/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include "lpm_resources.h" #include "pm.h" #include "rpm-notifier.h" enum { MSM_LPM_LVL_DBG_SUSPEND_LIMITS = BIT(0), MSM_LPM_LVL_DBG_IDLE_LIMITS = BIT(1), }; #define MAX_STR_LEN 30 static int msm_lpm_lvl_dbg_msk; module_param_named( debug_mask, msm_lpm_lvl_dbg_msk, int, S_IRUGO | S_IWUSR | S_IWGRP ); static struct msm_rpmrs_level *msm_lpm_levels; static int msm_lpm_level_count; static DEFINE_PER_CPU(uint32_t , msm_lpm_sleep_time); static DEFINE_PER_CPU(int , lpm_permitted_level); static DEFINE_PER_CPU(struct atomic_notifier_head, lpm_notify_head); static int msm_pm_get_sleep_mode_value(struct device_node *node, const char *key, uint32_t *sleep_mode_val) { int i; struct lpm_lookup_table { uint32_t modes; const char *mode_name; }; struct lpm_lookup_table pm_sm_lookup[] = { {MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT, "wfi"}, {MSM_PM_SLEEP_MODE_RAMP_DOWN_AND_WAIT_FOR_INTERRUPT, "ramp_down_and_wfi"}, {MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE, "standalone_pc"}, {MSM_PM_SLEEP_MODE_POWER_COLLAPSE, "pc"}, {MSM_PM_SLEEP_MODE_RETENTION, "retention"}, {MSM_PM_SLEEP_MODE_POWER_COLLAPSE_SUSPEND, "pc_suspend"}, {MSM_PM_SLEEP_MODE_POWER_COLLAPSE_NO_XO_SHUTDOWN, "pc_no_xo_shutdown"} }; int ret; const char *mode_name; ret = of_property_read_string(node, key, &mode_name); if (!ret) { ret = -EINVAL; for (i = 0; i < ARRAY_SIZE(pm_sm_lookup); i++) { if (!strncmp(mode_name, pm_sm_lookup[i].mode_name, MAX_STR_LEN)) { *sleep_mode_val = pm_sm_lookup[i].modes; ret = 0; break; } } } return ret; } static void msm_lpm_level_update(void) { unsigned int lpm_level; struct msm_rpmrs_level *level = NULL; for (lpm_level = 0; lpm_level < msm_lpm_level_count; lpm_level++) { level = &msm_lpm_levels[lpm_level]; level->available = !msm_lpm_level_beyond_limit(&level->rs_limits); } } int msm_lpm_enter_sleep(uint32_t sclk_count, void *limits, bool from_idle, bool notify_rpm) { int ret = 0; int debug_mask; struct msm_rpmrs_limits *l = (struct msm_rpmrs_limits *)limits; struct msm_lpm_sleep_data sleep_data; sleep_data.limits = limits; sleep_data.kernel_sleep = __get_cpu_var(msm_lpm_sleep_time); atomic_notifier_call_chain(&__get_cpu_var(lpm_notify_head), MSM_LPM_STATE_ENTER, &sleep_data); if (from_idle) debug_mask = msm_lpm_lvl_dbg_msk & MSM_LPM_LVL_DBG_IDLE_LIMITS; else debug_mask = msm_lpm_lvl_dbg_msk & MSM_LPM_LVL_DBG_SUSPEND_LIMITS; if (debug_mask) pr_info("%s(): pxo:%d l2:%d mem:0x%x(0x%x) dig:0x%x(0x%x)\n", __func__, l->pxo, l->l2_cache, l->vdd_mem_lower_bound, l->vdd_mem_upper_bound, l->vdd_dig_lower_bound, l->vdd_dig_upper_bound); ret = msm_lpmrs_enter_sleep(sclk_count, l, from_idle, notify_rpm); if (ret) { pr_warn("%s() LPM resources failed to enter sleep\n", __func__); goto bail; } if (notify_rpm) { ret = msm_rpm_enter_sleep(debug_mask); if (ret) { pr_warn("%s(): RPM failed to enter sleep err:%d\n", __func__, ret); goto bail; } } bail: return ret; } static void msm_lpm_exit_sleep(void *limits, bool from_idle, bool notify_rpm, bool collapsed) { msm_lpmrs_exit_sleep((struct msm_rpmrs_limits *)limits, from_idle, notify_rpm, collapsed); if (notify_rpm) msm_rpm_exit_sleep(); atomic_notifier_call_chain(&__get_cpu_var(lpm_notify_head), MSM_LPM_STATE_EXIT, NULL); } void msm_lpm_show_resources(void) { /* TODO */ return; } uint32_t msm_pm_get_pxo(struct msm_rpmrs_limits *limits) { return limits->pxo; } uint32_t msm_pm_get_l2_cache(struct msm_rpmrs_limits *limits) { return limits->l2_cache; } uint32_t msm_pm_get_vdd_mem(struct msm_rpmrs_limits *limits) { return limits->vdd_mem_upper_bound; } uint32_t msm_pm_get_vdd_dig(struct msm_rpmrs_limits *limits) { return limits->vdd_dig_upper_bound; } static bool lpm_level_permitted(int cur_level_count) { if (__get_cpu_var(lpm_permitted_level) == msm_lpm_level_count + 1) return true; return (__get_cpu_var(lpm_permitted_level) == cur_level_count); } int msm_lpm_register_notifier(int cpu, int level_iter, struct notifier_block *nb, bool is_latency_measure) { per_cpu(lpm_permitted_level, cpu) = level_iter; return atomic_notifier_chain_register(&per_cpu(lpm_notify_head, cpu), nb); } int msm_lpm_unregister_notifier(int cpu, struct notifier_block *nb) { per_cpu(lpm_permitted_level, cpu) = msm_lpm_level_count + 1; return atomic_notifier_chain_unregister(&per_cpu(lpm_notify_head, cpu), nb); } s32 msm_cpuidle_get_deep_idle_latency(void) { int i; struct msm_rpmrs_level *level = msm_lpm_levels, *best = level; if (!level) return 0; for (i = 0; i < msm_lpm_level_count; i++, level++) { if (!level->available) continue; if (level->sleep_mode != MSM_PM_SLEEP_MODE_POWER_COLLAPSE) continue; /* Pick the first power collapse mode by default */ if (best->sleep_mode != MSM_PM_SLEEP_MODE_POWER_COLLAPSE) best = level; /* Find the lowest latency for power collapse */ if (level->latency_us < best->latency_us) best = level; } return best->latency_us - 1; } static bool msm_lpm_irqs_detectable(struct msm_rpmrs_limits *limits, bool irqs_detectable, bool gpio_detectable) { if (!limits->irqs_detectable) return irqs_detectable; if (!limits->gpio_detectable) return gpio_detectable; return true; } static void *msm_lpm_lowest_limits(bool from_idle, enum msm_pm_sleep_mode sleep_mode, struct msm_pm_time_params *time_param, uint32_t *power) { unsigned int cpu = smp_processor_id(); struct msm_rpmrs_level *best_level = NULL; uint32_t pwr; int i; int best_level_iter = msm_lpm_level_count + 1; bool irqs_detect = false; bool gpio_detect = false; bool modify_event_timer; uint32_t next_wakeup_us = time_param->sleep_us; if (!msm_lpm_levels) return NULL; msm_lpm_level_update(); if (sleep_mode == MSM_PM_SLEEP_MODE_POWER_COLLAPSE) { irqs_detect = msm_mpm_irqs_detectable(from_idle); gpio_detect = msm_mpm_gpio_irqs_detectable(from_idle); } for (i = 0; i < msm_lpm_level_count; i++) { struct msm_rpmrs_level *level = &msm_lpm_levels[i]; modify_event_timer = false; if (!level->available) continue; if (sleep_mode != level->sleep_mode) continue; if (time_param->latency_us < level->latency_us) continue; if (time_param->next_event_us && time_param->next_event_us < level->latency_us) continue; if (time_param->next_event_us) { if ((time_param->next_event_us < time_param->sleep_us) || ((time_param->next_event_us - level->latency_us) < time_param->sleep_us)) { modify_event_timer = true; next_wakeup_us = time_param->next_event_us - level->latency_us; } } if (next_wakeup_us <= level->time_overhead_us) continue; if ((sleep_mode == MSM_PM_SLEEP_MODE_POWER_COLLAPSE) && !msm_lpm_irqs_detectable(&level->rs_limits, irqs_detect, gpio_detect)) continue; if ((MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE == sleep_mode) || (MSM_PM_SLEEP_MODE_POWER_COLLAPSE == sleep_mode)) if (!cpu && msm_rpm_waiting_for_ack()) break; if (next_wakeup_us <= 1) { pwr = level->energy_overhead; } else if (next_wakeup_us <= level->time_overhead_us) { pwr = level->energy_overhead / next_wakeup_us; } else if ((next_wakeup_us >> 10) > level->time_overhead_us) { pwr = level->steady_state_power; } else { pwr = level->steady_state_power; pwr -= (level->time_overhead_us * level->steady_state_power) / next_wakeup_us; pwr += level->energy_overhead / next_wakeup_us; } if (!best_level || best_level->rs_limits.power[cpu] >= pwr) { level->rs_limits.latency_us[cpu] = level->latency_us; level->rs_limits.power[cpu] = pwr; best_level = level; best_level_iter = i; if (power) *power = pwr; if (modify_event_timer && (sleep_mode != MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT)) time_param->modified_time_us = time_param->next_event_us - best_level->latency_us; else time_param->modified_time_us = 0; } } if (best_level && !lpm_level_permitted(best_level_iter)) best_level = NULL; else per_cpu(msm_lpm_sleep_time, cpu) = time_param->modified_time_us ? time_param->modified_time_us : time_param->sleep_us; return best_level ? &best_level->rs_limits : NULL; } static struct lpm_test_platform_data lpm_test_pdata; static struct platform_device msm_lpm_test_device = { .name = "lpm_test", .id = -1, .dev = { .platform_data = &lpm_test_pdata, }, }; static struct msm_pm_sleep_ops msm_lpm_ops = { .lowest_limits = msm_lpm_lowest_limits, .enter_sleep = msm_lpm_enter_sleep, .exit_sleep = msm_lpm_exit_sleep, }; static int __devinit msm_lpm_levels_probe(struct platform_device *pdev) { struct msm_rpmrs_level *levels = NULL; struct msm_rpmrs_level *level = NULL; struct device_node *node = NULL; char *key = NULL; uint32_t val = 0; int ret = 0; uint32_t num_levels = 0; int idx = 0; unsigned int m_cpu = 0; for_each_child_of_node(pdev->dev.of_node, node) num_levels++; levels = kzalloc(num_levels * sizeof(struct msm_rpmrs_level), GFP_KERNEL); if (!levels) return -ENOMEM; for_each_child_of_node(pdev->dev.of_node, node) { level = &levels[idx++]; level->available = false; key = "qcom,mode"; ret = msm_pm_get_sleep_mode_value(node, key, &val); if (ret) goto fail; level->sleep_mode = val; key = "qcom,xo"; ret = msm_lpm_get_xo_value(node, key, &val); if (ret) goto fail; level->rs_limits.pxo = val; key = "qcom,l2"; ret = msm_lpm_get_l2_cache_value(node, key, &val); if (ret) goto fail; level->rs_limits.l2_cache = val; key = "qcom,vdd-dig-upper-bound"; ret = of_property_read_u32(node, key, &val); if (ret) goto fail; level->rs_limits.vdd_dig_upper_bound = val; key = "qcom,vdd-dig-lower-bound"; ret = of_property_read_u32(node, key, &val); if (ret) goto fail; level->rs_limits.vdd_dig_lower_bound = val; key = "qcom,vdd-mem-upper-bound"; ret = of_property_read_u32(node, key, &val); if (ret) goto fail; level->rs_limits.vdd_mem_upper_bound = val; key = "qcom,vdd-mem-lower-bound"; ret = of_property_read_u32(node, key, &val); if (ret) goto fail; level->rs_limits.vdd_mem_lower_bound = val; key = "qcom,gpio-detectable"; level->rs_limits.gpio_detectable = of_property_read_bool(node, key); key = "qcom,irqs-detectable"; level->rs_limits.irqs_detectable = of_property_read_bool(node, key); key = "qcom,latency-us"; ret = of_property_read_u32(node, key, &val); if (ret) goto fail; level->latency_us = val; key = "qcom,ss-power"; ret = of_property_read_u32(node, key, &val); if (ret) goto fail; level->steady_state_power = val; key = "qcom,energy-overhead"; ret = of_property_read_u32(node, key, &val); if (ret) goto fail; level->energy_overhead = val; key = "qcom,time-overhead"; ret = of_property_read_u32(node, key, &val); if (ret) goto fail; level->time_overhead_us = val; level->available = true; } msm_lpm_levels = levels; msm_lpm_level_count = idx; lpm_test_pdata.msm_lpm_test_levels = msm_lpm_levels; lpm_test_pdata.msm_lpm_test_level_count = msm_lpm_level_count; key = "qcom,use-qtimer"; lpm_test_pdata.use_qtimer = of_property_read_bool(pdev->dev.of_node, key); for_each_possible_cpu(m_cpu) per_cpu(lpm_permitted_level, m_cpu) = msm_lpm_level_count + 1; platform_device_register(&msm_lpm_test_device); msm_pm_set_sleep_ops(&msm_lpm_ops); return 0; fail: pr_err("%s: Error in name %s key %s\n", __func__, node->full_name, key); kfree(levels); return -EFAULT; } static struct of_device_id msm_lpm_levels_match_table[] = { {.compatible = "qcom,lpm-levels"}, {}, }; static struct platform_driver msm_lpm_levels_driver = { .probe = msm_lpm_levels_probe, .driver = { .name = "lpm-levels", .owner = THIS_MODULE, .of_match_table = msm_lpm_levels_match_table, }, }; static int __init msm_lpm_levels_module_init(void) { return platform_driver_register(&msm_lpm_levels_driver); } late_initcall(msm_lpm_levels_module_init);