/* Copyright (c) 2010-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "peripheral-loader.h" #define pil_err(desc, fmt, ...) \ dev_err(desc->dev, "%s: " fmt, desc->name, ##__VA_ARGS__) #define pil_info(desc, fmt, ...) \ dev_info(desc->dev, "%s: " fmt, desc->name, ##__VA_ARGS__) #define PIL_IMAGE_INFO_BASE (MSM_IMEM_BASE + 0x94c) /** * proxy_timeout - Override for proxy vote timeouts * -1: Use driver-specified timeout * 0: Hold proxy votes until shutdown * >0: Specify a custom timeout in ms */ static int proxy_timeout_ms = -1; module_param(proxy_timeout_ms, int, S_IRUGO | S_IWUSR); /** * struct pil_mdt - Representation of .mdt file in memory * @hdr: ELF32 header * @phdr: ELF32 program headers */ struct pil_mdt { struct elf32_hdr hdr; struct elf32_phdr phdr[]; }; /** * struct pil_seg - memory map representing one segment * @next: points to next seg mentor NULL if last segment * @paddr: start address of segment * @sz: size of segment * @filesz: size of segment on disk * @num: segment number * @relocated: true if segment is relocated, false otherwise * * Loosely based on an elf program header. Contains all necessary information * to load and initialize a segment of the image in memory. */ struct pil_seg { phys_addr_t paddr; unsigned long sz; unsigned long filesz; int num; struct list_head list; bool relocated; }; /** * struct pil_image_info - information in IMEM about image and where it is loaded * @name: name of image (may or may not be NULL terminated) * @start: indicates physical address where image starts (little endian) * @size: size of image (little endian) */ struct pil_image_info { char name[8]; __le64 start; __le32 size; } __attribute__((__packed__)); /** * struct pil_priv - Private state for a pil_desc * @proxy: work item used to run the proxy unvoting routine * @wlock: wakelock to prevent suspend during pil_boot * @wname: name of @wlock * @desc: pointer to pil_desc this is private data for * @seg: list of segments sorted by physical address * @entry_addr: physical address where processor starts booting at * @base_addr: smallest start address among all segments that are relocatable * @region_start: address where relocatable region starts or lowest address * for non-relocatable images * @region_end: address where relocatable region ends or highest address for * non-relocatable images * @region: region allocated for relocatable images * * This struct contains data for a pil_desc that should not be exposed outside * of this file. This structure points to the descriptor and the descriptor * points to this structure so that PIL drivers can't access the private * data of a descriptor but this file can access both. */ struct pil_priv { struct delayed_work proxy; struct wake_lock wlock; char wname[32]; struct pil_desc *desc; struct list_head segs; phys_addr_t entry_addr; phys_addr_t base_addr; phys_addr_t region_start; phys_addr_t region_end; struct ion_handle *region; struct pil_image_info __iomem *info; int id; }; /** * pil_do_ramdump() - Ramdump an image * @desc: descriptor from pil_desc_init() * @ramdump_dev: ramdump device returned from create_ramdump_device() * * Calls the ramdump API with a list of segments generated from the addresses * that the descriptor corresponds to. */ int pil_do_ramdump(struct pil_desc *desc, void *ramdump_dev) { struct pil_priv *priv = desc->priv; struct pil_seg *seg; int count = 0, ret; struct ramdump_segment *ramdump_segs, *s; list_for_each_entry(seg, &priv->segs, list) count++; ramdump_segs = kmalloc_array(count, sizeof(*ramdump_segs), GFP_KERNEL); if (!ramdump_segs) return -ENOMEM; s = ramdump_segs; list_for_each_entry(seg, &priv->segs, list) { s->address = seg->paddr; s->size = seg->sz; s++; } ret = do_elf_ramdump(ramdump_dev, ramdump_segs, count); kfree(ramdump_segs); return ret; } EXPORT_SYMBOL(pil_do_ramdump); static struct ion_client *ion; /** * pil_get_entry_addr() - Retrieve the entry address of a peripheral image * @desc: descriptor from pil_desc_init() * * Returns the physical address where the image boots at or 0 if unknown. */ phys_addr_t pil_get_entry_addr(struct pil_desc *desc) { return desc->priv ? desc->priv->entry_addr : 0; } EXPORT_SYMBOL(pil_get_entry_addr); static void pil_proxy_work(struct work_struct *work) { struct delayed_work *delayed = to_delayed_work(work); struct pil_priv *priv = container_of(delayed, struct pil_priv, proxy); struct pil_desc *desc = priv->desc; desc->ops->proxy_unvote(desc); wake_unlock(&priv->wlock); module_put(desc->owner); } static int pil_proxy_vote(struct pil_desc *desc) { int ret = 0; struct pil_priv *priv = desc->priv; if (desc->ops->proxy_vote) { wake_lock(&priv->wlock); ret = desc->ops->proxy_vote(desc); if (ret) wake_unlock(&priv->wlock); } return ret; } static void pil_proxy_unvote(struct pil_desc *desc, int immediate) { struct pil_priv *priv = desc->priv; unsigned long timeout; if (proxy_timeout_ms == 0 && !immediate) return; else if (proxy_timeout_ms > 0) timeout = proxy_timeout_ms; else timeout = desc->proxy_timeout; if (desc->ops->proxy_unvote) { if (WARN_ON(!try_module_get(desc->owner))) return; if (immediate) timeout = 0; if (!desc->proxy_unvote_irq || immediate) schedule_delayed_work(&priv->proxy, msecs_to_jiffies(timeout)); } } static irqreturn_t proxy_unvote_intr_handler(int irq, void *dev_id) { struct pil_desc *desc = dev_id; schedule_delayed_work(&desc->priv->proxy, 0); return IRQ_HANDLED; } static bool segment_is_relocatable(const struct elf32_phdr *p) { return !!(p->p_flags & BIT(27)); } static phys_addr_t pil_reloc(const struct pil_priv *priv, phys_addr_t addr) { return addr - priv->base_addr + priv->region_start; } static struct pil_seg *pil_init_seg(const struct pil_desc *desc, const struct elf32_phdr *phdr, int num) { bool reloc = segment_is_relocatable(phdr); const struct pil_priv *priv = desc->priv; struct pil_seg *seg; if (!reloc && memblock_overlaps_memory(phdr->p_paddr, phdr->p_memsz)) { pil_err(desc, "kernel memory would be overwritten [%#08lx, %#08lx)\n", (unsigned long)phdr->p_paddr, (unsigned long)(phdr->p_paddr + phdr->p_memsz)); return ERR_PTR(-EPERM); } seg = kmalloc(sizeof(*seg), GFP_KERNEL); if (!seg) return ERR_PTR(-ENOMEM); seg->num = num; seg->paddr = reloc ? pil_reloc(priv, phdr->p_paddr) : phdr->p_paddr; seg->filesz = phdr->p_filesz; seg->sz = phdr->p_memsz; seg->relocated = reloc; INIT_LIST_HEAD(&seg->list); return seg; } #define segment_is_hash(flag) (((flag) & (0x7 << 24)) == (0x2 << 24)) static int segment_is_loadable(const struct elf32_phdr *p) { return (p->p_type == PT_LOAD) && !segment_is_hash(p->p_flags) && p->p_memsz; } static void pil_dump_segs(const struct pil_priv *priv) { struct pil_seg *seg; phys_addr_t seg_h_paddr; list_for_each_entry(seg, &priv->segs, list) { seg_h_paddr = seg->paddr + seg->sz; pil_info(priv->desc, "%d: %pa %pa\n", seg->num, &seg->paddr, &seg_h_paddr); } } /* * Ensure the entry address lies within the image limits and if the image is * relocatable ensure it lies within a relocatable segment. */ static int pil_init_entry_addr(struct pil_priv *priv, const struct pil_mdt *mdt) { struct pil_seg *seg; phys_addr_t entry = mdt->hdr.e_entry; bool image_relocated = priv->region; if (image_relocated) entry = pil_reloc(priv, entry); priv->entry_addr = entry; if (priv->desc->flags & PIL_SKIP_ENTRY_CHECK) return 0; list_for_each_entry(seg, &priv->segs, list) { if (entry >= seg->paddr && entry < seg->paddr + seg->sz) { if (!image_relocated) return 0; else if (seg->relocated) return 0; } } pil_err(priv->desc, "entry address %pa not within range\n", &entry); pil_dump_segs(priv); return -EADDRNOTAVAIL; } static int pil_alloc_region(struct pil_priv *priv, phys_addr_t min_addr, phys_addr_t max_addr, size_t align) { struct ion_handle *region; int ret; unsigned int mask; size_t size = max_addr - min_addr; /* Don't reallocate due to fragmentation concerns, just sanity check */ if (priv->region) { if (WARN(priv->region_end - priv->region_start < size, "Can't reuse PIL memory, too small\n")) return -ENOMEM; return 0; } if (!ion) { WARN_ON_ONCE("No ION client, can't support relocation\n"); return -ENOMEM; } /* Force alignment due to linker scripts not getting it right */ if (align > SZ_1M) { mask = ION_HEAP(ION_PIL2_HEAP_ID); align = SZ_4M; } else { mask = ION_HEAP(ION_PIL1_HEAP_ID); align = SZ_1M; } region = ion_alloc(ion, size, align, mask, 0); if (IS_ERR(region)) { pil_err(priv->desc, "Failed to allocate relocatable region\n"); return PTR_ERR(region); } ret = ion_phys(ion, region, (ion_phys_addr_t *)&priv->region_start, &size); if (ret) { ion_free(ion, region); return ret; } priv->region = region; priv->region_end = priv->region_start + size; priv->base_addr = min_addr; return 0; } static int pil_setup_region(struct pil_priv *priv, const struct pil_mdt *mdt) { const struct elf32_phdr *phdr; phys_addr_t min_addr_r, min_addr_n, max_addr_r, max_addr_n, start, end; size_t align = 0; int i, ret = 0; bool relocatable = false; min_addr_n = min_addr_r = (phys_addr_t)ULLONG_MAX; max_addr_n = max_addr_r = 0; /* Find the image limits */ for (i = 0; i < mdt->hdr.e_phnum; i++) { phdr = &mdt->phdr[i]; if (!segment_is_loadable(phdr)) continue; start = phdr->p_paddr; end = start + phdr->p_memsz; if (segment_is_relocatable(phdr)) { min_addr_r = min(min_addr_r, start); max_addr_r = max(max_addr_r, end); /* * Lowest relocatable segment dictates alignment of * relocatable region */ if (min_addr_r == start) align = phdr->p_align; relocatable = true; } else { min_addr_n = min(min_addr_n, start); max_addr_n = max(max_addr_n, end); } } /* * Align the max address to the next 4K boundary to satisfy iommus and * XPUs that operate on 4K chunks. */ max_addr_n = ALIGN(max_addr_n, SZ_4K); max_addr_r = ALIGN(max_addr_r, SZ_4K); if (relocatable) { ret = pil_alloc_region(priv, min_addr_r, max_addr_r, align); } else { priv->region_start = min_addr_n; priv->region_end = max_addr_n; priv->base_addr = min_addr_n; } writeq(priv->region_start, &priv->info->start); writel_relaxed(priv->region_end - priv->region_start, &priv->info->size); return ret; } static int pil_cmp_seg(void *priv, struct list_head *a, struct list_head *b) { struct pil_seg *seg_a = list_entry(a, struct pil_seg, list); struct pil_seg *seg_b = list_entry(b, struct pil_seg, list); return seg_a->paddr - seg_b->paddr; } static int pil_init_mmap(struct pil_desc *desc, const struct pil_mdt *mdt) { struct pil_priv *priv = desc->priv; const struct elf32_phdr *phdr; struct pil_seg *seg; int i, ret; ret = pil_setup_region(priv, mdt); if (ret) return ret; for (i = 0; i < mdt->hdr.e_phnum; i++) { phdr = &mdt->phdr[i]; if (!segment_is_loadable(phdr)) continue; seg = pil_init_seg(desc, phdr, i); if (IS_ERR(seg)) return PTR_ERR(seg); list_add_tail(&seg->list, &priv->segs); } list_sort(NULL, &priv->segs, pil_cmp_seg); return pil_init_entry_addr(priv, mdt); } static void pil_release_mmap(struct pil_desc *desc) { struct pil_priv *priv = desc->priv; struct pil_seg *p, *tmp; writeq(0, &priv->info->start); writel_relaxed(0, &priv->info->size); list_for_each_entry_safe(p, tmp, &priv->segs, list) { list_del(&p->list); kfree(p); } } #define IOMAP_SIZE SZ_4M static int pil_load_seg(struct pil_desc *desc, struct pil_seg *seg) { int ret = 0, count; phys_addr_t paddr; char fw_name[30]; const struct firmware *fw = NULL; const u8 *data; int num = seg->num; if (seg->filesz) { snprintf(fw_name, ARRAY_SIZE(fw_name), "%s.b%02d", desc->name, num); ret = request_firmware(&fw, fw_name, desc->dev); if (ret) { pil_err(desc, "Failed to locate blob %s\n", fw_name); return ret; } if (fw->size != seg->filesz) { pil_err(desc, "Blob size %u doesn't match %lu\n", fw->size, seg->filesz); ret = -EPERM; goto release_fw; } } /* Load the segment into memory */ count = seg->filesz; paddr = seg->paddr; data = fw ? fw->data : NULL; while (count > 0) { int size; u8 __iomem *buf; size = min_t(size_t, IOMAP_SIZE, count); buf = ioremap(paddr, size); if (!buf) { pil_err(desc, "Failed to map memory\n"); ret = -ENOMEM; goto release_fw; } memcpy(buf, data, size); iounmap(buf); count -= size; paddr += size; data += size; } /* Zero out trailing memory */ count = seg->sz - seg->filesz; while (count > 0) { int size; u8 __iomem *buf; size = min_t(size_t, IOMAP_SIZE, count); buf = ioremap(paddr, size); if (!buf) { pil_err(desc, "Failed to map memory\n"); ret = -ENOMEM; goto release_fw; } memset(buf, 0, size); iounmap(buf); count -= size; paddr += size; } if (desc->ops->verify_blob) { ret = desc->ops->verify_blob(desc, seg->paddr, seg->sz); if (ret) pil_err(desc, "Blob%u failed verification\n", num); } release_fw: release_firmware(fw); return ret; } /* Synchronize request_firmware() with suspend */ static DECLARE_RWSEM(pil_pm_rwsem); /** * pil_boot() - Load a peripheral image into memory and boot it * @desc: descriptor from pil_desc_init() * * Returns 0 on success or -ERROR on failure. */ int pil_boot(struct pil_desc *desc) { int ret; char fw_name[30]; const struct pil_mdt *mdt; const struct elf32_hdr *ehdr; struct pil_seg *seg; const struct firmware *fw; struct pil_priv *priv = desc->priv; /* Reinitialize for new image */ pil_release_mmap(desc); down_read(&pil_pm_rwsem); snprintf(fw_name, sizeof(fw_name), "%s.mdt", desc->name); ret = request_firmware(&fw, fw_name, desc->dev); if (ret) { pil_err(desc, "Failed to locate %s\n", fw_name); goto out; } if (fw->size < sizeof(*ehdr)) { pil_err(desc, "Not big enough to be an elf header\n"); ret = -EIO; goto release_fw; } mdt = (const struct pil_mdt *)fw->data; ehdr = &mdt->hdr; if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) { pil_err(desc, "Not an elf header\n"); ret = -EIO; goto release_fw; } if (ehdr->e_phnum == 0) { pil_err(desc, "No loadable segments\n"); ret = -EIO; goto release_fw; } if (sizeof(struct elf32_phdr) * ehdr->e_phnum + sizeof(struct elf32_hdr) > fw->size) { pil_err(desc, "Program headers not within mdt\n"); ret = -EIO; goto release_fw; } ret = pil_init_mmap(desc, mdt); if (ret) goto release_fw; if (desc->ops->init_image) ret = desc->ops->init_image(desc, fw->data, fw->size); if (ret) { pil_err(desc, "Invalid firmware metadata\n"); goto release_fw; } if (desc->ops->mem_setup) ret = desc->ops->mem_setup(desc, priv->region_start, priv->region_end - priv->region_start); if (ret) { pil_err(desc, "Memory setup error\n"); goto release_fw; } list_for_each_entry(seg, &desc->priv->segs, list) { ret = pil_load_seg(desc, seg); if (ret) goto release_fw; } ret = pil_proxy_vote(desc); if (ret) { pil_err(desc, "Failed to proxy vote\n"); goto release_fw; } ret = desc->ops->auth_and_reset(desc); if (ret) { pil_err(desc, "Failed to bring out of reset\n"); goto err_boot; } pil_info(desc, "Brought out of reset\n"); err_boot: pil_proxy_unvote(desc, ret); release_fw: release_firmware(fw); out: up_read(&pil_pm_rwsem); if (ret) { if (priv->region) { ion_free(ion, priv->region); priv->region = NULL; } pil_release_mmap(desc); } return ret; } EXPORT_SYMBOL(pil_boot); /** * pil_shutdown() - Shutdown a peripheral * @desc: descriptor from pil_desc_init() */ void pil_shutdown(struct pil_desc *desc) { struct pil_priv *priv = desc->priv; if (desc->ops->shutdown) desc->ops->shutdown(desc); if (proxy_timeout_ms == 0 && desc->ops->proxy_unvote) desc->ops->proxy_unvote(desc); else flush_delayed_work(&priv->proxy); } EXPORT_SYMBOL(pil_shutdown); static DEFINE_IDA(pil_ida); /** * pil_desc_init() - Initialize a pil descriptor * @desc: descriptor to intialize * * Initialize a pil descriptor for use by other pil functions. This function * must be called before calling pil_boot() or pil_shutdown(). * * Returns 0 for success and -ERROR on failure. */ int pil_desc_init(struct pil_desc *desc) { struct pil_priv *priv; int ret; void __iomem *addr; char buf[sizeof(priv->info->name)]; /* Ignore users who don't make any sense */ WARN(desc->ops->proxy_unvote && desc->proxy_unvote_irq == 0 && !desc->proxy_timeout, "Invalid proxy unvote callback or a proxy timeout of 0" " was specified or no proxy unvote IRQ was specified.\n"); if (WARN(desc->ops->proxy_unvote && !desc->ops->proxy_vote, "Invalid proxy voting. Ignoring\n")) ((struct pil_reset_ops *)desc->ops)->proxy_unvote = NULL; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; desc->priv = priv; priv->desc = desc; priv->id = ret = ida_simple_get(&pil_ida, 0, 10, GFP_KERNEL); if (priv->id < 0) goto err; addr = PIL_IMAGE_INFO_BASE + sizeof(struct pil_image_info) * priv->id; priv->info = (struct pil_image_info __iomem *)addr; strncpy(buf, desc->name, sizeof(buf)); __iowrite32_copy(priv->info->name, buf, sizeof(buf) / 4); if (desc->proxy_unvote_irq > 0) { ret = request_irq(desc->proxy_unvote_irq, proxy_unvote_intr_handler, IRQF_TRIGGER_RISING|IRQF_SHARED, desc->name, desc); if (ret < 0) { dev_err(desc->dev, "Unable to request proxy unvote IRQ: %d\n", ret); goto err; } } snprintf(priv->wname, sizeof(priv->wname), "pil-%s", desc->name); wake_lock_init(&priv->wlock, WAKE_LOCK_SUSPEND, priv->wname); INIT_DELAYED_WORK(&priv->proxy, pil_proxy_work); INIT_LIST_HEAD(&priv->segs); return 0; err: kfree(priv); return ret; } EXPORT_SYMBOL(pil_desc_init); /** * pil_desc_release() - Release a pil descriptor * @desc: descriptor to free */ void pil_desc_release(struct pil_desc *desc) { struct pil_priv *priv = desc->priv; if (priv) { ida_simple_remove(&pil_ida, priv->id); flush_delayed_work(&priv->proxy); wake_lock_destroy(&priv->wlock); } desc->priv = NULL; kfree(priv); } EXPORT_SYMBOL(pil_desc_release); static int pil_pm_notify(struct notifier_block *b, unsigned long event, void *p) { switch (event) { case PM_SUSPEND_PREPARE: down_write(&pil_pm_rwsem); break; case PM_POST_SUSPEND: up_write(&pil_pm_rwsem); break; } return NOTIFY_DONE; } static struct notifier_block pil_pm_notifier = { .notifier_call = pil_pm_notify, }; static int __init msm_pil_init(void) { ion = msm_ion_client_create(UINT_MAX, "pil"); if (IS_ERR(ion)) /* Can't support relocatable images */ ion = NULL; return register_pm_notifier(&pil_pm_notifier); } device_initcall(msm_pil_init); static void __exit msm_pil_exit(void) { unregister_pm_notifier(&pil_pm_notifier); if (ion) ion_client_destroy(ion); } module_exit(msm_pil_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Load peripheral images and bring peripherals out of reset");