/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_DIAG_OVER_USB #include #endif #include "diagchar_hdlc.h" #include "diagmem.h" #include "diagchar.h" #include "diagfwd.h" #include "diagfwd_hsic.h" #include "diagfwd_smux.h" #include "diagfwd_bridge.h" #define READ_HSIC_BUF_SIZE 2048 struct diag_hsic_dev *diag_hsic; static void diag_read_hsic_work_fn(struct work_struct *work) { unsigned char *buf_in_hsic = NULL; int num_reads_submitted = 0; int err = 0; int write_ptrs_available; struct diag_hsic_dev *hsic_struct = container_of(work, struct diag_hsic_dev, diag_read_hsic_work); int index = hsic_struct->id; static DEFINE_RATELIMIT_STATE(rl, 10*HZ, 1); if (!diag_hsic[index].hsic_ch) { pr_err("DIAG in %s: diag_hsic[index].hsic_ch == 0\n", __func__); return; } /* * Determine the current number of available buffers for writing after * reading from the HSIC has completed. */ if (driver->logging_mode == MEMORY_DEVICE_MODE) write_ptrs_available = diag_hsic[index].poolsize_hsic_write - diag_hsic[index]. num_hsic_buf_tbl_entries; else write_ptrs_available = diag_hsic[index].poolsize_hsic_write - diag_hsic[index].count_hsic_write_pool; /* * Queue up a read on the HSIC for all available buffers in the * pool, exhausting the pool. */ do { /* * If no more write buffers are available, * stop queuing reads */ if (write_ptrs_available <= 0) break; write_ptrs_available--; /* * No sense queuing a read if the HSIC bridge was * closed in another thread */ if (!diag_hsic[index].hsic_ch) break; buf_in_hsic = diagmem_alloc(driver, READ_HSIC_BUF_SIZE, index+POOL_TYPE_HSIC); if (buf_in_hsic) { /* * Initiate the read from the HSIC. The HSIC read is * asynchronous. Once the read is complete the read * callback function will be called. */ pr_debug("diag: read from HSIC\n"); num_reads_submitted++; err = diag_bridge_read(index, (char *)buf_in_hsic, READ_HSIC_BUF_SIZE); if (err) { num_reads_submitted--; /* Return the buffer to the pool */ diagmem_free(driver, buf_in_hsic, index+POOL_TYPE_HSIC); if (__ratelimit(&rl)) pr_err("diag: Error initiating HSIC read, err: %d\n", err); /* * An error occurred, discontinue queuing * reads */ break; } } } while (buf_in_hsic); /* * If there are read buffers available and for some reason the * read was not queued, and if no unrecoverable error occurred * (-ENODEV is an unrecoverable error), then set up the next read */ if ((diag_hsic[index].count_hsic_pool < diag_hsic[index].poolsize_hsic) && (num_reads_submitted == 0) && (err != -ENODEV) && (diag_hsic[index].hsic_ch != 0)) queue_work(diag_bridge[index].wq, &diag_hsic[index].diag_read_hsic_work); } static void diag_hsic_read_complete_callback(void *ctxt, char *buf, int buf_size, int actual_size) { int err = -2; int index = (int)ctxt; static DEFINE_RATELIMIT_STATE(rl, 10*HZ, 1); if (!diag_hsic[index].hsic_ch) { /* * The HSIC channel is closed. Return the buffer to * the pool. Do not send it on. */ diagmem_free(driver, buf, index+POOL_TYPE_HSIC); pr_debug("diag: In %s: hsic_ch == 0, actual_size: %d\n", __func__, actual_size); return; } /* * Note that zero length is valid and still needs to be sent to * the USB only when we are logging data to the USB */ if ((actual_size > 0) || ((actual_size == 0) && (driver->logging_mode == USB_MODE))) { if (!buf) { pr_err("diag: Out of diagmem for HSIC\n"); } else { /* * Send data in buf to be written on the * appropriate device, e.g. USB MDM channel */ diag_bridge[index].write_len = actual_size; err = diag_device_write((void *)buf, index+HSIC_DATA, NULL); /* If an error, return buffer to the pool */ if (err) { diagmem_free(driver, buf, index + POOL_TYPE_HSIC); if (__ratelimit(&rl)) pr_err("diag: In %s, error calling diag_device_write, err: %d\n", __func__, err); } } } else { /* * The buffer has an error status associated with it. Do not * pass it on. Note that -ENOENT is sent when the diag bridge * is closed. */ diagmem_free(driver, buf, index+POOL_TYPE_HSIC); pr_debug("diag: In %s: error status: %d\n", __func__, actual_size); } /* * If for some reason there was no HSIC data to write to the * mdm channel, set up another read */ if (err && ((driver->logging_mode == MEMORY_DEVICE_MODE) || (diag_bridge[index].usb_connected && !diag_hsic[index].hsic_suspend))) { queue_work(diag_bridge[index].wq, &diag_hsic[index].diag_read_hsic_work); } } static void diag_hsic_write_complete_callback(void *ctxt, char *buf, int buf_size, int actual_size) { int index = (int)ctxt; /* The write of the data to the HSIC bridge is complete */ diag_hsic[index].in_busy_hsic_write = 0; if (!diag_hsic[index].hsic_ch) { pr_err("DIAG in %s: hsic_ch == 0, ch = %d\n", __func__, index); return; } if (actual_size < 0) pr_err("DIAG in %s: actual_size: %d\n", __func__, actual_size); if (diag_bridge[index].usb_connected && (driver->logging_mode == USB_MODE)) queue_work(diag_bridge[index].wq, &diag_bridge[index].diag_read_work); } static int diag_hsic_suspend(void *ctxt) { int index = (int)ctxt; pr_debug("diag: hsic_suspend\n"); /* Don't allow suspend if a write in the HSIC is in progress */ if (diag_hsic[index].in_busy_hsic_write) return -EBUSY; /* * Don't allow suspend if in MEMORY_DEVICE_MODE and if there * has been hsic data requested */ if (driver->logging_mode == MEMORY_DEVICE_MODE && diag_hsic[index].hsic_ch) return -EBUSY; diag_hsic[index].hsic_suspend = 1; return 0; } static void diag_hsic_resume(void *ctxt) { int index = (int)ctxt; pr_debug("diag: hsic_resume\n"); diag_hsic[index].hsic_suspend = 0; if ((diag_hsic[index].count_hsic_pool < diag_hsic[index].poolsize_hsic) && ((driver->logging_mode == MEMORY_DEVICE_MODE) || (diag_bridge[index].usb_connected))) queue_work(diag_bridge[index].wq, &diag_hsic[index].diag_read_hsic_work); } struct diag_bridge_ops hsic_diag_bridge_ops[MAX_HSIC_CH] = { { .ctxt = NULL, .read_complete_cb = diag_hsic_read_complete_callback, .write_complete_cb = diag_hsic_write_complete_callback, .suspend = diag_hsic_suspend, .resume = diag_hsic_resume, }, { .ctxt = NULL, .read_complete_cb = diag_hsic_read_complete_callback, .write_complete_cb = diag_hsic_write_complete_callback, .suspend = diag_hsic_suspend, .resume = diag_hsic_resume, } }; void diag_hsic_close(int ch_id) { if (diag_hsic[ch_id].hsic_device_enabled) { diag_hsic[ch_id].hsic_ch = 0; if (diag_hsic[ch_id].hsic_device_opened) { diag_hsic[ch_id].hsic_device_opened = 0; diag_bridge_close(ch_id); pr_debug("diag: %s: closed successfully ch %d\n", __func__, ch_id); } else { pr_debug("diag: %s: already closed ch %d\n", __func__, ch_id); } } else { pr_debug("diag: %s: HSIC device already removed ch %d\n", __func__, ch_id); } } /* diagfwd_cancel_hsic is called to cancel outstanding read/writes */ int diagfwd_cancel_hsic(int reopen) { int err, i; /* Cancel it for all active HSIC bridges */ for (i = 0; i < MAX_HSIC_CH; i++) { if (!diag_bridge[i].enabled) continue; mutex_lock(&diag_bridge[i].bridge_mutex); if (diag_hsic[i].hsic_device_enabled) { if (diag_hsic[i].hsic_device_opened) { diag_hsic[i].hsic_ch = 0; diag_hsic[i].hsic_device_opened = 0; diag_bridge_close(i); if (reopen) { hsic_diag_bridge_ops[i].ctxt = (void *)(i); err = diag_bridge_open(i, &hsic_diag_bridge_ops[i]); if (err) { pr_err("diag: HSIC %d channel open error: %d\n", i, err); } else { pr_debug("diag: opened HSIC channel: %d\n", i); diag_hsic[i]. hsic_device_opened = 1; diag_hsic[i].hsic_ch = 1; } diag_hsic[i].hsic_data_requested = 1; } else { diag_hsic[i].hsic_data_requested = 0; } } } mutex_unlock(&diag_bridge[i].bridge_mutex); } return 0; } /* * diagfwd_write_complete_hsic is called after the asynchronous * usb_diag_write() on mdm channel is complete */ int diagfwd_write_complete_hsic(struct diag_request *diag_write_ptr, int index) { unsigned char *buf = (diag_write_ptr) ? diag_write_ptr->buf : NULL; if (buf) { /* Return buffers to their pools */ diagmem_free(driver, (unsigned char *)buf, index + POOL_TYPE_HSIC); diagmem_free(driver, (unsigned char *)diag_write_ptr, index + POOL_TYPE_HSIC_WRITE); } if (!diag_hsic[index].hsic_ch) { pr_err("diag: In %s: hsic_ch == 0\n", __func__); return 0; } /* Read data from the HSIC */ queue_work(diag_bridge[index].wq, &diag_hsic[index].diag_read_hsic_work); return 0; } void diag_usb_read_complete_hsic_fn(struct work_struct *w) { struct diag_bridge_dev *bridge_struct = container_of(w, struct diag_bridge_dev, usb_read_complete_work); diagfwd_read_complete_bridge( diag_bridge[bridge_struct->id].usb_read_ptr); } void diag_read_usb_hsic_work_fn(struct work_struct *work) { struct diag_bridge_dev *bridge_struct = container_of(work, struct diag_bridge_dev, diag_read_work); int index = bridge_struct->id; if (!diag_hsic[index].hsic_ch) { pr_err("diag: in %s: hsic_ch == 0\n", __func__); return; } /* * If there is no data being read from the usb mdm channel * and there is no mdm channel data currently being written * to the HSIC */ if (!diag_hsic[index].in_busy_hsic_read_on_device && !diag_hsic[index].in_busy_hsic_write) { APPEND_DEBUG('x'); /* Setup the next read from usb mdm channel */ diag_hsic[index].in_busy_hsic_read_on_device = 1; diag_bridge[index].usb_read_ptr->buf = diag_bridge[index].usb_buf_out; diag_bridge[index].usb_read_ptr->length = USB_MAX_OUT_BUF; diag_bridge[index].usb_read_ptr->context = (void *)index; usb_diag_read(diag_bridge[index].ch, diag_bridge[index].usb_read_ptr); APPEND_DEBUG('y'); } /* If for some reason there was no mdm channel read initiated, * queue up the reading of data from the mdm channel */ if (!diag_hsic[index].in_busy_hsic_read_on_device && (driver->logging_mode == USB_MODE)) queue_work(diag_bridge[index].wq, &(diag_bridge[index].diag_read_work)); } static int diag_hsic_probe(struct platform_device *pdev) { int err = 0; /* pdev->Id will indicate which HSIC is working. 0 stands for HSIC * or CP1 1 indicates HS-USB or CP2 */ pr_debug("diag: in %s, ch = %d\n", __func__, pdev->id); mutex_lock(&diag_bridge[pdev->id].bridge_mutex); if (!diag_hsic[pdev->id].hsic_inited) { spin_lock_init(&diag_hsic[pdev->id].hsic_spinlock); diag_hsic[pdev->id].num_hsic_buf_tbl_entries = 0; if (diag_hsic[pdev->id].hsic_buf_tbl == NULL) diag_hsic[pdev->id].hsic_buf_tbl = kzalloc(NUM_HSIC_BUF_TBL_ENTRIES * sizeof(struct diag_write_device), GFP_KERNEL); if (diag_hsic[pdev->id].hsic_buf_tbl == NULL) { mutex_unlock(&diag_bridge[pdev->id].bridge_mutex); return -ENOMEM; } diag_hsic[pdev->id].id = pdev->id; diag_hsic[pdev->id].count_hsic_pool = 0; diag_hsic[pdev->id].count_hsic_write_pool = 0; diag_hsic[pdev->id].itemsize_hsic = READ_HSIC_BUF_SIZE; diag_hsic[pdev->id].poolsize_hsic = N_MDM_WRITE; diag_hsic[pdev->id].itemsize_hsic_write = sizeof(struct diag_request); diag_hsic[pdev->id].poolsize_hsic_write = N_MDM_WRITE; diagmem_hsic_init(pdev->id); INIT_WORK(&(diag_hsic[pdev->id].diag_read_hsic_work), diag_read_hsic_work_fn); diag_hsic[pdev->id].hsic_data_requested = (driver->logging_mode == MEMORY_DEVICE_MODE) ? 0 : 1; diag_hsic[pdev->id].hsic_inited = 1; } /* * The probe function was called after the usb was connected * on the legacy channel OR ODL is turned on and hsic data is * requested. Communication over usb mdm and HSIC needs to be * turned on. */ if ((diag_bridge[pdev->id].usb_connected && (driver->logging_mode != MEMORY_DEVICE_MODE)) || ((driver->logging_mode == MEMORY_DEVICE_MODE) && diag_hsic[pdev->id].hsic_data_requested)) { if (diag_hsic[pdev->id].hsic_device_opened) { /* should not happen. close it before re-opening */ pr_warn("diag: HSIC channel already opened in probe\n"); diag_bridge_close(pdev->id); } hsic_diag_bridge_ops[pdev->id].ctxt = (void *)(pdev->id); err = diag_bridge_open(pdev->id, &hsic_diag_bridge_ops[pdev->id]); if (err) { pr_err("diag: could not open HSIC, err: %d\n", err); diag_hsic[pdev->id].hsic_device_opened = 0; mutex_unlock(&diag_bridge[pdev->id].bridge_mutex); return err; } pr_info("diag: opened HSIC bridge, ch = %d\n", pdev->id); diag_hsic[pdev->id].hsic_device_opened = 1; diag_hsic[pdev->id].hsic_ch = 1; diag_hsic[pdev->id].in_busy_hsic_read_on_device = 0; diag_hsic[pdev->id].in_busy_hsic_write = 0; if (diag_bridge[pdev->id].usb_connected) { /* Poll USB mdm channel to check for data */ queue_work(diag_bridge[pdev->id].wq, &diag_bridge[pdev->id].diag_read_work); } /* Poll HSIC channel to check for data */ queue_work(diag_bridge[pdev->id].wq, &diag_hsic[pdev->id].diag_read_hsic_work); } /* The HSIC (diag_bridge) platform device driver is enabled */ diag_hsic[pdev->id].hsic_device_enabled = 1; mutex_unlock(&diag_bridge[pdev->id].bridge_mutex); return err; } static int diag_hsic_remove(struct platform_device *pdev) { pr_debug("diag: %s called\n", __func__); if (diag_hsic[pdev->id].hsic_device_enabled) { mutex_lock(&diag_bridge[pdev->id].bridge_mutex); diag_hsic_close(pdev->id); diag_hsic[pdev->id].hsic_device_enabled = 0; mutex_unlock(&diag_bridge[pdev->id].bridge_mutex); } return 0; } static int diagfwd_hsic_runtime_suspend(struct device *dev) { dev_dbg(dev, "pm_runtime: suspending...\n"); return 0; } static int diagfwd_hsic_runtime_resume(struct device *dev) { dev_dbg(dev, "pm_runtime: resuming...\n"); return 0; } static const struct dev_pm_ops diagfwd_hsic_dev_pm_ops = { .runtime_suspend = diagfwd_hsic_runtime_suspend, .runtime_resume = diagfwd_hsic_runtime_resume, }; struct platform_driver msm_hsic_ch_driver = { .probe = diag_hsic_probe, .remove = diag_hsic_remove, .driver = { .name = "diag_bridge", .owner = THIS_MODULE, .pm = &diagfwd_hsic_dev_pm_ops, }, };