_aes_cbc: %p\n", req); #endif rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; pstat->aead_sha1_aes_enc++; return _qcrypto_queue_req(cp, &req->base); } static int _qcrypto_aead_decrypt_aes_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; #ifdef QCRYPTO_DEBUG dev_info(&cp->pdev->dev, "_qcrypto_aead_decrypt_aes_cbc: %p\n", req); #endif rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; pstat->aead_sha1_aes_dec++; return _qcrypto_queue_req(cp, &req->base); } static int _qcrypto_aead_givencrypt_aes_cbc(struct aead_givcrypt_request *req) { struct aead_request *areq = &req->areq; struct crypto_aead *authenc = crypto_aead_reqtfm(areq); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm); struct crypto_priv *cp = ctx->cp; struct qcrypto_cipher_req_ctx *rctx; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(areq); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->giv; /* generated iv */ memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc)); /* avoid consecutive packets going out with same IV */ *(__be64 *)req->giv ^= cpu_to_be64(req->seq); pstat->aead_sha1_aes_enc++; return _qcrypto_queue_req(cp, &areq->base); } #ifdef QCRYPTO_AEAD_AES_CTR static int _qcrypto_aead_encrypt_aes_ctr(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CTR; rctx->iv = req->iv; pstat->aead_sha1_aes_enc++; return _qcrypto_queue_req(cp, &req->base); } static int _qcrypto_aead_decrypt_aes_ctr(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; /* Note. There is no such thing as aes/counter mode, decrypt */ rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CTR; rctx->iv = req->iv; pstat->aead_sha1_aes_dec++; return _qcrypto_queue_req(cp, &req->base); } static int _qcrypto_aead_givencrypt_aes_ctr(struct aead_givcrypt_request *req) { struct aead_request *areq = &req->areq; struct crypto_aead *authenc = crypto_aead_reqtfm(areq); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm); struct crypto_priv *cp = ctx->cp; struct qcrypto_cipher_req_ctx *rctx; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(areq); rctx->aead = 1; rctx->alg = CIPHER_ALG_AES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CTR; rctx->iv = req->giv; /* generated iv */ memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc)); /* avoid consecutive packets going out with same IV */ *(__be64 *)req->giv ^= cpu_to_be64(req->seq); pstat->aead_sha1_aes_enc++; return _qcrypto_queue_req(cp, &areq->base); }; #endif /* QCRYPTO_AEAD_AES_CTR */ static int _qcrypto_aead_encrypt_des_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; pstat->aead_sha1_des_enc++; return _qcrypto_queue_req(cp, &req->base); } static int _qcrypto_aead_decrypt_des_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; pstat->aead_sha1_des_dec++; return _qcrypto_queue_req(cp, &req->base); } static int _qcrypto_aead_givencrypt_des_cbc(struct aead_givcrypt_request *req) { struct aead_request *areq = &req->areq; struct crypto_aead *authenc = crypto_aead_reqtfm(areq); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm); struct crypto_priv *cp = ctx->cp; struct qcrypto_cipher_req_ctx *rctx; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(areq); rctx->aead = 1; rctx->alg = CIPHER_ALG_DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->giv; /* generated iv */ memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc)); /* avoid consecutive packets going out with same IV */ *(__be64 *)req->giv ^= cpu_to_be64(req->seq); pstat->aead_sha1_des_enc++; return _qcrypto_queue_req(cp, &areq->base); } static int _qcrypto_aead_encrypt_3des_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; pstat->aead_sha1_3des_enc++; return _qcrypto_queue_req(cp, &req->base); } static int _qcrypto_aead_decrypt_3des_cbc(struct aead_request *req) { struct qcrypto_cipher_req_ctx *rctx; struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(req); rctx->aead = 1; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_DECRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->iv; pstat->aead_sha1_3des_dec++; return _qcrypto_queue_req(cp, &req->base); } static int _qcrypto_aead_givencrypt_3des_cbc(struct aead_givcrypt_request *req) { struct aead_request *areq = &req->areq; struct crypto_aead *authenc = crypto_aead_reqtfm(areq); struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm); struct crypto_priv *cp = ctx->cp; struct qcrypto_cipher_req_ctx *rctx; struct crypto_stat *pstat; pstat = &_qcrypto_stat; rctx = aead_request_ctx(areq); rctx->aead = 1; rctx->alg = CIPHER_ALG_3DES; rctx->dir = QCE_ENCRYPT; rctx->mode = QCE_MODE_CBC; rctx->iv = req->giv; /* generated iv */ memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc)); /* avoid consecutive packets going out with same IV */ *(__be64 *)req->giv ^= cpu_to_be64(req->seq); pstat->aead_sha1_3des_enc++; return _qcrypto_queue_req(cp, &areq->base); } static int _sha_init(struct qcrypto_sha_ctx *ctx) { ctx->first_blk = 1; ctx->last_blk = 0; ctx->byte_count[0] = 0; ctx->byte_count[1] = 0; ctx->byte_count[2] = 0; ctx->byte_count[3] = 0; ctx->trailing_buf_len = 0; return 0; }; static int _sha1_init(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_stat *pstat; pstat = &_qcrypto_stat; _sha_init(sha_ctx); sha_ctx->alg = QCE_HASH_SHA1; memset(&sha_ctx->trailing_buf[0], 0x00, SHA1_BLOCK_SIZE); memcpy(&sha_ctx->digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); sha_ctx->diglen = SHA1_DIGEST_SIZE; _update_sha1_ctx(req); pstat->sha1_digest++; return 0; }; static int _sha256_init(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_stat *pstat; pstat = &_qcrypto_stat; _sha_init(sha_ctx); sha_ctx->alg = QCE_HASH_SHA256; memset(&sha_ctx->trailing_buf[0], 0x00, SHA256_BLOCK_SIZE); memcpy(&sha_ctx->digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); sha_ctx->diglen = SHA256_DIGEST_SIZE; _update_sha256_ctx(req); pstat->sha256_digest++; return 0; }; static int _sha1_export(struct ahash_request *req, void *out) { struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha1_state *sha_state_ctx = &rctx->sha1_state_ctx; struct sha1_state *out_ctx = (struct sha1_state *)out; out_ctx->count = sha_state_ctx->count; memcpy(out_ctx->state, sha_state_ctx->state, sizeof(out_ctx->state)); memcpy(out_ctx->buffer, sha_state_ctx->buffer, SHA1_BLOCK_SIZE); return 0; }; static int _sha1_import(struct ahash_request *req, const void *in) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha1_state *sha_state_ctx = &rctx->sha1_state_ctx; struct sha1_state *in_ctx = (struct sha1_state *)in; sha_state_ctx->count = in_ctx->count; memcpy(sha_state_ctx->state, in_ctx->state, sizeof(in_ctx->state)); memcpy(sha_state_ctx->buffer, in_ctx->buffer, SHA1_BLOCK_SIZE); memcpy(sha_ctx->trailing_buf, in_ctx->buffer, SHA1_BLOCK_SIZE); sha_ctx->byte_count[0] = (uint32_t)(in_ctx->count & 0xFFFFFFC0); sha_ctx->byte_count[1] = (uint32_t)(in_ctx->count >> 32); _words_to_byte_stream(in_ctx->state, sha_ctx->digest, sha_ctx->diglen); sha_ctx->trailing_buf_len = (uint32_t)(in_ctx->count & (SHA1_BLOCK_SIZE-1)); if (!(in_ctx->count)) sha_ctx->first_blk = 1; else sha_ctx->first_blk = 0; return 0; } static int _sha256_export(struct ahash_request *req, void *out) { struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha256_state *sha_state_ctx = &rctx->sha256_state_ctx; struct sha256_state *out_ctx = (struct sha256_state *)out; out_ctx->count = sha_state_ctx->count; memcpy(out_ctx->state, sha_state_ctx->state, sizeof(out_ctx->state)); memcpy(out_ctx->buf, sha_state_ctx->buf, SHA256_BLOCK_SIZE); return 0; }; static int _sha256_import(struct ahash_request *req, const void *in) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha256_state *sha_state_ctx = &rctx->sha256_state_ctx; struct sha256_state *in_ctx = (struct sha256_state *)in; sha_state_ctx->count = in_ctx->count; memcpy(sha_state_ctx->state, in_ctx->state, sizeof(in_ctx->state)); memcpy(sha_state_ctx->buf, in_ctx->buf, SHA256_BLOCK_SIZE); memcpy(sha_ctx->trailing_buf, in_ctx->buf, SHA256_BLOCK_SIZE); sha_ctx->byte_count[0] = (uint32_t)(in_ctx->count & 0xFFFFFFC0); sha_ctx->byte_count[1] = (uint32_t)(in_ctx->count >> 32); _words_to_byte_stream(in_ctx->state, sha_ctx->digest, sha_ctx->diglen); sha_ctx->trailing_buf_len = (uint32_t)(in_ctx->count & (SHA256_BLOCK_SIZE-1)); if (!(in_ctx->count)) sha_ctx->first_blk = 1; else sha_ctx->first_blk = 0; return 0; } static int _copy_source(struct ahash_request *req) { struct qcrypto_sha_req_ctx *srctx = NULL; uint32_t bytes = 0; uint32_t num_sg = 0; srctx = ahash_request_ctx(req); srctx->orig_src = req->src; srctx->data = kzalloc((req->nbytes + 64), GFP_ATOMIC); if (srctx->data == NULL) { pr_err("Mem Alloc fail rctx->data, err %ld for 0x%x\n", PTR_ERR(srctx->data), (req->nbytes + 64)); return -ENOMEM; } num_sg = qcrypto_count_sg(req->src, req->nbytes); bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, srctx->data, req->nbytes); if (bytes != req->nbytes) pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, req->nbytes); sg_set_buf(&srctx->dsg, srctx->data, req->nbytes); sg_mark_end(&srctx->dsg); req->src = &srctx->dsg; return 0; } static int _sha_update(struct ahash_request *req, uint32_t sha_block_size) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); uint32_t total, len, num_sg; struct scatterlist *sg_last; uint8_t *k_src = NULL; uint32_t sha_pad_len = 0; uint32_t trailing_buf_len = 0; uint32_t nbytes; uint32_t offset = 0; uint32_t bytes = 0; int ret = 0; /* check for trailing buffer from previous updates and append it */ total = req->nbytes + sha_ctx->trailing_buf_len; len = req->nbytes; if (total <= sha_block_size) { k_src = &sha_ctx->trailing_buf[sha_ctx->trailing_buf_len]; num_sg = qcrypto_count_sg(req->src, len); bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, k_src, len); sha_ctx->trailing_buf_len = total; if (sha_ctx->alg == QCE_HASH_SHA1) _update_sha1_ctx(req); if (sha_ctx->alg == QCE_HASH_SHA256) _update_sha256_ctx(req); return 0; } /* save the original req structure fields*/ rctx->src = req->src; rctx->nbytes = req->nbytes; memcpy(sha_ctx->tmp_tbuf, sha_ctx->trailing_buf, sha_ctx->trailing_buf_len); k_src = &sha_ctx->trailing_buf[0]; /* get new trailing buffer */ sha_pad_len = ALIGN(total, sha_block_size) - total; trailing_buf_len = sha_block_size - sha_pad_len; offset = req->nbytes - trailing_buf_len; if (offset != req->nbytes) scatterwalk_map_and_copy(k_src, req->src, offset, trailing_buf_len, 0); nbytes = total - trailing_buf_len; num_sg = qcrypto_count_sg(req->src, req->nbytes); len = sha_ctx->trailing_buf_len; sg_last = req->src; while (len < nbytes) { if ((len + sg_last->length) > nbytes) break; len += sg_last->length; sg_last = scatterwalk_sg_next(sg_last); } if (sha_ctx->trailing_buf_len) { if (cp->ce_support.aligned_only) { sha_ctx->sg = kzalloc(sizeof(struct scatterlist), GFP_ATOMIC); if (sha_ctx->sg == NULL) { pr_err("MemAlloc fail sha_ctx->sg, error %ld\n", PTR_ERR(sha_ctx->sg)); return -ENOMEM; } rctx->data2 = kzalloc((req->nbytes + 64), GFP_ATOMIC); if (rctx->data2 == NULL) { pr_err("Mem Alloc fail srctx->data2, err %ld\n", PTR_ERR(rctx->data2)); kfree(sha_ctx->sg); return -ENOMEM; } memcpy(rctx->data2, sha_ctx->tmp_tbuf, sha_ctx->trailing_buf_len); memcpy((rctx->data2 + sha_ctx->trailing_buf_len), rctx->data, req->src->length); kfree(rctx->data); rctx->data = rctx->data2; sg_set_buf(&sha_ctx->sg[0], rctx->data, (sha_ctx->trailing_buf_len + req->src->length)); req->src = sha_ctx->sg; sg_mark_end(&sha_ctx->sg[0]); } else { sg_mark_end(sg_last); sha_ctx->sg = kzalloc(2 * (sizeof(struct scatterlist)), GFP_ATOMIC); if (sha_ctx->sg == NULL) { pr_err("MEMalloc fail sha_ctx->sg, error %ld\n", PTR_ERR(sha_ctx->sg)); return -ENOMEM; } sg_set_buf(&sha_ctx->sg[0], sha_ctx->tmp_tbuf, sha_ctx->trailing_buf_len); sg_mark_end(&sha_ctx->sg[1]); sg_chain(sha_ctx->sg, 2, req->src); req->src = sha_ctx->sg; } } else sg_mark_end(sg_last); req->nbytes = nbytes; sha_ctx->trailing_buf_len = trailing_buf_len; ret = _qcrypto_queue_req(cp, &req->base); return ret; }; static int _sha1_update(struct ahash_request *req) { struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha1_state *sha_state_ctx = &rctx->sha1_state_ctx; struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; if (cp->ce_support.aligned_only) { if (_copy_source(req)) return -ENOMEM; } sha_state_ctx->count += req->nbytes; return _sha_update(req, SHA1_BLOCK_SIZE); } static int _sha256_update(struct ahash_request *req) { struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct sha256_state *sha_state_ctx = &rctx->sha256_state_ctx; struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; if (cp->ce_support.aligned_only) { if (_copy_source(req)) return -ENOMEM; } sha_state_ctx->count += req->nbytes; return _sha_update(req, SHA256_BLOCK_SIZE); } static int _sha_final(struct ahash_request *req, uint32_t sha_block_size) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); int ret = 0; if (cp->ce_support.aligned_only) { if (_copy_source(req)) return -ENOMEM; } sha_ctx->last_blk = 1; /* save the original req structure fields*/ rctx->src = req->src; rctx->nbytes = req->nbytes; sg_set_buf(&sha_ctx->tmp_sg, sha_ctx->trailing_buf, sha_ctx->trailing_buf_len); sg_mark_end(&sha_ctx->tmp_sg); req->src = &sha_ctx->tmp_sg; req->nbytes = sha_ctx->trailing_buf_len; ret = _qcrypto_queue_req(cp, &req->base); return ret; }; static int _sha1_final(struct ahash_request *req) { return _sha_final(req, SHA1_BLOCK_SIZE); } static int _sha256_final(struct ahash_request *req) { return _sha_final(req, SHA256_BLOCK_SIZE); } static int _sha_digest(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct crypto_priv *cp = sha_ctx->cp; int ret = 0; if (cp->ce_support.aligned_only) { if (_copy_source(req)) return -ENOMEM; } /* save the original req structure fields*/ rctx->src = req->src; rctx->nbytes = req->nbytes; sha_ctx->first_blk = 1; sha_ctx->last_blk = 1; ret = _qcrypto_queue_req(cp, &req->base); return ret; } static int _sha1_digest(struct ahash_request *req) { _sha1_init(req); return _sha_digest(req); } static int _sha256_digest(struct ahash_request *req) { _sha256_init(req); return _sha_digest(req); } static void _crypto_sha_hmac_ahash_req_complete( struct crypto_async_request *req, int err) { struct completion *ahash_req_complete = req->data; if (err == -EINPROGRESS) return; complete(ahash_req_complete); } static int _sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base); int ret = 0; sha_ctx->in_buf = kzalloc(len + 64, GFP_KERNEL); if (sha_ctx->in_buf == NULL) { pr_err("qcrypto Can't Allocate mem: sha_ctx->in_buf, error %ld\n", PTR_ERR(sha_ctx->in_buf)); return -ENOMEM; } memcpy(sha_ctx->in_buf, key, len); sg_set_buf(&sha_ctx->tmp_sg, sha_ctx->in_buf, len); sg_mark_end(&sha_ctx->tmp_sg); ahash_request_set_crypt(sha_ctx->ahash_req, &sha_ctx->tmp_sg, &sha_ctx->authkey[0], len); ret = _sha_digest(sha_ctx->ahash_req); if (ret == -EINPROGRESS || ret == -EBUSY) { ret = wait_for_completion_interruptible( &sha_ctx->ahash_req_complete); INIT_COMPLETION(sha_ctx->ahash_req_complete); } sha_ctx->authkey_in_len = len; kfree(sha_ctx->in_buf); sha_ctx->in_buf = NULL; return ret; } static int _sha1_hmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base); if (len <= SHA1_BLOCK_SIZE) memcpy(&sha_ctx->authkey[0], key, len); else { _sha_init(sha_ctx); sha_ctx->alg = QCE_HASH_SHA1; memcpy(&sha_ctx->digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); sha_ctx->diglen = SHA1_DIGEST_SIZE; _sha_hmac_setkey(tfm, key, len); } return 0; } static int _sha256_hmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base); if (len <= SHA256_BLOCK_SIZE) memcpy(&sha_ctx->authkey[0], key, len); else { _sha_init(sha_ctx); sha_ctx->alg = QCE_HASH_SHA256; memcpy(&sha_ctx->digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); sha_ctx->diglen = SHA256_DIGEST_SIZE; _sha_hmac_setkey(tfm, key, len); } return 0; } static int _sha_hmac_init_ihash(struct ahash_request *req, uint32_t sha_block_size) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); int i; for (i = 0; i < sha_block_size; i++) sha_ctx->trailing_buf[i] = sha_ctx->authkey[i] ^ 0x36; sha_ctx->trailing_buf_len = sha_block_size; return 0; } static int _sha1_hmac_init(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; struct crypto_stat *pstat; int ret = 0; pstat = &_qcrypto_stat; pstat->sha1_hmac_digest++; _sha_init(sha_ctx); memset(&sha_ctx->trailing_buf[0], 0x00, SHA1_BLOCK_SIZE); memcpy(&sha_ctx->digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); sha_ctx->diglen = SHA1_DIGEST_SIZE; _update_sha1_ctx(req); if (cp->ce_support.sha_hmac) sha_ctx->alg = QCE_HASH_SHA1_HMAC; else { sha_ctx->alg = QCE_HASH_SHA1; ret = _sha_hmac_init_ihash(req, SHA1_BLOCK_SIZE); } return ret; } static int _sha256_hmac_init(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; struct crypto_stat *pstat; int ret = 0; pstat = &_qcrypto_stat; pstat->sha256_hmac_digest++; _sha_init(sha_ctx); memset(&sha_ctx->trailing_buf[0], 0x00, SHA256_BLOCK_SIZE); memcpy(&sha_ctx->digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); sha_ctx->diglen = SHA256_DIGEST_SIZE; _update_sha256_ctx(req); if (cp->ce_support.sha_hmac) sha_ctx->alg = QCE_HASH_SHA256_HMAC; else { sha_ctx->alg = QCE_HASH_SHA256; ret = _sha_hmac_init_ihash(req, SHA256_BLOCK_SIZE); } return ret; } static int _sha1_hmac_update(struct ahash_request *req) { return _sha1_update(req); } static int _sha256_hmac_update(struct ahash_request *req) { return _sha256_update(req); } static int _sha_hmac_outer_hash(struct ahash_request *req, uint32_t sha_digest_size, uint32_t sha_block_size) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req); struct crypto_priv *cp = sha_ctx->cp; int i; for (i = 0; i < sha_block_size; i++) sha_ctx->tmp_tbuf[i] = sha_ctx->authkey[i] ^ 0x5c; /* save the original req structure fields*/ rctx->src = req->src; rctx->nbytes = req->nbytes; memcpy(&sha_ctx->tmp_tbuf[sha_block_size], &sha_ctx->digest[0], sha_digest_size); sg_set_buf(&sha_ctx->tmp_sg, sha_ctx->tmp_tbuf, sha_block_size + sha_digest_size); sg_mark_end(&sha_ctx->tmp_sg); req->src = &sha_ctx->tmp_sg; req->nbytes = sha_block_size + sha_digest_size; _sha_init(sha_ctx); if (sha_ctx->alg == QCE_HASH_SHA1) { memcpy(&sha_ctx->digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); sha_ctx->diglen = SHA1_DIGEST_SIZE; } else { memcpy(&sha_ctx->digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); sha_ctx->diglen = SHA256_DIGEST_SIZE; } sha_ctx->last_blk = 1; return _qcrypto_queue_req(cp, &req->base); } static int _sha_hmac_inner_hash(struct ahash_request *req, uint32_t sha_digest_size, uint32_t sha_block_size) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct ahash_request *areq = sha_ctx->ahash_req; struct crypto_priv *cp = sha_ctx->cp; int ret = 0; sha_ctx->last_blk = 1; sg_set_buf(&sha_ctx->tmp_sg, sha_ctx->trailing_buf, sha_ctx->trailing_buf_len); sg_mark_end(&sha_ctx->tmp_sg); ahash_request_set_crypt(areq, &sha_ctx->tmp_sg, &sha_ctx->digest[0], sha_ctx->trailing_buf_len); sha_ctx->last_blk = 1; ret = _qcrypto_queue_req(cp, &areq->base); if (ret == -EINPROGRESS || ret == -EBUSY) { ret = wait_for_completion_interruptible(&sha_ctx->ahash_req_complete); INIT_COMPLETION(sha_ctx->ahash_req_complete); } return ret; } static int _sha1_hmac_final(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; int ret = 0; if (cp->ce_support.sha_hmac) return _sha_final(req, SHA1_BLOCK_SIZE); else { ret = _sha_hmac_inner_hash(req, SHA1_DIGEST_SIZE, SHA1_BLOCK_SIZE); if (ret) return ret; return _sha_hmac_outer_hash(req, SHA1_DIGEST_SIZE, SHA1_BLOCK_SIZE); } } static int _sha256_hmac_final(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = sha_ctx->cp; int ret = 0; if (cp->ce_support.sha_hmac) return _sha_final(req, SHA256_BLOCK_SIZE); else { ret = _sha_hmac_inner_hash(req, SHA256_DIGEST_SIZE, SHA256_BLOCK_SIZE); if (ret) return ret; return _sha_hmac_outer_hash(req, SHA256_DIGEST_SIZE, SHA256_BLOCK_SIZE); } return 0; } static int _sha1_hmac_digest(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_stat *pstat; pstat = &_qcrypto_stat; pstat->sha1_hmac_digest++; _sha_init(sha_ctx); memcpy(&sha_ctx->digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); sha_ctx->diglen = SHA1_DIGEST_SIZE; sha_ctx->alg = QCE_HASH_SHA1_HMAC; return _sha_digest(req); } static int _sha256_hmac_digest(struct ahash_request *req) { struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_stat *pstat; pstat = &_qcrypto_stat; pstat->sha256_hmac_digest++; _sha_init(sha_ctx); memcpy(&sha_ctx->digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); sha_ctx->diglen = SHA256_DIGEST_SIZE; sha_ctx->alg = QCE_HASH_SHA256_HMAC; return _sha_digest(req); } int qcrypto_cipher_set_flag(struct ablkcipher_request *req, unsigned int flags) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; if ((flags & QCRYPTO_CTX_USE_HW_KEY) && (cp->platform_support.hw_key_support == false)) { pr_err("%s HW key usage not supported\n", __func__); return -EINVAL; } if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) == QCRYPTO_CTX_KEY_MASK) { pr_err("%s Cannot set all key flags\n", __func__); return -EINVAL; } ctx->flags |= flags; return 0; }; EXPORT_SYMBOL(qcrypto_cipher_set_flag); int qcrypto_aead_set_flag(struct aead_request *req, unsigned int flags) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; if ((flags & QCRYPTO_CTX_USE_HW_KEY) && (cp->platform_support.hw_key_support == false)) { pr_err("%s HW key usage not supported\n", __func__); return -EINVAL; } if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) == QCRYPTO_CTX_KEY_MASK) { pr_err("%s Cannot set all key flags\n", __func__); return -EINVAL; } ctx->flags |= flags; return 0; }; EXPORT_SYMBOL(qcrypto_aead_set_flag); int qcrypto_ahash_set_flag(struct ahash_request *req, unsigned int flags) { struct qcrypto_sha_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto_priv *cp = ctx->cp; if ((flags & QCRYPTO_CTX_USE_HW_KEY) && (cp->platform_support.hw_key_support == false)) { pr_err("%s HW key usage not supported\n", __func__); return -EINVAL; } if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) == QCRYPTO_CTX_KEY_MASK) { pr_err("%s Cannot set all key flags\n", __func__); return -EINVAL; } ctx->flags |= flags; return 0; }; EXPORT_SYMBOL(qcrypto_ahash_set_flag); int qcrypto_cipher_clear_flag(struct ablkcipher_request *req, unsigned int flags) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); ctx->flags &= ~flags; return 0; }; EXPORT_SYMBOL(qcrypto_cipher_clear_flag); int qcrypto_aead_clear_flag(struct aead_request *req, unsigned int flags) { struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); ctx->flags &= ~flags; return 0; }; EXPORT_SYMBOL(qcrypto_aead_clear_flag); int qcrypto_ahash_clear_flag(struct ahash_request *req, unsigned int flags) { struct qcrypto_sha_ctx *ctx = crypto_tfm_ctx(req->base.tfm); ctx->flags &= ~flags; return 0; }; EXPORT_SYMBOL(qcrypto_ahash_clear_flag); static struct ahash_alg _qcrypto_ahash_algos[] = { { .init = _sha1_init, .update = _sha1_update, .final = _sha1_final, .export = _sha1_export, .import = _sha1_import, .digest = _sha1_digest, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "qcrypto-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_sha_ctx), .cra_alignmask = 0, .cra_type = &crypto_ahash_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_ahash_cra_init, .cra_exit = _qcrypto_ahash_cra_exit, }, }, }, { .init = _sha256_init, .update = _sha256_update, .final = _sha256_final, .export = _sha256_export, .import = _sha256_import, .digest = _sha256_digest, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name = "qcrypto-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_sha_ctx), .cra_alignmask = 0, .cra_type = &crypto_ahash_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_ahash_cra_init, .cra_exit = _qcrypto_ahash_cra_exit, }, }, }, }; static struct ahash_alg _qcrypto_sha_hmac_algos[] = { { .init = _sha1_hmac_init, .update = _sha1_hmac_update, .final = _sha1_hmac_final, .export = _sha1_export, .import = _sha1_import, .digest = _sha1_hmac_digest, .setkey = _sha1_hmac_setkey, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct sha1_state), .base = { .cra_name = "hmac(sha1)", .cra_driver_name = "qcrypto-hmac-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_sha_ctx), .cra_alignmask = 0, .cra_type = &crypto_ahash_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_ahash_hmac_cra_init, .cra_exit = _qcrypto_ahash_cra_exit, }, }, }, { .init = _sha256_hmac_init, .update = _sha256_hmac_update, .final = _sha256_hmac_final, .export = _sha256_export, .import = _sha256_import, .digest = _sha256_hmac_digest, .setkey = _sha256_hmac_setkey, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct sha256_state), .base = { .cra_name = "hmac(sha256)", .cra_driver_name = "qcrypto-hmac-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_sha_ctx), .cra_alignmask = 0, .cra_type = &crypto_ahash_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_ahash_hmac_cra_init, .cra_exit = _qcrypto_ahash_cra_exit, }, }, }, }; static struct crypto_alg _qcrypto_ablk_cipher_algos[] = { { .cra_name = "ecb(aes)", .cra_driver_name = "qcrypto-ecb-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = _qcrypto_setkey_aes, .encrypt = _qcrypto_enc_aes_ecb, .decrypt = _qcrypto_dec_aes_ecb, }, }, }, { .cra_name = "cbc(aes)", .cra_driver_name = "qcrypto-cbc-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = _qcrypto_setkey_aes, .encrypt = _qcrypto_enc_aes_cbc, .decrypt = _qcrypto_dec_aes_cbc, }, }, }, { .cra_name = "ctr(aes)", .cra_driver_name = "qcrypto-ctr-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = _qcrypto_setkey_aes, .encrypt = _qcrypto_enc_aes_ctr, .decrypt = _qcrypto_dec_aes_ctr, }, }, }, { .cra_name = "ecb(des)", .cra_driver_name = "qcrypto-ecb-des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .setkey = _qcrypto_setkey_des, .encrypt = _qcrypto_enc_des_ecb, .decrypt = _qcrypto_dec_des_ecb, }, }, }, { .cra_name = "cbc(des)", .cra_driver_name = "qcrypto-cbc-des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .ivsize = DES_BLOCK_SIZE, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .setkey = _qcrypto_setkey_des, .encrypt = _qcrypto_enc_des_cbc, .decrypt = _qcrypto_dec_des_cbc, }, }, }, { .cra_name = "ecb(des3_ede)", .cra_driver_name = "qcrypto-ecb-3des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .setkey = _qcrypto_setkey_3des, .encrypt = _qcrypto_enc_3des_ecb, .decrypt = _qcrypto_dec_3des_ecb, }, }, }, { .cra_name = "cbc(des3_ede)", .cra_driver_name = "qcrypto-cbc-3des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .ivsize = DES3_EDE_BLOCK_SIZE, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .setkey = _qcrypto_setkey_3des, .encrypt = _qcrypto_enc_3des_cbc, .decrypt = _qcrypto_dec_3des_cbc, }, }, }, }; static struct crypto_alg _qcrypto_ablk_cipher_xts_algo = { .cra_name = "xts(aes)", .cra_driver_name = "qcrypto-xts-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_ablkcipher_init, .cra_exit = _qcrypto_cra_ablkcipher_exit, .cra_u = { .ablkcipher = { .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = _qcrypto_setkey_aes_xts, .encrypt = _qcrypto_enc_aes_xts, .decrypt = _qcrypto_dec_aes_xts, }, }, }; static struct crypto_alg _qcrypto_aead_sha1_hmac_algos[] = { { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_aead_init, .cra_exit = _qcrypto_cra_aead_exit, .cra_u = { .aead = { .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .setkey = _qcrypto_aead_setkey, .setauthsize = _qcrypto_aead_setauthsize, .encrypt = _qcrypto_aead_encrypt_aes_cbc, .decrypt = _qcrypto_aead_decrypt_aes_cbc, .givencrypt = _qcrypto_aead_givencrypt_aes_cbc, .geniv = "", } } }, #ifdef QCRYPTO_AEAD_AES_CTR { .cra_name = "authenc(hmac(sha1),ctr(aes))", .cra_driver_name = "qcrypto-aead-hmac-sha1-ctr-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_aead_init, .cra_exit = _qcrypto_cra_aead_exit, .cra_u = { .aead = { .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .setkey = _qcrypto_aead_setkey, .setauthsize = _qcrypto_aead_setauthsize, .encrypt = _qcrypto_aead_encrypt_aes_ctr, .decrypt = _qcrypto_aead_decrypt_aes_ctr, .givencrypt = _qcrypto_aead_givencrypt_aes_ctr, .geniv = "", } } }, #endif /* QCRYPTO_AEAD_AES_CTR */ { .cra_name = "authenc(hmac(sha1),cbc(des))", .cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_aead_init, .cra_exit = _qcrypto_cra_aead_exit, .cra_u = { .aead = { .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .setkey = _qcrypto_aead_setkey, .setauthsize = _qcrypto_aead_setauthsize, .encrypt = _qcrypto_aead_encrypt_des_cbc, .decrypt = _qcrypto_aead_decrypt_des_cbc, .givencrypt = _qcrypto_aead_givencrypt_des_cbc, .geniv = "", } } }, { .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", .cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-3des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_aead_init, .cra_exit = _qcrypto_cra_aead_exit, .cra_u = { .aead = { .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .setkey = _qcrypto_aead_setkey, .setauthsize = _qcrypto_aead_setauthsize, .encrypt = _qcrypto_aead_encrypt_3des_cbc, .decrypt = _qcrypto_aead_decrypt_3des_cbc, .givencrypt = _qcrypto_aead_givencrypt_3des_cbc, .geniv = "", } } }, }; static struct crypto_alg _qcrypto_aead_ccm_algo = { .cra_name = "ccm(aes)", .cra_driver_name = "qcrypto-aes-ccm", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qcrypto_cipher_ctx), .cra_alignmask = 0, .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_init = _qcrypto_cra_aead_init, .cra_exit = _qcrypto_cra_aead_exit, .cra_u = { .aead = { .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .setkey = _qcrypto_aead_ccm_setkey, .setauthsize = _qcrypto_aead_ccm_setauthsize, .encrypt = _qcrypto_aead_encrypt_aes_ccm, .decrypt = _qcrypto_aead_decrypt_aes_ccm, .geniv = "", } } }; static int _qcrypto_probe(struct platform_device *pdev) { int rc = 0; void *handle; struct crypto_priv *cp; int i; struct msm_ce_hw_support *platform_support; cp = kzalloc(sizeof(*cp), GFP_KERNEL); if (!cp) { pr_err("qcrypto Memory allocation of q_alg FAIL, error %ld\n", PTR_ERR(cp)); return -ENOMEM; } /* open qce */ handle = qce_open(pdev, &rc); if (handle == NULL) { kfree(cp); platform_set_drvdata(pdev, NULL); return rc; } INIT_LIST_HEAD(&cp->alg_list); platform_set_drvdata(pdev, cp); spin_lock_init(&cp->lock); tasklet_init(&cp->done_tasklet, req_done, (unsigned long)cp); crypto_init_queue(&cp->queue, 50); cp->qce = handle; cp->pdev = pdev; qce_hw_support(cp->qce, &cp->ce_support); if (cp->ce_support.bam) { cp->platform_support.ce_shared = cp->ce_support.is_shared; cp->platform_support.shared_ce_resource = 0; cp->platform_support.hw_key_support = cp->ce_support.hw_key; cp->platform_support.bus_scale_table = NULL; cp->platform_support.sha_hmac = 1; cp->platform_support.bus_scale_table = (struct msm_bus_scale_pdata *) msm_bus_cl_get_pdata(pdev); if (!cp->platform_support.bus_scale_table) pr_warn("bus_scale_table is NULL\n"); } else { platform_support = (struct msm_ce_hw_support *)pdev->dev.platform_data; cp->platform_support.ce_shared = platform_support->ce_shared; cp->platform_support.shared_ce_resource = platform_support->shared_ce_resource; cp->platform_support.hw_key_support = platform_support->hw_key_support; cp->platform_support.bus_scale_table = platform_support->bus_scale_table; cp->platform_support.sha_hmac = platform_support->sha_hmac; } cp->high_bw_req_count = 0; cp->ce_lock_count = 0; if (cp->platform_support.ce_shared) INIT_WORK(&cp->unlock_ce_ws, qcrypto_unlock_ce); if (cp->platform_support.bus_scale_table != NULL) { cp->bus_scale_handle = msm_bus_scale_register_client( (struct msm_bus_scale_pdata *) cp->platform_support.bus_scale_table); if (!cp->bus_scale_handle) { printk(KERN_ERR "%s not able to get bus scale\n", __func__); rc = -ENOMEM; goto err; } } /* register crypto cipher algorithms the device supports */ for (i = 0; i < ARRAY_SIZE(_qcrypto_ablk_cipher_algos); i++) { struct qcrypto_alg *q_alg; q_alg = _qcrypto_cipher_alg_alloc(cp, &_qcrypto_ablk_cipher_algos[i]); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } rc = crypto_register_alg(&q_alg->cipher_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->cipher_alg.cra_driver_name); kfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->cipher_alg.cra_driver_name); } } /* register crypto cipher algorithms the device supports */ if (cp->ce_support.aes_xts) { struct qcrypto_alg *q_alg; q_alg = _qcrypto_cipher_alg_alloc(cp, &_qcrypto_ablk_cipher_xts_algo); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } rc = crypto_register_alg(&q_alg->cipher_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->cipher_alg.cra_driver_name); kfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->cipher_alg.cra_driver_name); } } /* * Register crypto hash (sha1 and sha256) algorithms the * device supports */ for (i = 0; i < ARRAY_SIZE(_qcrypto_ahash_algos); i++) { struct qcrypto_alg *q_alg = NULL; q_alg = _qcrypto_sha_alg_alloc(cp, &_qcrypto_ahash_algos[i]); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } rc = crypto_register_ahash(&q_alg->sha_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->sha_alg.halg.base.cra_driver_name); kfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->sha_alg.halg.base.cra_driver_name); } } /* register crypto aead (hmac-sha1) algorithms the device supports */ if (cp->ce_support.sha1_hmac_20 || cp->ce_support.sha1_hmac) { for (i = 0; i < ARRAY_SIZE(_qcrypto_aead_sha1_hmac_algos); i++) { struct qcrypto_alg *q_alg; q_alg = _qcrypto_cipher_alg_alloc(cp, &_qcrypto_aead_sha1_hmac_algos[i]); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } rc = crypto_register_alg(&q_alg->cipher_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->cipher_alg.cra_driver_name); kfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->cipher_alg.cra_driver_name); } } } if ((cp->ce_support.sha_hmac) || (cp->platform_support.sha_hmac)) { /* register crypto hmac algorithms the device supports */ for (i = 0; i < ARRAY_SIZE(_qcrypto_sha_hmac_algos); i++) { struct qcrypto_alg *q_alg = NULL; q_alg = _qcrypto_sha_alg_alloc(cp, &_qcrypto_sha_hmac_algos[i]); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } rc = crypto_register_ahash(&q_alg->sha_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->sha_alg.halg.base.cra_driver_name); kfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->sha_alg.halg.base.cra_driver_name); } } } /* * Register crypto cipher (aes-ccm) algorithms the * device supports */ if (cp->ce_support.aes_ccm) { struct qcrypto_alg *q_alg; q_alg = _qcrypto_cipher_alg_alloc(cp, &_qcrypto_aead_ccm_algo); if (IS_ERR(q_alg)) { rc = PTR_ERR(q_alg); goto err; } rc = crypto_register_alg(&q_alg->cipher_alg); if (rc) { dev_err(&pdev->dev, "%s alg registration failed\n", q_alg->cipher_alg.cra_driver_name); kfree(q_alg); } else { list_add_tail(&q_alg->entry, &cp->alg_list); dev_info(&pdev->dev, "%s\n", q_alg->cipher_alg.cra_driver_name); } } return 0; err: _qcrypto_remove(pdev); return rc; }; static struct of_device_id qcrypto_match[] = { { .compatible = "qcom,qcrypto", }, {} }; static struct platform_driver _qualcomm_crypto = { .probe = _qcrypto_probe, .remove = _qcrypto_remove, .driver = { .owner = THIS_MODULE, .name = "qcrypto", .of_match_table = qcrypto_match, }, }; static int _debug_qcrypto; static int _debug_stats_open(struct inode *inode, struct file *file) { file->private_data = inode->i_private; return 0; } static ssize_t _debug_stats_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { int rc = -EINVAL; int qcrypto = *((int *) file->private_data); int len; len = _disp_stats(qcrypto); rc = simple_read_from_buffer((void __user *) buf, len, ppos, (void *) _debug_read_buf, len); return rc; } static ssize_t _debug_stats_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { memset((char *)&_qcrypto_stat, 0, sizeof(struct crypto_stat)); return count; }; static const struct file_operations _debug_stats_ops = { .open = _debug_stats_open, .read = _debug_stats_read, .write = _debug_stats_write, }; static int _qcrypto_debug_init(void) { int rc; char name[DEBUG_MAX_FNAME]; struct dentry *dent; _debug_dent = debugfs_create_dir("qcrypto", NULL); if (IS_ERR(_debug_dent)) { pr_err("qcrypto debugfs_create_dir fail, error %ld\n", PTR_ERR(_debug_dent)); return PTR_ERR(_debug_dent); } snprintf(name, DEBUG_MAX_FNAME-1, "stats-%d", 1); _debug_qcrypto = 0; dent = debugfs_create_file(name, 0644, _debug_dent, &_debug_qcrypto, &_debug_stats_ops); if (dent == NULL) { pr_err("qcrypto debugfs_create_file fail, error %ld\n", PTR_ERR(dent)); rc = PTR_ERR(dent); goto err; } return 0; err: debugfs_remove_recursive(_debug_dent); return rc; } static int __init _qcrypto_init(void) { int rc; rc = _qcrypto_debug_init(); if (rc) return rc; return platform_driver_register(&_qualcomm_crypto); } static void __exit _qcrypto_exit(void) { pr_debug("%s Unregister QCRYPTO\n", __func__); debugfs_remove_recursive(_debug_dent); platform_driver_unregister(&_qualcomm_crypto); } module_init(_qcrypto_init); module_exit(_qcrypto_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Qualcomm Crypto driver");