/* Copyright (c) 2010-2012, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #ifndef NULL #define NULL 0 #endif extern void dsb(void); static int uart_init_flag = 0; /* Note: * This is a basic implementation of UART_DM protocol. More focus has been * given on simplicity than efficiency. Few of the things to be noted are: * - RX path may not be suitable for multi-threaded scenaraio because of the * use of static variables. TX path shouldn't have any problem though. If * multi-threaded support is required, a simple data-structure can * be maintained for each thread. * - Right now we are using polling method than interrupt based. * - We are using legacy UART protocol without Data Mover. * - Not all interrupts and error events are handled. * - While waiting Watchdog hasn't been taken into consideration. */ #define NON_PRINTABLE_ASCII_CHAR 128 static uint8_t pack_chars_into_words(uint8_t *buffer, uint8_t cnt, uint32_t *word) { uint8_t num_chars_writtten = 0; *word = 0; for(int j=0; j < cnt; j++) { if (buffer[num_chars_writtten] == '\n') { /* replace '\n' by the NON_PRINTABLE_ASCII_CHAR and print '\r'. * While printing the NON_PRINTABLE_ASCII_CHAR, we will print '\n'. * Thus successfully replacing '\n' by '\r' '\n'. */ *word |= ('\r' & 0xff) << (j * 8); buffer[num_chars_writtten] = NON_PRINTABLE_ASCII_CHAR; } else { if (buffer[num_chars_writtten] == NON_PRINTABLE_ASCII_CHAR) { buffer[num_chars_writtten] = '\n'; } *word |= (buffer[num_chars_writtten] & 0xff) << (j * 8); num_chars_writtten++; } } return num_chars_writtten; } /* Static Function Prototype Declarations */ static unsigned int msm_boot_uart_calculate_num_chars_to_write(char *data_in, uint32_t *num_of_chars); static unsigned int msm_boot_uart_dm_init(uint32_t base); static unsigned int msm_boot_uart_dm_read(uint32_t base, unsigned int *data, int wait); static unsigned int msm_boot_uart_dm_write(uint32_t base, char *data, unsigned int num_of_chars); static unsigned int msm_boot_uart_dm_init_rx_transfer(uint32_t base); static unsigned int msm_boot_uart_dm_reset(uint32_t base); /* Keep track of uart block vs port mapping. */ static uint32_t port_lookup[4]; /* Extern functions */ void udelay(unsigned usecs); /* * Helper function to keep track of Line Feed char "\n" with * Carriage Return "\r\n". */ static unsigned int msm_boot_uart_calculate_num_chars_to_write(char *data_in, uint32_t *num_of_chars) { int i = 0, j = 0; if ((data_in == NULL) || (*num_of_chars < 0)) { return MSM_BOOT_UART_DM_E_INVAL; } for (i = 0, j = 0; i < *num_of_chars; i++, j++) { if (data_in[i] == '\n') { j++; } } *num_of_chars = j; return MSM_BOOT_UART_DM_E_SUCCESS; } /* * Reset the UART */ static unsigned int msm_boot_uart_dm_reset(uint32_t base) { writel(MSM_BOOT_UART_DM_CMD_RESET_RX, MSM_BOOT_UART_DM_CR(base)); writel(MSM_BOOT_UART_DM_CMD_RESET_TX, MSM_BOOT_UART_DM_CR(base)); writel(MSM_BOOT_UART_DM_CMD_RESET_ERR_STAT, MSM_BOOT_UART_DM_CR(base)); writel(MSM_BOOT_UART_DM_CMD_RES_TX_ERR, MSM_BOOT_UART_DM_CR(base)); writel(MSM_BOOT_UART_DM_CMD_RES_STALE_INT, MSM_BOOT_UART_DM_CR(base)); return MSM_BOOT_UART_DM_E_SUCCESS; } /* * Initialize UART_DM - configure clock and required registers. */ static unsigned int msm_boot_uart_dm_init(uint32_t uart_dm_base) { /* Configure UART mode registers MR1 and MR2 */ /* Hardware flow control isn't supported */ writel(0x0, MSM_BOOT_UART_DM_MR1(uart_dm_base)); /* 8-N-1 configuration: 8 data bits - No parity - 1 stop bit */ writel(MSM_BOOT_UART_DM_8_N_1_MODE, MSM_BOOT_UART_DM_MR2(uart_dm_base)); /* Configure Interrupt Mask register IMR */ writel(MSM_BOOT_UART_DM_IMR_ENABLED, MSM_BOOT_UART_DM_IMR(uart_dm_base)); /* Configure Tx and Rx watermarks configuration registers */ /* TX watermark value is set to 0 - interrupt is generated when * FIFO level is less than or equal to 0 */ writel(MSM_BOOT_UART_DM_TFW_VALUE, MSM_BOOT_UART_DM_TFWR(uart_dm_base)); /* RX watermark value */ writel(MSM_BOOT_UART_DM_RFW_VALUE, MSM_BOOT_UART_DM_RFWR(uart_dm_base)); /* Configure Interrupt Programming Register */ /* Set initial Stale timeout value */ writel(MSM_BOOT_UART_DM_STALE_TIMEOUT_LSB, MSM_BOOT_UART_DM_IPR(uart_dm_base)); /* Configure IRDA if required */ /* Disabling IRDA mode */ writel(0x0, MSM_BOOT_UART_DM_IRDA(uart_dm_base)); /* Configure and enable sim interface if required */ /* Configure hunt character value in HCR register */ /* Keep it in reset state */ writel(0x0, MSM_BOOT_UART_DM_HCR(uart_dm_base)); /* Configure Rx FIFO base address */ /* Both TX/RX shares same SRAM and default is half-n-half. * Sticking with default value now. * As such RAM size is (2^RAM_ADDR_WIDTH, 32-bit entries). * We have found RAM_ADDR_WIDTH = 0x7f */ /* Issue soft reset command */ msm_boot_uart_dm_reset(uart_dm_base); /* Enable/Disable Rx/Tx DM interfaces */ /* Data Mover not currently utilized. */ writel(0x0, MSM_BOOT_UART_DM_DMEN(uart_dm_base)); /* Enable transmitter and receiver */ writel(MSM_BOOT_UART_DM_CR_RX_ENABLE, MSM_BOOT_UART_DM_CR(uart_dm_base)); writel(MSM_BOOT_UART_DM_CR_TX_ENABLE, MSM_BOOT_UART_DM_CR(uart_dm_base)); /* Initialize Receive Path */ msm_boot_uart_dm_init_rx_transfer(uart_dm_base); return MSM_BOOT_UART_DM_E_SUCCESS; } /* * Initialize Receive Path */ static unsigned int msm_boot_uart_dm_init_rx_transfer(uint32_t uart_dm_base) { writel(MSM_BOOT_UART_DM_GCMD_DIS_STALE_EVT, MSM_BOOT_UART_DM_CR(uart_dm_base)); writel(MSM_BOOT_UART_DM_CMD_RES_STALE_INT, MSM_BOOT_UART_DM_CR(uart_dm_base)); writel(MSM_BOOT_UART_DM_DMRX_DEF_VALUE, MSM_BOOT_UART_DM_DMRX(uart_dm_base)); writel(MSM_BOOT_UART_DM_GCMD_ENA_STALE_EVT, MSM_BOOT_UART_DM_CR(uart_dm_base)); return MSM_BOOT_UART_DM_E_SUCCESS; } /* * UART Receive operation * Reads a word from the RX FIFO. */ static unsigned int msm_boot_uart_dm_read(uint32_t base, unsigned int *data, int wait) { static int rx_last_snap_count = 0; static int rx_chars_read_since_last_xfer = 0; if (data == NULL) { return MSM_BOOT_UART_DM_E_INVAL; } /* We will be polling RXRDY status bit */ while (!(readl(MSM_BOOT_UART_DM_SR(base)) & MSM_BOOT_UART_DM_SR_RXRDY)) { /* if this is not a blocking call, we'll just return */ if (!wait) { return MSM_BOOT_UART_DM_E_RX_NOT_READY; } } /* Check for Overrun error. We'll just reset Error Status */ if (readl(MSM_BOOT_UART_DM_SR(base)) & MSM_BOOT_UART_DM_SR_UART_OVERRUN) { writel(MSM_BOOT_UART_DM_CMD_RESET_ERR_STAT, MSM_BOOT_UART_DM_CR(base)); } /* RX FIFO is ready; read a word. */ *data = readl(MSM_BOOT_UART_DM_RF(base, 0)); /* increment the total count of chars we've read so far */ rx_chars_read_since_last_xfer += 4; /* Rx transfer ends when one of the conditions is met: * - The number of characters received since the end of the previous * xfer equals the value written to DMRX at Transfer Initialization * - A stale event occurred */ /* If RX transfer has not ended yet */ if (rx_last_snap_count == 0) { /* Check if we've received stale event */ if (readl(MSM_BOOT_UART_DM_MISR(base)) & MSM_BOOT_UART_DM_RXSTALE) { /* Send command to reset stale interrupt */ writel(MSM_BOOT_UART_DM_CMD_RES_STALE_INT, MSM_BOOT_UART_DM_CR(base)); } /* Check if we haven't read more than DMRX value */ else if ((unsigned int)rx_chars_read_since_last_xfer < readl(MSM_BOOT_UART_DM_DMRX(base))) { /* We can still continue reading before initializing RX transfer */ return MSM_BOOT_UART_DM_E_SUCCESS; } /* If we've reached here it means RX * xfer end conditions been met */ /* Read UART_DM_RX_TOTAL_SNAP register * to know how many valid chars * we've read so far since last transfer */ rx_last_snap_count = readl(MSM_BOOT_UART_DM_RX_TOTAL_SNAP(base)); } /* If there are still data left in FIFO we'll read them before * initializing RX Transfer again */ if ((rx_last_snap_count - rx_chars_read_since_last_xfer) >= 0) { return MSM_BOOT_UART_DM_E_SUCCESS; } msm_boot_uart_dm_init_rx_transfer(base); rx_last_snap_count = 0; rx_chars_read_since_last_xfer = 0; return MSM_BOOT_UART_DM_E_SUCCESS; } /* * UART transmit operation */ static unsigned int msm_boot_uart_dm_write(uint32_t base, char *data, unsigned int num_of_chars) { unsigned int tx_word_count = 0; unsigned int tx_char_left = 0, tx_char = 0; unsigned int tx_word = 0; int i = 0; char *tx_data = NULL; uint8_t num_chars_written; if ((data == NULL) || (num_of_chars <= 0)) { return MSM_BOOT_UART_DM_E_INVAL; } msm_boot_uart_calculate_num_chars_to_write(data, &num_of_chars); tx_data = data; /* Write to NO_CHARS_FOR_TX register number of characters * to be transmitted. However, before writing TX_FIFO must * be empty as indicated by TX_READY interrupt in IMR register */ /* Check if transmit FIFO is empty. * If not we'll wait for TX_READY interrupt. */ if (!(readl(MSM_BOOT_UART_DM_SR(base)) & MSM_BOOT_UART_DM_SR_TXEMT)) { while (!(readl(MSM_BOOT_UART_DM_ISR(base)) & MSM_BOOT_UART_DM_TX_READY)) { udelay(1); /* Kick watchdog? */ } } /* We are here. FIFO is ready to be written. */ /* Write number of characters to be written */ writel(num_of_chars, MSM_BOOT_UART_DM_NO_CHARS_FOR_TX(base)); /* Clear TX_READY interrupt */ writel(MSM_BOOT_UART_DM_GCMD_RES_TX_RDY_INT, MSM_BOOT_UART_DM_CR(base)); /* We use four-character word FIFO. So we need to divide data into * four characters and write in UART_DM_TF register */ tx_word_count = (num_of_chars % 4) ? ((num_of_chars / 4) + 1) : (num_of_chars / 4); tx_char_left = num_of_chars; for (i = 0; i < (int)tx_word_count; i++) { tx_char = (tx_char_left < 4) ? tx_char_left : 4; num_chars_written = pack_chars_into_words(tx_data, tx_char, &tx_word); /* Wait till TX FIFO has space */ while (!(readl(MSM_BOOT_UART_DM_SR(base)) & MSM_BOOT_UART_DM_SR_TXRDY)) { udelay(1); } /* TX FIFO has space. Write the chars */ writel(tx_word, MSM_BOOT_UART_DM_TF(base, 0)); tx_char_left = num_of_chars - (i + 1) * 4; tx_data = tx_data + num_chars_written; } return MSM_BOOT_UART_DM_E_SUCCESS; } /* Defining functions that's exposed to outside world and in coformance to * existing uart implemention. These functions are being called to initialize * UART and print debug messages in bootloader. */ void uart_dm_init(uint8_t id, uint32_t gsbi_base, uint32_t uart_dm_base) { static uint8_t port = 0; char *data = "Android Bootloader - UART_DM Initialized!!!\n"; /* Configure the uart clock */ clock_config_uart_dm(id); dsb(); /* Configure GPIO to provide connectivity between UART block product ports and chip pads */ gpio_config_uart_dm(id); dsb(); /* Configure GSBI for UART_DM protocol. * I2C on 2 ports, UART (without HS flow control) on the other 2. * This is only on chips that have GSBI block */ if(gsbi_base) writel(GSBI_PROTOCOL_CODE_I2C_UART << GSBI_CTRL_REG_PROTOCOL_CODE_S, GSBI_CTRL_REG(gsbi_base)); dsb(); /* Configure clock selection register for tx and rx rates. * Selecting 115.2k for both RX and TX. */ writel(UART_DM_CLK_RX_TX_BIT_RATE, MSM_BOOT_UART_DM_CSR(uart_dm_base)); dsb(); /* Intialize UART_DM */ msm_boot_uart_dm_init(uart_dm_base); msm_boot_uart_dm_write(uart_dm_base, data, 44); ASSERT(port < ARRAY_SIZE(port_lookup)); port_lookup[port++] = uart_dm_base; /* Set UART init flag */ uart_init_flag = 1; } /* UART_DM uses four character word FIFO where as UART core * uses a character FIFO. so it's really inefficient to try * to write single character. But that's how dprintf has been * implemented. */ int uart_putc(int port, char c) { uint32_t uart_base = port_lookup[port]; /* Don't do anything if UART is not initialized */ if (!uart_init_flag) return -1; msm_boot_uart_dm_write(uart_base, &c, 1); return 0; } /* UART_DM uses four character word FIFO whereas uart_getc * is supposed to read only one character. So we need to * read a word and keep track of each character in the word. */ int uart_getc(int port, bool wait) { int byte; static unsigned int word = 0; uint32_t uart_base = port_lookup[port]; /* Don't do anything if UART is not initialized */ if (!uart_init_flag) return -1; if (!word) { /* Read from FIFO only if it's a first read or all the four * characters out of a word have been read */ if (msm_boot_uart_dm_read(uart_base, &word, wait) != MSM_BOOT_UART_DM_E_SUCCESS) { return -1; } } byte = (int)word & 0xff; word = word >> 8; return byte; }