/* * f_audio.c -- USB Audio class function driver * * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved. * Copyright (C) 2008 Bryan Wu * Copyright (C) 2008 Analog Devices, Inc * * Enter bugs at http://blackfin.uclinux.org/ * * Licensed under the GPL-2 or later. */ #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include "u_uac1.h" static int generic_set_cmd(struct usb_audio_control *con, u8 cmd, int value); static int generic_get_cmd(struct usb_audio_control *con, u8 cmd); #define SPEAKER_INPUT_TERMINAL_ID 3 #define SPEAKER_OUTPUT_TERMINAL_ID 4 #define MICROPHONE_INPUT_TERMINAL_ID 1 #define MICROPHONE_OUTPUT_TERMINAL_ID 2 /* * DESCRIPTORS ... most are static, but strings and full * configuration descriptors are built on demand. */ /* * We have two interfaces- AudioControl and AudioStreaming */ #define F_AUDIO_AC_INTERFACE 0 #define F_AUDIO_AS_INTERFACE 1 #define F_AUDIO_NUM_INTERFACES 2 /* B.3.1 Standard AC Interface Descriptor */ static struct usb_interface_descriptor uac1_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL, }; DECLARE_UAC_AC_HEADER_DESCRIPTOR(2); #define UAC_DT_AC_HEADER_LENGTH UAC_DT_AC_HEADER_SIZE(F_AUDIO_NUM_INTERFACES) #define UAC_DT_TOTAL_LENGTH ( \ UAC_DT_AC_HEADER_LENGTH + \ UAC_DT_INPUT_TERMINAL_SIZE + \ UAC_DT_OUTPUT_TERMINAL_SIZE + \ UAC_DT_INPUT_TERMINAL_SIZE + \ UAC_DT_OUTPUT_TERMINAL_SIZE \ ) /* B.3.2 Class-Specific AC Interface Descriptor */ static struct uac1_ac_header_descriptor_2 uac1_header_desc = { .bLength = UAC_DT_AC_HEADER_LENGTH, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_HEADER, .bcdADC = cpu_to_le16(0x0100), .wTotalLength = cpu_to_le16(UAC_DT_TOTAL_LENGTH), .bInCollection = F_AUDIO_NUM_INTERFACES, /*.baInterfaceNr = { [0] = F_AUDIO_AC_INTERFACE, [1] = F_AUDIO_AS_INTERFACE, } */ }; static struct uac_input_terminal_descriptor speaker_input_terminal_desc = { .bLength = UAC_DT_INPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_INPUT_TERMINAL, .bTerminalID = SPEAKER_INPUT_TERMINAL_ID, .wTerminalType = UAC_TERMINAL_STREAMING, .bAssocTerminal = SPEAKER_OUTPUT_TERMINAL_ID, .wChannelConfig = 0x3, }; static struct uac1_output_terminal_descriptor speaker_output_terminal_desc = { .bLength = UAC_DT_OUTPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_OUTPUT_TERMINAL, .bTerminalID = SPEAKER_OUTPUT_TERMINAL_ID, .wTerminalType = UAC_OUTPUT_TERMINAL_SPEAKER, .bAssocTerminal = SPEAKER_INPUT_TERMINAL_ID, .bSourceID = SPEAKER_INPUT_TERMINAL_ID, }; static struct usb_audio_control speaker_mute_control = { .list = LIST_HEAD_INIT(speaker_mute_control.list), .name = "Speaker Mute Control", .type = UAC_FU_MUTE, /* Todo: add real Mute control code */ .set = generic_set_cmd, .get = generic_get_cmd, }; static struct usb_audio_control speaker_volume_control = { .list = LIST_HEAD_INIT(speaker_volume_control.list), .name = "Speaker Volume Control", .type = UAC_FU_VOLUME, /* Todo: add real Volume control code */ .set = generic_set_cmd, .get = generic_get_cmd, }; static struct usb_audio_control_selector speaker_fu_controls = { .list = LIST_HEAD_INIT(speaker_fu_controls.list), .name = "Speaker Function Unit Controls", }; static struct uac_input_terminal_descriptor microphone_input_terminal_desc = { .bLength = UAC_DT_INPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_INPUT_TERMINAL, .bTerminalID = MICROPHONE_INPUT_TERMINAL_ID, .wTerminalType = UAC_INPUT_TERMINAL_MICROPHONE, .bAssocTerminal = MICROPHONE_OUTPUT_TERMINAL_ID, .bNrChannels = 1, .wChannelConfig = 0x3, }; static struct uac1_output_terminal_descriptor microphone_output_terminal_desc = { .bLength = UAC_DT_OUTPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_OUTPUT_TERMINAL, .bTerminalID = MICROPHONE_OUTPUT_TERMINAL_ID, .wTerminalType = UAC_TERMINAL_STREAMING, .bAssocTerminal = MICROPHONE_INPUT_TERMINAL_ID, .bSourceID = MICROPHONE_INPUT_TERMINAL_ID, }; static struct usb_audio_control microphone_mute_control = { .list = LIST_HEAD_INIT(microphone_mute_control.list), .name = "Microphone Mute Control", .type = UAC_FU_MUTE, /* Todo: add real Mute control code */ .set = generic_set_cmd, .get = generic_get_cmd, }; static struct usb_audio_control microphone_volume_control = { .list = LIST_HEAD_INIT(microphone_volume_control.list), .name = "Microphone Volume Control", .type = UAC_FU_VOLUME, /* Todo: add real Volume control code */ .set = generic_set_cmd, .get = generic_get_cmd, }; static struct usb_audio_control_selector microphone_fu_controls = { .list = LIST_HEAD_INIT(microphone_fu_controls.list), .name = "Microphone Feature Unit Controls", }; /* B.4.1 Standard AS Interface Descriptor */ static struct usb_interface_descriptor speaker_as_interface_alt_0_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 0, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; static struct usb_interface_descriptor speaker_as_interface_alt_1_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 1, .bNumEndpoints = 1, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; /* B.4.2 Class-Specific AS Interface Descriptor */ static struct uac1_as_header_descriptor speaker_as_header_desc = { .bLength = UAC_DT_AS_HEADER_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_AS_GENERAL, .bTerminalLink = SPEAKER_INPUT_TERMINAL_ID, .bDelay = 1, .wFormatTag = UAC_FORMAT_TYPE_I_PCM, }; DECLARE_UAC_FORMAT_TYPE_I_DISCRETE_DESC(1); static struct uac_format_type_i_discrete_descriptor_1 speaker_as_type_i_desc = { .bLength = UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(1), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_FORMAT_TYPE, .bFormatType = UAC_FORMAT_TYPE_I, .bSubframeSize = 2, .bBitResolution = 16, .bSamFreqType = 1, }; /* Standard ISO OUT Endpoint Descriptor */ static struct usb_endpoint_descriptor speaker_as_ep_out_desc = { .bLength = USB_DT_ENDPOINT_AUDIO_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_SYNC_ADAPTIVE | USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(UAC1_OUT_EP_MAX_PACKET_SIZE), .bInterval = 4, }; static struct usb_ss_ep_comp_descriptor speaker_as_ep_out_comp_desc = { .bLength = sizeof(speaker_as_ep_out_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .wBytesPerInterval = cpu_to_le16(1024), }; /* Class-specific AS ISO OUT Endpoint Descriptor */ static struct uac_iso_endpoint_descriptor speaker_as_iso_out_desc = { .bLength = UAC_ISO_ENDPOINT_DESC_SIZE, .bDescriptorType = USB_DT_CS_ENDPOINT, .bDescriptorSubtype = UAC_EP_GENERAL, .bmAttributes = 1, .bLockDelayUnits = 1, .wLockDelay = cpu_to_le16(1), }; static struct usb_audio_control speaker_sample_freq_control = { .list = LIST_HEAD_INIT(speaker_sample_freq_control.list), .name = "Speaker Sampling Frequency Control", .type = UAC_EP_CS_ATTR_SAMPLE_RATE, .set = generic_set_cmd, .get = generic_get_cmd, }; static struct usb_audio_control_selector speaker_as_iso_out = { .list = LIST_HEAD_INIT(speaker_as_iso_out.list), .name = "Speaker Iso-out Endpoint Control", .type = UAC_EP_GENERAL, .desc = (struct usb_descriptor_header *)&speaker_as_iso_out_desc, }; /*---------------------------------*/ /* B.4.1 Standard AS Interface Descriptor */ static struct usb_interface_descriptor microphone_as_interface_alt_0_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 0, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; static struct usb_interface_descriptor microphone_as_interface_alt_1_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 1, .bNumEndpoints = 1, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; /* B.4.2 Class-Specific AS Interface Descriptor */ static struct uac1_as_header_descriptor microphone_as_header_desc = { .bLength = UAC_DT_AS_HEADER_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_AS_GENERAL, .bTerminalLink = MICROPHONE_OUTPUT_TERMINAL_ID, .bDelay = 1, .wFormatTag = UAC_FORMAT_TYPE_I_PCM, }; static struct uac_format_type_i_discrete_descriptor_1 microphone_as_type_i_desc = { .bLength = UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(1), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_FORMAT_TYPE, .bFormatType = UAC_FORMAT_TYPE_I, .bNrChannels = 1, .bSubframeSize = 2, .bBitResolution = 16, .bSamFreqType = 1, }; /* Standard ISO IN Endpoint Descriptor */ static struct usb_endpoint_descriptor microphone_as_ep_in_desc = { .bLength = USB_DT_ENDPOINT_AUDIO_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_SYNC_ASYNC, .wMaxPacketSize = cpu_to_le16(UAC1_IN_EP_MAX_PACKET_SIZE), .bInterval = 4, }; static struct usb_ss_ep_comp_descriptor microphone_as_ep_in_comp_desc = { .bLength = sizeof(microphone_as_ep_in_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .wBytesPerInterval = cpu_to_le16(1024), }; /* Class-specific AS ISO IN Endpoint Descriptor */ static struct uac_iso_endpoint_descriptor microphone_as_iso_in_desc = { .bLength = UAC_ISO_ENDPOINT_DESC_SIZE, .bDescriptorType = USB_DT_CS_ENDPOINT, .bDescriptorSubtype = UAC_EP_GENERAL, .bmAttributes = 1, .bLockDelayUnits = 1, .wLockDelay = cpu_to_le16(1), }; static struct usb_audio_control microphone_sample_freq_control = { .list = LIST_HEAD_INIT(microphone_sample_freq_control.list), .name = "Microphone Sampling Frequency Control", .type = UAC_EP_CS_ATTR_SAMPLE_RATE, .set = generic_set_cmd, .get = generic_get_cmd, }; static struct usb_audio_control_selector microphone_as_iso_in = { .list = LIST_HEAD_INIT(microphone_as_iso_in.list), .name = "Microphone Iso-IN Endpoint Control", .type = UAC_EP_GENERAL, .desc = (struct usb_descriptor_header *)µphone_as_iso_in_desc, }; static struct usb_interface_assoc_descriptor audio_iad_descriptor = { .bLength = sizeof(audio_iad_descriptor), .bDescriptorType = USB_DT_INTERFACE_ASSOCIATION, .bFirstInterface = 0, /* updated at bind */ .bInterfaceCount = 3, .bFunctionClass = USB_CLASS_AUDIO, .bFunctionSubClass = 0, .bFunctionProtocol = UAC_VERSION_1, }; static struct usb_descriptor_header *f_audio_desc[] = { (struct usb_descriptor_header *)&audio_iad_descriptor, (struct usb_descriptor_header *)&uac1_interface_desc, (struct usb_descriptor_header *)&uac1_header_desc, (struct usb_descriptor_header *)µphone_input_terminal_desc, (struct usb_descriptor_header *)µphone_output_terminal_desc, (struct usb_descriptor_header *)&speaker_input_terminal_desc, (struct usb_descriptor_header *)&speaker_output_terminal_desc, (struct usb_descriptor_header *)µphone_as_interface_alt_0_desc, (struct usb_descriptor_header *)µphone_as_interface_alt_1_desc, (struct usb_descriptor_header *)µphone_as_header_desc, (struct usb_descriptor_header *)µphone_as_type_i_desc, (struct usb_descriptor_header *)µphone_as_ep_in_desc, (struct usb_descriptor_header *)µphone_as_iso_in_desc, (struct usb_descriptor_header *)&speaker_as_interface_alt_0_desc, (struct usb_descriptor_header *)&speaker_as_interface_alt_1_desc, (struct usb_descriptor_header *)&speaker_as_header_desc, (struct usb_descriptor_header *)&speaker_as_type_i_desc, (struct usb_descriptor_header *)&speaker_as_ep_out_desc, (struct usb_descriptor_header *)&speaker_as_iso_out_desc, NULL, }; static struct usb_descriptor_header *f_audio_ss_desc[] = { (struct usb_descriptor_header *)&audio_iad_descriptor, (struct usb_descriptor_header *)&uac1_interface_desc, (struct usb_descriptor_header *)&uac1_header_desc, (struct usb_descriptor_header *)µphone_input_terminal_desc, (struct usb_descriptor_header *)µphone_output_terminal_desc, (struct usb_descriptor_header *)&speaker_input_terminal_desc, (struct usb_descriptor_header *)&speaker_output_terminal_desc, (struct usb_descriptor_header *)µphone_as_interface_alt_0_desc, (struct usb_descriptor_header *)µphone_as_interface_alt_1_desc, (struct usb_descriptor_header *)µphone_as_header_desc, (struct usb_descriptor_header *)µphone_as_type_i_desc, (struct usb_descriptor_header *)µphone_as_ep_in_desc, (struct usb_descriptor_header *)µphone_as_ep_in_comp_desc, (struct usb_descriptor_header *)µphone_as_iso_in_desc, (struct usb_descriptor_header *)&speaker_as_interface_alt_0_desc, (struct usb_descriptor_header *)&speaker_as_interface_alt_1_desc, (struct usb_descriptor_header *)&speaker_as_header_desc, (struct usb_descriptor_header *)&speaker_as_type_i_desc, (struct usb_descriptor_header *)&speaker_as_ep_out_desc, (struct usb_descriptor_header *)&speaker_as_ep_out_comp_desc, (struct usb_descriptor_header *)&speaker_as_iso_out_desc, NULL, }; enum { STR_AC_IF, STR_INPUT_TERMINAL, STR_INPUT_TERMINAL_CH_NAMES, STR_FEAT_DESC_0, STR_OUTPUT_TERMINAL, STR_AS_IF_ALT0, STR_AS_IF_ALT1, }; static struct usb_string strings_uac1[] = { [STR_AC_IF].s = "AC Interface", [STR_INPUT_TERMINAL].s = "Input terminal", [STR_INPUT_TERMINAL_CH_NAMES].s = "Channels", [STR_FEAT_DESC_0].s = "Volume control & mute", [STR_OUTPUT_TERMINAL].s = "Output terminal", [STR_AS_IF_ALT0].s = "AS Interface", [STR_AS_IF_ALT1].s = "AS Interface", { }, }; static struct usb_gadget_strings str_uac1 = { .language = 0x0409, /* en-us */ .strings = strings_uac1, }; static struct usb_gadget_strings *uac1_strings[] = { &str_uac1, NULL, }; /* * This function is an ALSA sound card following USB Audio Class Spec 1.0. */ /*-------------------------------------------------------------------------*/ struct f_audio_buf { u8 *buf; int actual; struct list_head list; }; static struct f_audio_buf *f_audio_buffer_alloc(int buf_size) { struct f_audio_buf *copy_buf; copy_buf = kzalloc(sizeof *copy_buf, GFP_ATOMIC); if (!copy_buf) return ERR_PTR(-ENOMEM); copy_buf->buf = kzalloc(buf_size, GFP_ATOMIC); if (!copy_buf->buf) { kfree(copy_buf); return ERR_PTR(-ENOMEM); } return copy_buf; } static void f_audio_buffer_free(struct f_audio_buf *audio_buf) { if (audio_buf) { kfree(audio_buf->buf); kfree(audio_buf); } } /*-------------------------------------------------------------------------*/ struct f_audio { struct gaudio card; atomic_t online; struct mutex mutex; struct work_struct close_work; /* endpoints handle full and/or high speeds */ struct usb_ep *out_ep; struct usb_ep *in_ep; spinlock_t playback_lock; struct f_audio_buf *playback_copy_buf; struct work_struct playback_work; struct list_head play_queue; spinlock_t capture_lock; struct f_audio_buf *capture_copy_buf; struct work_struct capture_work; struct list_head capture_queue; u8 alt_intf[F_AUDIO_NUM_INTERFACES]; /* Control Set command */ struct list_head fu_cs; struct list_head ep_cs; u8 set_cmd; struct usb_audio_control *set_con; }; static inline struct f_audio *func_to_audio(struct usb_function *f) { return container_of(f, struct f_audio, card.func); } /*-------------------------------------------------------------------------*/ static void f_audio_playback_work(struct work_struct *data) { struct f_audio *audio = container_of(data, struct f_audio, playback_work); struct f_audio_buf *play_buf; struct f_uac1_opts *opts = container_of(audio->card.func.fi, struct f_uac1_opts, func_inst); int audio_playback_buf_size = opts->audio_playback_buf_size; unsigned long flags; int res = 0; pr_debug("%s: started\n", __func__); if (!atomic_read(&audio->online)) { pr_debug("%s offline\n", __func__); return; } /* set up ASLA audio devices if not already done */ mutex_lock(&audio->mutex); res = gaudio_setup(&audio->card); if (res < 0) { mutex_unlock(&audio->mutex); return; } mutex_unlock(&audio->mutex); spin_lock_irqsave(&audio->playback_lock, flags); if (list_empty(&audio->play_queue)) { pr_err("playback_buf is empty"); spin_unlock_irqrestore(&audio->playback_lock, flags); return; } play_buf = list_first_entry(&audio->play_queue, struct f_audio_buf, list); list_del(&play_buf->list); spin_unlock_irqrestore(&audio->playback_lock, flags); pr_debug("play_buf->actual = %d", play_buf->actual); res = u_audio_playback(&audio->card, play_buf->buf, audio_playback_buf_size); if (res) pr_err("copying failed"); f_audio_buffer_free(play_buf); pr_debug("%s: Done\n", __func__); } static int f_audio_playback_ep_complete(struct usb_ep *ep, struct usb_request *req) { struct f_audio *audio = req->context; struct usb_composite_dev *cdev = audio->card.func.config->cdev; struct f_audio_buf *copy_buf = audio->playback_copy_buf; struct f_uac1_opts *opts; int audio_playback_buf_size; unsigned long flags; int err; opts = container_of(audio->card.func.fi, struct f_uac1_opts, func_inst); audio_playback_buf_size = opts->audio_playback_buf_size; if (!copy_buf) return -EINVAL; /* Copy buffer is full, add it to the play_queue */ if (audio_playback_buf_size - copy_buf->actual < req->actual) { pr_debug("audio_playback_buf_size %d - copy_buf->actual %d, req->actual %d", audio_playback_buf_size, copy_buf->actual, req->actual); spin_lock_irqsave(&audio->playback_lock, flags); if (!list_empty(&audio->play_queue) && opts->audio_playback_realtime) { pr_debug("over-runs, audio write slow.. drop the packet\n"); f_audio_buffer_free(copy_buf); } else { list_add_tail(©_buf->list, &audio->play_queue); } spin_unlock_irqrestore(&audio->playback_lock, flags); schedule_work(&audio->playback_work); copy_buf = f_audio_buffer_alloc(audio_playback_buf_size); if (IS_ERR(copy_buf)) { pr_err("Failed to allocate playback_copy_buf"); return -ENOMEM; } } pr_debug("Playback %d bytes", req->actual); memcpy(copy_buf->buf + copy_buf->actual, req->buf, req->actual); copy_buf->actual += req->actual; audio->playback_copy_buf = copy_buf; err = usb_ep_queue(ep, req, GFP_ATOMIC); if (err) ERROR(cdev, "%s queue req: %d\n", ep->name, err); return err; } static void f_audio_capture_work(struct work_struct *data) { struct f_audio *audio = container_of(data, struct f_audio, capture_work); struct f_audio_buf *capture_buf; struct f_uac1_opts *opts = container_of(audio->card.func.fi, struct f_uac1_opts, func_inst); int audio_capture_buf_size = opts->audio_capture_buf_size; unsigned long flags; int res = 0; pr_debug("%s Started\n", __func__); if (!atomic_read(&audio->online)) { pr_debug("%s offline\n", __func__); return; } /* set up ASLA audio devices if not already done */ mutex_lock(&audio->mutex); res = gaudio_setup(&audio->card); if (res < 0) { mutex_unlock(&audio->mutex); return; } mutex_unlock(&audio->mutex); spin_lock_irqsave(&audio->capture_lock, flags); if (!list_empty(&audio->capture_queue)) { spin_unlock_irqrestore(&audio->capture_lock, flags); pr_debug("%s !! buffer already filled\n", __func__); return; } spin_unlock_irqrestore(&audio->capture_lock, flags); capture_buf = f_audio_buffer_alloc(audio_capture_buf_size); if (capture_buf <= 0) { pr_err("%s: buffer alloc failed\n", __func__); return; } res = u_audio_capture(&audio->card, capture_buf->buf, audio_capture_buf_size); if (res) pr_err("copying failed"); pr_debug("Queue capture packet: size %d", audio_capture_buf_size); spin_lock_irqsave(&audio->capture_lock, flags); list_add_tail(&capture_buf->list, &audio->capture_queue); spin_unlock_irqrestore(&audio->capture_lock, flags); } static int f_audio_capture_ep_complete(struct usb_ep *ep, struct usb_request *req) { struct f_audio *audio = req->context; struct f_audio_buf *copy_buf = audio->capture_copy_buf; struct f_uac1_opts *opts = container_of(audio->card.func.fi, struct f_uac1_opts, func_inst); int audio_capture_buf_size = opts->audio_capture_buf_size; unsigned long flags; int err = 0; if (copy_buf == 0) { pr_debug("copy_buf == 0"); spin_lock_irqsave(&audio->capture_lock, flags); if (list_empty(&audio->capture_queue)) { spin_unlock_irqrestore(&audio->capture_lock, flags); pr_debug("%s no data from Audio to send\n", __func__); schedule_work(&audio->capture_work); memset(req->buf, 0, opts->req_capture_buf_size); goto done; } copy_buf = list_first_entry(&audio->capture_queue, struct f_audio_buf, list); list_del(©_buf->list); if (list_empty(&audio->capture_queue)) schedule_work(&audio->capture_work); audio->capture_copy_buf = copy_buf; spin_unlock_irqrestore(&audio->capture_lock, flags); } pr_debug("Copy %d bytes", req->actual); memcpy(req->buf, copy_buf->buf + copy_buf->actual, req->actual); copy_buf->actual += req->actual; if (audio_capture_buf_size - copy_buf->actual < req->actual) { f_audio_buffer_free(copy_buf); audio->capture_copy_buf = 0; schedule_work(&audio->capture_work); } done: err = usb_ep_queue(ep, req, GFP_ATOMIC); if (err) pr_err("Failed to queue %s req: err - %d\n", ep->name, err); return err; } static void f_audio_complete(struct usb_ep *ep, struct usb_request *req) { struct f_audio *audio = req->context; int status = req->status; u32 data = 0; switch (status) { case 0: /* normal completion? */ if (ep == audio->out_ep) { f_audio_playback_ep_complete(ep, req); } else if (ep == audio->in_ep) { f_audio_capture_ep_complete(ep, req); } else if (audio->set_con) { memcpy(&data, req->buf, req->length); audio->set_con->set(audio->set_con, audio->set_cmd, le16_to_cpu(data)); audio->set_con = NULL; } break; default: pr_err("Failed completion: status %d", status); /* fall through to to free buffer and req */ case -ECONNRESET: case -ESHUTDOWN: kfree(req->buf); usb_ep_free_request(ep, req); break; } } static int audio_set_intf_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct f_audio *audio = func_to_audio(f); struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; u8 id = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); u8 con_sel = (w_value >> 8) & 0xFF; u8 cmd = (ctrl->bRequest & 0x0F); struct usb_audio_control_selector *cs; struct usb_audio_control *con; DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, entity %d\n", ctrl->bRequest, w_value, len, id); list_for_each_entry(cs, &audio->fu_cs, list) { if (cs->id == id) { list_for_each_entry(con, &cs->control, list) { if (con->type == con_sel) { audio->set_con = con; break; } } break; } } audio->set_cmd = cmd; req->context = audio; req->complete = f_audio_complete; return len; } static int audio_get_intf_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct f_audio *audio = func_to_audio(f); struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; int value = -EOPNOTSUPP; u8 id = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); u8 con_sel = (w_value >> 8) & 0xFF; u8 cmd = (ctrl->bRequest & 0x0F); struct usb_audio_control_selector *cs; struct usb_audio_control *con; DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, entity %d\n", ctrl->bRequest, w_value, len, id); list_for_each_entry(cs, &audio->fu_cs, list) { if (cs->id == id) { list_for_each_entry(con, &cs->control, list) { if (con->type == con_sel && con->get) { value = con->get(con, cmd); break; } } break; } } req->context = audio; req->complete = f_audio_complete; len = min_t(size_t, sizeof(value), len); memcpy(req->buf, &value, len); return len; } static void audio_set_endpoint_complete(struct usb_ep *ep, struct usb_request *req) { struct f_audio *audio = req->context; u32 data = 0; if (req->status == 0 && audio->set_con) { memcpy(&data, req->buf, req->length); audio->set_con->set(audio->set_con, audio->set_cmd, le32_to_cpu(data)); audio->set_con = NULL; } } static int audio_set_endpoint_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; int value = -EOPNOTSUPP; u16 ep = le16_to_cpu(ctrl->wIndex); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); struct f_audio *audio = func_to_audio(f); struct usb_request *req = cdev->req; struct usb_audio_control_selector *cs; struct usb_audio_control *con; u8 epnum = ep & ~0x80; u8 con_sel = (w_value >> 8) & 0xFF; u8 cmd = (ctrl->bRequest & 0x0F); DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endp %d, epnum %d\n", ctrl->bRequest, w_value, len, ep, epnum); list_for_each_entry(cs, &audio->ep_cs, list) { if (cs->id != epnum) continue; list_for_each_entry(con, &cs->control, list) { if (con->type != con_sel) continue; switch (cmd) { case UAC__CUR: case UAC__MIN: case UAC__MAX: case UAC__RES: audio->set_con = con; audio->set_cmd = cmd; req->context = audio; req->complete = audio_set_endpoint_complete; value = len; break; case UAC__MEM: break; default: pr_err("Unknown command"); break; } break; } break; } return value; } static int audio_get_endpoint_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct f_audio *audio = func_to_audio(f); struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; struct usb_audio_control_selector *cs; struct usb_audio_control *con; int data; int value = -EOPNOTSUPP; u8 ep = (le16_to_cpu(ctrl->wIndex) & 0x7F); u8 epnum = ep & ~0x80; u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); u8 con_sel = (w_value >> 8) & 0xFF; u8 cmd = (ctrl->bRequest & 0x0F); DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n", ctrl->bRequest, w_value, len, ep); list_for_each_entry(cs, &audio->ep_cs, list) { if (cs->id != epnum) continue; list_for_each_entry(con, &cs->control, list) { if (con->type != con_sel) continue; switch (cmd) { case UAC__CUR: case UAC__MIN: case UAC__MAX: case UAC__RES: data = cpu_to_le32(generic_get_cmd(con, cmd)); memcpy(req->buf, &data, len); value = len; break; case UAC__MEM: break; default: break; } break; } break; } return value; } static int f_audio_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; int value = -EOPNOTSUPP; u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); /* composite driver infrastructure handles everything; interface * activation uses set_alt(). */ switch (ctrl->bRequestType) { case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE: pr_debug("USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE"); value = audio_set_intf_req(f, ctrl); break; case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE: pr_debug("USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE"); value = audio_get_intf_req(f, ctrl); break; case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_ENDPOINT: pr_debug("USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_ENDPOINT"); value = audio_set_endpoint_req(f, ctrl); break; case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT: pr_debug("USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT"); value = audio_get_endpoint_req(f, ctrl); break; default: ERROR(cdev, "invalid control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); } /* respond with data transfer or status phase? */ if (value >= 0) { DBG(cdev, "audio req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); req->zero = 1; req->length = value; value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) ERROR(cdev, "audio response on err %d\n", value); } /* device either stalls (value < 0) or reports success */ return value; } static int f_audio_get_alt(struct usb_function *f, unsigned intf) { struct f_audio *audio = func_to_audio(f); if (intf == uac1_header_desc.baInterfaceNr[0]) return audio->alt_intf[0]; if (intf == uac1_header_desc.baInterfaceNr[1]) return audio->alt_intf[1]; return 0; } static int f_audio_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct f_audio *audio = func_to_audio(f); struct usb_composite_dev *cdev = f->config->cdev; struct usb_ep *out_ep = audio->out_ep; struct usb_ep *in_ep = audio->in_ep; struct usb_request *req; unsigned long flags; struct f_uac1_opts *opts; int req_playback_buf_size, req_playback_count, audio_playback_buf_size; int req_capture_buf_size, req_capture_count; int i = 0, err = 0; DBG(cdev, "intf %d, alt %d\n", intf, alt); opts = container_of(f->fi, struct f_uac1_opts, func_inst); req_playback_buf_size = opts->req_playback_buf_size; req_capture_buf_size = opts->req_capture_buf_size; req_playback_count = opts->req_playback_count; req_capture_count = opts->req_capture_count; audio_playback_buf_size = opts->audio_playback_buf_size; atomic_set(&audio->online, 1); if (intf == uac1_header_desc.baInterfaceNr[0]) { if (audio->alt_intf[0] == alt) { pr_debug("Alt interface is already set to %d. Do nothing.\n", alt); return 0; } if (alt == 1) { err = config_ep_by_speed(cdev->gadget, f, in_ep); if (err) return err; err = usb_ep_enable(in_ep); if (err) { pr_err("Failed to enable capture ep"); return err; } in_ep->driver_data = audio; audio->capture_copy_buf = 0; schedule_work(&audio->capture_work); for (i = 0; i < req_capture_count && err == 0; i++) { /* Allocate a write buffer */ req = usb_ep_alloc_request(in_ep, GFP_ATOMIC); if (!req) { pr_err("request allocation failed\n"); return -ENOMEM; } req->buf = kzalloc(req_capture_buf_size + cdev->gadget->extra_buf_alloc, GFP_ATOMIC); if (!req->buf) return -ENOMEM; req->length = req_capture_buf_size; req->context = audio; req->complete = f_audio_complete; err = usb_ep_queue(in_ep, req, GFP_ATOMIC); if (err) pr_err("Failed to queue %s req,err%d\n", in_ep->name, err); } } else { struct f_audio_buf *capture_buf; usb_ep_disable(in_ep); spin_lock_irqsave(&audio->capture_lock, flags); while (!list_empty(&audio->capture_queue)) { capture_buf = list_first_entry( &audio->capture_queue, struct f_audio_buf, list); list_del(&capture_buf->list); f_audio_buffer_free(capture_buf); } spin_unlock_irqrestore(&audio->capture_lock, flags); } audio->alt_intf[0] = alt; } else if (intf == uac1_header_desc.baInterfaceNr[1]) { if (audio->alt_intf[1] == alt) { pr_debug("Alt interface is already set to %d. Do nothing.\n", alt); return 0; } if (alt == 1) { err = config_ep_by_speed(cdev->gadget, f, out_ep); if (err) return err; err = usb_ep_enable(out_ep); if (err) { pr_err("Failed to enable playback ep"); return err; } out_ep->driver_data = audio; audio->playback_copy_buf = f_audio_buffer_alloc(audio_playback_buf_size); if (IS_ERR(audio->playback_copy_buf)) { pr_err("Failed to allocate playback_copy_buf"); return -ENOMEM; } /* * allocate a bunch of read buffers * and queue them all at once. */ for (i = 0; i < req_playback_count && err == 0; i++) { req = usb_ep_alloc_request(out_ep, GFP_ATOMIC); if (!req) { pr_err("request allocation failed\n"); return -ENOMEM; } req->buf = kzalloc(req_playback_buf_size, GFP_ATOMIC); if (!req->buf) { pr_err("request buffer allocation failed\n"); return -ENOMEM; } req->length = req_playback_buf_size; req->context = audio; req->complete = f_audio_complete; err = usb_ep_queue(out_ep, req, GFP_ATOMIC); if (err) pr_err("Failed to queue %s queue req: err %d\n", out_ep->name, err); } pr_debug("Allocated %d requests\n", req_playback_count); } else { struct f_audio_buf *playback_copy_buf = audio->playback_copy_buf; usb_ep_disable(out_ep); if (playback_copy_buf) { pr_err("Schedule playback_work"); list_add_tail(&playback_copy_buf->list, &audio->play_queue); schedule_work(&audio->playback_work); audio->playback_copy_buf = NULL; } else { pr_err("playback_buf is empty. Stop."); } } audio->alt_intf[1] = alt; } else { pr_err("Interface %d. Do nothing. Return %d\n", intf, err); } return err; } static void f_audio_close_work(struct work_struct *data) { struct f_audio *audio = container_of(data, struct f_audio, close_work); pr_debug("close audio files\n"); mutex_lock(&audio->mutex); gaudio_cleanup(&audio->card); mutex_unlock(&audio->mutex); } static void f_audio_disable(struct usb_function *f) { struct f_audio *audio = func_to_audio(f); struct usb_ep *out_ep = audio->out_ep; struct usb_ep *in_ep = audio->in_ep; pr_debug("Disable audio"); atomic_set(&audio->online, 0); usb_ep_disable(in_ep); usb_ep_disable(out_ep); u_audio_clear(&audio->card); schedule_work(&audio->close_work); return; } /*-------------------------------------------------------------------------*/ static void f_audio_build_desc(struct f_audio *audio) { struct gaudio *card = &audio->card; u8 *sam_freq; int rate; /* Set channel numbers */ speaker_input_terminal_desc.bNrChannels = u_audio_get_playback_channels(card); speaker_as_type_i_desc.bNrChannels = u_audio_get_playback_channels(card); microphone_input_terminal_desc.bNrChannels = u_audio_get_capture_channels(card); microphone_as_type_i_desc.bNrChannels = u_audio_get_capture_channels(card); /* Set sample rates */ rate = u_audio_get_playback_rate(card); sam_freq = speaker_as_type_i_desc.tSamFreq[0]; memcpy(sam_freq, &rate, 3); /* Update maxP as per sample rate, bInterval assumed as 1msec */ speaker_as_ep_out_desc.wMaxPacketSize = (rate / 1000) * 2; rate = u_audio_get_capture_rate(card); sam_freq = microphone_as_type_i_desc.tSamFreq[0]; memcpy(sam_freq, &rate, 3); /* Update maxP as per sample rate, bInterval assumed as 1msec */ microphone_as_ep_in_desc.wMaxPacketSize = (rate / 1000) * 2; /* Todo: Set Sample bits and other parameters */ return; } /* audio function driver setup/binding */ static int f_audio_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct f_audio *audio = func_to_audio(f); struct usb_string *us; int status; struct usb_ep *ep = NULL; u8 epaddr; struct f_uac1_opts *audio_opts; audio_opts = container_of(f->fi, struct f_uac1_opts, func_inst); audio->card.gadget = c->cdev->gadget; audio_opts->card = &audio->card; /* set up ASLA audio devices */ if (!audio_opts->bound) { status = gaudio_setup(&audio->card); if (status < 0) goto fail; audio_opts->bound = true; } us = usb_gstrings_attach(cdev, uac1_strings, ARRAY_SIZE(strings_uac1)); if (IS_ERR(us)) { status = PTR_ERR(us); goto fail; } uac1_interface_desc.iInterface = us[STR_AC_IF].id; speaker_input_terminal_desc.iTerminal = us[STR_INPUT_TERMINAL].id; speaker_input_terminal_desc.iChannelNames = us[STR_INPUT_TERMINAL_CH_NAMES].id; speaker_output_terminal_desc.iTerminal = us[STR_OUTPUT_TERMINAL].id; speaker_as_interface_alt_0_desc.iInterface = us[STR_AS_IF_ALT0].id; speaker_as_interface_alt_1_desc.iInterface = us[STR_AS_IF_ALT1].id; f_audio_build_desc(audio); /* allocate instance-specific interface IDs, and patch descriptors */ status = usb_interface_id(c, f); if (status < 0) { pr_err("%s: failed to allocate desc interface", __func__); goto fail; } uac1_interface_desc.bInterfaceNumber = status; audio_iad_descriptor.bFirstInterface = status; status = usb_interface_id(c, f); if (status < 0) { pr_err("%s: failed to allocate alt interface", __func__); goto fail; } microphone_as_interface_alt_0_desc.bInterfaceNumber = status; microphone_as_interface_alt_1_desc.bInterfaceNumber = status; uac1_header_desc.baInterfaceNr[0] = status; audio->alt_intf[0] = 0; status = usb_interface_id(c, f); if (status < 0) { pr_err("%s: failed to allocate alt interface", __func__); goto fail; } speaker_as_interface_alt_0_desc.bInterfaceNumber = status; speaker_as_interface_alt_1_desc.bInterfaceNumber = status; uac1_header_desc.baInterfaceNr[1] = status; audio->alt_intf[1] = 0; status = -ENODEV; /* allocate instance-specific endpoints */ ep = usb_ep_autoconfig(cdev->gadget, µphone_as_ep_in_desc); if (!ep) { pr_err("%s: failed to autoconfig in endpoint", __func__); goto fail; } audio->in_ep = ep; ep->desc = µphone_as_ep_in_desc; ep->driver_data = cdev; status = -ENODEV; ep = usb_ep_autoconfig(cdev->gadget, &speaker_as_ep_out_desc); if (!ep) { pr_err("%s: failed to autoconfig out endpoint", __func__); goto fail; } audio->out_ep = ep; ep->desc = &speaker_as_ep_out_desc; ep->driver_data = cdev; /* claim */ /* associate bEndpointAddress with usb_function */ epaddr = microphone_as_ep_in_desc.bEndpointAddress & ~USB_DIR_IN; microphone_as_iso_in.id = epaddr; epaddr = speaker_as_ep_out_desc.bEndpointAddress & ~USB_DIR_IN; speaker_as_iso_out.id = epaddr; /* copy descriptors, and track endpoint copies */ status = usb_assign_descriptors(f, f_audio_desc, f_audio_desc, f_audio_ss_desc); if (status) goto fail; return 0; fail: gaudio_cleanup(&audio->card); if (ep) ep->driver_data = NULL; return status; } /*-------------------------------------------------------------------------*/ static int generic_set_cmd(struct usb_audio_control *con, u8 cmd, int value) { con->data[cmd] = value; return 0; } static int generic_get_cmd(struct usb_audio_control *con, u8 cmd) { return con->data[cmd]; } /* Todo: add more control selecotor dynamically */ static int control_selector_init(struct f_audio *audio) { INIT_LIST_HEAD(&audio->fu_cs); list_add(µphone_fu_controls.list, &audio->fu_cs); list_add(&speaker_fu_controls.list, &audio->fu_cs); INIT_LIST_HEAD(µphone_fu_controls.control); list_add(µphone_mute_control.list, µphone_fu_controls.control); list_add(µphone_volume_control.list, µphone_fu_controls.control); INIT_LIST_HEAD(&speaker_fu_controls.control); list_add(&speaker_mute_control.list, &speaker_fu_controls.control); list_add(&speaker_volume_control.list, &speaker_fu_controls.control); microphone_volume_control.data[UAC__CUR] = 0xffc0; microphone_volume_control.data[UAC__MIN] = 0xe3a0; microphone_volume_control.data[UAC__MAX] = 0xfff0; microphone_volume_control.data[UAC__RES] = 0x0030; speaker_volume_control.data[UAC__CUR] = 0xffc0; speaker_volume_control.data[UAC__MIN] = 0xe3a0; speaker_volume_control.data[UAC__MAX] = 0xfff0; speaker_volume_control.data[UAC__RES] = 0x0030; INIT_LIST_HEAD(&audio->ep_cs); list_add(&speaker_as_iso_out.list, &audio->ep_cs); list_add(µphone_as_iso_in.list, &audio->ep_cs); INIT_LIST_HEAD(µphone_as_iso_in.control); list_add(µphone_sample_freq_control.list, µphone_as_iso_in.control); INIT_LIST_HEAD(&speaker_as_iso_out.control); list_add(&speaker_sample_freq_control.list, &speaker_as_iso_out.control); return 0; } static inline struct f_uac1_opts *to_f_uac1_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_uac1_opts, func_inst.group); } CONFIGFS_ATTR_STRUCT(f_uac1_opts); CONFIGFS_ATTR_OPS(f_uac1_opts); static void f_uac1_attr_release(struct config_item *item) { struct f_uac1_opts *opts = to_f_uac1_opts(item); usb_put_function_instance(&opts->func_inst); } static struct configfs_item_operations f_uac1_item_ops = { .release = f_uac1_attr_release, .show_attribute = f_uac1_opts_attr_show, .store_attribute = f_uac1_opts_attr_store, }; #define UAC1_INT_ATTRIBUTE(name) \ static ssize_t f_uac1_opts_##name##_show(struct f_uac1_opts *opts, \ char *page) \ { \ int result; \ \ mutex_lock(&opts->lock); \ result = sprintf(page, "%u\n", opts->name); \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac1_opts_##name##_store(struct f_uac1_opts *opts, \ const char *page, size_t len) \ { \ int ret; \ u32 num; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) { \ ret = -EBUSY; \ goto end; \ } \ \ ret = kstrtou32(page, 0, &num); \ if (ret) \ goto end; \ \ opts->name = num; \ ret = len; \ \ end: \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ static struct f_uac1_opts_attribute f_uac1_opts_##name = \ __CONFIGFS_ATTR(name, S_IRUGO | S_IWUSR, \ f_uac1_opts_##name##_show, \ f_uac1_opts_##name##_store) UAC1_INT_ATTRIBUTE(req_playback_buf_size); UAC1_INT_ATTRIBUTE(req_capture_buf_size); UAC1_INT_ATTRIBUTE(req_playback_count); UAC1_INT_ATTRIBUTE(req_capture_count); UAC1_INT_ATTRIBUTE(audio_playback_buf_size); UAC1_INT_ATTRIBUTE(audio_capture_buf_size); UAC1_INT_ATTRIBUTE(audio_playback_realtime); UAC1_INT_ATTRIBUTE(sample_rate); #define UAC1_STR_ATTRIBUTE(name) \ static ssize_t f_uac1_opts_##name##_show(struct f_uac1_opts *opts, \ char *page) \ { \ int result; \ \ mutex_lock(&opts->lock); \ result = sprintf(page, "%s\n", opts->name); \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac1_opts_##name##_store(struct f_uac1_opts *opts, \ const char *page, size_t len) \ { \ int ret = -EBUSY; \ char *tmp; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) \ goto end; \ \ tmp = kstrndup(page, len, GFP_KERNEL); \ if (tmp) { \ ret = -ENOMEM; \ goto end; \ } \ if (opts->name##_alloc) \ kfree(opts->name); \ opts->name##_alloc = true; \ opts->name = tmp; \ ret = len; \ \ end: \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ static struct f_uac1_opts_attribute f_uac1_opts_##name = \ __CONFIGFS_ATTR(name, S_IRUGO | S_IWUSR, \ f_uac1_opts_##name##_show, \ f_uac1_opts_##name##_store) UAC1_STR_ATTRIBUTE(fn_play); UAC1_STR_ATTRIBUTE(fn_cap); UAC1_STR_ATTRIBUTE(fn_cntl); static struct configfs_attribute *f_uac1_attrs[] = { &f_uac1_opts_req_playback_buf_size.attr, &f_uac1_opts_req_capture_buf_size.attr, &f_uac1_opts_req_playback_count.attr, &f_uac1_opts_req_capture_count.attr, &f_uac1_opts_audio_playback_buf_size.attr, &f_uac1_opts_audio_capture_buf_size.attr, &f_uac1_opts_audio_playback_realtime.attr, &f_uac1_opts_sample_rate.attr, &f_uac1_opts_fn_play.attr, &f_uac1_opts_fn_cap.attr, &f_uac1_opts_fn_cntl.attr, NULL, }; static struct config_item_type f_uac1_func_type = { .ct_item_ops = &f_uac1_item_ops, .ct_attrs = f_uac1_attrs, .ct_owner = THIS_MODULE, }; static void f_audio_free_inst(struct usb_function_instance *f) { struct f_uac1_opts *opts; opts = container_of(f, struct f_uac1_opts, func_inst); gaudio_cleanup(opts->card); if (opts->fn_play_alloc) kfree(opts->fn_play); if (opts->fn_cap_alloc) kfree(opts->fn_cap); if (opts->fn_cntl_alloc) kfree(opts->fn_cntl); kfree(opts); } static struct usb_function_instance *f_audio_alloc_inst(void) { struct f_uac1_opts *opts; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); mutex_init(&opts->lock); opts->func_inst.free_func_inst = f_audio_free_inst; config_group_init_type_name(&opts->func_inst.group, "", &f_uac1_func_type); opts->req_playback_buf_size = UAC1_OUT_EP_MAX_PACKET_SIZE; opts->req_capture_buf_size = UAC1_IN_EP_MAX_PACKET_SIZE; opts->req_playback_count = UAC1_OUT_REQ_COUNT; opts->req_capture_count = UAC1_IN_REQ_COUNT; opts->audio_playback_buf_size = UAC1_AUDIO_PLAYBACK_BUF_SIZE; opts->audio_capture_buf_size = UAC1_AUDIO_CAPTURE_BUF_SIZE; opts->audio_playback_realtime = 1; opts->sample_rate = UAC1_SAMPLE_RATE; opts->fn_play = FILE_PCM_PLAYBACK; opts->fn_cap = FILE_PCM_CAPTURE; opts->fn_cntl = FILE_CONTROL; return &opts->func_inst; } static void f_audio_free(struct usb_function *f) { struct f_audio *audio = func_to_audio(f); struct f_uac1_opts *opts; opts = container_of(f->fi, struct f_uac1_opts, func_inst); kfree(audio); mutex_lock(&opts->lock); --opts->refcnt; mutex_unlock(&opts->lock); } static void f_audio_unbind(struct usb_configuration *c, struct usb_function *f) { struct f_audio *audio = func_to_audio(f); flush_work(&audio->playback_work); flush_work(&audio->capture_work); flush_work(&audio->close_work); gaudio_cleanup(&audio->card); usb_free_all_descriptors(f); } static struct usb_function *f_audio_alloc(struct usb_function_instance *fi) { struct f_audio *audio; struct f_uac1_opts *opts; /* allocate and initialize one new instance */ audio = kzalloc(sizeof(*audio), GFP_KERNEL); if (!audio) return ERR_PTR(-ENOMEM); audio->card.func.name = "g_audio"; opts = container_of(fi, struct f_uac1_opts, func_inst); mutex_lock(&opts->lock); ++opts->refcnt; mutex_unlock(&opts->lock); INIT_LIST_HEAD(&audio->play_queue); spin_lock_init(&audio->playback_lock); INIT_LIST_HEAD(&audio->capture_queue); spin_lock_init(&audio->capture_lock); audio->card.func.bind = f_audio_bind; audio->card.func.unbind = f_audio_unbind; audio->card.func.get_alt = f_audio_get_alt; audio->card.func.set_alt = f_audio_set_alt; audio->card.func.setup = f_audio_setup; audio->card.func.disable = f_audio_disable; audio->card.func.free_func = f_audio_free; control_selector_init(audio); INIT_WORK(&audio->playback_work, f_audio_playback_work); INIT_WORK(&audio->capture_work, f_audio_capture_work); INIT_WORK(&audio->close_work, f_audio_close_work); mutex_init(&audio->mutex); return &audio->card.func; } DECLARE_USB_FUNCTION_INIT(uac1, f_audio_alloc_inst, f_audio_alloc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Bryan Wu");