/* * Copyright (c) 2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpr3-regulator.h" #define MSM8996_MMSS_FUSE_CORNERS 4 /** * struct cpr3_msm8996_mmss_fuses - MMSS specific fuse data for MSM8996 * @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value * for each fuse corner (raw, not converted to a voltage) * @offset_voltage: The closed-loop voltage margin adjustment fuse parameter * value for each fuse corner (raw, not converted to a * voltage) * @cpr_fusing_rev: CPR fusing revision fuse parameter value * @limitation: CPR limitation select fuse parameter value * @aging_init_quot_diff: Initial quotient difference between CPR aging * min and max sensors measured at time of manufacturing * * This struct holds the values for all of the fuses read from memory. */ struct cpr3_msm8996_mmss_fuses { u64 init_voltage[MSM8996_MMSS_FUSE_CORNERS]; u64 offset_voltage[MSM8996_MMSS_FUSE_CORNERS]; u64 cpr_fusing_rev; u64 limitation; u64 aging_init_quot_diff; }; /** * enum cpr3_msm8996_mmss_fuse_combo - fuse combinations supported by the MMSS * CPR3 controller on MSM8996 * %CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV0: Part with CPR fusing rev == 0 * %CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV1: Part with CPR fusing rev == 1 * %CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV2: Part with CPR fusing rev == 2 * %CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV3: Part with CPR fusing rev == 3 * %CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV4: Part with CPR fusing rev == 4 * %CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV5: Part with CPR fusing rev == 5 * %CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV6: Part with CPR fusing rev == 6 * %CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV7: Part with CPR fusing rev == 7 * %CPR3_MSM8996_MMSS_FUSE_COMBO_COUNT: Defines the number of * combinations supported * * This list will be expanded as new requirements are added. */ enum cpr3_msm8996_mmss_fuse_combo { CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV0 = 0, CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV1 = 1, CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV2 = 2, CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV3 = 3, CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV4 = 4, CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV5 = 5, CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV6 = 6, CPR3_MSM8996_MMSS_FUSE_COMBO_CPR_REV7 = 7, CPR3_MSM8996_MMSS_FUSE_COMBO_COUNT }; /* * MSM8996 MMSS fuse parameter locations: * * Structs are organized with the following dimensions: * Outer: 0 to 3 for fuse corners from lowest to highest corner * Inner: large enough to hold the longest set of parameter segments which * fully defines a fuse parameter, +1 (for NULL termination). * Each segment corresponds to a contiguous group of bits from a * single fuse row. These segments are concatentated together in * order to form the full fuse parameter value. The segments for * a given parameter may correspond to different fuse rows. */ static const struct cpr3_fuse_param msm8996_mmss_init_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = { {{63, 55, 59}, {} }, {{63, 50, 54}, {} }, {{63, 45, 49}, {} }, {{63, 40, 44}, {} }, }; static const struct cpr3_fuse_param msm8996_cpr_fusing_rev_param[] = { {39, 48, 50}, {}, }; static const struct cpr3_fuse_param msm8996_cpr_limitation_param[] = { {41, 31, 32}, {}, }; static const struct cpr3_fuse_param msm8996_mmss_aging_init_quot_diff_param[] = { {68, 26, 31}, {}, }; /* Offset voltages are defined for SVS and Turbo fuse corners only */ static const struct cpr3_fuse_param msm8996_mmss_offset_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = { {{} }, {{66, 42, 44}, {} }, {{} }, {{64, 58, 61}, {} }, }; /* * Some initial msm8996 parts cannot be used in a meaningful way by software. * Other parts can only be used when operating with CPR disabled (i.e. at the * fused open-loop voltage) when no voltage interpolation is applied. A fuse * parameter is provided so that software can properly handle these limitations. */ enum msm8996_cpr_limitation { MSM8996_CPR_LIMITATION_NONE = 0, MSM8996_CPR_LIMITATION_UNSUPPORTED = 2, MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION = 3, }; /* Additional MSM8996 specific data: */ /* Open loop voltage fuse reference voltages in microvolts */ static const int msm8996_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = { 670000, 745000, 905000, 1015000, }; #define MSM8996_MMSS_FUSE_STEP_VOLT 10000 #define MSM8996_MMSS_OFFSET_FUSE_STEP_VOLT 10000 #define MSM8996_MMSS_VOLTAGE_FUSE_SIZE 5 #define MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SCALE 2 #define MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SIZE 6 #define MSM8996_MMSS_CPR_SENSOR_COUNT 35 #define MSM8996_MMSS_CPR_CLOCK_RATE 19200000 #define MSM8996_MMSS_AGING_SENSOR_ID 29 #define MSM8996_MMSS_AGING_BYPASS_MASK0 (GENMASK(23, 0)) /** * cpr3_msm8996_mmss_read_fuse_data() - load MMSS specific fuse parameter values * @vreg: Pointer to the CPR3 regulator * * This function allocates a cpr3_msm8996_mmss_fuses struct, fills it with * values read out of hardware fuses, and finally copies common fuse values * into the regulator struct. * * Return: 0 on success, errno on failure */ static int cpr3_msm8996_mmss_read_fuse_data(struct cpr3_regulator *vreg) { void __iomem *base = vreg->thread->ctrl->fuse_base; struct cpr3_msm8996_mmss_fuses *fuse; int i, rc; fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL); if (!fuse) return -ENOMEM; rc = cpr3_read_fuse_param(base, msm8996_cpr_fusing_rev_param, &fuse->cpr_fusing_rev); if (rc) { cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev); rc = cpr3_read_fuse_param(base, msm8996_cpr_limitation_param, &fuse->limitation); if (rc) { cpr3_err(vreg, "Unable to read CPR limitation fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "CPR limitation = %s\n", fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED ? "unsupported chip" : fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION ? "CPR disabled and no interpolation" : "none"); rc = cpr3_read_fuse_param(base, msm8996_mmss_aging_init_quot_diff_param, &fuse->aging_init_quot_diff); if (rc) { cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n", rc); return rc; } for (i = 0; i < MSM8996_MMSS_FUSE_CORNERS; i++) { rc = cpr3_read_fuse_param(base, msm8996_mmss_init_voltage_param[i], &fuse->init_voltage[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, msm8996_mmss_offset_voltage_param[i], &fuse->offset_voltage[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d offset voltage fuse, rc=%d\n", i, rc); return rc; } } vreg->fuse_combo = fuse->cpr_fusing_rev; if (vreg->fuse_combo >= CPR3_MSM8996_MMSS_FUSE_COMBO_COUNT) { cpr3_err(vreg, "invalid CPR fuse combo = %d found\n", vreg->fuse_combo); return -EINVAL; } vreg->cpr_rev_fuse = fuse->cpr_fusing_rev; vreg->fuse_corner_count = MSM8996_MMSS_FUSE_CORNERS; vreg->platform_fuses = fuse; return 0; } /** * cpr3_mmss_parse_corner_data() - parse MMSS corner data from device tree * properties of the regulator's device node * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cpr3_mmss_parse_corner_data(struct cpr3_regulator *vreg) { int i, rc; u32 *temp; rc = cpr3_parse_common_corner_data(vreg); if (rc) { cpr3_err(vreg, "error reading corner data, rc=%d\n", rc); return rc; } temp = kcalloc(vreg->corner_count * CPR3_RO_COUNT, sizeof(*temp), GFP_KERNEL); if (!temp) return -ENOMEM; rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-target-quotients", CPR3_RO_COUNT, temp); if (rc) { cpr3_err(vreg, "could not load target quotients, rc=%d\n", rc); goto done; } for (i = 0; i < vreg->corner_count; i++) memcpy(vreg->corner[i].target_quot, &temp[i * CPR3_RO_COUNT], sizeof(*temp) * CPR3_RO_COUNT); done: kfree(temp); return rc; } /** * cpr3_msm8996_mmss_apply_closed_loop_offset_voltages() - modify the * closed-loop voltage adjustments by the amounts that are needed * for this fuse combo * @vreg: Pointer to the CPR3 regulator * @volt_adjust: Array of closed-loop voltage adjustment values of length * vreg->corner_count which is further adjusted based upon * offset voltage fuse values. * * Return: 0 on success, errno on failure */ static int cpr3_msm8996_mmss_apply_closed_loop_offset_voltages( struct cpr3_regulator *vreg, int *volt_adjust) { struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses; u32 *corner_map; int *volt_offset; int rc = 0, i, fuse_len; if (!of_find_property(vreg->of_node, "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL)) { /* No closed-loop offset required. */ return 0; } corner_map = kcalloc(vreg->corner_count, sizeof(*corner_map), GFP_KERNEL); volt_offset = kcalloc(vreg->fuse_corner_count, sizeof(*volt_offset), GFP_KERNEL); if (!corner_map || !volt_offset) { rc = -ENOMEM; goto done; } rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-fused-closed-loop-voltage-adjustment-map", 1, corner_map); if (rc) goto done; for (i = 0; i < vreg->fuse_corner_count; i++) { fuse_len = msm8996_mmss_offset_voltage_param[i][0].bit_end + 1 - msm8996_mmss_offset_voltage_param[i][0].bit_start; volt_offset[i] = cpr3_convert_open_loop_voltage_fuse( 0, MSM8996_MMSS_OFFSET_FUSE_STEP_VOLT, fuse->offset_voltage[i], fuse_len); if (volt_offset[i]) cpr3_info(vreg, "fuse_corner[%d] offset=%7d uV\n", i, volt_offset[i]); } for (i = 0; i < vreg->corner_count; i++) { if (corner_map[i] == 0) { continue; } else if (corner_map[i] > vreg->fuse_corner_count) { cpr3_err(vreg, "corner %d mapped to invalid fuse corner: %u\n", i, corner_map[i]); rc = -EINVAL; goto done; } volt_adjust[i] += volt_offset[corner_map[i] - 1]; } done: kfree(corner_map); kfree(volt_offset); return rc; } /** * cpr3_mmss_enforce_inc_quotient_monotonicity() - Ensure that target quotients * increase monotonically from lower to higher corners * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static void cpr3_mmss_enforce_inc_quotient_monotonicity( struct cpr3_regulator *vreg) { int i, j; for (i = 1; i < vreg->corner_count; i++) { for (j = 0; j < CPR3_RO_COUNT; j++) { if (vreg->corner[i].target_quot[j] && vreg->corner[i].target_quot[j] < vreg->corner[i - 1].target_quot[j]) { cpr3_debug(vreg, "corner %d RO%u target quot=%u < corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n", i, j, vreg->corner[i].target_quot[j], i - 1, j, vreg->corner[i - 1].target_quot[j], i, j, vreg->corner[i - 1].target_quot[j]); vreg->corner[i].target_quot[j] = vreg->corner[i - 1].target_quot[j]; } } } } /** * cpr3_mmss_enforce_dec_quotient_monotonicity() - Ensure that target quotients * decrease monotonically from higher to lower corners * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static void cpr3_mmss_enforce_dec_quotient_monotonicity( struct cpr3_regulator *vreg) { int i, j; for (i = vreg->corner_count - 2; i >= 0; i--) { for (j = 0; j < CPR3_RO_COUNT; j++) { if (vreg->corner[i].target_quot[j] && vreg->corner[i].target_quot[j] > vreg->corner[i + 1].target_quot[j]) { cpr3_debug(vreg, "corner %d RO%u target quot=%u > corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n", i, j, vreg->corner[i].target_quot[j], i + 1, j, vreg->corner[i + 1].target_quot[j], i, j, vreg->corner[i + 1].target_quot[j]); vreg->corner[i].target_quot[j] = vreg->corner[i + 1].target_quot[j]; } } } } /** * _cpr3_mmss_adjust_target_quotients() - adjust the target quotients for each * corner of the regulator according to input adjustment and * scaling arrays * @vreg: Pointer to the CPR3 regulator * @volt_adjust: Pointer to an array of closed-loop voltage adjustments * with units of microvolts. The array must have * vreg->corner_count number of elements. * @ro_scale: Pointer to a flattened 2D array of RO scaling factors. * The array must have an inner dimension of CPR3_RO_COUNT * and an outer dimension of vreg->corner_count * @label: Null terminated string providing a label for the type * of adjustment. * * Return: true if any corners received a positive voltage adjustment (> 0), * else false */ static bool _cpr3_mmss_adjust_target_quotients(struct cpr3_regulator *vreg, const int *volt_adjust, const int *ro_scale, const char *label) { int i, j, quot_adjust; bool is_increasing = false; u32 prev_quot; for (i = 0; i < vreg->corner_count; i++) { for (j = 0; j < CPR3_RO_COUNT; j++) { if (vreg->corner[i].target_quot[j]) { quot_adjust = cpr3_quot_adjustment( ro_scale[i * CPR3_RO_COUNT + j], volt_adjust[i]); if (quot_adjust) { prev_quot = vreg->corner[i]. target_quot[j]; vreg->corner[i].target_quot[j] += quot_adjust; cpr3_debug(vreg, "adjusted corner %d RO%d target quot %s: %u --> %u (%d uV)\n", i, j, label, prev_quot, vreg->corner[i].target_quot[j], volt_adjust[i]); } } } if (volt_adjust[i] > 0) is_increasing = true; } return is_increasing; } /** * cpr3_mmss_adjust_target_quotients() - adjust the target quotients for each * corner according to device tree values and fuse values * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cpr3_mmss_adjust_target_quotients(struct cpr3_regulator *vreg) { int i, rc; int *volt_adjust, *ro_scale; bool explicit_adjustment, fused_adjustment, is_increasing; explicit_adjustment = of_find_property(vreg->of_node, "qcom,cpr-closed-loop-voltage-adjustment", NULL); fused_adjustment = of_find_property(vreg->of_node, "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL); if (!explicit_adjustment && !fused_adjustment && !vreg->aging_allowed) { /* No adjustment required. */ return 0; } else if (!of_find_property(vreg->of_node, "qcom,cpr-ro-scaling-factor", NULL)) { cpr3_err(vreg, "qcom,cpr-ro-scaling-factor is required for closed-loop voltage adjustment, but is missing\n"); return -EINVAL; } volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust), GFP_KERNEL); ro_scale = kcalloc(vreg->corner_count * CPR3_RO_COUNT, sizeof(*ro_scale), GFP_KERNEL); if (!volt_adjust || !ro_scale) { rc = -ENOMEM; goto done; } rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-ro-scaling-factor", CPR3_RO_COUNT, ro_scale); if (rc) { cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n", rc); goto done; } for (i = 0; i < vreg->corner_count; i++) memcpy(vreg->corner[i].ro_scale, &ro_scale[i * CPR3_RO_COUNT], sizeof(*ro_scale) * CPR3_RO_COUNT); if (explicit_adjustment) { rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-closed-loop-voltage-adjustment", 1, volt_adjust); if (rc) { cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n", rc); goto done; } _cpr3_mmss_adjust_target_quotients(vreg, volt_adjust, ro_scale, "from DT"); cpr3_mmss_enforce_inc_quotient_monotonicity(vreg); } if (fused_adjustment) { memset(volt_adjust, 0, sizeof(*volt_adjust) * vreg->corner_count); rc = cpr3_msm8996_mmss_apply_closed_loop_offset_voltages(vreg, volt_adjust); if (rc) { cpr3_err(vreg, "could not apply fused closed-loop voltage reductions, rc=%d\n", rc); goto done; } is_increasing = _cpr3_mmss_adjust_target_quotients(vreg, volt_adjust, ro_scale, "from fuse"); if (is_increasing) cpr3_mmss_enforce_inc_quotient_monotonicity(vreg); else cpr3_mmss_enforce_dec_quotient_monotonicity(vreg); } done: kfree(volt_adjust); kfree(ro_scale); return rc; } /** * cpr3_msm8996_mmss_calculate_open_loop_voltages() - calculate the open-loop * voltage for each corner of a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * If open-loop voltage interpolation is allowed in both device tree and in * hardware fuses, then this function calculates the open-loop voltage for a * given corner using linear interpolation. This interpolation is performed * using the processor frequencies of the lower and higher Fmax corners along * with their fused open-loop voltages. * * If open-loop voltage interpolation is not allowed, then this function uses * the Fmax fused open-loop voltage for all of the corners associated with a * given fuse corner. * * Return: 0 on success, errno on failure */ static int cpr3_msm8996_mmss_calculate_open_loop_voltages( struct cpr3_regulator *vreg) { struct device_node *node = vreg->of_node; struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses; int rc = 0; bool allow_interpolation; u64 freq_low, volt_low, freq_high, volt_high; int i, j; int *fuse_volt; int *fmax_corner; fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt), GFP_KERNEL); fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner), GFP_KERNEL); if (!fuse_volt || !fmax_corner) { rc = -ENOMEM; goto done; } for (i = 0; i < vreg->fuse_corner_count; i++) { fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse( msm8996_mmss_fuse_ref_volt[i], MSM8996_MMSS_FUSE_STEP_VOLT, fuse->init_voltage[i], MSM8996_MMSS_VOLTAGE_FUSE_SIZE); cpr3_info(vreg, "fuse_corner[%d] open-loop=%7d uV\n", i, fuse_volt[i]); } rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt); if (rc) { cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n", rc); goto done; } allow_interpolation = of_property_read_bool(node, "qcom,allow-voltage-interpolation"); for (i = 1; i < vreg->fuse_corner_count; i++) { if (fuse_volt[i] < fuse_volt[i - 1]) { cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n", i, fuse_volt[i], i - 1, fuse_volt[i - 1], i, fuse_volt[i - 1]); fuse_volt[i] = fuse_volt[i - 1]; } } if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) allow_interpolation = false; if (!allow_interpolation) { /* Use fused open-loop voltage for lower frequencies. */ for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].open_loop_volt = fuse_volt[vreg->corner[i].cpr_fuse_corner]; goto done; } /* Determine highest corner mapped to each fuse corner */ j = vreg->fuse_corner_count - 1; for (i = vreg->corner_count - 1; i >= 0; i--) { if (vreg->corner[i].cpr_fuse_corner == j) { fmax_corner[j] = i; j--; } } if (j >= 0) { cpr3_err(vreg, "invalid fuse corner mapping\n"); rc = -EINVAL; goto done; } /* * Interpolation is not possible for corners mapped to the lowest fuse * corner so use the fuse corner value directly. */ for (i = 0; i <= fmax_corner[0]; i++) vreg->corner[i].open_loop_volt = fuse_volt[0]; /* Interpolate voltages for the higher fuse corners. */ for (i = 1; i < vreg->fuse_corner_count; i++) { freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq; volt_low = fuse_volt[i - 1]; freq_high = vreg->corner[fmax_corner[i]].proc_freq; volt_high = fuse_volt[i]; for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++) vreg->corner[j].open_loop_volt = cpr3_interpolate( freq_low, volt_low, freq_high, volt_high, vreg->corner[j].proc_freq); } done: if (rc == 0) { cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n"); for (i = 0; i < vreg->corner_count; i++) cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i, vreg->corner[i].open_loop_volt); rc = cpr3_adjust_open_loop_voltages(vreg); if (rc) cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n", rc); } kfree(fuse_volt); kfree(fmax_corner); return rc; } /** * cpr3_mmss_print_settings() - print out MMSS CPR configuration settings into * the kernel log for debugging purposes * @vreg: Pointer to the CPR3 regulator */ static void cpr3_mmss_print_settings(struct cpr3_regulator *vreg) { struct cpr3_corner *corner; int i; cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n"); for (i = 0; i < vreg->corner_count; i++) { corner = &vreg->corner[i]; cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n", i, corner->proc_freq, corner->cpr_fuse_corner, corner->floor_volt, corner->open_loop_volt, corner->ceiling_volt); } } /** * cpr3_mmss_init_aging() - perform MMSS CPR3 controller specific * aging initializations * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ static int cpr3_mmss_init_aging(struct cpr3_controller *ctrl) { struct cpr3_msm8996_mmss_fuses *fuse; struct cpr3_regulator *vreg; u32 aging_ro_scale; int rc; vreg = &ctrl->thread[0].vreg[0]; ctrl->aging_required = vreg->aging_allowed; fuse = vreg->platform_fuses; if (!ctrl->aging_required || !fuse) return 0; rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor", 1, &aging_ro_scale); if (rc) return rc; if (aging_ro_scale == 0) { cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n", aging_ro_scale); return -EINVAL; } ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL; ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE; ctrl->aging_sensor_count = 1; ctrl->aging_sensor = kzalloc(sizeof(*ctrl->aging_sensor), GFP_KERNEL); if (!ctrl->aging_sensor) return -ENOMEM; ctrl->aging_sensor->sensor_id = MSM8996_MMSS_AGING_SENSOR_ID; ctrl->aging_sensor->bypass_mask[0] = MSM8996_MMSS_AGING_BYPASS_MASK0; ctrl->aging_sensor->ro_scale = aging_ro_scale; ctrl->aging_sensor->init_quot_diff = cpr3_convert_open_loop_voltage_fuse(0, MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SCALE, fuse->aging_init_quot_diff, MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SIZE); cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n", ctrl->aging_sensor->sensor_id, ctrl->aging_sensor->init_quot_diff, ctrl->aging_sensor->ro_scale); return 0; } /** * cpr3_mmss_init_thread() - perform all steps necessary to initialize the * configuration data for a CPR3 thread * @thread: Pointer to the CPR3 thread * * Return: 0 on success, errno on failure */ static int cpr3_mmss_init_thread(struct cpr3_thread *thread) { struct cpr3_regulator *vreg = &thread->vreg[0]; struct cpr3_msm8996_mmss_fuses *fuse; int rc; rc = cpr3_parse_common_thread_data(thread); if (rc) { cpr3_err(vreg, "unable to read CPR thread data from device tree, rc=%d\n", rc); return rc; } rc = cpr3_msm8996_mmss_read_fuse_data(vreg); if (rc) { cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc); return rc; } fuse = vreg->platform_fuses; if (fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED) { cpr3_err(vreg, "this chip requires an unsupported voltage\n"); return -EPERM; } else if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) { thread->ctrl->cpr_allowed_hw = false; } rc = cpr3_mmss_parse_corner_data(vreg); if (rc) { cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n", rc); return rc; } rc = cpr3_mmss_adjust_target_quotients(vreg); if (rc) { cpr3_err(vreg, "unable to adjust target quotients, rc=%d\n", rc); return rc; } rc = cpr3_msm8996_mmss_calculate_open_loop_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n", rc); return rc; } rc = cpr3_limit_open_loop_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n", rc); return rc; } cpr3_open_loop_voltage_as_ceiling(vreg); rc = cpr3_limit_floor_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc); return rc; } cpr3_mmss_print_settings(vreg); return 0; } /** * cpr3_mmss_init_controller() - perform MMSS CPR3 controller specific * initializations * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ static int cpr3_mmss_init_controller(struct cpr3_controller *ctrl) { int rc; rc = cpr3_parse_common_ctrl_data(ctrl); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n", rc); return rc; } ctrl->sensor_count = MSM8996_MMSS_CPR_SENSOR_COUNT; /* * MMSS only has one thread (0) so the zeroed array does not need * further modification. */ ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count, sizeof(*ctrl->sensor_owner), GFP_KERNEL); if (!ctrl->sensor_owner) return -ENOMEM; ctrl->cpr_clock_rate = MSM8996_MMSS_CPR_CLOCK_RATE; ctrl->ctrl_type = CPR_CTRL_TYPE_CPR3; ctrl->iface_clk = devm_clk_get(ctrl->dev, "iface_clk"); if (IS_ERR(ctrl->iface_clk)) { rc = PTR_ERR(ctrl->iface_clk); if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable request interface clock, rc=%d\n", rc); return rc; } ctrl->bus_clk = devm_clk_get(ctrl->dev, "bus_clk"); if (IS_ERR(ctrl->bus_clk)) { rc = PTR_ERR(ctrl->bus_clk); if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable request bus clock, rc=%d\n", rc); return rc; } return 0; } static int cpr3_mmss_regulator_suspend(struct platform_device *pdev, pm_message_t state) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_suspend(ctrl); } static int cpr3_mmss_regulator_resume(struct platform_device *pdev) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_resume(ctrl); } static struct of_device_id cpr_regulator_match_table[] = { { .compatible = "qcom,cpr3-msm8996-mmss-regulator", }, {} }; static int cpr3_mmss_regulator_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct cpr3_controller *ctrl; int rc; if (!dev->of_node) { dev_err(dev, "Device tree node is missing\n"); return -EINVAL; } ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; ctrl->dev = dev; /* Set to false later if anything precludes CPR operation. */ ctrl->cpr_allowed_hw = true; rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name", &ctrl->name); if (rc) { cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n", rc); return rc; } rc = cpr3_map_fuse_base(ctrl, pdev); if (rc) { cpr3_err(ctrl, "could not map fuse base address\n"); return rc; } rc = cpr3_allocate_threads(ctrl, 0, 0); if (rc) { cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n", rc); return rc; } if (ctrl->thread_count != 1) { cpr3_err(ctrl, "expected 1 thread but found %d\n", ctrl->thread_count); return -EINVAL; } else if (ctrl->thread[0].vreg_count != 1) { cpr3_err(ctrl, "expected 1 regulator but found %d\n", ctrl->thread[0].vreg_count); return -EINVAL; } rc = cpr3_mmss_init_controller(ctrl); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n", rc); return rc; } rc = cpr3_mmss_init_thread(&ctrl->thread[0]); if (rc) { cpr3_err(&ctrl->thread[0].vreg[0], "thread initialization failed, rc=%d\n", rc); return rc; } rc = cpr3_mem_acc_init(&ctrl->thread[0].vreg[0]); if (rc) { cpr3_err(ctrl, "failed to initialize mem-acc configuration, rc=%d\n", rc); return rc; } rc = cpr3_mmss_init_aging(ctrl); if (rc) { cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n", rc); return rc; } platform_set_drvdata(pdev, ctrl); return cpr3_regulator_register(pdev, ctrl); } static int cpr3_mmss_regulator_remove(struct platform_device *pdev) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_unregister(ctrl); } static struct platform_driver cpr3_mmss_regulator_driver = { .driver = { .name = "qcom,cpr3-mmss-regulator", .of_match_table = cpr_regulator_match_table, .owner = THIS_MODULE, }, .probe = cpr3_mmss_regulator_probe, .remove = cpr3_mmss_regulator_remove, .suspend = cpr3_mmss_regulator_suspend, .resume = cpr3_mmss_regulator_resume, }; static int cpr_regulator_init(void) { return platform_driver_register(&cpr3_mmss_regulator_driver); } static void cpr_regulator_exit(void) { platform_driver_unregister(&cpr3_mmss_regulator_driver); } MODULE_DESCRIPTION("CPR3 MMSS regulator driver"); MODULE_LICENSE("GPL v2"); arch_initcall(cpr_regulator_init); module_exit(cpr_regulator_exit);