/* Copyright (c) 2010-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include "rpm_resources.h" #include "clock-rpm.h" #define __clk_rpmrs_set_rate(r, value, ctx) \ ((r)->rpmrs_data->set_rate_fn((r), (value), (ctx))) #define clk_rpmrs_set_rate_sleep(r, value) \ __clk_rpmrs_set_rate((r), (value), (r)->rpmrs_data->ctx_sleep_id) #define clk_rpmrs_set_rate_active(r, value) \ __clk_rpmrs_set_rate((r), (value), (r)->rpmrs_data->ctx_active_id) static int clk_rpmrs_set_rate(struct rpm_clk *r, uint32_t value, uint32_t context) { struct msm_rpm_iv_pair iv = { .id = r->rpm_clk_id, .value = value, }; return msm_rpmrs_set(context, &iv, 1); } static int clk_rpmrs_get_rate(struct rpm_clk *r) { int rc; struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; rc = msm_rpm_get_status(&iv, 1); return (rc < 0) ? rc : iv.value * r->factor; } static int clk_rpmrs_handoff(struct rpm_clk *r) { struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; int rc = msm_rpm_get_status(&iv, 1); if (rc < 0) return rc; if (!r->branch) r->c.rate = iv.value * r->factor; return 0; } static int clk_rpmrs_set_rate_smd(struct rpm_clk *r, uint32_t value, uint32_t context) { struct msm_rpm_kvp kvp = { .key = r->rpm_key, .data = (void *)&value, .length = sizeof(value), }; return msm_rpm_send_message(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); } static int clk_rpmrs_handoff_smd(struct rpm_clk *r) { if (!r->branch) r->c.rate = INT_MAX; return 0; } struct clk_rpmrs_data { int (*set_rate_fn)(struct rpm_clk *r, uint32_t value, uint32_t context); int (*get_rate_fn)(struct rpm_clk *r); int (*handoff_fn)(struct rpm_clk *r); int ctx_active_id; int ctx_sleep_id; }; struct clk_rpmrs_data clk_rpmrs_data = { .set_rate_fn = clk_rpmrs_set_rate, .get_rate_fn = clk_rpmrs_get_rate, .handoff_fn = clk_rpmrs_handoff, .ctx_active_id = MSM_RPM_CTX_SET_0, .ctx_sleep_id = MSM_RPM_CTX_SET_SLEEP, }; struct clk_rpmrs_data clk_rpmrs_data_smd = { .set_rate_fn = clk_rpmrs_set_rate_smd, .handoff_fn = clk_rpmrs_handoff_smd, .ctx_active_id = MSM_RPM_CTX_ACTIVE_SET, .ctx_sleep_id = MSM_RPM_CTX_SLEEP_SET, }; static DEFINE_MUTEX(rpm_clock_lock); static void to_active_sleep_khz(struct rpm_clk *r, unsigned long rate, unsigned long *active_khz, unsigned long *sleep_khz) { /* Convert the rate (hz) to khz */ *active_khz = DIV_ROUND_UP(rate, r->factor); /* * Active-only clocks don't care what the rate is during sleep. So, * they vote for zero. */ if (r->active_only) *sleep_khz = 0; else *sleep_khz = *active_khz; } static int rpm_clk_prepare(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); uint32_t value; int rc = 0; unsigned long this_khz, this_sleep_khz; unsigned long peer_khz = 0, peer_sleep_khz = 0; struct rpm_clk *peer = r->peer; mutex_lock(&rpm_clock_lock); to_active_sleep_khz(r, r->c.rate, &this_khz, &this_sleep_khz); /* Don't send requests to the RPM if the rate has not been set. */ if (this_khz == 0) goto out; /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = max(this_khz, peer_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_sleep(r, value); if (rc) { /* Undo the active set vote and restore it to peer_khz */ value = peer_khz; rc = clk_rpmrs_set_rate_active(r, value); } out: if (!rc) r->enabled = true; mutex_unlock(&rpm_clock_lock); return rc; } static void rpm_clk_unprepare(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); mutex_lock(&rpm_clock_lock); if (r->c.rate) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; int rc; /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = r->branch ? !!peer_khz : peer_khz; rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = r->branch ? !!peer_sleep_khz : peer_sleep_khz; rc = clk_rpmrs_set_rate_sleep(r, value); } r->enabled = false; out: mutex_unlock(&rpm_clock_lock); return; } static int rpm_clk_set_rate(struct clk *clk, unsigned long rate) { struct rpm_clk *r = to_rpm_clk(clk); unsigned long this_khz, this_sleep_khz; int rc = 0; mutex_lock(&rpm_clock_lock); if (r->enabled) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; to_active_sleep_khz(r, rate, &this_khz, &this_sleep_khz); /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = max(this_khz, peer_khz); rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); rc = clk_rpmrs_set_rate_sleep(r, value); } out: mutex_unlock(&rpm_clock_lock); return rc; } static int rpm_branch_clk_set_rate(struct clk *clk, unsigned long rate) { if (rate == clk->rate) return 0; return -EPERM; } static unsigned long rpm_clk_get_rate(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); if (r->rpmrs_data->get_rate_fn) return r->rpmrs_data->get_rate_fn(r); else return clk->rate; } static int rpm_clk_is_enabled(struct clk *clk) { return !!(rpm_clk_get_rate(clk)); } static long rpm_clk_round_rate(struct clk *clk, unsigned long rate) { /* Not supported. */ return rate; } static bool rpm_clk_is_local(struct clk *clk) { return false; } static enum handoff rpm_clk_handoff(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); int rc; /* * Querying an RPM clock's status will return 0 unless the clock's * rate has previously been set through the RPM. When handing off, * assume these clocks are enabled (unless the RPM call fails) so * child clocks of these RPM clocks can still be handed off. */ rc = r->rpmrs_data->handoff_fn(r); if (rc < 0) return HANDOFF_DISABLED_CLK; /* * Since RPM handoff code may update the software rate of the clock by * querying the RPM, we need to make sure our request to RPM now * matches the software rate of the clock. When we send the request * to RPM, we also need to update any other state info we would * normally update. So, call the appropriate clock function instead * of directly using the RPM driver APIs. */ rc = rpm_clk_prepare(clk); if (rc < 0) return HANDOFF_DISABLED_CLK; return HANDOFF_ENABLED_CLK; } #define RPM_MISC_CLK_TYPE 0x306b6c63 #define RPM_SCALING_ENABLE_ID 0x2 void enable_rpm_scaling(void) { int rc, value = 0x1; struct msm_rpm_kvp kvp = { .key = RPM_SMD_KEY_ENABLE, .data = (void *)&value, .length = sizeof(value), }; rc = msm_rpm_send_message_noirq(MSM_RPM_CTX_SLEEP_SET, RPM_MISC_CLK_TYPE, RPM_SCALING_ENABLE_ID, &kvp, 1); WARN(rc < 0, "RPM clock scaling (sleep set) did not enable!\n"); rc = msm_rpm_send_message_noirq(MSM_RPM_CTX_ACTIVE_SET, RPM_MISC_CLK_TYPE, RPM_SCALING_ENABLE_ID, &kvp, 1); WARN(rc < 0, "RPM clock scaling (active set) did not enable!\n"); } struct clk_ops clk_ops_rpm = { .prepare = rpm_clk_prepare, .unprepare = rpm_clk_unprepare, .set_rate = rpm_clk_set_rate, .get_rate = rpm_clk_get_rate, .is_enabled = rpm_clk_is_enabled, .round_rate = rpm_clk_round_rate, .is_local = rpm_clk_is_local, .handoff = rpm_clk_handoff, }; struct clk_ops clk_ops_rpm_branch = { .prepare = rpm_clk_prepare, .unprepare = rpm_clk_unprepare, .set_rate = rpm_branch_clk_set_rate, .is_local = rpm_clk_is_local, .handoff = rpm_clk_handoff, };