/* arch/arm/mach-msm/qdsp5/audio_pcm_in.c * * pcm audio input device * * Copyright (c) 2011-2013, The Linux Foundation. All rights reserved. * * This code is based in part on arch/arm/mach-msm/qdsp5v2/audio_pcm_in.c, * Copyright (C) 2008 Google, Inc. * Copyright (C) 2008 HTC Corporation * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "audmgr.h" #include #include #include #include #include #include #include /* FRAME_NUM must be a power of two */ #define FRAME_NUM (8) #define FRAME_SIZE (2052 * 2) #define MONO_DATA_SIZE (2048) #define STEREO_DATA_SIZE (MONO_DATA_SIZE * 2) #define DMASZ (FRAME_SIZE * FRAME_NUM) #define MSM_AUD_BUFFER_UPDATE_WAIT_MS 2000 struct buffer { void *data; uint32_t size; uint32_t read; uint32_t addr; }; struct audio_in { struct buffer in[FRAME_NUM]; spinlock_t dsp_lock; atomic_t in_bytes; struct mutex lock; struct mutex read_lock; wait_queue_head_t wait; struct msm_adsp_module *audrec; const char *module_name; unsigned queue_ids; uint16_t enc_id; /* Session Id */ /* configuration to use on next enable */ uint32_t samp_rate; uint32_t channel_mode; uint32_t buffer_size; /* 2048 for mono, 4096 for stereo */ uint32_t enc_type; /* 0 for PCM */ uint32_t mode; /* Tunnel for PCM */ uint32_t dsp_cnt; uint32_t in_head; /* next buffer dsp will write */ uint32_t in_tail; /* next buffer read() will read */ uint32_t in_count; /* number of buffers available to read() */ unsigned short samp_rate_index; uint32_t audrec_obj_idx ; struct audmgr audmgr; /* data allocated for various buffers */ char *data; dma_addr_t phys; int opened; int enabled; int running; int stopped; /* set when stopped, cleared on flush */ struct audrec_session_info session_info; /*audrec session info*/ /* audpre settings */ int tx_agc_enable; audpreproc_cmd_cfg_agc_params tx_agc_cfg; int ns_enable; audpreproc_cmd_cfg_ns_params ns_cfg; /* For different sample rate, the coeff might be different. * * All the coeff should be passed from user space */ int iir_enable; audpreproc_cmd_cfg_iir_tuning_filter_params iir_cfg; struct ion_client *client; struct ion_handle *output_buff_handle; }; static int audpcm_in_dsp_enable(struct audio_in *audio, int enable); static int audpcm_in_encmem_config(struct audio_in *audio); static int audpcm_in_encparam_config(struct audio_in *audio); static int audpcm_in_dsp_read_buffer(struct audio_in *audio, uint32_t read_cnt); static void audpcm_in_flush(struct audio_in *audio); static int audio_dsp_set_tx_agc(struct audio_in *audio); static int audio_dsp_set_ns(struct audio_in *audio); static int audio_dsp_set_iir(struct audio_in *audio); static unsigned convert_dsp_samp_index(unsigned index) { switch (index) { case 48000: return AUDREC_CMD_SAMP_RATE_INDX_48000; case 44100: return AUDREC_CMD_SAMP_RATE_INDX_44100; case 32000: return AUDREC_CMD_SAMP_RATE_INDX_32000; case 24000: return AUDREC_CMD_SAMP_RATE_INDX_24000; case 22050: return AUDREC_CMD_SAMP_RATE_INDX_22050; case 16000: return AUDREC_CMD_SAMP_RATE_INDX_16000; case 12000: return AUDREC_CMD_SAMP_RATE_INDX_12000; case 11025: return AUDREC_CMD_SAMP_RATE_INDX_11025; case 8000: return AUDREC_CMD_SAMP_RATE_INDX_8000; default: return AUDREC_CMD_SAMP_RATE_INDX_11025; } } static unsigned convert_samp_rate(unsigned hz) { switch (hz) { case 48000: return RPC_AUD_DEF_SAMPLE_RATE_48000; case 44100: return RPC_AUD_DEF_SAMPLE_RATE_44100; case 32000: return RPC_AUD_DEF_SAMPLE_RATE_32000; case 24000: return RPC_AUD_DEF_SAMPLE_RATE_24000; case 22050: return RPC_AUD_DEF_SAMPLE_RATE_22050; case 16000: return RPC_AUD_DEF_SAMPLE_RATE_16000; case 12000: return RPC_AUD_DEF_SAMPLE_RATE_12000; case 11025: return RPC_AUD_DEF_SAMPLE_RATE_11025; case 8000: return RPC_AUD_DEF_SAMPLE_RATE_8000; default: return RPC_AUD_DEF_SAMPLE_RATE_11025; } } static unsigned convert_samp_index(unsigned index) { switch (index) { case RPC_AUD_DEF_SAMPLE_RATE_48000: return 48000; case RPC_AUD_DEF_SAMPLE_RATE_44100: return 44100; case RPC_AUD_DEF_SAMPLE_RATE_32000: return 32000; case RPC_AUD_DEF_SAMPLE_RATE_24000: return 24000; case RPC_AUD_DEF_SAMPLE_RATE_22050: return 22050; case RPC_AUD_DEF_SAMPLE_RATE_16000: return 16000; case RPC_AUD_DEF_SAMPLE_RATE_12000: return 12000; case RPC_AUD_DEF_SAMPLE_RATE_11025: return 11025; case RPC_AUD_DEF_SAMPLE_RATE_8000: return 8000; default: return 11025; } } /* ------------------- dsp --------------------- */ static void audpre_dsp_event(void *data, unsigned id, void *event_data) { uint16_t *msg = event_data; if (!msg) return; switch (id) { case AUDPREPROC_MSG_CMD_CFG_DONE_MSG: MM_DBG("type %d, status_flag %d\n",\ msg[0], msg[1]); break; case AUDPREPROC_MSG_ERROR_MSG_ID: MM_INFO("err_index %d\n", msg[0]); break; case ADSP_MESSAGE_ID: MM_DBG("Received ADSP event: module enable(audpreproctask)\n"); break; default: MM_ERR("unknown event %d\n", id); } } /* must be called with audio->lock held */ static int audpcm_in_enable(struct audio_in *audio) { struct audmgr_config cfg; int rc; if (audio->enabled) return 0; cfg.tx_rate = audio->samp_rate; cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE; cfg.def_method = RPC_AUD_DEF_METHOD_RECORD; cfg.codec = RPC_AUD_DEF_CODEC_PCM; cfg.snd_method = RPC_SND_METHOD_MIDI; rc = audmgr_enable(&audio->audmgr, &cfg); if (rc < 0) { msm_adsp_dump(audio->audrec); return rc; } if (audpreproc_enable(audio->enc_id, &audpre_dsp_event, audio)) { MM_ERR("msm_adsp_enable(audpreproc) failed\n"); audmgr_disable(&audio->audmgr); return -ENODEV; } if (msm_adsp_enable(audio->audrec)) { audpreproc_disable(audio->enc_id, audio); audmgr_disable(&audio->audmgr); MM_ERR("msm_adsp_enable(audrec) failed\n"); return -ENODEV; } audio->enabled = 1; audpcm_in_dsp_enable(audio, 1); /*update aurec session info in audpreproc layer*/ audio->session_info.session_id = audio->enc_id; audio->session_info.sampling_freq = convert_samp_index(audio->samp_rate); audpreproc_update_audrec_info(&audio->session_info); return 0; } /* must be called with audio->lock held */ static int audpcm_in_disable(struct audio_in *audio) { int rc; if (audio->enabled) { audio->enabled = 0; audpcm_in_dsp_enable(audio, 0); audio->stopped = 1; wake_up(&audio->wait); msm_adsp_disable(audio->audrec); audpreproc_disable(audio->enc_id, audio); /*reset the sampling frequency information at audpreproc layer*/ audio->session_info.sampling_freq = 0; audpreproc_update_audrec_info(&audio->session_info); rc = audmgr_disable(&audio->audmgr); if (rc < 0) msm_adsp_dump(audio->audrec); } return 0; } struct audio_frame { uint16_t count_low; uint16_t count_high; uint16_t bytes; uint16_t unknown; unsigned char samples[]; } __packed; static void audpcm_in_get_dsp_frames(struct audio_in *audio) { struct audio_frame *frame; uint32_t index; unsigned long flags; index = audio->in_head; frame = (void *) (((char *)audio->in[index].data) - sizeof(*frame)); spin_lock_irqsave(&audio->dsp_lock, flags); audio->in[index].size = frame->bytes; audio->in_head = (audio->in_head + 1) & (FRAME_NUM - 1); /* If overflow, move the tail index foward. */ if (audio->in_head == audio->in_tail) { audio->in_tail = (audio->in_tail + 1) & (FRAME_NUM - 1); MM_ERR("Error! not able to keep up the read\n"); } else audio->in_count++; audpcm_in_dsp_read_buffer(audio, audio->dsp_cnt++); spin_unlock_irqrestore(&audio->dsp_lock, flags); wake_up(&audio->wait); } static void audrec_dsp_event(void *data, unsigned id, size_t len, void (*getevent)(void *ptr, size_t len)) { struct audio_in *audio = NULL; uint16_t msg[3]; if (data) audio = data; else { MM_ERR("invalid data for event %x\n", id); return; } getevent(msg, sizeof(msg)); switch (id) { case AUDREC_MSG_CMD_CFG_DONE_MSG: { if (msg[0] & AUDREC_MSG_CFG_DONE_ENC_ENA) { audio->audrec_obj_idx = msg[1]; MM_INFO("CFG ENABLED\n"); audpcm_in_encmem_config(audio); } else { MM_INFO("CFG SLEEP\n"); audio->running = 0; audio->tx_agc_enable = 0; audio->ns_enable = 0; audio->iir_enable = 0; } break; } case AUDREC_MSG_CMD_AREC_MEM_CFG_DONE_MSG: { MM_DBG("AREC_MEM_CFG_DONE_MSG\n"); audpcm_in_encparam_config(audio); break; } case AUDREC_MSG_CMD_AREC_PARAM_CFG_DONE_MSG: { MM_INFO("PARAM CFG DONE\n"); audio->running = 1; if (is_acdb_enabled()) break; audio_dsp_set_tx_agc(audio); audio_dsp_set_ns(audio); audio_dsp_set_iir(audio); break; } case AUDREC_MSG_NO_EXT_PKT_AVAILABLE_MSG: { MM_DBG("ERROR %x\n", msg[0]); break; } case AUDREC_MSG_PACKET_READY_MSG: { struct audrec_msg_packet_ready_msg pkt_ready_msg; getevent(&pkt_ready_msg, AUDREC_MSG_PACKET_READY_MSG_LEN); MM_DBG("UP_PACKET_READY_MSG: write cnt msw %d \ write cnt lsw %d read cnt msw %d read cnt lsw %d \n",\ pkt_ready_msg.pkt_counter_msw, \ pkt_ready_msg.pkt_counter_lsw, \ pkt_ready_msg.pkt_read_cnt_msw, \ pkt_ready_msg.pkt_read_cnt_lsw); audpcm_in_get_dsp_frames(audio); break; } case ADSP_MESSAGE_ID: { MM_DBG("Received ADSP event: module \ enable/disable(audrectask)\n"); break; } default: MM_ERR("unknown event %d\n", id); } } static struct msm_adsp_ops audrec_adsp_ops = { .event = audrec_dsp_event, }; #define audio_send_queue_recbs(audio, cmd, len) \ msm_adsp_write(audio->audrec, ((audio->queue_ids & 0xFFFF0000) >> 16),\ cmd, len) #define audio_send_queue_rec(audio, cmd, len) \ msm_adsp_write(audio->audrec, (audio->queue_ids & 0x0000FFFF),\ cmd, len) static int audio_dsp_set_tx_agc(struct audio_in *audio) { audpreproc_cmd_cfg_agc_params cmd; memset(&cmd, 0, sizeof(cmd)); audio->tx_agc_cfg.cmd_id = AUDPREPROC_CMD_CFG_AGC_PARAMS; if (audio->tx_agc_enable) { /* cmd.tx_agc_param_mask = 0xFE00 from sample code */ audio->tx_agc_cfg.tx_agc_param_mask = (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_SLOPE) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_TH) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_EXP_SLOPE) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_EXP_TH) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_AIG_FLAG) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_STATIC_GAIN) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_TX_AGC_ENA_FLAG); audio->tx_agc_cfg.tx_agc_enable_flag = AUDPREPROC_CMD_TX_AGC_ENA_FLAG_ENA; /* cmd.param_mask = 0xFFF0 from sample code */ audio->tx_agc_cfg.tx_agc_param_mask = (1 << AUDPREPROC_CMD_PARAM_MASK_RMS_TAY) | (1 << AUDPREPROC_CMD_PARAM_MASK_RELEASEK) | (1 << AUDPREPROC_CMD_PARAM_MASK_DELAY) | (1 << AUDPREPROC_CMD_PARAM_MASK_ATTACKK) | (1 << AUDPREPROC_CMD_PARAM_MASK_LEAKRATE_SLOW) | (1 << AUDPREPROC_CMD_PARAM_MASK_LEAKRATE_FAST) | (1 << AUDPREPROC_CMD_PARAM_MASK_AIG_RELEASEK) | (1 << AUDPREPROC_CMD_PARAM_MASK_AIG_MIN) | (1 << AUDPREPROC_CMD_PARAM_MASK_AIG_MAX) | (1 << AUDPREPROC_CMD_PARAM_MASK_LEAK_UP) | (1 << AUDPREPROC_CMD_PARAM_MASK_LEAK_DOWN) | (1 << AUDPREPROC_CMD_PARAM_MASK_AIG_ATTACKK); } else { audio->tx_agc_cfg.tx_agc_param_mask = (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_TX_AGC_ENA_FLAG); audio->tx_agc_cfg.tx_agc_enable_flag = AUDPREPROC_CMD_TX_AGC_ENA_FLAG_DIS; } cmd = audio->tx_agc_cfg; return audpreproc_dsp_set_agc(&cmd, sizeof(cmd)); } static int audio_enable_tx_agc(struct audio_in *audio, int enable) { if (audio->tx_agc_enable != enable) { audio->tx_agc_enable = enable; if (audio->running) audio_dsp_set_tx_agc(audio); } return 0; } static int audio_dsp_set_ns(struct audio_in *audio) { audpreproc_cmd_cfg_ns_params cmd; memset(&cmd, 0, sizeof(cmd)); audio->ns_cfg.cmd_id = AUDPREPROC_CMD_CFG_NS_PARAMS; if (audio->ns_enable) { /* cmd.ec_mode_new is fixed as 0x0064 when enable * from sample code */ audio->ns_cfg.ec_mode_new = AUDPREPROC_CMD_EC_MODE_NEW_NS_ENA | AUDPREPROC_CMD_EC_MODE_NEW_HB_ENA | AUDPREPROC_CMD_EC_MODE_NEW_VA_ENA; } else { audio->ns_cfg.ec_mode_new = AUDPREPROC_CMD_EC_MODE_NEW_NLMS_DIS | AUDPREPROC_CMD_EC_MODE_NEW_DES_DIS | AUDPREPROC_CMD_EC_MODE_NEW_NS_DIS | AUDPREPROC_CMD_EC_MODE_NEW_CNI_DIS | AUDPREPROC_CMD_EC_MODE_NEW_NLES_DIS | AUDPREPROC_CMD_EC_MODE_NEW_HB_DIS | AUDPREPROC_CMD_EC_MODE_NEW_VA_DIS | AUDPREPROC_CMD_EC_MODE_NEW_PCD_DIS | AUDPREPROC_CMD_EC_MODE_NEW_FEHI_DIS | AUDPREPROC_CMD_EC_MODE_NEW_NEHI_DIS | AUDPREPROC_CMD_EC_MODE_NEW_NLPP_DIS | AUDPREPROC_CMD_EC_MODE_NEW_FNE_DIS | AUDPREPROC_CMD_EC_MODE_NEW_PRENLMS_DIS; } cmd = audio->ns_cfg; return audpreproc_dsp_set_ns(&cmd, sizeof(cmd)); } static int audio_enable_ns(struct audio_in *audio, int enable) { if (audio->ns_enable != enable) { audio->ns_enable = enable; if (audio->running) audio_dsp_set_ns(audio); } return 0; } static int audio_dsp_set_iir(struct audio_in *audio) { audpreproc_cmd_cfg_iir_tuning_filter_params cmd; memset(&cmd, 0, sizeof(cmd)); audio->iir_cfg.cmd_id = AUDPREPROC_CMD_CFG_IIR_TUNING_FILTER_PARAMS; if (audio->iir_enable) /* cmd.active_flag is 0xFFFF from sample code but 0x0001 here */ audio->iir_cfg.active_flag = AUDPREPROC_CMD_IIR_ACTIVE_FLAG_ENA; else audio->iir_cfg.active_flag = AUDPREPROC_CMD_IIR_ACTIVE_FLAG_DIS; cmd = audio->iir_cfg; return audpreproc_dsp_set_iir(&cmd, sizeof(cmd)); } static int audio_enable_iir(struct audio_in *audio, int enable) { if (audio->iir_enable != enable) { audio->iir_enable = enable; if (audio->running) audio_dsp_set_iir(audio); } return 0; } static int audpcm_in_dsp_enable(struct audio_in *audio, int enable) { struct audrec_cmd_enc_cfg cmd; memset(&cmd, 0, sizeof(cmd)); cmd.cmd_id = AUDREC_CMD_ENC_CFG; cmd.audrec_enc_type = (audio->enc_type & 0xFF) | (enable ? AUDREC_CMD_ENC_ENA : AUDREC_CMD_ENC_DIS); /* Don't care */ cmd.audrec_obj_idx = audio->audrec_obj_idx; return audio_send_queue_rec(audio, &cmd, sizeof(cmd)); } static int audpcm_in_encmem_config(struct audio_in *audio) { struct audrec_cmd_arecmem_cfg cmd; uint16_t cnt = 0; uint16_t *data = (void *) audio->data; memset(&cmd, 0, sizeof(cmd)); cmd.cmd_id = AUDREC_CMD_ARECMEM_CFG; cmd.audrec_obj_idx = audio->audrec_obj_idx; /* Rate at which packet complete message comes */ cmd.audrec_up_pkt_intm_cnt = 1; cmd.audrec_extpkt_buffer_msw = audio->phys >> 16; cmd.audrec_extpkt_buffer_lsw = audio->phys; /* Max Buffer no available for frames */ cmd.audrec_extpkt_buffer_num = FRAME_NUM; /* prepare buffer pointers: * Mono: 1024 samples + 4 halfword header * Stereo: 2048 samples + 4 halfword header */ for (cnt = 0; cnt < FRAME_NUM; cnt++) { audio->in[cnt].data = data + 4; data += (4 + (audio->channel_mode ? 2048 : 1024)); } return audio_send_queue_rec(audio, &cmd, sizeof(cmd)); } static int audpcm_in_encparam_config(struct audio_in *audio) { struct audrec_cmd_arecparam_wav_cfg cmd; memset(&cmd, 0, sizeof(cmd)); cmd.common.cmd_id = AUDREC_CMD_ARECPARAM_CFG; cmd.common.audrec_obj_idx = audio->audrec_obj_idx; cmd.samp_rate_idx = audio->samp_rate_index; cmd.stereo_mode = audio->channel_mode; /* 0 for mono, 1 for stereo */ return audio_send_queue_rec(audio, &cmd, sizeof(cmd)); } static int audpcm_in_dsp_read_buffer(struct audio_in *audio, uint32_t read_cnt) { audrec_cmd_packet_ext_ptr cmd; memset(&cmd, 0, sizeof(cmd)); cmd.cmd_id = AUDREC_CMD_PACKET_EXT_PTR; cmd.type = audio->audrec_obj_idx; cmd.curr_rec_count_msw = read_cnt >> 16; cmd.curr_rec_count_lsw = read_cnt; return audio_send_queue_recbs(audio, &cmd, sizeof(cmd)); } /* ------------------- device --------------------- */ static void audpcm_in_flush(struct audio_in *audio) { int i; audio->dsp_cnt = 0; audio->in_head = 0; audio->in_tail = 0; audio->in_count = 0; for (i = FRAME_NUM-1; i >= 0; i--) { audio->in[i].size = 0; audio->in[i].read = 0; } } static long audpcm_in_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct audio_in *audio = file->private_data; int rc = 0; if (cmd == AUDIO_GET_STATS) { struct msm_audio_stats stats; stats.byte_count = atomic_read(&audio->in_bytes); if (copy_to_user((void *) arg, &stats, sizeof(stats))) return -EFAULT; return 0; } mutex_lock(&audio->lock); switch (cmd) { case AUDIO_START: { rc = audpcm_in_enable(audio); audio->stopped = 0; break; } case AUDIO_STOP: rc = audpcm_in_disable(audio); break; case AUDIO_FLUSH: if (audio->stopped) { /* Make sure we're stopped and we wake any threads * that might be blocked holding the read_lock. * While audio->stopped read threads will always * exit immediately. */ wake_up(&audio->wait); mutex_lock(&audio->read_lock); audpcm_in_flush(audio); mutex_unlock(&audio->read_lock); } break; case AUDIO_SET_CONFIG: { struct msm_audio_config cfg; if (copy_from_user(&cfg, (void *) arg, sizeof(cfg))) { rc = -EFAULT; break; } if (cfg.channel_count == 1) { cfg.channel_count = AUDREC_CMD_STEREO_MODE_MONO; } else if (cfg.channel_count == 2) { cfg.channel_count = AUDREC_CMD_STEREO_MODE_STEREO; } else { rc = -EINVAL; break; } audio->samp_rate = convert_samp_rate(cfg.sample_rate); audio->samp_rate_index = convert_dsp_samp_index(cfg.sample_rate); audio->channel_mode = cfg.channel_count; audio->buffer_size = audio->channel_mode ? STEREO_DATA_SIZE : MONO_DATA_SIZE; break; } case AUDIO_GET_CONFIG: { struct msm_audio_config cfg; cfg.buffer_size = audio->buffer_size; cfg.buffer_count = FRAME_NUM; cfg.sample_rate = convert_samp_index(audio->samp_rate); if (audio->channel_mode == AUDREC_CMD_STEREO_MODE_MONO) cfg.channel_count = 1; else cfg.channel_count = 2; cfg.type = 0; cfg.unused[0] = 0; cfg.unused[1] = 0; cfg.unused[2] = 0; if (copy_to_user((void *) arg, &cfg, sizeof(cfg))) rc = -EFAULT; break; } default: rc = -EINVAL; } mutex_unlock(&audio->lock); return rc; } static ssize_t audpcm_in_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { struct audio_in *audio = file->private_data; unsigned long flags; const char __user *start = buf; void *data; uint32_t index; uint32_t size; int rc = 0; mutex_lock(&audio->read_lock); while (count > 0) { rc = wait_event_interruptible_timeout( audio->wait, (audio->in_count > 0) || audio->stopped, msecs_to_jiffies(MSM_AUD_BUFFER_UPDATE_WAIT_MS)); if (rc == 0) { rc = -ETIMEDOUT; break; } else if (rc < 0) { break; } if (audio->stopped && !audio->in_count) { rc = 0;/* End of File */ break; } index = audio->in_tail; data = (uint8_t *) audio->in[index].data; size = audio->in[index].size; if (count >= size) { /* order the reads on the buffer */ dma_coherent_post_ops(); if (copy_to_user(buf, data, size)) { rc = -EFAULT; break; } spin_lock_irqsave(&audio->dsp_lock, flags); if (index != audio->in_tail) { /* overrun -- data is invalid and we need to * retry */ spin_unlock_irqrestore(&audio->dsp_lock, flags); continue; } audio->in[index].size = 0; audio->in_tail = (audio->in_tail + 1) & (FRAME_NUM - 1); audio->in_count--; spin_unlock_irqrestore(&audio->dsp_lock, flags); count -= size; buf += size; } else { MM_ERR("short read\n"); break; } } mutex_unlock(&audio->read_lock); if (buf > start) return buf - start; return rc; } static ssize_t audpcm_in_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { return -EINVAL; } static int audpcm_in_release(struct inode *inode, struct file *file) { struct audio_in *audio = file->private_data; mutex_lock(&audio->lock); audpcm_in_disable(audio); audpcm_in_flush(audio); audpreproc_aenc_free(audio->enc_id); msm_adsp_put(audio->audrec); audio->audrec = NULL; audio->opened = 0; if (audio->data) { ion_unmap_kernel(audio->client, audio->output_buff_handle); ion_free(audio->client, audio->output_buff_handle); audio->data = NULL; } ion_client_destroy(audio->client); mutex_unlock(&audio->lock); return 0; } static struct audio_in the_audio_in; static int audpcm_in_open(struct inode *inode, struct file *file) { struct audio_in *audio = &the_audio_in; int rc; int len = 0; unsigned long ionflag = 0; ion_phys_addr_t addr = 0; struct ion_handle *handle = NULL; struct ion_client *client = NULL; int encid; mutex_lock(&audio->lock); if (audio->opened) { rc = -EBUSY; goto done; } /* Settings will be re-config at AUDIO_SET_CONFIG, * but at least we need to have initial config */ audio->mode = MSM_AUD_ENC_MODE_TUNNEL; audio->samp_rate = RPC_AUD_DEF_SAMPLE_RATE_11025; audio->samp_rate_index = AUDREC_CMD_SAMP_RATE_INDX_11025; audio->channel_mode = AUDREC_CMD_STEREO_MODE_MONO; audio->buffer_size = MONO_DATA_SIZE; audio->enc_type = AUDREC_CMD_TYPE_0_INDEX_WAV | audio->mode; rc = audmgr_open(&audio->audmgr); if (rc) goto done; encid = audpreproc_aenc_alloc(audio->enc_type, &audio->module_name, &audio->queue_ids); if (encid < 0) { MM_ERR("No free encoder available\n"); rc = -ENODEV; goto done; } audio->enc_id = encid; rc = msm_adsp_get(audio->module_name, &audio->audrec, &audrec_adsp_ops, audio); if (rc) { audpreproc_aenc_free(audio->enc_id); goto done; } audio->dsp_cnt = 0; audio->stopped = 0; audpcm_in_flush(audio); client = msm_ion_client_create(UINT_MAX, "Audio_PCM_in_client"); if (IS_ERR_OR_NULL(client)) { MM_ERR("Unable to create ION client\n"); rc = -ENOMEM; goto client_create_error; } audio->client = client; MM_DBG("allocating mem sz = %d\n", DMASZ); handle = ion_alloc(client, DMASZ, SZ_4K, ION_HEAP(ION_AUDIO_HEAP_ID), 0); if (IS_ERR_OR_NULL(handle)) { MM_ERR("Unable to create allocate O/P buffers\n"); rc = -ENOMEM; goto output_buff_alloc_error; } audio->output_buff_handle = handle; rc = ion_phys(client , handle, &addr, &len); if (rc) { MM_ERR("O/P buffers:Invalid phy: %x sz: %x\n", (unsigned int) addr, (unsigned int) len); rc = -ENOMEM; goto output_buff_get_phys_error; } else { MM_INFO("O/P buffers:valid phy: %x sz: %x\n", (unsigned int) addr, (unsigned int) len); } audio->phys = (int32_t)addr; rc = ion_handle_get_flags(client, handle, &ionflag); if (rc) { MM_ERR("could not get flags for the handle\n"); rc = -ENOMEM; goto output_buff_get_flags_error; } audio->data = ion_map_kernel(client, handle); if (IS_ERR(audio->data)) { MM_ERR("could not map read buffers,freeing instance 0x%08x\n", (int)audio); rc = -ENOMEM; goto output_buff_map_error; } MM_DBG("read buf: phy addr 0x%08x kernel addr 0x%08x\n", audio->phys, (int)audio->data); file->private_data = audio; audio->opened = 1; rc = 0; done: mutex_unlock(&audio->lock); return rc; output_buff_map_error: output_buff_get_phys_error: output_buff_get_flags_error: ion_free(client, audio->output_buff_handle); output_buff_alloc_error: ion_client_destroy(client); client_create_error: msm_adsp_put(audio->audrec); audpreproc_aenc_free(audio->enc_id); mutex_unlock(&audio->lock); return rc; } static long audpre_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct audio_in *audio = file->private_data; int rc = 0, enable; uint16_t enable_mask; mutex_lock(&audio->lock); switch (cmd) { case AUDIO_ENABLE_AUDPRE: if (is_acdb_enabled()) { MM_INFO("Audpp is supported via acdb\n"); rc = -EFAULT; break; } if (copy_from_user(&enable_mask, (void *) arg, sizeof(enable_mask))) { rc = -EFAULT; break; } enable = (enable_mask & AGC_ENABLE) ? 1 : 0; audio_enable_tx_agc(audio, enable); enable = (enable_mask & NS_ENABLE) ? 1 : 0; audio_enable_ns(audio, enable); enable = (enable_mask & TX_IIR_ENABLE) ? 1 : 0; audio_enable_iir(audio, enable); break; case AUDIO_SET_AGC: if (copy_from_user(&audio->tx_agc_cfg, (void *) arg, sizeof(audio->tx_agc_cfg))) rc = -EFAULT; break; case AUDIO_SET_NS: if (copy_from_user(&audio->ns_cfg, (void *) arg, sizeof(audio->ns_cfg))) rc = -EFAULT; break; case AUDIO_SET_TX_IIR: if (copy_from_user(&audio->iir_cfg, (void *) arg, sizeof(audio->iir_cfg))) rc = -EFAULT; break; default: rc = -EINVAL; } mutex_unlock(&audio->lock); return rc; } static int audpre_open(struct inode *inode, struct file *file) { struct audio_in *audio = &the_audio_in; file->private_data = audio; return 0; } static const struct file_operations audio_fops = { .owner = THIS_MODULE, .open = audpcm_in_open, .release = audpcm_in_release, .read = audpcm_in_read, .write = audpcm_in_write, .unlocked_ioctl = audpcm_in_ioctl, }; static struct miscdevice audpcm_in_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "msm_pcm_in", .fops = &audio_fops, }; static const struct file_operations audpre_fops = { .owner = THIS_MODULE, .open = audpre_open, .unlocked_ioctl = audpre_ioctl, }; static struct miscdevice audpre_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "msm_preproc_ctl", .fops = &audpre_fops, }; static int __init audpcm_in_init(void) { mutex_init(&the_audio_in.lock); mutex_init(&the_audio_in.read_lock); spin_lock_init(&the_audio_in.dsp_lock); init_waitqueue_head(&the_audio_in.wait); return misc_register(&audpcm_in_misc) || misc_register(&audpre_misc); } device_initcall(audpcm_in_init);