/* * Copyright (c) 2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpr3-regulator.h" #define MSM8996_HMSS_FUSE_CORNERS 5 /** * struct cpr3_msm8996_hmss_fuses - HMSS specific fuse data for MSM8996 * @ro_sel: Ring oscillator select fuse parameter value for each * fuse corner * @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value * for each fuse corner (raw, not converted to a voltage) * @target_quot: CPR target quotient fuse parameter value for each fuse * corner * @quot_offset: CPR target quotient offset fuse parameter value for each * fuse corner (raw, not unpacked) used for target quotient * interpolation * @speed_bin: Application processor speed bin fuse parameter value for * the given chip * @cpr_fusing_rev: CPR fusing revision fuse parameter value * @redundant_fusing: Redundant fusing select fuse parameter value * @limitation: CPR limitation select fuse parameter value * @partial_binning: Chip partial binning fuse parameter value which defines * limitations found on a given chip * @vdd_mx_ret_fuse: Defines the logic retention voltage of VDD_MX * @vdd_apcc_ret_fuse: Defines the logic retention voltage of VDD_APCC * @aging_init_quot_diff: Initial quotient difference between CPR aging * min and max sensors measured at time of manufacturing * * This struct holds the values for all of the fuses read from memory. The * values for ro_sel, init_voltage, target_quot, and quot_offset come from * either the primary or redundant fuse locations depending upon the value of * redundant_fusing. */ struct cpr3_msm8996_hmss_fuses { u64 ro_sel[MSM8996_HMSS_FUSE_CORNERS]; u64 init_voltage[MSM8996_HMSS_FUSE_CORNERS]; u64 target_quot[MSM8996_HMSS_FUSE_CORNERS]; u64 quot_offset[MSM8996_HMSS_FUSE_CORNERS]; u64 speed_bin; u64 cpr_fusing_rev; u64 redundant_fusing; u64 limitation; u64 partial_binning; u64 vdd_mx_ret_fuse; u64 vdd_apcc_ret_fuse; u64 aging_init_quot_diff; }; /* * Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0. * Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1. */ #define CPR3_MSM8996_HMSS_FUSE_COMBO_COUNT 16 /* * Constants which define the name of each fuse corner. Note that no actual * fuses are defined for LowSVS. However, a mapping from corner to LowSVS * is required in order to perform target quotient interpolation properly. */ enum cpr3_msm8996_hmss_fuse_corner { CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS = 0, CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS = 1, CPR3_MSM8996_HMSS_FUSE_CORNER_SVS = 2, CPR3_MSM8996_HMSS_FUSE_CORNER_NOM = 3, CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO = 4, }; static const char * const cpr3_msm8996_hmss_fuse_corner_name[] = { [CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS] = "MinSVS", [CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS] = "LowSVS", [CPR3_MSM8996_HMSS_FUSE_CORNER_SVS] = "SVS", [CPR3_MSM8996_HMSS_FUSE_CORNER_NOM] = "NOM", [CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO] = "TURBO", }; /* CPR3 hardware thread IDs */ #define MSM8996_HMSS_POWER_CLUSTER_THREAD_ID 0 #define MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID 1 /* * MSM8996 HMSS fuse parameter locations: * * Structs are organized with the following dimensions: * Outer: 0 or 1 for power or performance cluster * Middle: 0 to 3 for fuse corners from lowest to highest corner * Inner: large enough to hold the longest set of parameter segments which * fully defines a fuse parameter, +1 (for NULL termination). * Each segment corresponds to a contiguous group of bits from a * single fuse row. These segments are concatentated together in * order to form the full fuse parameter value. The segments for * a given parameter may correspond to different fuse rows. * * Note that there are only physically 4 sets of fuse parameters which * correspond to the MinSVS, SVS, NOM, and TURBO fuse corners. However, the SVS * quotient offset fuse is used to define the target quotient for the LowSVS * fuse corner. In order to utilize LowSVS, it must be treated as if it were a * real fully defined fuse corner. Thus, LowSVS fuse parameter locations are * specified. These locations duplicate the SVS values in order to simplify * interpolation logic. */ static const struct cpr3_fuse_param msm8996_hmss_ro_sel_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = { [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { {{66, 38, 41}, {} }, {{66, 38, 41}, {} }, {{66, 38, 41}, {} }, {{66, 34, 37}, {} }, {{66, 30, 33}, {} }, }, [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { {{64, 54, 57}, {} }, {{64, 54, 57}, {} }, {{64, 54, 57}, {} }, {{64, 50, 53}, {} }, {{64, 46, 49}, {} }, }, }; static const struct cpr3_fuse_param msm8996_hmss_init_voltage_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = { [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { {{67, 0, 5}, {} }, {{66, 58, 63}, {} }, {{66, 58, 63}, {} }, {{66, 52, 57}, {} }, {{66, 46, 51}, {} }, }, [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { {{65, 16, 21}, {} }, {{65, 10, 15}, {} }, {{65, 10, 15}, {} }, {{65, 4, 9}, {} }, {{64, 62, 63}, {65, 0, 3}, {} }, }, }; static const struct cpr3_fuse_param msm8996_hmss_target_quot_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = { [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { {{67, 42, 53}, {} }, {{67, 30, 41}, {} }, {{67, 30, 41}, {} }, {{67, 18, 29}, {} }, {{67, 6, 17}, {} }, }, [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { {{65, 58, 63}, {66, 0, 5}, {} }, {{65, 46, 57}, {} }, {{65, 46, 57}, {} }, {{65, 34, 45}, {} }, {{65, 22, 33}, {} }, }, }; static const struct cpr3_fuse_param msm8996_hmss_quot_offset_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = { [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { {{} }, {{} }, {{68, 6, 13}, {} }, {{67, 62, 63}, {68, 0, 5}, {} }, {{67, 54, 61}, {} }, }, [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { {{} }, {{} }, {{66, 22, 29}, {} }, {{66, 14, 21}, {} }, {{66, 6, 13}, {} }, }, }; /* * This fuse is used to define if the redundant set of fuses should be used for * any particular feature. CPR is one such feature. The redundant CPR fuses * should be used if this fuse parameter has a value of 1. */ static const struct cpr3_fuse_param msm8996_redundant_fusing_param[] = { {73, 61, 63}, {}, }; #define MSM8996_CPR_REDUNDANT_FUSING 1 static const struct cpr3_fuse_param msm8996_hmss_redun_ro_sel_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = { [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { {{76, 36, 39}, {} }, {{76, 32, 35}, {} }, {{76, 32, 35}, {} }, {{76, 28, 31}, {} }, {{76, 24, 27}, {} }, }, [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { {{74, 52, 55}, {} }, {{74, 48, 51}, {} }, {{74, 48, 51}, {} }, {{74, 44, 47}, {} }, {{74, 40, 43}, {} }, }, }; static const struct cpr3_fuse_param msm8996_hmss_redun_init_voltage_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = { [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { {{76, 58, 63}, {} }, {{76, 52, 57}, {} }, {{76, 52, 57}, {} }, {{76, 46, 51}, {} }, {{76, 40, 45}, {} }, }, [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { {{75, 10, 15}, {} }, {{75, 4, 9}, {} }, {{75, 4, 9}, {} }, {{74, 62, 63}, {75, 0, 3}, {} }, {{74, 56, 61}, {} }, }, }; static const struct cpr3_fuse_param msm8996_hmss_redun_target_quot_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = { [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { {{77, 36, 47}, {} }, {{77, 24, 35}, {} }, {{77, 24, 35}, {} }, {{77, 12, 23}, {} }, {{77, 0, 11}, {} }, }, [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { {{75, 52, 63}, {} }, {{75, 40, 51}, {} }, {{75, 40, 51}, {} }, {{75, 28, 39}, {} }, {{75, 16, 27}, {} }, }, }; static const struct cpr3_fuse_param msm8996_hmss_redun_quot_offset_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = { [MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = { {{} }, {{} }, {{68, 11, 18}, {} }, {{77, 56, 63}, {} }, {{77, 48, 55}, {} }, }, [MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = { {{} }, {{} }, {{76, 16, 23}, {} }, {{76, 8, 15}, {} }, {{76, 0, 7}, {} }, }, }; static const struct cpr3_fuse_param msm8996_cpr_fusing_rev_param[] = { {39, 51, 53}, {}, }; static const struct cpr3_fuse_param msm8996_hmss_speed_bin_param[] = { {38, 29, 31}, {}, }; static const struct cpr3_fuse_param msm8996_cpr_limitation_param[] = { {41, 31, 32}, {}, }; static const struct cpr3_fuse_param msm8996_vdd_mx_ret_param[] = { {41, 2, 4}, {}, }; static const struct cpr3_fuse_param msm8996_vdd_apcc_ret_param[] = { {41, 52, 54}, {}, }; static const struct cpr3_fuse_param msm8996_cpr_partial_binning_param[] = { {39, 55, 59}, {}, }; static const struct cpr3_fuse_param msm8996_hmss_aging_init_quot_diff_param[] = { {68, 14, 19}, {}, }; /* * Some initial msm8996 parts cannot be used in a meaningful way by software. * Other parts can only be used when operating with CPR disabled (i.e. at the * fused open-loop voltage) when no voltage interpolation is applied. A fuse * parameter is provided so that software can properly handle these limitations. */ enum msm8996_cpr_limitation { MSM8996_CPR_LIMITATION_NONE = 0, MSM8996_CPR_LIMITATION_UNSUPPORTED = 2, MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION = 3, }; /* * Some initial msm8996 parts cannot be operated at low voltages. A fuse * parameter is provided so that software can properly handle these limitations. */ enum msm8996_cpr_partial_binning { MSM8996_CPR_PARTIAL_BINNING_SVS = 11, MSM8996_CPR_PARTIAL_BINNING_NOM = 12, }; /* Additional MSM8996 specific data: */ /* Open loop voltage fuse reference voltages in microvolts for MSM8996 v1/v2 */ static const int msm8996_v1_v2_hmss_fuse_ref_volt[MSM8996_HMSS_FUSE_CORNERS] = { 605000, 745000, /* Place holder entry for LowSVS */ 745000, 905000, 1015000, }; /* Open loop voltage fuse reference voltages in microvolts for MSM8996 v3 */ static const int msm8996_v3_hmss_fuse_ref_volt[MSM8996_HMSS_FUSE_CORNERS] = { 605000, 745000, /* Place holder entry for LowSVS */ 745000, 905000, 1140000, }; /* * Open loop voltage fuse reference voltages in microvolts for MSM8996 v3 with * speed_bin == 1 and cpr_fusing_rev >= 5. */ static const int msm8996_v3_speed_bin1_rev5_hmss_fuse_ref_volt[ MSM8996_HMSS_FUSE_CORNERS] = { 605000, 745000, /* Place holder entry for LowSVS */ 745000, 905000, 1040000, }; /* Defines mapping from retention fuse values to voltages in microvolts */ static const int msm8996_vdd_apcc_fuse_ret_volt[] = { 600000, 550000, 500000, 450000, 400000, 350000, 300000, 600000, }; static const int msm8996_vdd_mx_fuse_ret_volt[] = { 700000, 650000, 580000, 550000, 490000, 490000, 490000, 490000, }; #define MSM8996_HMSS_FUSE_STEP_VOLT 10000 #define MSM8996_HMSS_VOLTAGE_FUSE_SIZE 6 #define MSM8996_HMSS_QUOT_OFFSET_SCALE 5 #define MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SCALE 2 #define MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SIZE 6 #define MSM8996_HMSS_CPR_SENSOR_COUNT 25 #define MSM8996_HMSS_THREAD0_SENSOR_MIN 0 #define MSM8996_HMSS_THREAD0_SENSOR_MAX 14 #define MSM8996_HMSS_THREAD1_SENSOR_MIN 15 #define MSM8996_HMSS_THREAD1_SENSOR_MAX 24 #define MSM8996_HMSS_CPR_CLOCK_RATE 19200000 #define MSM8996_HMSS_AGING_SENSOR_ID 11 #define MSM8996_HMSS_AGING_BYPASS_MASK0 (GENMASK(7, 0) & ~BIT(3)) /** * cpr3_msm8996_hmss_read_fuse_data() - load HMSS specific fuse parameter values * @vreg: Pointer to the CPR3 regulator * * This function allocates a cpr3_msm8996_hmss_fuses struct, fills it with * values read out of hardware fuses, and finally copies common fuse values * into the CPR3 regulator struct. * * Return: 0 on success, errno on failure */ static int cpr3_msm8996_hmss_read_fuse_data(struct cpr3_regulator *vreg) { void __iomem *base = vreg->thread->ctrl->fuse_base; struct cpr3_msm8996_hmss_fuses *fuse; bool redundant; int i, id, rc; fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL); if (!fuse) return -ENOMEM; rc = cpr3_read_fuse_param(base, msm8996_hmss_speed_bin_param, &fuse->speed_bin); if (rc) { cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin); rc = cpr3_read_fuse_param(base, msm8996_cpr_fusing_rev_param, &fuse->cpr_fusing_rev); if (rc) { cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev); rc = cpr3_read_fuse_param(base, msm8996_redundant_fusing_param, &fuse->redundant_fusing); if (rc) { cpr3_err(vreg, "Unable to read redundant fusing config fuse, rc=%d\n", rc); return rc; } redundant = (fuse->redundant_fusing == MSM8996_CPR_REDUNDANT_FUSING); cpr3_info(vreg, "using redundant fuses = %c\n", redundant ? 'Y' : 'N'); rc = cpr3_read_fuse_param(base, msm8996_cpr_limitation_param, &fuse->limitation); if (rc) { cpr3_err(vreg, "Unable to read CPR limitation fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "CPR limitation = %s\n", fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED ? "unsupported chip" : fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION ? "CPR disabled and no interpolation" : "none"); rc = cpr3_read_fuse_param(base, msm8996_cpr_partial_binning_param, &fuse->partial_binning); if (rc) { cpr3_err(vreg, "Unable to read partial binning fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "CPR partial binning limitation = %s\n", fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_SVS ? "SVS min voltage" : fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_NOM ? "NOM min voltage" : "none"); rc = cpr3_read_fuse_param(base, msm8996_vdd_mx_ret_param, &fuse->vdd_mx_ret_fuse); if (rc) { cpr3_err(vreg, "Unable to read VDD_MX retention fuse, rc=%d\n", rc); return rc; } rc = cpr3_read_fuse_param(base, msm8996_vdd_apcc_ret_param, &fuse->vdd_apcc_ret_fuse); if (rc) { cpr3_err(vreg, "Unable to read VDD_APCC retention fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "Retention voltage fuses: VDD_MX = %llu, VDD_APCC = %llu\n", fuse->vdd_mx_ret_fuse, fuse->vdd_apcc_ret_fuse); rc = cpr3_read_fuse_param(base, msm8996_hmss_aging_init_quot_diff_param, &fuse->aging_init_quot_diff); if (rc) { cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n", rc); return rc; } id = vreg->thread->thread_id; for (i = 0; i < MSM8996_HMSS_FUSE_CORNERS; i++) { rc = cpr3_read_fuse_param(base, redundant ? msm8996_hmss_redun_init_voltage_param[id][i] : msm8996_hmss_init_voltage_param[id][i], &fuse->init_voltage[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, redundant ? msm8996_hmss_redun_target_quot_param[id][i] : msm8996_hmss_target_quot_param[id][i], &fuse->target_quot[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, redundant ? msm8996_hmss_redun_ro_sel_param[id][i] : msm8996_hmss_ro_sel_param[id][i], &fuse->ro_sel[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, redundant ? msm8996_hmss_redun_quot_offset_param[id][i] : msm8996_hmss_quot_offset_param[id][i], &fuse->quot_offset[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n", i, rc); return rc; } } vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin; if (vreg->fuse_combo >= CPR3_MSM8996_HMSS_FUSE_COMBO_COUNT) { cpr3_err(vreg, "invalid CPR fuse combo = %d found\n", vreg->fuse_combo); return -EINVAL; } vreg->speed_bin_fuse = fuse->speed_bin; vreg->cpr_rev_fuse = fuse->cpr_fusing_rev; vreg->fuse_corner_count = MSM8996_HMSS_FUSE_CORNERS; vreg->platform_fuses = fuse; return 0; } /** * cpr3_hmss_parse_corner_data() - parse HMSS corner data from device tree * properties of the CPR3 regulator's device node * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cpr3_hmss_parse_corner_data(struct cpr3_regulator *vreg) { int rc; rc = cpr3_parse_common_corner_data(vreg); if (rc) { cpr3_err(vreg, "error reading corner data, rc=%d\n", rc); return rc; } return rc; } /** * cpr3_msm8996_hmss_calculate_open_loop_voltages() - calculate the open-loop * voltage for each corner of a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * If open-loop voltage interpolation is allowed in both device tree and in * hardware fuses, then this function calculates the open-loop voltage for a * given corner using linear interpolation. This interpolation is performed * using the processor frequencies of the lower and higher Fmax corners along * with their fused open-loop voltages. * * If open-loop voltage interpolation is not allowed, then this function uses * the Fmax fused open-loop voltage for all of the corners associated with a * given fuse corner. * * Return: 0 on success, errno on failure */ static int cpr3_msm8996_hmss_calculate_open_loop_voltages( struct cpr3_regulator *vreg) { struct device_node *node = vreg->of_node; struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; int rc = 0; bool allow_interpolation; u64 freq_low, volt_low, freq_high, volt_high; int i, j, soc_revision; const int *ref_volt; int *fuse_volt; int *fmax_corner; fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt), GFP_KERNEL); fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner), GFP_KERNEL); if (!fuse_volt || !fmax_corner) { rc = -ENOMEM; goto done; } soc_revision = vreg->thread->ctrl->soc_revision; if (soc_revision == 1 || soc_revision == 2) ref_volt = msm8996_v1_v2_hmss_fuse_ref_volt; else if (fuse->speed_bin == 1 && fuse->cpr_fusing_rev >= 5) ref_volt = msm8996_v3_speed_bin1_rev5_hmss_fuse_ref_volt; else ref_volt = msm8996_v3_hmss_fuse_ref_volt; for (i = 0; i < vreg->fuse_corner_count; i++) { fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse( ref_volt[i], MSM8996_HMSS_FUSE_STEP_VOLT, fuse->init_voltage[i], MSM8996_HMSS_VOLTAGE_FUSE_SIZE); /* Log fused open-loop voltage values for debugging purposes. */ if (i != CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS) cpr3_info(vreg, "fused %6s: open-loop=%7d uV\n", cpr3_msm8996_hmss_fuse_corner_name[i], fuse_volt[i]); } rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt); if (rc) { cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n", rc); goto done; } allow_interpolation = of_property_read_bool(node, "qcom,allow-voltage-interpolation"); /* * No LowSVS open-loop voltage fuse exists. Instead, intermediate * voltages are interpolated between MinSVS and SVS. Set the LowSVS * voltage to be equal to the adjusted SVS voltage in order to avoid * triggering an incorrect condition violation in the following loop. */ fuse_volt[CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS] = fuse_volt[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]; for (i = 1; i < vreg->fuse_corner_count; i++) { if (fuse_volt[i] < fuse_volt[i - 1]) { cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n", i, fuse_volt[i], i - 1, fuse_volt[i - 1], i, fuse_volt[i - 1]); fuse_volt[i] = fuse_volt[i - 1]; } } if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) allow_interpolation = false; if (!allow_interpolation) { /* Use fused open-loop voltage for lower frequencies. */ for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].open_loop_volt = fuse_volt[vreg->corner[i].cpr_fuse_corner]; goto done; } /* Determine highest corner mapped to each fuse corner */ j = vreg->fuse_corner_count - 1; for (i = vreg->corner_count - 1; i >= 0; i--) { if (vreg->corner[i].cpr_fuse_corner == j) { fmax_corner[j] = i; j--; } } if (j >= 0) { cpr3_err(vreg, "invalid fuse corner mapping\n"); rc = -EINVAL; goto done; } /* * Interpolation is not possible for corners mapped to the lowest fuse * corner so use the fuse corner value directly. */ for (i = 0; i <= fmax_corner[0]; i++) vreg->corner[i].open_loop_volt = fuse_volt[0]; /* * Corner LowSVS should be skipped for voltage interpolation * since no fuse exists for it. Instead, the lowest interpolation * should be between MinSVS and SVS. */ for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS; i < vreg->fuse_corner_count - 1; i++) { fmax_corner[i] = fmax_corner[i + 1]; fuse_volt[i] = fuse_volt[i + 1]; } /* Interpolate voltages for the higher fuse corners. */ for (i = 1; i < vreg->fuse_corner_count - 1; i++) { freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq; volt_low = fuse_volt[i - 1]; freq_high = vreg->corner[fmax_corner[i]].proc_freq; volt_high = fuse_volt[i]; for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++) vreg->corner[j].open_loop_volt = cpr3_interpolate( freq_low, volt_low, freq_high, volt_high, vreg->corner[j].proc_freq); } done: if (rc == 0) { cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n"); for (i = 0; i < vreg->corner_count; i++) cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i, vreg->corner[i].open_loop_volt); rc = cpr3_adjust_open_loop_voltages(vreg); if (rc) cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n", rc); } kfree(fuse_volt); kfree(fmax_corner); return rc; } /** * cpr3_msm8996_hmss_set_no_interpolation_quotients() - use the fused target * quotient values for lower frequencies. * @vreg: Pointer to the CPR3 regulator * @volt_adjust: Pointer to array of per-corner closed-loop adjustment * voltages * @volt_adjust_fuse: Pointer to array of per-fuse-corner closed-loop * adjustment voltages * @ro_scale: Pointer to array of per-fuse-corner RO scaling factor * values with units of QUOT/V * * Return: 0 on success, errno on failure */ static int cpr3_msm8996_hmss_set_no_interpolation_quotients( struct cpr3_regulator *vreg, int *volt_adjust, int *volt_adjust_fuse, int *ro_scale) { struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; u32 quot, ro; int quot_adjust; int i, fuse_corner; for (i = 0; i < vreg->corner_count; i++) { fuse_corner = vreg->corner[i].cpr_fuse_corner; quot = fuse->target_quot[fuse_corner]; quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner], volt_adjust_fuse[fuse_corner] + volt_adjust[i]); ro = fuse->ro_sel[fuse_corner]; vreg->corner[i].target_quot[ro] = quot + quot_adjust; if (quot_adjust) cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n", i, ro, quot, vreg->corner[i].target_quot[ro], volt_adjust_fuse[fuse_corner] + volt_adjust[i]); } return 0; } /** * cpr3_msm8996_hmss_calculate_target_quotients() - calculate the CPR target * quotient for each corner of a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * If target quotient interpolation is allowed in both device tree and in * hardware fuses, then this function calculates the target quotient for a * given corner using linear interpolation. This interpolation is performed * using the processor frequencies of the lower and higher Fmax corners along * with the fused target quotient and quotient offset of the higher Fmax corner. * * If target quotient interpolation is not allowed, then this function uses * the Fmax fused target quotient for all of the corners associated with a * given fuse corner. * * Return: 0 on success, errno on failure */ static int cpr3_msm8996_hmss_calculate_target_quotients( struct cpr3_regulator *vreg) { struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; int rc; bool allow_interpolation; u64 freq_low, freq_high, prev_quot; u64 *quot_low; u64 *quot_high; u32 quot, ro; int i, j, fuse_corner, quot_adjust; int *fmax_corner; int *volt_adjust, *volt_adjust_fuse, *ro_scale; /* Log fused quotient values for debugging purposes. */ cpr3_info(vreg, "fused MinSVS: quot[%2llu]=%4llu\n", fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS], fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]); for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS; i <= CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO; i++) cpr3_info(vreg, "fused %6s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n", cpr3_msm8996_hmss_fuse_corner_name[i], fuse->ro_sel[i], fuse->target_quot[i], fuse->ro_sel[i], fuse->quot_offset[i] * MSM8996_HMSS_QUOT_OFFSET_SCALE); allow_interpolation = of_property_read_bool(vreg->of_node, "qcom,allow-quotient-interpolation"); if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) allow_interpolation = false; volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust), GFP_KERNEL); volt_adjust_fuse = kcalloc(vreg->fuse_corner_count, sizeof(*volt_adjust_fuse), GFP_KERNEL); ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale), GFP_KERNEL); fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner), GFP_KERNEL); quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low), GFP_KERNEL); quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high), GFP_KERNEL); if (!volt_adjust || !volt_adjust_fuse || !ro_scale || !fmax_corner || !quot_low || !quot_high) { rc = -ENOMEM; goto done; } rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0], volt_adjust, volt_adjust_fuse, ro_scale); if (rc) { cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n", rc); goto done; } if (!allow_interpolation) { /* Use fused target quotients for lower frequencies. */ return cpr3_msm8996_hmss_set_no_interpolation_quotients(vreg, volt_adjust, volt_adjust_fuse, ro_scale); } /* Determine highest corner mapped to each fuse corner */ j = vreg->fuse_corner_count - 1; for (i = vreg->corner_count - 1; i >= 0; i--) { if (vreg->corner[i].cpr_fuse_corner == j) { fmax_corner[j] = i; j--; } } if (j >= 0) { cpr3_err(vreg, "invalid fuse corner mapping\n"); rc = -EINVAL; goto done; } /* * Interpolation is not possible for corners mapped to the lowest fuse * corner so use the fuse corner value directly. */ i = CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS; quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]); quot = fuse->target_quot[i] + quot_adjust; quot_high[i] = quot; ro = fuse->ro_sel[i]; if (quot_adjust) cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n", i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]); for (i = 0; i <= fmax_corner[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]; i++) vreg->corner[i].target_quot[ro] = quot; /* * The LowSVS target quotient is defined as: * (SVS target quotient) - (the unpacked SVS quotient offset) * MinSVS, LowSVS, and SVS fuse corners all share the same RO so it is * possible to interpolate between their target quotient values. */ i = CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS; quot_high[i] = fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS] - fuse->quot_offset[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS] * MSM8996_HMSS_QUOT_OFFSET_SCALE; quot_low[i] = fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]; if (quot_high[i] < quot_low[i]) { cpr3_info(vreg, "quot_lowsvs=%llu < quot_minsvs=%llu; overriding: quot_lowsvs=%llu\n", quot_high[i], quot_low[i], quot_low[i]); quot_high[i] = quot_low[i]; } if (fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS] != fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]) { cpr3_info(vreg, "MinSVS RO=%llu != SVS RO=%llu; disabling LowSVS interpolation\n", fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS], fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]); quot_low[i] = quot_high[i]; } for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS; i < vreg->fuse_corner_count; i++) { quot_high[i] = fuse->target_quot[i]; if (fuse->ro_sel[i] == fuse->ro_sel[i - 1]) quot_low[i] = quot_high[i - 1]; else quot_low[i] = quot_high[i] - fuse->quot_offset[i] * MSM8996_HMSS_QUOT_OFFSET_SCALE; if (quot_high[i] < quot_low[i]) { cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n", i, quot_high[i], i, quot_low[i], i, quot_low[i]); quot_high[i] = quot_low[i]; } } /* Perform per-fuse-corner target quotient adjustment */ for (i = 1; i < vreg->fuse_corner_count; i++) { quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]); if (quot_adjust) { prev_quot = quot_high[i]; quot_high[i] += quot_adjust; cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n", i, fuse->ro_sel[i], prev_quot, quot_high[i], volt_adjust_fuse[i]); } if (fuse->ro_sel[i] == fuse->ro_sel[i - 1]) quot_low[i] = quot_high[i - 1]; else quot_low[i] += cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i - 1]); if (quot_high[i] < quot_low[i]) { cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n", i, quot_high[i], i, quot_low[i], i, quot_low[i]); quot_high[i] = quot_low[i]; } } /* Interpolate voltages for the higher fuse corners. */ for (i = 1; i < vreg->fuse_corner_count; i++) { freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq; freq_high = vreg->corner[fmax_corner[i]].proc_freq; ro = fuse->ro_sel[i]; for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++) vreg->corner[j].target_quot[ro] = cpr3_interpolate( freq_low, quot_low[i], freq_high, quot_high[i], vreg->corner[j].proc_freq); } /* Perform per-corner target quotient adjustment */ for (i = 0; i < vreg->corner_count; i++) { fuse_corner = vreg->corner[i].cpr_fuse_corner; ro = fuse->ro_sel[fuse_corner]; quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner], volt_adjust[i]); if (quot_adjust) { prev_quot = vreg->corner[i].target_quot[ro]; vreg->corner[i].target_quot[ro] += quot_adjust; cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n", i, ro, prev_quot, vreg->corner[i].target_quot[ro], volt_adjust[i]); } } /* Ensure that target quotients increase monotonically */ for (i = 1; i < vreg->corner_count; i++) { ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner]; if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro && vreg->corner[i].target_quot[ro] < vreg->corner[i - 1].target_quot[ro]) { cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n", i, ro, vreg->corner[i].target_quot[ro], i - 1, ro, vreg->corner[i - 1].target_quot[ro], i, ro, vreg->corner[i - 1].target_quot[ro]); vreg->corner[i].target_quot[ro] = vreg->corner[i - 1].target_quot[ro]; } } done: kfree(volt_adjust); kfree(volt_adjust_fuse); kfree(ro_scale); kfree(fmax_corner); kfree(quot_low); kfree(quot_high); return rc; } /** * cpr3_msm8996_partial_binning_override() - override the voltage and quotient * settings for low corners based upon the value of the partial * binning fuse * @vreg: Pointer to the CPR3 regulator * * Some parts are not able to operate at low voltages. The partial binning * fuse specifies if a given part has such limitations. * * Return: 0 on success, errno on failure */ static int cpr3_msm8996_partial_binning_override(struct cpr3_regulator *vreg) { struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; int i, fuse_corner, fmax_corner; if (fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_SVS) fuse_corner = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS; else if (fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_NOM) fuse_corner = CPR3_MSM8996_HMSS_FUSE_CORNER_NOM; else return 0; cpr3_info(vreg, "overriding voltages and quotients for all corners below %s Fmax\n", cpr3_msm8996_hmss_fuse_corner_name[fuse_corner]); fmax_corner = -1; for (i = vreg->corner_count - 1; i >= 0; i--) { if (vreg->corner[i].cpr_fuse_corner == fuse_corner) { fmax_corner = i; break; } } if (fmax_corner < 0) { cpr3_err(vreg, "could not find %s Fmax corner\n", cpr3_msm8996_hmss_fuse_corner_name[fuse_corner]); return -EINVAL; } for (i = 0; i < fmax_corner; i++) vreg->corner[i] = vreg->corner[fmax_corner]; return 0; } /** * cpr3_hmss_print_settings() - print out HMSS CPR configuration settings into * the kernel log for debugging purposes * @vreg: Pointer to the CPR3 regulator */ static void cpr3_hmss_print_settings(struct cpr3_regulator *vreg) { struct cpr3_corner *corner; int i; cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n"); for (i = 0; i < vreg->corner_count; i++) { corner = &vreg->corner[i]; cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n", i, corner->proc_freq, corner->cpr_fuse_corner, corner->floor_volt, corner->open_loop_volt, corner->ceiling_volt); } if (vreg->thread->ctrl->apm) cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n", vreg->thread->ctrl->apm_threshold_volt, vreg->thread->ctrl->apm_adj_volt); } /** * cpr3_hmss_init_thread() - perform steps necessary to initialize the * configuration data for a CPR3 thread * @thread: Pointer to the CPR3 thread * * Return: 0 on success, errno on failure */ static int cpr3_hmss_init_thread(struct cpr3_thread *thread) { int rc; rc = cpr3_parse_common_thread_data(thread); if (rc) { cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n", thread->thread_id, rc); return rc; } return 0; } #define MAX_VREG_NAME_SIZE 25 /** * cpr3_hmss_kvreg_init() - initialize HMSS Kryo Regulator data for a CPR3 * regulator * @vreg: Pointer to the CPR3 regulator * * This function loads Kryo Regulator data from device tree if it is present * and requests a handle to the appropriate Kryo regulator device. In addition, * it initializes Kryo Regulator data originating from hardware fuses, such as * the LDO retention voltage, and requests the Kryo retention regulator to * be configured to that value. * * Return: 0 on success, errno on failure */ static int cpr3_hmss_kvreg_init(struct cpr3_regulator *vreg) { struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses; struct device_node *node = vreg->of_node; struct cpr3_controller *ctrl = vreg->thread->ctrl; int id = vreg->thread->thread_id; char kvreg_name_buf[MAX_VREG_NAME_SIZE]; int rc; scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE, "vdd-thread%d-ldo-supply", id); if (!of_find_property(ctrl->dev->of_node, kvreg_name_buf , NULL)) return 0; else if (!of_find_property(node, "qcom,ldo-min-headroom-voltage", NULL)) return 0; scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE, "vdd-thread%d-ldo", id); vreg->ldo_regulator = devm_regulator_get(ctrl->dev, kvreg_name_buf); if (IS_ERR(vreg->ldo_regulator)) { rc = PTR_ERR(vreg->ldo_regulator); if (rc != -EPROBE_DEFER) cpr3_err(vreg, "unable to request %s regulator, rc=%d\n", kvreg_name_buf, rc); return rc; } vreg->ldo_regulator_bypass = BHS_MODE; scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE, "vdd-thread%d-ldo-ret", id); vreg->ldo_ret_regulator = devm_regulator_get(ctrl->dev, kvreg_name_buf); if (IS_ERR(vreg->ldo_ret_regulator)) { rc = PTR_ERR(vreg->ldo_ret_regulator); if (rc != -EPROBE_DEFER) cpr3_err(vreg, "unable to request %s regulator, rc=%d\n", kvreg_name_buf, rc); return rc; } if (!ctrl->system_supply_max_volt) { cpr3_err(ctrl, "system-supply max voltage must be specified\n"); return -EINVAL; } rc = of_property_read_u32(node, "qcom,ldo-min-headroom-voltage", &vreg->ldo_min_headroom_volt); if (rc) { cpr3_err(vreg, "error reading qcom,ldo-min-headroom-voltage, rc=%d\n", rc); return rc; } rc = of_property_read_u32(node, "qcom,ldo-max-headroom-voltage", &vreg->ldo_max_headroom_volt); if (rc) { cpr3_err(vreg, "error reading qcom,ldo-max-headroom-voltage, rc=%d\n", rc); return rc; } rc = of_property_read_u32(node, "qcom,ldo-max-voltage", &vreg->ldo_max_volt); if (rc) { cpr3_err(vreg, "error reading qcom,ldo-max-voltage, rc=%d\n", rc); return rc; } /* Determine the CPU retention voltage based on fused data */ vreg->ldo_ret_volt = max(msm8996_vdd_apcc_fuse_ret_volt[fuse->vdd_apcc_ret_fuse], msm8996_vdd_mx_fuse_ret_volt[fuse->vdd_mx_ret_fuse]); rc = regulator_set_voltage(vreg->ldo_ret_regulator, vreg->ldo_ret_volt, INT_MAX); if (rc < 0) { cpr3_err(vreg, "regulator_set_voltage(ldo_ret) == %d failed, rc=%d\n", vreg->ldo_ret_volt, rc); return rc; } /* optional properties, do not error out if missing */ of_property_read_u32(node, "qcom,ldo-adjust-voltage", &vreg->ldo_adjust_volt); vreg->ldo_mode_allowed = !of_property_read_bool(node, "qcom,ldo-disable"); cpr3_info(vreg, "LDO min headroom=%d uV, LDO max headroom=%d uV, LDO adj=%d uV, LDO mode=%s, LDO retention=%d uV\n", vreg->ldo_min_headroom_volt, vreg->ldo_max_headroom_volt, vreg->ldo_adjust_volt, vreg->ldo_mode_allowed ? "allowed" : "disallowed", vreg->ldo_ret_volt); return 0; } /** * cpr3_hmss_mem_acc_init() - initialize mem-acc regulator data for * a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * This function loads mem-acc data from device tree to enable * the control of mem-acc settings based upon the CPR3 regulator * output voltage. * * Return: 0 on success, errno on failure */ static int cpr3_hmss_mem_acc_init(struct cpr3_regulator *vreg) { struct cpr3_controller *ctrl = vreg->thread->ctrl; int id = vreg->thread->thread_id; char mem_acc_vreg_name_buf[MAX_VREG_NAME_SIZE]; int rc; scnprintf(mem_acc_vreg_name_buf, MAX_VREG_NAME_SIZE, "mem-acc-thread%d-supply", id); if (!of_find_property(ctrl->dev->of_node, mem_acc_vreg_name_buf, NULL)) { cpr3_debug(vreg, "not using memory accelerator regulator\n"); return 0; } else if (!of_property_read_bool(vreg->of_node, "qcom,uses-mem-acc")) { return 0; } scnprintf(mem_acc_vreg_name_buf, MAX_VREG_NAME_SIZE, "mem-acc-thread%d", id); vreg->mem_acc_regulator = devm_regulator_get(ctrl->dev, mem_acc_vreg_name_buf); if (IS_ERR(vreg->mem_acc_regulator)) { rc = PTR_ERR(vreg->mem_acc_regulator); if (rc != -EPROBE_DEFER) cpr3_err(vreg, "unable to request %s regulator, rc=%d\n", mem_acc_vreg_name_buf, rc); return rc; } return 0; } /** * cpr3_hmss_init_regulator() - perform all steps necessary to initialize the * configuration data for a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cpr3_hmss_init_regulator(struct cpr3_regulator *vreg) { struct cpr3_msm8996_hmss_fuses *fuse; int rc; rc = cpr3_msm8996_hmss_read_fuse_data(vreg); if (rc) { cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc); return rc; } rc = cpr3_hmss_kvreg_init(vreg); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(vreg, "unable to initialize Kryo Regulator settings, rc=%d\n", rc); return rc; } rc = cpr3_hmss_mem_acc_init(vreg); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(vreg, "unable to initialize mem-acc regulator settings, rc=%d\n", rc); return rc; } fuse = vreg->platform_fuses; if (fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED) { cpr3_err(vreg, "this chip requires an unsupported voltage\n"); return -EPERM; } else if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) { vreg->thread->ctrl->cpr_allowed_hw = false; } rc = of_property_read_u32(vreg->of_node, "qcom,cpr-pd-bypass-mask", &vreg->pd_bypass_mask); if (rc) { cpr3_err(vreg, "error reading qcom,cpr-pd-bypass-mask, rc=%d\n", rc); return rc; } rc = cpr3_hmss_parse_corner_data(vreg); if (rc) { cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n", rc); return rc; } if (of_find_property(vreg->of_node, "qcom,cpr-dynamic-floor-corner", NULL)) { rc = cpr3_parse_array_property(vreg, "qcom,cpr-dynamic-floor-corner", 1, &vreg->dynamic_floor_corner); if (rc) { cpr3_err(vreg, "error reading qcom,cpr-dynamic-floor-corner, rc=%d\n", rc); return rc; } if (vreg->dynamic_floor_corner <= 0) { vreg->uses_dynamic_floor = false; } else if (vreg->dynamic_floor_corner < CPR3_CORNER_OFFSET || vreg->dynamic_floor_corner > vreg->corner_count - 1 + CPR3_CORNER_OFFSET) { cpr3_err(vreg, "dynamic floor corner=%d not in range [%d, %d]\n", vreg->dynamic_floor_corner, CPR3_CORNER_OFFSET, vreg->corner_count - 1 + CPR3_CORNER_OFFSET); return -EINVAL; } vreg->dynamic_floor_corner -= CPR3_CORNER_OFFSET; vreg->uses_dynamic_floor = true; } rc = cpr3_msm8996_hmss_calculate_open_loop_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n", rc); return rc; } rc = cpr3_limit_open_loop_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n", rc); return rc; } cpr3_open_loop_voltage_as_ceiling(vreg); rc = cpr3_limit_floor_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc); return rc; } rc = cpr3_msm8996_hmss_calculate_target_quotients(vreg); if (rc) { cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n", rc); return rc; } rc = cpr3_msm8996_partial_binning_override(vreg); if (rc) { cpr3_err(vreg, "unable to override voltages and quotients based on partial binning fuse, rc=%d\n", rc); return rc; } cpr3_hmss_print_settings(vreg); return 0; } /** * cpr3_hmss_init_aging() - perform HMSS CPR3 controller specific * aging initializations * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ static int cpr3_hmss_init_aging(struct cpr3_controller *ctrl) { struct cpr3_msm8996_hmss_fuses *fuse = NULL; struct cpr3_regulator *vreg; u32 aging_ro_scale; int i, j, rc; for (i = 0; i < ctrl->thread_count; i++) { for (j = 0; j < ctrl->thread[i].vreg_count; j++) { if (ctrl->thread[i].vreg[j].aging_allowed) { ctrl->aging_required = true; vreg = &ctrl->thread[i].vreg[j]; fuse = vreg->platform_fuses; break; } } } if (!ctrl->aging_required || !fuse) return 0; rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor", 1, &aging_ro_scale); if (rc) return rc; if (aging_ro_scale == 0) { cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n", aging_ro_scale); return -EINVAL; } ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL; ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE; ctrl->aging_sensor_count = 1; ctrl->aging_sensor = kzalloc(sizeof(*ctrl->aging_sensor), GFP_KERNEL); if (!ctrl->aging_sensor) return -ENOMEM; ctrl->aging_sensor->sensor_id = MSM8996_HMSS_AGING_SENSOR_ID; ctrl->aging_sensor->bypass_mask[0] = MSM8996_HMSS_AGING_BYPASS_MASK0; ctrl->aging_sensor->ro_scale = aging_ro_scale; ctrl->aging_sensor->init_quot_diff = cpr3_convert_open_loop_voltage_fuse(0, MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SCALE, fuse->aging_init_quot_diff, MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SIZE); cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n", ctrl->aging_sensor->sensor_id, ctrl->aging_sensor->init_quot_diff, ctrl->aging_sensor->ro_scale); return 0; } /** * cpr3_hmss_init_controller() - perform HMSS CPR3 controller specific * initializations * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ static int cpr3_hmss_init_controller(struct cpr3_controller *ctrl) { int i, rc; rc = cpr3_parse_common_ctrl_data(ctrl); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n", rc); return rc; } ctrl->vdd_limit_regulator = devm_regulator_get(ctrl->dev, "vdd-limit"); if (IS_ERR(ctrl->vdd_limit_regulator)) { rc = PTR_ERR(ctrl->vdd_limit_regulator); if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable to request vdd-supply regulator, rc=%d\n", rc); return rc; } rc = of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-up-down-delay-time", &ctrl->up_down_delay_time); if (rc) { cpr3_err(ctrl, "error reading property qcom,cpr-up-down-delay-time, rc=%d\n", rc); return rc; } /* No error check since this is an optional property. */ of_property_read_u32(ctrl->dev->of_node, "qcom,system-supply-max-voltage", &ctrl->system_supply_max_volt); /* No error check since this is an optional property. */ of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-clock-throttling", &ctrl->proc_clock_throttle); rc = cpr3_apm_init(ctrl); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable to initialize APM settings, rc=%d\n", rc); return rc; } ctrl->sensor_count = MSM8996_HMSS_CPR_SENSOR_COUNT; ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count, sizeof(*ctrl->sensor_owner), GFP_KERNEL); if (!ctrl->sensor_owner) return -ENOMEM; /* Specify sensor ownership */ for (i = MSM8996_HMSS_THREAD0_SENSOR_MIN; i <= MSM8996_HMSS_THREAD0_SENSOR_MAX; i++) ctrl->sensor_owner[i] = 0; for (i = MSM8996_HMSS_THREAD1_SENSOR_MIN; i <= MSM8996_HMSS_THREAD1_SENSOR_MAX; i++) ctrl->sensor_owner[i] = 1; ctrl->cpr_clock_rate = MSM8996_HMSS_CPR_CLOCK_RATE; ctrl->ctrl_type = CPR_CTRL_TYPE_CPR3; ctrl->supports_hw_closed_loop = true; ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node, "qcom,cpr-hw-closed-loop"); if (ctrl->mem_acc_regulator) { rc = of_property_read_u32(ctrl->dev->of_node, "qcom,mem-acc-supply-threshold-voltage", &ctrl->mem_acc_threshold_volt); if (rc) { cpr3_err(ctrl, "error reading property qcom,mem-acc-supply-threshold-voltage, rc=%d\n", rc); return rc; } ctrl->mem_acc_threshold_volt = CPR3_ROUND(ctrl->mem_acc_threshold_volt, ctrl->step_volt); rc = of_property_read_u32_array(ctrl->dev->of_node, "qcom,mem-acc-supply-corner-map", &ctrl->mem_acc_corner_map[CPR3_MEM_ACC_LOW_CORNER], CPR3_MEM_ACC_CORNERS); if (rc) { cpr3_err(ctrl, "error reading qcom,mem-acc-supply-corner-map, rc=%d\n", rc); return rc; } } return 0; } static int cpr3_hmss_regulator_suspend(struct platform_device *pdev, pm_message_t state) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_suspend(ctrl); } static int cpr3_hmss_regulator_resume(struct platform_device *pdev) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_resume(ctrl); } /* Data corresponds to the SoC revision */ static struct of_device_id cpr_regulator_match_table[] = { { .compatible = "qcom,cpr3-msm8996-v1-hmss-regulator", .data = (void *)1 }, { .compatible = "qcom,cpr3-msm8996-v2-hmss-regulator", .data = (void *)2 }, { .compatible = "qcom,cpr3-msm8996-v3-hmss-regulator", .data = (void *)3 }, { .compatible = "qcom,cpr3-msm8996-hmss-regulator", .data = (void *)3 }, {} }; static int cpr3_hmss_regulator_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct of_device_id *match; struct cpr3_controller *ctrl; struct cpr3_regulator *vreg; int i, j, rc; if (!dev->of_node) { dev_err(dev, "Device tree node is missing\n"); return -EINVAL; } ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; ctrl->dev = dev; /* Set to false later if anything precludes CPR operation. */ ctrl->cpr_allowed_hw = true; rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name", &ctrl->name); if (rc) { cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n", rc); return rc; } match = of_match_node(cpr_regulator_match_table, dev->of_node); if (match) ctrl->soc_revision = (uintptr_t)match->data; else cpr3_err(ctrl, "could not find compatible string match\n"); rc = cpr3_map_fuse_base(ctrl, pdev); if (rc) { cpr3_err(ctrl, "could not map fuse base address\n"); return rc; } rc = cpr3_allocate_threads(ctrl, MSM8996_HMSS_POWER_CLUSTER_THREAD_ID, MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID); if (rc) { cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n", rc); return rc; } if (ctrl->thread_count < 1) { cpr3_err(ctrl, "thread nodes are missing\n"); return -EINVAL; } rc = cpr3_hmss_init_controller(ctrl); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n", rc); return rc; } for (i = 0; i < ctrl->thread_count; i++) { rc = cpr3_hmss_init_thread(&ctrl->thread[i]); if (rc) { cpr3_err(ctrl, "thread %u initialization failed, rc=%d\n", ctrl->thread[i].thread_id, rc); return rc; } for (j = 0; j < ctrl->thread[i].vreg_count; j++) { vreg = &ctrl->thread[i].vreg[j]; rc = cpr3_hmss_init_regulator(vreg); if (rc) { cpr3_err(vreg, "regulator initialization failed, rc=%d\n", rc); return rc; } } } rc = cpr3_hmss_init_aging(ctrl); if (rc) { cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n", rc); return rc; } platform_set_drvdata(pdev, ctrl); return cpr3_regulator_register(pdev, ctrl); } static int cpr3_hmss_regulator_remove(struct platform_device *pdev) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_unregister(ctrl); } static struct platform_driver cpr3_hmss_regulator_driver = { .driver = { .name = "qcom,cpr3-hmss-regulator", .of_match_table = cpr_regulator_match_table, .owner = THIS_MODULE, }, .probe = cpr3_hmss_regulator_probe, .remove = cpr3_hmss_regulator_remove, .suspend = cpr3_hmss_regulator_suspend, .resume = cpr3_hmss_regulator_resume, }; static int cpr_regulator_init(void) { return platform_driver_register(&cpr3_hmss_regulator_driver); } static void cpr_regulator_exit(void) { platform_driver_unregister(&cpr3_hmss_regulator_driver); } MODULE_DESCRIPTION("CPR3 HMSS regulator driver"); MODULE_LICENSE("GPL v2"); arch_initcall(cpr_regulator_init); module_exit(cpr_regulator_exit);