/* * Designware application register space functions for Keystone PCI controller * * Copyright (C) 2013-2014 Texas Instruments., Ltd. * http://www.ti.com * * Author: Murali Karicheri * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include "pcie-designware.h" #include "pci-keystone.h" /* Application register defines */ #define LTSSM_EN_VAL 1 #define LTSSM_STATE_MASK 0x1f #define LTSSM_STATE_L0 0x11 #define DBI_CS2_EN_VAL 0x20 #define OB_XLAT_EN_VAL 2 /* Application registers */ #define CMD_STATUS 0x004 #define CFG_SETUP 0x008 #define OB_SIZE 0x030 #define CFG_PCIM_WIN_SZ_IDX 3 #define CFG_PCIM_WIN_CNT 32 #define SPACE0_REMOTE_CFG_OFFSET 0x1000 #define OB_OFFSET_INDEX(n) (0x200 + (8 * n)) #define OB_OFFSET_HI(n) (0x204 + (8 * n)) /* IRQ register defines */ #define IRQ_EOI 0x050 #define IRQ_STATUS 0x184 #define IRQ_ENABLE_SET 0x188 #define IRQ_ENABLE_CLR 0x18c #define MSI_IRQ 0x054 #define MSI0_IRQ_STATUS 0x104 #define MSI0_IRQ_ENABLE_SET 0x108 #define MSI0_IRQ_ENABLE_CLR 0x10c #define IRQ_STATUS 0x184 #define MSI_IRQ_OFFSET 4 /* Config space registers */ #define DEBUG0 0x728 #define to_keystone_pcie(x) container_of(x, struct keystone_pcie, pp) static inline struct pcie_port *sys_to_pcie(struct pci_sys_data *sys) { return sys->private_data; } static inline void update_reg_offset_bit_pos(u32 offset, u32 *reg_offset, u32 *bit_pos) { *reg_offset = offset % 8; *bit_pos = offset >> 3; } u32 ks_dw_pcie_get_msi_addr(struct pcie_port *pp) { struct keystone_pcie *ks_pcie = to_keystone_pcie(pp); return ks_pcie->app.start + MSI_IRQ; } void ks_dw_pcie_handle_msi_irq(struct keystone_pcie *ks_pcie, int offset) { struct pcie_port *pp = &ks_pcie->pp; u32 pending, vector; int src, virq; pending = readl(ks_pcie->va_app_base + MSI0_IRQ_STATUS + (offset << 4)); /* * MSI0 status bit 0-3 shows vectors 0, 8, 16, 24, MSI1 status bit * shows 1, 9, 17, 25 and so forth */ for (src = 0; src < 4; src++) { if (BIT(src) & pending) { vector = offset + (src << 3); virq = irq_linear_revmap(pp->irq_domain, vector); dev_dbg(pp->dev, "irq: bit %d, vector %d, virq %d\n", src, vector, virq); generic_handle_irq(virq); } } } static void ks_dw_pcie_msi_irq_ack(struct irq_data *d) { u32 offset, reg_offset, bit_pos; struct keystone_pcie *ks_pcie; unsigned int irq = d->irq; struct msi_desc *msi; struct pcie_port *pp; msi = irq_get_msi_desc(irq); pp = sys_to_pcie(msi->dev->bus->sysdata); ks_pcie = to_keystone_pcie(pp); offset = irq - irq_linear_revmap(pp->irq_domain, 0); update_reg_offset_bit_pos(offset, ®_offset, &bit_pos); writel(BIT(bit_pos), ks_pcie->va_app_base + MSI0_IRQ_STATUS + (reg_offset << 4)); writel(reg_offset + MSI_IRQ_OFFSET, ks_pcie->va_app_base + IRQ_EOI); } void ks_dw_pcie_msi_set_irq(struct pcie_port *pp, int irq) { u32 reg_offset, bit_pos; struct keystone_pcie *ks_pcie = to_keystone_pcie(pp); update_reg_offset_bit_pos(irq, ®_offset, &bit_pos); writel(BIT(bit_pos), ks_pcie->va_app_base + MSI0_IRQ_ENABLE_SET + (reg_offset << 4)); } void ks_dw_pcie_msi_clear_irq(struct pcie_port *pp, int irq) { u32 reg_offset, bit_pos; struct keystone_pcie *ks_pcie = to_keystone_pcie(pp); update_reg_offset_bit_pos(irq, ®_offset, &bit_pos); writel(BIT(bit_pos), ks_pcie->va_app_base + MSI0_IRQ_ENABLE_CLR + (reg_offset << 4)); } static void ks_dw_pcie_msi_irq_mask(struct irq_data *d) { struct keystone_pcie *ks_pcie; unsigned int irq = d->irq; struct msi_desc *msi; struct pcie_port *pp; u32 offset; msi = irq_get_msi_desc(irq); pp = sys_to_pcie(msi->dev->bus->sysdata); ks_pcie = to_keystone_pcie(pp); offset = irq - irq_linear_revmap(pp->irq_domain, 0); /* Mask the end point if PVM implemented */ if (IS_ENABLED(CONFIG_PCI_MSI)) { if (msi->msi_attrib.maskbit) mask_msi_irq(d); } ks_dw_pcie_msi_clear_irq(pp, offset); } static void ks_dw_pcie_msi_irq_unmask(struct irq_data *d) { struct keystone_pcie *ks_pcie; unsigned int irq = d->irq; struct msi_desc *msi; struct pcie_port *pp; u32 offset; msi = irq_get_msi_desc(irq); pp = sys_to_pcie(msi->dev->bus->sysdata); ks_pcie = to_keystone_pcie(pp); offset = irq - irq_linear_revmap(pp->irq_domain, 0); /* Mask the end point if PVM implemented */ if (IS_ENABLED(CONFIG_PCI_MSI)) { if (msi->msi_attrib.maskbit) unmask_msi_irq(d); } ks_dw_pcie_msi_set_irq(pp, offset); } static struct irq_chip ks_dw_pcie_msi_irq_chip = { .name = "Keystone-PCIe-MSI-IRQ", .irq_ack = ks_dw_pcie_msi_irq_ack, .irq_mask = ks_dw_pcie_msi_irq_mask, .irq_unmask = ks_dw_pcie_msi_irq_unmask, }; static int ks_dw_pcie_msi_map(struct irq_domain *domain, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_and_handler(irq, &ks_dw_pcie_msi_irq_chip, handle_level_irq); irq_set_chip_data(irq, domain->host_data); set_irq_flags(irq, IRQF_VALID); return 0; } const struct irq_domain_ops ks_dw_pcie_msi_domain_ops = { .map = ks_dw_pcie_msi_map, }; int ks_dw_pcie_msi_host_init(struct pcie_port *pp, struct msi_controller *chip) { struct keystone_pcie *ks_pcie = to_keystone_pcie(pp); int i; pp->irq_domain = irq_domain_add_linear(ks_pcie->msi_intc_np, MAX_MSI_IRQS, &ks_dw_pcie_msi_domain_ops, chip); if (!pp->irq_domain) { dev_err(pp->dev, "irq domain init failed\n"); return -ENXIO; } for (i = 0; i < MAX_MSI_IRQS; i++) irq_create_mapping(pp->irq_domain, i); return 0; } void ks_dw_pcie_enable_legacy_irqs(struct keystone_pcie *ks_pcie) { int i; for (i = 0; i < MAX_LEGACY_IRQS; i++) writel(0x1, ks_pcie->va_app_base + IRQ_ENABLE_SET + (i << 4)); } void ks_dw_pcie_handle_legacy_irq(struct keystone_pcie *ks_pcie, int offset) { struct pcie_port *pp = &ks_pcie->pp; u32 pending; int virq; pending = readl(ks_pcie->va_app_base + IRQ_STATUS + (offset << 4)); if (BIT(0) & pending) { virq = irq_linear_revmap(ks_pcie->legacy_irq_domain, offset); dev_dbg(pp->dev, ": irq: irq_offset %d, virq %d\n", offset, virq); generic_handle_irq(virq); } /* EOI the INTx interrupt */ writel(offset, ks_pcie->va_app_base + IRQ_EOI); } static void ks_dw_pcie_ack_legacy_irq(struct irq_data *d) { } static void ks_dw_pcie_mask_legacy_irq(struct irq_data *d) { } static void ks_dw_pcie_unmask_legacy_irq(struct irq_data *d) { } static struct irq_chip ks_dw_pcie_legacy_irq_chip = { .name = "Keystone-PCI-Legacy-IRQ", .irq_ack = ks_dw_pcie_ack_legacy_irq, .irq_mask = ks_dw_pcie_mask_legacy_irq, .irq_unmask = ks_dw_pcie_unmask_legacy_irq, }; static int ks_dw_pcie_init_legacy_irq_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw_irq) { irq_set_chip_and_handler(irq, &ks_dw_pcie_legacy_irq_chip, handle_level_irq); irq_set_chip_data(irq, d->host_data); set_irq_flags(irq, IRQF_VALID); return 0; } static const struct irq_domain_ops ks_dw_pcie_legacy_irq_domain_ops = { .map = ks_dw_pcie_init_legacy_irq_map, .xlate = irq_domain_xlate_onetwocell, }; /** * ks_dw_pcie_set_dbi_mode() - Set DBI mode to access overlaid BAR mask * registers * * Since modification of dbi_cs2 involves different clock domain, read the * status back to ensure the transition is complete. */ static void ks_dw_pcie_set_dbi_mode(void __iomem *reg_virt) { u32 val; writel(DBI_CS2_EN_VAL | readl(reg_virt + CMD_STATUS), reg_virt + CMD_STATUS); do { val = readl(reg_virt + CMD_STATUS); } while (!(val & DBI_CS2_EN_VAL)); } /** * ks_dw_pcie_clear_dbi_mode() - Disable DBI mode * * Since modification of dbi_cs2 involves different clock domain, read the * status back to ensure the transition is complete. */ static void ks_dw_pcie_clear_dbi_mode(void __iomem *reg_virt) { u32 val; writel(~DBI_CS2_EN_VAL & readl(reg_virt + CMD_STATUS), reg_virt + CMD_STATUS); do { val = readl(reg_virt + CMD_STATUS); } while (val & DBI_CS2_EN_VAL); } void ks_dw_pcie_setup_rc_app_regs(struct keystone_pcie *ks_pcie) { struct pcie_port *pp = &ks_pcie->pp; u32 start = pp->mem.start, end = pp->mem.end; int i, tr_size; /* Disable BARs for inbound access */ ks_dw_pcie_set_dbi_mode(ks_pcie->va_app_base); writel(0, pp->dbi_base + PCI_BASE_ADDRESS_0); writel(0, pp->dbi_base + PCI_BASE_ADDRESS_1); ks_dw_pcie_clear_dbi_mode(ks_pcie->va_app_base); /* Set outbound translation size per window division */ writel(CFG_PCIM_WIN_SZ_IDX & 0x7, ks_pcie->va_app_base + OB_SIZE); tr_size = (1 << (CFG_PCIM_WIN_SZ_IDX & 0x7)) * SZ_1M; /* Using Direct 1:1 mapping of RC <-> PCI memory space */ for (i = 0; (i < CFG_PCIM_WIN_CNT) && (start < end); i++) { writel(start | 1, ks_pcie->va_app_base + OB_OFFSET_INDEX(i)); writel(0, ks_pcie->va_app_base + OB_OFFSET_HI(i)); start += tr_size; } /* Enable OB translation */ writel(OB_XLAT_EN_VAL | readl(ks_pcie->va_app_base + CMD_STATUS), ks_pcie->va_app_base + CMD_STATUS); } /** * ks_pcie_cfg_setup() - Set up configuration space address for a device * * @ks_pcie: ptr to keystone_pcie structure * @bus: Bus number the device is residing on * @devfn: device, function number info * * Forms and returns the address of configuration space mapped in PCIESS * address space 0. Also configures CFG_SETUP for remote configuration space * access. * * The address space has two regions to access configuration - local and remote. * We access local region for bus 0 (as RC is attached on bus 0) and remote * region for others with TYPE 1 access when bus > 1. As for device on bus = 1, * we will do TYPE 0 access as it will be on our secondary bus (logical). * CFG_SETUP is needed only for remote configuration access. */ static void __iomem *ks_pcie_cfg_setup(struct keystone_pcie *ks_pcie, u8 bus, unsigned int devfn) { u8 device = PCI_SLOT(devfn), function = PCI_FUNC(devfn); struct pcie_port *pp = &ks_pcie->pp; u32 regval; if (bus == 0) return pp->dbi_base; regval = (bus << 16) | (device << 8) | function; /* * Since Bus#1 will be a virtual bus, we need to have TYPE0 * access only. * TYPE 1 */ if (bus != 1) regval |= BIT(24); writel(regval, ks_pcie->va_app_base + CFG_SETUP); return pp->va_cfg0_base; } int ks_dw_pcie_rd_other_conf(struct pcie_port *pp, struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct keystone_pcie *ks_pcie = to_keystone_pcie(pp); u8 bus_num = bus->number; void __iomem *addr; addr = ks_pcie_cfg_setup(ks_pcie, bus_num, devfn); return dw_pcie_cfg_read(addr + (where & ~0x3), where, size, val); } int ks_dw_pcie_wr_other_conf(struct pcie_port *pp, struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct keystone_pcie *ks_pcie = to_keystone_pcie(pp); u8 bus_num = bus->number; void __iomem *addr; addr = ks_pcie_cfg_setup(ks_pcie, bus_num, devfn); return dw_pcie_cfg_write(addr + (where & ~0x3), where, size, val); } /** * ks_dw_pcie_v3_65_scan_bus() - keystone scan_bus post initialization * * This sets BAR0 to enable inbound access for MSI_IRQ register */ void ks_dw_pcie_v3_65_scan_bus(struct pcie_port *pp) { struct keystone_pcie *ks_pcie = to_keystone_pcie(pp); /* Configure and set up BAR0 */ ks_dw_pcie_set_dbi_mode(ks_pcie->va_app_base); /* Enable BAR0 */ writel(1, pp->dbi_base + PCI_BASE_ADDRESS_0); writel(SZ_4K - 1, pp->dbi_base + PCI_BASE_ADDRESS_0); ks_dw_pcie_clear_dbi_mode(ks_pcie->va_app_base); /* * For BAR0, just setting bus address for inbound writes (MSI) should * be sufficient. Use physical address to avoid any conflicts. */ writel(ks_pcie->app.start, pp->dbi_base + PCI_BASE_ADDRESS_0); } /** * ks_dw_pcie_link_up() - Check if link up */ int ks_dw_pcie_link_up(struct pcie_port *pp) { u32 val = readl(pp->dbi_base + DEBUG0); return (val & LTSSM_STATE_MASK) == LTSSM_STATE_L0; } void ks_dw_pcie_initiate_link_train(struct keystone_pcie *ks_pcie) { u32 val; /* Disable Link training */ val = readl(ks_pcie->va_app_base + CMD_STATUS); val &= ~LTSSM_EN_VAL; writel(LTSSM_EN_VAL | val, ks_pcie->va_app_base + CMD_STATUS); /* Initiate Link Training */ val = readl(ks_pcie->va_app_base + CMD_STATUS); writel(LTSSM_EN_VAL | val, ks_pcie->va_app_base + CMD_STATUS); } /** * ks_dw_pcie_host_init() - initialize host for v3_65 dw hardware * * Ioremap the register resources, initialize legacy irq domain * and call dw_pcie_v3_65_host_init() API to initialize the Keystone * PCI host controller. */ int __init ks_dw_pcie_host_init(struct keystone_pcie *ks_pcie, struct device_node *msi_intc_np) { struct pcie_port *pp = &ks_pcie->pp; struct platform_device *pdev = to_platform_device(pp->dev); struct resource *res; /* Index 0 is the config reg. space address */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); pp->dbi_base = devm_ioremap_resource(pp->dev, res); if (IS_ERR(pp->dbi_base)) return PTR_ERR(pp->dbi_base); /* * We set these same and is used in pcie rd/wr_other_conf * functions */ pp->va_cfg0_base = pp->dbi_base + SPACE0_REMOTE_CFG_OFFSET; pp->va_cfg1_base = pp->va_cfg0_base; /* Index 1 is the application reg. space address */ res = platform_get_resource(pdev, IORESOURCE_MEM, 1); ks_pcie->app = *res; ks_pcie->va_app_base = devm_ioremap_resource(pp->dev, res); if (IS_ERR(ks_pcie->va_app_base)) return PTR_ERR(ks_pcie->va_app_base); /* Create legacy IRQ domain */ ks_pcie->legacy_irq_domain = irq_domain_add_linear(ks_pcie->legacy_intc_np, MAX_LEGACY_IRQS, &ks_dw_pcie_legacy_irq_domain_ops, NULL); if (!ks_pcie->legacy_irq_domain) { dev_err(pp->dev, "Failed to add irq domain for legacy irqs\n"); return -EINVAL; } return dw_pcie_host_init(pp); }