/* arch/arm/mach-msm/clock.c * * Copyright (C) 2007 Google, Inc. * Copyright (c) 2007-2013, The Linux Foundation. All rights reserved. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include "clock.h" struct handoff_clk { struct list_head list; struct clk *clk; }; static LIST_HEAD(handoff_list); struct handoff_vdd { struct list_head list; struct clk_vdd_class *vdd_class; }; static LIST_HEAD(handoff_vdd_list); /* Find the voltage level required for a given rate. */ int find_vdd_level(struct clk *clk, unsigned long rate) { int level; for (level = 0; level < clk->num_fmax; level++) if (rate <= clk->fmax[level]) break; if (level == clk->num_fmax) { pr_err("Rate %lu for %s is greater than highest Fmax\n", rate, clk->dbg_name); return -EINVAL; } return level; } /* Update voltage level given the current votes. */ static int update_vdd(struct clk_vdd_class *vdd_class) { int level, rc = 0, i; struct regulator **r = vdd_class->regulator; int *uv = vdd_class->vdd_uv; int *ua = vdd_class->vdd_ua; int n_reg = vdd_class->num_regulators; int max_lvl = vdd_class->num_levels - 1; int lvl_base; for (level = max_lvl; level > 0; level--) if (vdd_class->level_votes[level]) break; if (level == vdd_class->cur_level) return 0; max_lvl = max_lvl * n_reg; lvl_base = level * n_reg; for (i = 0; i < vdd_class->num_regulators; i++) { rc = regulator_set_voltage(r[i], uv[lvl_base + i], uv[max_lvl + i]); if (rc) goto set_voltage_fail; if (!ua) continue; rc = regulator_set_optimum_mode(r[i], ua[lvl_base + i]); if (rc < 0) goto set_mode_fail; } if (vdd_class->set_vdd && !vdd_class->num_regulators) rc = vdd_class->set_vdd(vdd_class, level); if (rc < 0) vdd_class->cur_level = level; return 0; set_mode_fail: regulator_set_voltage(r[i], uv[vdd_class->cur_level * n_reg + i], uv[max_lvl + i]); set_voltage_fail: lvl_base = vdd_class->cur_level * n_reg; for (i--; i >= 0; i--) { regulator_set_voltage(r[i], uv[lvl_base + i], uv[max_lvl + i]); if (!ua) continue; regulator_set_optimum_mode(r[i], ua[lvl_base + i]); } return rc; } /* Vote for a voltage level. */ int vote_vdd_level(struct clk_vdd_class *vdd_class, int level) { int rc; if (level >= vdd_class->num_levels) return -EINVAL; mutex_lock(&vdd_class->lock); vdd_class->level_votes[level]++; rc = update_vdd(vdd_class); if (rc) vdd_class->level_votes[level]--; mutex_unlock(&vdd_class->lock); return rc; } /* Remove vote for a voltage level. */ int unvote_vdd_level(struct clk_vdd_class *vdd_class, int level) { int rc = 0; if (level >= vdd_class->num_levels) return -EINVAL; mutex_lock(&vdd_class->lock); if (WARN(!vdd_class->level_votes[level], "Reference counts are incorrect for %s level %d\n", vdd_class->class_name, level)) goto out; vdd_class->level_votes[level]--; rc = update_vdd(vdd_class); if (rc) vdd_class->level_votes[level]++; out: mutex_unlock(&vdd_class->lock); return rc; } /* Vote for a voltage level corresponding to a clock's rate. */ static int vote_rate_vdd(struct clk *clk, unsigned long rate) { int level; if (!clk->vdd_class) return 0; level = find_vdd_level(clk, rate); if (level < 0) return level; return vote_vdd_level(clk->vdd_class, level); } /* Remove vote for a voltage level corresponding to a clock's rate. */ static void unvote_rate_vdd(struct clk *clk, unsigned long rate) { int level; if (!clk->vdd_class) return; level = find_vdd_level(clk, rate); if (level < 0) return; unvote_vdd_level(clk->vdd_class, level); } /* Check if the rate is within the voltage limits of the clock. */ static bool is_rate_valid(struct clk *clk, unsigned long rate) { int level; if (!clk->vdd_class) return true; level = find_vdd_level(clk, rate); return level >= 0; } /** * __clk_pre_reparent() - Set up the new parent before switching to it and * prevent the enable state of the child clock from changing. * @c: The child clock that's going to switch parents * @new: The new parent that the child clock is going to switch to * @flags: Pointer to scratch space to save spinlock flags * * Cannot be called from atomic context. * * Use this API to set up the @new parent clock to be able to support the * current prepare and enable state of the child clock @c. Once the parent is * set up, the child clock can safely switch to it. * * The caller shall grab the prepare_lock of clock @c before calling this API * and only release it after calling __clk_post_reparent() for clock @c (or * if this API fails). This is necessary to prevent the prepare state of the * child clock @c from changing while the reparenting is in progress. Since * this API takes care of grabbing the enable lock of @c, only atomic * operation are allowed between calls to __clk_pre_reparent and * __clk_post_reparent() * * The scratch space pointed to by @flags should not be altered before * calling __clk_post_reparent() for clock @c. * * See also: __clk_post_reparent() */ int __clk_pre_reparent(struct clk *c, struct clk *new, unsigned long *flags) { int rc; if (c->prepare_count) { rc = clk_prepare(new); if (rc) return rc; } spin_lock_irqsave(&c->lock, *flags); if (c->count) { rc = clk_enable(new); if (rc) { spin_unlock_irqrestore(&c->lock, *flags); clk_unprepare(new); return rc; } } return 0; } /** * __clk_post_reparent() - Release requirements on old parent after switching * away from it and allow changes to the child clock's enable state. * @c: The child clock that switched parents * @old: The old parent that the child clock switched away from or the new * parent of a failed reparent attempt. * @flags: Pointer to scratch space where spinlock flags were saved * * Cannot be called from atomic context. * * This API works in tandem with __clk_pre_reparent. Use this API to * - Remove prepare and enable requirements from the @old parent after * switching away from it * - Or, undo the effects of __clk_pre_reparent() after a failed attempt to * change parents * * The caller shall release the prepare_lock of @c that was grabbed before * calling __clk_pre_reparent() only after this API is called (or if * __clk_pre_reparent() fails). This is necessary to prevent the prepare * state of the child clock @c from changing while the reparenting is in * progress. Since this API releases the enable lock of @c, the limit to * atomic operations set by __clk_pre_reparent() is no longer present. * * The scratch space pointed to by @flags shall not be altered since the call * to __clk_pre_reparent() for clock @c. * * See also: __clk_pre_reparent() */ void __clk_post_reparent(struct clk *c, struct clk *old, unsigned long *flags) { if (c->count) clk_disable(old); spin_unlock_irqrestore(&c->lock, *flags); if (c->prepare_count) clk_unprepare(old); } int clk_prepare(struct clk *clk) { int ret = 0; struct clk *parent; if (!clk) return 0; if (IS_ERR(clk)) return -EINVAL; mutex_lock(&clk->prepare_lock); if (clk->prepare_count == 0) { parent = clk->parent; ret = clk_prepare(parent); if (ret) goto out; ret = clk_prepare(clk->depends); if (ret) goto err_prepare_depends; ret = vote_rate_vdd(clk, clk->rate); if (ret) goto err_vote_vdd; if (clk->ops->prepare) ret = clk->ops->prepare(clk); if (ret) goto err_prepare_clock; } clk->prepare_count++; out: mutex_unlock(&clk->prepare_lock); return ret; err_prepare_clock: unvote_rate_vdd(clk, clk->rate); err_vote_vdd: clk_unprepare(clk->depends); err_prepare_depends: clk_unprepare(parent); goto out; } EXPORT_SYMBOL(clk_prepare); /* * Standard clock functions defined in include/linux/clk.h */ int clk_enable(struct clk *clk) { int ret = 0; unsigned long flags; struct clk *parent; const char *name = clk ? clk->dbg_name : NULL; if (!clk) return 0; if (IS_ERR(clk)) return -EINVAL; spin_lock_irqsave(&clk->lock, flags); WARN(!clk->prepare_count, "%s: Don't call enable on unprepared clocks\n", name); if (clk->count == 0) { parent = clk->parent; ret = clk_enable(parent); if (ret) goto err_enable_parent; ret = clk_enable(clk->depends); if (ret) goto err_enable_depends; trace_clock_enable(name, 1, smp_processor_id()); if (clk->ops->enable) ret = clk->ops->enable(clk); if (ret) goto err_enable_clock; } clk->count++; spin_unlock_irqrestore(&clk->lock, flags); return 0; err_enable_clock: clk_disable(clk->depends); err_enable_depends: clk_disable(parent); err_enable_parent: spin_unlock_irqrestore(&clk->lock, flags); return ret; } EXPORT_SYMBOL(clk_enable); void clk_disable(struct clk *clk) { const char *name = clk ? clk->dbg_name : NULL; unsigned long flags; if (IS_ERR_OR_NULL(clk)) return; spin_lock_irqsave(&clk->lock, flags); WARN(!clk->prepare_count, "%s: Never called prepare or calling disable after unprepare\n", name); if (WARN(clk->count == 0, "%s is unbalanced", name)) goto out; if (clk->count == 1) { struct clk *parent = clk->parent; trace_clock_disable(name, 0, smp_processor_id()); if (clk->ops->disable) clk->ops->disable(clk); clk_disable(clk->depends); clk_disable(parent); } clk->count--; out: spin_unlock_irqrestore(&clk->lock, flags); } EXPORT_SYMBOL(clk_disable); void clk_unprepare(struct clk *clk) { const char *name = clk ? clk->dbg_name : NULL; if (IS_ERR_OR_NULL(clk)) return; mutex_lock(&clk->prepare_lock); if (WARN(!clk->prepare_count, "%s is unbalanced (prepare)", name)) goto out; if (clk->prepare_count == 1) { struct clk *parent = clk->parent; WARN(clk->count, "%s: Don't call unprepare when the clock is enabled\n", name); if (clk->ops->unprepare) clk->ops->unprepare(clk); unvote_rate_vdd(clk, clk->rate); clk_unprepare(clk->depends); clk_unprepare(parent); } clk->prepare_count--; out: mutex_unlock(&clk->prepare_lock); } EXPORT_SYMBOL(clk_unprepare); int clk_reset(struct clk *clk, enum clk_reset_action action) { if (IS_ERR_OR_NULL(clk)) return -EINVAL; if (!clk->ops->reset) return -ENOSYS; return clk->ops->reset(clk, action); } EXPORT_SYMBOL(clk_reset); unsigned long clk_get_rate(struct clk *clk) { if (IS_ERR_OR_NULL(clk)) return 0; if (!clk->ops->get_rate) return clk->rate; return clk->ops->get_rate(clk); } EXPORT_SYMBOL(clk_get_rate); int clk_set_rate(struct clk *clk, unsigned long rate) { unsigned long start_rate; int rc = 0; const char *name = clk ? clk->dbg_name : NULL; if (IS_ERR_OR_NULL(clk)) return -EINVAL; if (!clk->ops->set_rate) return -ENOSYS; if (!is_rate_valid(clk, rate)) return -EINVAL; mutex_lock(&clk->prepare_lock); /* Return early if the rate isn't going to change */ if (clk->rate == rate && !(clk->flags & CLKFLAG_NO_RATE_CACHE)) goto out; trace_clock_set_rate(name, rate, raw_smp_processor_id()); start_rate = clk->rate; /* Enforce vdd requirements for target frequency. */ if (clk->prepare_count) { rc = vote_rate_vdd(clk, rate); if (rc) goto out; } rc = clk->ops->set_rate(clk, rate); if (rc) goto err_set_rate; clk->rate = rate; /* Release vdd requirements for starting frequency. */ if (clk->prepare_count) unvote_rate_vdd(clk, start_rate); out: mutex_unlock(&clk->prepare_lock); return rc; err_set_rate: if (clk->prepare_count) unvote_rate_vdd(clk, rate); goto out; } EXPORT_SYMBOL(clk_set_rate); long clk_round_rate(struct clk *clk, unsigned long rate) { if (IS_ERR_OR_NULL(clk)) return -EINVAL; if (!clk->ops->round_rate) return -ENOSYS; return clk->ops->round_rate(clk, rate); } EXPORT_SYMBOL(clk_round_rate); int clk_set_max_rate(struct clk *clk, unsigned long rate) { if (IS_ERR_OR_NULL(clk)) return -EINVAL; if (!clk->ops->set_max_rate) return -ENOSYS; return clk->ops->set_max_rate(clk, rate); } EXPORT_SYMBOL(clk_set_max_rate); int clk_set_parent(struct clk *clk, struct clk *parent) { int rc = 0; if (!clk->ops->set_parent) return -ENOSYS; mutex_lock(&clk->prepare_lock); if (clk->parent == parent) goto out; rc = clk->ops->set_parent(clk, parent); if (!rc) clk->parent = parent; out: mutex_unlock(&clk->prepare_lock); return rc; } EXPORT_SYMBOL(clk_set_parent); struct clk *clk_get_parent(struct clk *clk) { if (IS_ERR_OR_NULL(clk)) return NULL; return clk->parent; } EXPORT_SYMBOL(clk_get_parent); int clk_set_flags(struct clk *clk, unsigned long flags) { if (IS_ERR_OR_NULL(clk)) return -EINVAL; if (!clk->ops->set_flags) return -ENOSYS; return clk->ops->set_flags(clk, flags); } EXPORT_SYMBOL(clk_set_flags); static struct clock_init_data *clk_init_data; static void init_sibling_lists(struct clk_lookup *clock_tbl, size_t num_clocks) { struct clk *clk, *parent; unsigned n; for (n = 0; n < num_clocks; n++) { clk = clock_tbl[n].clk; parent = clk->parent; if (parent && list_empty(&clk->siblings)) list_add(&clk->siblings, &parent->children); } } /** * msm_clock_register() - Register additional clock tables * @table: Table of clocks * @size: Size of @table * * Upon return, clock APIs may be used to control clocks registered using this * function. This API may only be used after msm_clock_init() has completed. * Unlike msm_clock_init(), this function may be called multiple times with * different clock lists and used after the kernel has finished booting. */ int msm_clock_register(struct clk_lookup *table, size_t size) { if (!clk_init_data) return -ENODEV; if (!table) return -EINVAL; init_sibling_lists(table, size); clkdev_add_table(table, size); clock_debug_register(table, size); return 0; } EXPORT_SYMBOL(msm_clock_register); static void vdd_class_init(struct clk_vdd_class *vdd) { struct handoff_vdd *v; int i; if (!vdd) return; list_for_each_entry(v, &handoff_vdd_list, list) { if (v->vdd_class == vdd) return; } pr_debug("voting for vdd_class %s\n", vdd->class_name); if (vote_vdd_level(vdd, vdd->num_levels - 1)) pr_err("failed to vote for %s\n", vdd->class_name); for (i = 0; i < vdd->num_regulators; i++) regulator_enable(vdd->regulator[i]); v = kmalloc(sizeof(*v), GFP_KERNEL); if (!v) { pr_err("Unable to kmalloc. %s will be stuck at max.\n", vdd->class_name); return; } v->vdd_class = vdd; list_add_tail(&v->list, &handoff_vdd_list); } static int __init __handoff_clk(struct clk *clk) { enum handoff state = HANDOFF_DISABLED_CLK; struct handoff_clk *h = NULL; int rc; if (clk == NULL || clk->flags & CLKFLAG_INIT_DONE || clk->flags & CLKFLAG_SKIP_HANDOFF) return 0; if (clk->flags & CLKFLAG_INIT_ERR) return -ENXIO; /* Handoff any 'depends' clock first. */ rc = __handoff_clk(clk->depends); if (rc) goto err; /* * Handoff functions for the parent must be called before the * children can be handed off. Without handing off the parents and * knowing their rate and state (on/off), it's impossible to figure * out the rate and state of the children. */ if (clk->ops->get_parent) clk->parent = clk->ops->get_parent(clk); if (IS_ERR(clk->parent)) { rc = PTR_ERR(clk->parent); goto err; } rc = __handoff_clk(clk->parent); if (rc) goto err; if (clk->ops->handoff) state = clk->ops->handoff(clk); if (state == HANDOFF_ENABLED_CLK) { h = kmalloc(sizeof(*h), GFP_KERNEL); if (!h) { rc = -ENOMEM; goto err; } rc = clk_prepare_enable(clk->parent); if (rc) goto err; rc = clk_prepare_enable(clk->depends); if (rc) goto err_depends; rc = vote_rate_vdd(clk, clk->rate); WARN(rc, "%s unable to vote for voltage!\n", clk->dbg_name); clk->count = 1; clk->prepare_count = 1; h->clk = clk; list_add_tail(&h->list, &handoff_list); pr_debug("Handed off %s rate=%lu\n", clk->dbg_name, clk->rate); } clk->flags |= CLKFLAG_INIT_DONE; return 0; err_depends: clk_disable_unprepare(clk->parent); err: kfree(h); clk->flags |= CLKFLAG_INIT_ERR; pr_err("%s handoff failed (%d)\n", clk->dbg_name, rc); return rc; } /** * msm_clock_init() - Register and initialize a clock driver * @data: Driver-specific clock initialization data * * Upon return from this call, clock APIs may be used to control * clocks registered with this API. */ int __init msm_clock_init(struct clock_init_data *data) { unsigned n; struct clk_lookup *clock_tbl; size_t num_clocks; if (!data) return -EINVAL; clk_init_data = data; if (clk_init_data->pre_init) clk_init_data->pre_init(); clock_tbl = data->table; num_clocks = data->size; init_sibling_lists(clock_tbl, num_clocks); /* * Enable regulators and temporarily set them up at maximum voltage. * Once all the clocks have made their respective vote, remove this * temporary vote. The removing of the temporary vote is done at * late_init, by which time we assume all the clocks would have been * handed off. */ for (n = 0; n < num_clocks; n++) vdd_class_init(clock_tbl[n].clk->vdd_class); /* * Detect and preserve initial clock state until clock_late_init() or * a driver explicitly changes it, whichever is first. */ for (n = 0; n < num_clocks; n++) __handoff_clk(clock_tbl[n].clk); clkdev_add_table(clock_tbl, num_clocks); if (clk_init_data->post_init) clk_init_data->post_init(); clock_debug_init(); clock_debug_register(clock_tbl, num_clocks); return 0; } static int __init clock_late_init(void) { struct handoff_clk *h, *h_temp; struct handoff_vdd *v, *v_temp; int ret = 0; if (clk_init_data->late_init) ret = clk_init_data->late_init(); pr_info("%s: Removing enables held for handed-off clocks\n", __func__); list_for_each_entry_safe(h, h_temp, &handoff_list, list) { clk_disable_unprepare(h->clk); list_del(&h->list); kfree(h); } list_for_each_entry_safe(v, v_temp, &handoff_vdd_list, list) { unvote_vdd_level(v->vdd_class, v->vdd_class->num_levels - 1); list_del(&v->list); kfree(v); } return ret; } late_initcall(clock_late_init);