/* Copyright (c) 2011-2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEVICE "wcnss_wlan" #define CTRL_DEVICE "wcnss_ctrl" #define VERSION "1.01" #define WCNSS_PIL_DEVICE "wcnss" #define WCNSS_PINCTRL_STATE_DEFAULT "wcnss_default" #define WCNSS_PINCTRL_STATE_SLEEP "wcnss_sleep" #define WCNSS_PINCTRL_GPIO_STATE_DEFAULT "wcnss_gpio_default" #define WCNSS_DISABLE_PC_LATENCY 100 #define WCNSS_ENABLE_PC_LATENCY PM_QOS_DEFAULT_VALUE #define WCNSS_PM_QOS_TIMEOUT 15000 #define IS_CAL_DATA_PRESENT 0 #define WAIT_FOR_CBC_IND 2 /* module params */ #define WCNSS_CONFIG_UNSPECIFIED (-1) #define UINT32_MAX (0xFFFFFFFFU) static int has_48mhz_xo = WCNSS_CONFIG_UNSPECIFIED; module_param(has_48mhz_xo, int, S_IWUSR | S_IRUGO); MODULE_PARM_DESC(has_48mhz_xo, "Is an external 48 MHz XO present"); static int has_calibrated_data = WCNSS_CONFIG_UNSPECIFIED; module_param(has_calibrated_data, int, S_IWUSR | S_IRUGO); MODULE_PARM_DESC(has_calibrated_data, "whether calibrated data file available"); static int has_autodetect_xo = WCNSS_CONFIG_UNSPECIFIED; module_param(has_autodetect_xo, int, S_IWUSR | S_IRUGO); MODULE_PARM_DESC(has_autodetect_xo, "Perform auto detect to configure IRIS XO"); static int do_not_cancel_vote = WCNSS_CONFIG_UNSPECIFIED; module_param(do_not_cancel_vote, int, S_IWUSR | S_IRUGO); MODULE_PARM_DESC(do_not_cancel_vote, "Do not cancel votes for wcnss"); static DEFINE_SPINLOCK(reg_spinlock); #define RIVA_SPARE_OFFSET 0x0b4 #define RIVA_SUSPEND_BIT BIT(24) #define CCU_RIVA_INVALID_ADDR_OFFSET 0x100 #define CCU_RIVA_LAST_ADDR0_OFFSET 0x104 #define CCU_RIVA_LAST_ADDR1_OFFSET 0x108 #define CCU_RIVA_LAST_ADDR2_OFFSET 0x10c #define PRONTO_PMU_SPARE_OFFSET 0x1088 #define PRONTO_PMU_COM_GDSCR_OFFSET 0x0024 #define PRONTO_PMU_COM_GDSCR_SW_COLLAPSE BIT(0) #define PRONTO_PMU_COM_GDSCR_HW_CTRL BIT(1) #define PRONTO_PMU_WLAN_BCR_OFFSET 0x0050 #define PRONTO_PMU_WLAN_BCR_BLK_ARES BIT(0) #define PRONTO_PMU_WLAN_GDSCR_OFFSET 0x0054 #define PRONTO_PMU_WLAN_GDSCR_SW_COLLAPSE BIT(0) #define PRONTO_PMU_WDOG_CTL 0x0068 #define PRONTO_PMU_CBCR_OFFSET 0x0008 #define PRONTO_PMU_CBCR_CLK_EN BIT(0) #define PRONTO_PMU_COM_CPU_CBCR_OFFSET 0x0030 #define PRONTO_PMU_COM_AHB_CBCR_OFFSET 0x0034 #define PRONTO_PMU_WLAN_AHB_CBCR_OFFSET 0x0074 #define PRONTO_PMU_WLAN_AHB_CBCR_CLK_EN BIT(0) #define PRONTO_PMU_WLAN_AHB_CBCR_CLK_OFF BIT(31) #define PRONTO_PMU_CPU_AHB_CMD_RCGR_OFFSET 0x0120 #define PRONTO_PMU_CPU_AHB_CMD_RCGR_ROOT_EN BIT(1) #define PRONTO_PMU_CFG_OFFSET 0x1004 #define PRONTO_PMU_COM_CSR_OFFSET 0x1040 #define PRONTO_PMU_SOFT_RESET_OFFSET 0x104C #define A2XB_CFG_OFFSET 0x00 #define A2XB_INT_SRC_OFFSET 0x0c #define A2XB_TSTBUS_CTRL_OFFSET 0x14 #define A2XB_TSTBUS_OFFSET 0x18 #define A2XB_ERR_INFO_OFFSET 0x1c #define A2XB_FIFO_FILL_OFFSET 0x07 #define A2XB_READ_FIFO_FILL_MASK 0x3F #define A2XB_CMD_FIFO_FILL_MASK 0x0F #define A2XB_WRITE_FIFO_FILL_MASK 0x1F #define A2XB_FIFO_EMPTY 0x2 #define A2XB_FIFO_COUNTER 0xA #define WCNSS_TSTBUS_CTRL_EN BIT(0) #define WCNSS_TSTBUS_CTRL_AXIM (0x02 << 1) #define WCNSS_TSTBUS_CTRL_CMDFIFO (0x03 << 1) #define WCNSS_TSTBUS_CTRL_WRFIFO (0x04 << 1) #define WCNSS_TSTBUS_CTRL_RDFIFO (0x05 << 1) #define WCNSS_TSTBUS_CTRL_CTRL (0x07 << 1) #define WCNSS_TSTBUS_CTRL_AXIM_CFG0 (0x00 << 8) #define WCNSS_TSTBUS_CTRL_AXIM_CFG1 (0x01 << 8) #define WCNSS_TSTBUS_CTRL_CTRL_CFG0 (0x00 << 28) #define WCNSS_TSTBUS_CTRL_CTRL_CFG1 (0x01 << 28) #define CCU_PRONTO_INVALID_ADDR_OFFSET 0x08 #define CCU_PRONTO_LAST_ADDR0_OFFSET 0x0c #define CCU_PRONTO_LAST_ADDR1_OFFSET 0x10 #define CCU_PRONTO_LAST_ADDR2_OFFSET 0x14 #define CCU_PRONTO_AOWBR_ERR_ADDR_OFFSET 0x28 #define CCU_PRONTO_AOWBR_TIMEOUT_REG_OFFSET 0xcc #define CCU_PRONTO_AOWBR_ERR_TIMEOUT_OFFSET 0xd0 #define CCU_PRONTO_A2AB_ERR_ADDR_OFFSET 0x18 #define PRONTO_SAW2_SPM_STS_OFFSET 0x0c #define PRONTO_SAW2_SPM_CTL 0x30 #define PRONTO_SAW2_SAW2_VERSION 0xFD0 #define PRONTO_SAW2_MAJOR_VER_OFFSET 0x1C #define PRONTO_SAW2_MAJOR_VER_3 0x3 #define PRONTO_SAW2_SPM_SLP_SEQ 0x80 #define PRONTO_SAW2_SPM_SLP_SEQ_2 0x400 #define PRONTO_SAW2_SPM_SLP_SEQ_OFFSET 0x04 #define PRONTO_SAW2_SPM_SLP_SEQ_COUNT 0x08 #define PRONTO_PLL_STATUS_OFFSET 0x1c #define PRONTO_PLL_MODE_OFFSET 0x1c0 #define MCU_APB2PHY_STATUS_OFFSET 0xec #define MCU_CBR_CCAHB_ERR_OFFSET 0x380 #define MCU_CBR_CAHB_ERR_OFFSET 0x384 #define MCU_CBR_CCAHB_TIMEOUT_OFFSET 0x388 #define MCU_CBR_CAHB_TIMEOUT_OFFSET 0x38c #define MCU_DBR_CDAHB_ERR_OFFSET 0x390 #define MCU_DBR_DAHB_ERR_OFFSET 0x394 #define MCU_DBR_CDAHB_TIMEOUT_OFFSET 0x398 #define MCU_DBR_DAHB_TIMEOUT_OFFSET 0x39c #define MCU_FDBR_CDAHB_ERR_OFFSET 0x3a0 #define MCU_FDBR_FDAHB_ERR_OFFSET 0x3a4 #define MCU_FDBR_CDAHB_TIMEOUT_OFFSET 0x3a8 #define MCU_FDBR_FDAHB_TIMEOUT_OFFSET 0x3ac #define WCNSS_DEF_WLAN_RX_BUFF_COUNT 1024 #define WCNSS_CTRL_CHANNEL "WCNSS_CTRL" #define WCNSS_MAX_FRAME_SIZE (4*1024) #define WCNSS_VERSION_LEN 30 #define WCNSS_MAX_BUILD_VER_LEN 256 #define WCNSS_MAX_CMD_LEN (128) #define WCNSS_MIN_CMD_LEN (3) #define WCNSS_MIN_SERIAL_LEN (6) /* control messages from userspace */ #define WCNSS_USR_CTRL_MSG_START 0x00000000 #define WCNSS_USR_SERIAL_NUM (WCNSS_USR_CTRL_MSG_START + 1) #define WCNSS_USR_HAS_CAL_DATA (WCNSS_USR_CTRL_MSG_START + 2) #define WCNSS_USR_WLAN_MAC_ADDR (WCNSS_USR_CTRL_MSG_START + 3) #define MAC_ADDRESS_STR "%02x:%02x:%02x:%02x:%02x:%02x" /* message types */ #define WCNSS_CTRL_MSG_START 0x01000000 #define WCNSS_VERSION_REQ (WCNSS_CTRL_MSG_START + 0) #define WCNSS_VERSION_RSP (WCNSS_CTRL_MSG_START + 1) #define WCNSS_NVBIN_DNLD_REQ (WCNSS_CTRL_MSG_START + 2) #define WCNSS_NVBIN_DNLD_RSP (WCNSS_CTRL_MSG_START + 3) #define WCNSS_CALDATA_UPLD_REQ (WCNSS_CTRL_MSG_START + 4) #define WCNSS_CALDATA_UPLD_RSP (WCNSS_CTRL_MSG_START + 5) #define WCNSS_CALDATA_DNLD_REQ (WCNSS_CTRL_MSG_START + 6) #define WCNSS_CALDATA_DNLD_RSP (WCNSS_CTRL_MSG_START + 7) #define WCNSS_VBATT_LEVEL_IND (WCNSS_CTRL_MSG_START + 8) #define WCNSS_BUILD_VER_REQ (WCNSS_CTRL_MSG_START + 9) #define WCNSS_BUILD_VER_RSP (WCNSS_CTRL_MSG_START + 10) #define WCNSS_PM_CONFIG_REQ (WCNSS_CTRL_MSG_START + 11) #define WCNSS_CBC_COMPLETE_IND (WCNSS_CTRL_MSG_START + 12) /* max 20mhz channel count */ #define WCNSS_MAX_CH_NUM 45 #define WCNSS_MAX_PIL_RETRY 2 #define VALID_VERSION(version) \ ((strncmp(version, "INVALID", WCNSS_VERSION_LEN)) ? 1 : 0) #define FW_CALDATA_CAPABLE() \ ((penv->fw_major >= 1) && (penv->fw_minor >= 5) ? 1 : 0) static int wcnss_pinctrl_set_state(bool active); struct smd_msg_hdr { unsigned int msg_type; unsigned int msg_len; }; struct wcnss_version { struct smd_msg_hdr hdr; unsigned char major; unsigned char minor; unsigned char version; unsigned char revision; }; struct wcnss_pmic_dump { char reg_name[10]; u16 reg_addr; }; static int wcnss_notif_cb(struct notifier_block *this, unsigned long code, void *ss_handle); static struct notifier_block wnb = { .notifier_call = wcnss_notif_cb, }; #define NVBIN_FILE "wlan/prima/WCNSS_qcom_wlan_nv.bin" /* On SMD channel 4K of maximum data can be transferred, including message * header, so NV fragment size as next multiple of 1Kb is 3Kb. */ #define NV_FRAGMENT_SIZE 3072 #define MAX_CALIBRATED_DATA_SIZE (64*1024) #define LAST_FRAGMENT (1 << 0) #define MESSAGE_TO_FOLLOW (1 << 1) #define CAN_RECEIVE_CALDATA (1 << 15) #define WCNSS_RESP_SUCCESS 1 #define WCNSS_RESP_FAIL 0 /* Macro to find the total number fragments of the NV bin Image */ #define TOTALFRAGMENTS(x) (((x % NV_FRAGMENT_SIZE) == 0) ? \ (x / NV_FRAGMENT_SIZE) : ((x / NV_FRAGMENT_SIZE) + 1)) struct nvbin_dnld_req_params { /* Fragment sequence number of the NV bin Image. NV Bin Image * might not fit into one message due to size limitation of * the SMD channel FIFO so entire NV blob is chopped into * multiple fragments starting with seqeunce number 0. The * last fragment is indicated by marking is_last_fragment field * to 1. At receiving side, NV blobs would be concatenated * together without any padding bytes in between. */ unsigned short frag_number; /* bit 0: When set to 1 it indicates that no more fragments will * be sent. * bit 1: When set, a new message will be followed by this message * bit 2- bit 14: Reserved * bit 15: when set, it indicates that the sender is capable of * receiving Calibrated data. */ unsigned short msg_flags; /* NV Image size (number of bytes) */ unsigned int nvbin_buffer_size; /* Following the 'nvbin_buffer_size', there should be * nvbin_buffer_size bytes of NV bin Image i.e. * uint8[nvbin_buffer_size]. */ }; struct nvbin_dnld_req_msg { /* Note: The length specified in nvbin_dnld_req_msg messages * should be hdr.msg_len = sizeof(nvbin_dnld_req_msg) + * nvbin_buffer_size. */ struct smd_msg_hdr hdr; struct nvbin_dnld_req_params dnld_req_params; }; struct cal_data_params { /* The total size of the calibrated data, including all the * fragments. */ unsigned int total_size; unsigned short frag_number; /* bit 0: When set to 1 it indicates that no more fragments will * be sent. * bit 1: When set, a new message will be followed by this message * bit 2- bit 15: Reserved */ unsigned short msg_flags; /* fragment size */ unsigned int frag_size; /* Following the frag_size, frag_size of fragmented * data will be followed. */ }; struct cal_data_msg { /* The length specified in cal_data_msg should be * hdr.msg_len = sizeof(cal_data_msg) + frag_size */ struct smd_msg_hdr hdr; struct cal_data_params cal_params; }; struct vbatt_level { u32 curr_volt; u32 threshold; }; struct vbatt_message { struct smd_msg_hdr hdr; struct vbatt_level vbatt; }; static struct { struct platform_device *pdev; void *pil; struct resource *mmio_res; struct resource *tx_irq_res; struct resource *rx_irq_res; struct resource *gpios_5wire; const struct dev_pm_ops *pm_ops; int triggered; int smd_channel_ready; u32 wlan_rx_buff_count; int is_vsys_adc_channel; smd_channel_t *smd_ch; unsigned char wcnss_version[WCNSS_VERSION_LEN]; unsigned char fw_major; unsigned char fw_minor; unsigned int serial_number; int thermal_mitigation; enum wcnss_hw_type wcnss_hw_type; void (*tm_notify)(struct device *, int); struct wcnss_wlan_config wlan_config; struct delayed_work wcnss_work; struct delayed_work vbatt_work; struct work_struct wcnssctrl_version_work; struct work_struct wcnss_pm_config_work; struct work_struct wcnssctrl_nvbin_dnld_work; struct work_struct wcnssctrl_rx_work; struct work_struct wcnss_vadc_work; struct wake_lock wcnss_wake_lock; void __iomem *msm_wcnss_base; void __iomem *riva_ccu_base; void __iomem *pronto_a2xb_base; void __iomem *pronto_ccpu_base; void __iomem *pronto_saw2_base; void __iomem *pronto_pll_base; void __iomem *pronto_mcu_base; void __iomem *wlan_tx_status; void __iomem *wlan_tx_phy_aborts; void __iomem *wlan_brdg_err_source; void __iomem *alarms_txctl; void __iomem *alarms_tactl; void __iomem *fiq_reg; int nv_downloaded; int is_cbc_done; unsigned char *fw_cal_data; unsigned char *user_cal_data; int fw_cal_rcvd; int fw_cal_exp_frag; int fw_cal_available; int user_cal_read; int user_cal_available; u32 user_cal_rcvd; int user_cal_exp_size; int device_opened; int iris_xo_mode_set; int fw_vbatt_state; char wlan_nv_macAddr[WLAN_MAC_ADDR_SIZE]; int ctrl_device_opened; struct mutex dev_lock; struct mutex ctrl_lock; wait_queue_head_t read_wait; struct qpnp_adc_tm_btm_param vbat_monitor_params; struct qpnp_adc_tm_chip *adc_tm_dev; struct qpnp_vadc_chip *vadc_dev; struct mutex vbat_monitor_mutex; u16 unsafe_ch_count; u16 unsafe_ch_list[WCNSS_MAX_CH_NUM]; void *wcnss_notif_hdle; struct pinctrl *pinctrl; struct pinctrl_state *wcnss_5wire_active; struct pinctrl_state *wcnss_5wire_suspend; struct pinctrl_state *wcnss_gpio_active; int gpios[WCNSS_WLAN_MAX_GPIO]; int use_pinctrl; u8 is_shutdown; struct pm_qos_request wcnss_pm_qos_request; int pc_disabled; struct delayed_work wcnss_pm_qos_del_req; struct mutex pm_qos_mutex; } *penv = NULL; static ssize_t wcnss_wlan_macaddr_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { char macAddr[WLAN_MAC_ADDR_SIZE]; if (!penv) return -ENODEV; pr_debug("%s: Receive MAC Addr From user space: %s\n", __func__, buf); if (WLAN_MAC_ADDR_SIZE != sscanf(buf, MAC_ADDRESS_STR, (int *)&macAddr[0], (int *)&macAddr[1], (int *)&macAddr[2], (int *)&macAddr[3], (int *)&macAddr[4], (int *)&macAddr[5])) { pr_err("%s: Failed to Copy MAC\n", __func__); return -EINVAL; } memcpy(penv->wlan_nv_macAddr, macAddr, sizeof(penv->wlan_nv_macAddr)); pr_info("%s: Write MAC Addr:" MAC_ADDRESS_STR "\n", __func__, penv->wlan_nv_macAddr[0], penv->wlan_nv_macAddr[1], penv->wlan_nv_macAddr[2], penv->wlan_nv_macAddr[3], penv->wlan_nv_macAddr[4], penv->wlan_nv_macAddr[5]); return count; } static ssize_t wcnss_wlan_macaddr_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!penv) return -ENODEV; return scnprintf(buf, PAGE_SIZE, MAC_ADDRESS_STR, penv->wlan_nv_macAddr[0], penv->wlan_nv_macAddr[1], penv->wlan_nv_macAddr[2], penv->wlan_nv_macAddr[3], penv->wlan_nv_macAddr[4], penv->wlan_nv_macAddr[5]); } static DEVICE_ATTR(wcnss_mac_addr, S_IRUSR | S_IWUSR, wcnss_wlan_macaddr_show, wcnss_wlan_macaddr_store); static ssize_t wcnss_serial_number_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!penv) return -ENODEV; return scnprintf(buf, PAGE_SIZE, "%08X\n", penv->serial_number); } static ssize_t wcnss_serial_number_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int value; if (!penv) return -ENODEV; if (sscanf(buf, "%08X", &value) != 1) return -EINVAL; penv->serial_number = value; return count; } static DEVICE_ATTR(serial_number, S_IRUSR | S_IWUSR, wcnss_serial_number_show, wcnss_serial_number_store); static ssize_t wcnss_thermal_mitigation_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!penv) return -ENODEV; return scnprintf(buf, PAGE_SIZE, "%u\n", penv->thermal_mitigation); } static ssize_t wcnss_thermal_mitigation_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value; if (!penv) return -ENODEV; if (sscanf(buf, "%d", &value) != 1) return -EINVAL; penv->thermal_mitigation = value; if (penv->tm_notify) (penv->tm_notify)(dev, value); return count; } static DEVICE_ATTR(thermal_mitigation, S_IRUSR | S_IWUSR, wcnss_thermal_mitigation_show, wcnss_thermal_mitigation_store); static ssize_t wcnss_version_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!penv) return -ENODEV; return scnprintf(buf, PAGE_SIZE, "%s", penv->wcnss_version); } static DEVICE_ATTR(wcnss_version, S_IRUSR, wcnss_version_show, NULL); /* wcnss_reset_fiq() is invoked when host drivers fails to * communicate with WCNSS over SMD; so logging these registers * helps to know WCNSS failure reason */ void wcnss_riva_log_debug_regs(void) { void __iomem *ccu_reg; u32 reg = 0; ccu_reg = penv->riva_ccu_base + CCU_RIVA_INVALID_ADDR_OFFSET; reg = readl_relaxed(ccu_reg); pr_info_ratelimited("%s: CCU_CCPU_INVALID_ADDR %08x\n", __func__, reg); ccu_reg = penv->riva_ccu_base + CCU_RIVA_LAST_ADDR0_OFFSET; reg = readl_relaxed(ccu_reg); pr_info_ratelimited("%s: CCU_CCPU_LAST_ADDR0 %08x\n", __func__, reg); ccu_reg = penv->riva_ccu_base + CCU_RIVA_LAST_ADDR1_OFFSET; reg = readl_relaxed(ccu_reg); pr_info_ratelimited("%s: CCU_CCPU_LAST_ADDR1 %08x\n", __func__, reg); ccu_reg = penv->riva_ccu_base + CCU_RIVA_LAST_ADDR2_OFFSET; reg = readl_relaxed(ccu_reg); pr_info_ratelimited("%s: CCU_CCPU_LAST_ADDR2 %08x\n", __func__, reg); } EXPORT_SYMBOL(wcnss_riva_log_debug_regs); void wcnss_pronto_is_a2xb_bus_stall(void *tst_addr, u32 fifo_mask, char *type) { u32 iter = 0, reg = 0; u32 axi_fifo_count = 0, axi_fifo_count_last = 0; reg = readl_relaxed(tst_addr); axi_fifo_count = (reg >> A2XB_FIFO_FILL_OFFSET) & fifo_mask; while ((++iter < A2XB_FIFO_COUNTER) && axi_fifo_count) { axi_fifo_count_last = axi_fifo_count; reg = readl_relaxed(tst_addr); axi_fifo_count = (reg >> A2XB_FIFO_FILL_OFFSET) & fifo_mask; if (axi_fifo_count < axi_fifo_count_last) break; } if (iter == A2XB_FIFO_COUNTER) { pr_err("%s data FIFO testbus possibly stalled reg%08x\n", type, reg); } else { pr_err("%s data FIFO tstbus not stalled reg%08x\n", type, reg); } } /* Log pronto debug registers before sending reset interrupt */ void wcnss_pronto_log_debug_regs(void) { void __iomem *reg_addr, *tst_addr, *tst_ctrl_addr; u32 reg = 0, reg2 = 0, reg3 = 0, reg4 = 0, offset_addr = 0; int i; reg_addr = penv->msm_wcnss_base + PRONTO_PMU_SPARE_OFFSET; reg = readl_relaxed(reg_addr); pr_err("PRONTO_PMU_SPARE %08x\n", reg); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_COM_CPU_CBCR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("PRONTO_PMU_COM_CPU_CBCR %08x\n", reg); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_COM_AHB_CBCR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("PRONTO_PMU_COM_AHB_CBCR %08x\n", reg); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_CFG_OFFSET; reg = readl_relaxed(reg_addr); pr_err("PRONTO_PMU_CFG %08x\n", reg); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_COM_CSR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("PRONTO_PMU_COM_CSR %08x\n", reg); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_SOFT_RESET_OFFSET; reg = readl_relaxed(reg_addr); pr_err("PRONTO_PMU_SOFT_RESET %08x\n", reg); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_WDOG_CTL; reg = readl_relaxed(reg_addr); pr_err("PRONTO_PMU_WDOG_CTL %08x\n", reg); reg_addr = penv->pronto_saw2_base + PRONTO_SAW2_SPM_STS_OFFSET; reg = readl_relaxed(reg_addr); pr_err("PRONTO_SAW2_SPM_STS %08x\n", reg); reg_addr = penv->pronto_saw2_base + PRONTO_SAW2_SPM_CTL; reg = readl_relaxed(reg_addr); pr_err("PRONTO_SAW2_SPM_CTL %08x\n", reg); reg_addr = penv->pronto_saw2_base + PRONTO_SAW2_SAW2_VERSION; reg = readl_relaxed(reg_addr); pr_err("PRONTO_SAW2_SAW2_VERSION %08x\n", reg); reg >>= PRONTO_SAW2_MAJOR_VER_OFFSET; if (reg >= PRONTO_SAW2_MAJOR_VER_3) offset_addr = PRONTO_SAW2_SPM_SLP_SEQ_2; else offset_addr = PRONTO_SAW2_SPM_SLP_SEQ; for (i = 0; i <= PRONTO_SAW2_SPM_SLP_SEQ_COUNT; i++) { reg_addr = penv->pronto_saw2_base + offset_addr + (i * PRONTO_SAW2_SPM_SLP_SEQ_OFFSET); reg = readl_relaxed(reg_addr); pr_err("PRONTO_SAW2_SPM_SLP_SEQ_ENTRY_%d %08x\n", i, reg); } reg_addr = penv->pronto_pll_base + PRONTO_PLL_STATUS_OFFSET; reg = readl_relaxed(reg_addr); pr_err("PRONTO_PLL_STATUS %08x\n", reg); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_CPU_AHB_CMD_RCGR_OFFSET; reg4 = readl_relaxed(reg_addr); pr_err("PMU_CPU_CMD_RCGR %08x\n", reg4); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_COM_GDSCR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("PRONTO_PMU_COM_GDSCR %08x\n", reg); reg >>= 31; if (!reg) { pr_err("Cannot log, Pronto common SS is power collapsed\n"); return; } reg &= ~(PRONTO_PMU_COM_GDSCR_SW_COLLAPSE | PRONTO_PMU_COM_GDSCR_HW_CTRL); writel_relaxed(reg, reg_addr); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_CBCR_OFFSET; reg = readl_relaxed(reg_addr); reg |= PRONTO_PMU_CBCR_CLK_EN; writel_relaxed(reg, reg_addr); reg_addr = penv->pronto_a2xb_base + A2XB_CFG_OFFSET; reg = readl_relaxed(reg_addr); pr_err("A2XB_CFG_OFFSET %08x\n", reg); reg_addr = penv->pronto_a2xb_base + A2XB_INT_SRC_OFFSET; reg = readl_relaxed(reg_addr); pr_err("A2XB_INT_SRC_OFFSET %08x\n", reg); reg_addr = penv->pronto_a2xb_base + A2XB_ERR_INFO_OFFSET; reg = readl_relaxed(reg_addr); pr_err("A2XB_ERR_INFO_OFFSET %08x\n", reg); reg_addr = penv->pronto_ccpu_base + CCU_PRONTO_INVALID_ADDR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("CCU_CCPU_INVALID_ADDR %08x\n", reg); reg_addr = penv->pronto_ccpu_base + CCU_PRONTO_LAST_ADDR0_OFFSET; reg = readl_relaxed(reg_addr); pr_err("CCU_CCPU_LAST_ADDR0 %08x\n", reg); reg_addr = penv->pronto_ccpu_base + CCU_PRONTO_LAST_ADDR1_OFFSET; reg = readl_relaxed(reg_addr); pr_err("CCU_CCPU_LAST_ADDR1 %08x\n", reg); reg_addr = penv->pronto_ccpu_base + CCU_PRONTO_LAST_ADDR2_OFFSET; reg = readl_relaxed(reg_addr); pr_err("CCU_CCPU_LAST_ADDR2 %08x\n", reg); reg_addr = penv->pronto_ccpu_base + CCU_PRONTO_AOWBR_ERR_ADDR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("CCU_PRONTO_AOWBR_ERR_ADDR_OFFSET %08x\n", reg); reg_addr = penv->pronto_ccpu_base + CCU_PRONTO_AOWBR_TIMEOUT_REG_OFFSET; reg = readl_relaxed(reg_addr); pr_err("CCU_PRONTO_AOWBR_TIMEOUT_REG_OFFSET %08x\n", reg); reg_addr = penv->pronto_ccpu_base + CCU_PRONTO_AOWBR_ERR_TIMEOUT_OFFSET; reg = readl_relaxed(reg_addr); pr_err("CCU_PRONTO_AOWBR_ERR_TIMEOUT_OFFSET %08x\n", reg); reg_addr = penv->pronto_ccpu_base + CCU_PRONTO_A2AB_ERR_ADDR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("CCU_PRONTO_A2AB_ERR_ADDR_OFFSET %08x\n", reg); tst_addr = penv->pronto_a2xb_base + A2XB_TSTBUS_OFFSET; tst_ctrl_addr = penv->pronto_a2xb_base + A2XB_TSTBUS_CTRL_OFFSET; /* read data FIFO */ reg = 0; reg = reg | WCNSS_TSTBUS_CTRL_EN | WCNSS_TSTBUS_CTRL_RDFIFO; writel_relaxed(reg, tst_ctrl_addr); reg = readl_relaxed(tst_addr); if (!(reg & A2XB_FIFO_EMPTY)) { wcnss_pronto_is_a2xb_bus_stall(tst_addr, A2XB_READ_FIFO_FILL_MASK, "Read"); } else { pr_err("Read data FIFO testbus %08x\n", reg); } /* command FIFO */ reg = 0; reg = reg | WCNSS_TSTBUS_CTRL_EN | WCNSS_TSTBUS_CTRL_CMDFIFO; writel_relaxed(reg, tst_ctrl_addr); reg = readl_relaxed(tst_addr); if (!(reg & A2XB_FIFO_EMPTY)) { wcnss_pronto_is_a2xb_bus_stall(tst_addr, A2XB_CMD_FIFO_FILL_MASK, "Cmd"); } else { pr_err("Command FIFO testbus %08x\n", reg); } /* write data FIFO */ reg = 0; reg = reg | WCNSS_TSTBUS_CTRL_EN | WCNSS_TSTBUS_CTRL_WRFIFO; writel_relaxed(reg, tst_ctrl_addr); reg = readl_relaxed(tst_addr); if (!(reg & A2XB_FIFO_EMPTY)) { wcnss_pronto_is_a2xb_bus_stall(tst_addr, A2XB_WRITE_FIFO_FILL_MASK, "Write"); } else { pr_err("Write data FIFO testbus %08x\n", reg); } /* AXIM SEL CFG0 */ reg = 0; reg = reg | WCNSS_TSTBUS_CTRL_EN | WCNSS_TSTBUS_CTRL_AXIM | WCNSS_TSTBUS_CTRL_AXIM_CFG0; writel_relaxed(reg, tst_ctrl_addr); reg = readl_relaxed(tst_addr); pr_err("AXIM SEL CFG0 testbus %08x\n", reg); /* AXIM SEL CFG1 */ reg = 0; reg = reg | WCNSS_TSTBUS_CTRL_EN | WCNSS_TSTBUS_CTRL_AXIM | WCNSS_TSTBUS_CTRL_AXIM_CFG1; writel_relaxed(reg, tst_ctrl_addr); reg = readl_relaxed(tst_addr); pr_err("AXIM SEL CFG1 testbus %08x\n", reg); /* CTRL SEL CFG0 */ reg = 0; reg = reg | WCNSS_TSTBUS_CTRL_EN | WCNSS_TSTBUS_CTRL_CTRL | WCNSS_TSTBUS_CTRL_CTRL_CFG0; writel_relaxed(reg, tst_ctrl_addr); reg = readl_relaxed(tst_addr); pr_err("CTRL SEL CFG0 testbus %08x\n", reg); /* CTRL SEL CFG1 */ reg = 0; reg = reg | WCNSS_TSTBUS_CTRL_EN | WCNSS_TSTBUS_CTRL_CTRL | WCNSS_TSTBUS_CTRL_CTRL_CFG1; writel_relaxed(reg, tst_ctrl_addr); reg = readl_relaxed(tst_addr); pr_err("CTRL SEL CFG1 testbus %08x\n", reg); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_WLAN_BCR_OFFSET; reg = readl_relaxed(reg_addr); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_WLAN_GDSCR_OFFSET; reg2 = readl_relaxed(reg_addr); reg_addr = penv->msm_wcnss_base + PRONTO_PMU_WLAN_AHB_CBCR_OFFSET; reg3 = readl_relaxed(reg_addr); pr_err("PMU_WLAN_AHB_CBCR %08x\n", reg3); msleep(50); if ((reg & PRONTO_PMU_WLAN_BCR_BLK_ARES) || (reg2 & PRONTO_PMU_WLAN_GDSCR_SW_COLLAPSE) || (!(reg4 & PRONTO_PMU_CPU_AHB_CMD_RCGR_ROOT_EN)) || (reg3 & PRONTO_PMU_WLAN_AHB_CBCR_CLK_OFF) || (!(reg3 & PRONTO_PMU_WLAN_AHB_CBCR_CLK_EN))) { pr_err("Cannot log, wlan domain is power collapsed\n"); return; } reg = readl_relaxed(penv->wlan_tx_phy_aborts); pr_err("WLAN_TX_PHY_ABORTS %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_APB2PHY_STATUS_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_APB2PHY_STATUS %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_CBR_CCAHB_ERR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_CBR_CCAHB_ERR %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_CBR_CAHB_ERR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_CBR_CAHB_ERR %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_CBR_CCAHB_TIMEOUT_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_CBR_CCAHB_TIMEOUT %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_CBR_CAHB_TIMEOUT_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_CBR_CAHB_TIMEOUT %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_DBR_CDAHB_ERR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_DBR_CDAHB_ERR %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_DBR_DAHB_ERR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_DBR_DAHB_ERR %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_DBR_CDAHB_TIMEOUT_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_DBR_CDAHB_TIMEOUT %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_DBR_DAHB_TIMEOUT_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_DBR_DAHB_TIMEOUT %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_FDBR_CDAHB_ERR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_FDBR_CDAHB_ERR %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_FDBR_FDAHB_ERR_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_FDBR_FDAHB_ERR %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_FDBR_CDAHB_TIMEOUT_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_FDBR_CDAHB_TIMEOUT %08x\n", reg); reg_addr = penv->pronto_mcu_base + MCU_FDBR_FDAHB_TIMEOUT_OFFSET; reg = readl_relaxed(reg_addr); pr_err("MCU_FDBR_FDAHB_TIMEOUT %08x\n", reg); reg = readl_relaxed(penv->wlan_brdg_err_source); pr_err("WLAN_BRDG_ERR_SOURCE %08x\n", reg); reg = readl_relaxed(penv->wlan_tx_status); pr_err("WLAN_TXP_STATUS %08x\n", reg); reg = readl_relaxed(penv->alarms_txctl); pr_err("ALARMS_TXCTL %08x\n", reg); reg = readl_relaxed(penv->alarms_tactl); pr_err("ALARMS_TACTL %08x\n", reg); } EXPORT_SYMBOL(wcnss_pronto_log_debug_regs); #ifdef CONFIG_WCNSS_REGISTER_DUMP_ON_BITE static int wcnss_gpio_set_state(bool is_enable) { struct pinctrl_state *pin_state; int ret; int i; if (!is_enable) { for (i = 0; i < WCNSS_WLAN_MAX_GPIO; i++) { if (gpio_is_valid(penv->gpios[i])) gpio_free(penv->gpios[i]); } return 0; } pin_state = penv->wcnss_gpio_active; if (!IS_ERR_OR_NULL(pin_state)) { ret = pinctrl_select_state(penv->pinctrl, pin_state); if (ret < 0) { pr_err("%s: can not set gpio pins err: %d\n", __func__, ret); goto pinctrl_set_err; } } else { pr_err("%s: invalid gpio pinstate err: %lu\n", __func__, PTR_ERR(pin_state)); goto pinctrl_set_err; } for (i = WCNSS_WLAN_DATA2; i <= WCNSS_WLAN_DATA0; i++) { ret = gpio_request_one(penv->gpios[i], GPIOF_DIR_IN, NULL); if (ret) { pr_err("%s: request failed for gpio:%d\n", __func__, penv->gpios[i]); i--; goto gpio_req_err; } } for (i = WCNSS_WLAN_SET; i <= WCNSS_WLAN_CLK; i++) { ret = gpio_request_one(penv->gpios[i], GPIOF_OUT_INIT_LOW, NULL); if (ret) { pr_err("%s: request failed for gpio:%d\n", __func__, penv->gpios[i]); i--; goto gpio_req_err; } } return 0; gpio_req_err: for (; i >= WCNSS_WLAN_DATA2; --i) gpio_free(penv->gpios[i]); pinctrl_set_err: return -EINVAL; } static u32 wcnss_rf_read_reg(u32 rf_reg_addr) { int count = 0; u32 rf_cmd_and_addr = 0; u32 rf_data_received = 0; u32 rf_bit = 0; if (wcnss_gpio_set_state(true)) return 0; /* Reset the signal if it is already being used. */ gpio_set_value(penv->gpios[WCNSS_WLAN_SET], 0); gpio_set_value(penv->gpios[WCNSS_WLAN_CLK], 0); /* We start with cmd_set high penv->gpio_base + WCNSS_WLAN_SET = 1. */ gpio_set_value(penv->gpios[WCNSS_WLAN_SET], 1); gpio_direction_output(penv->gpios[WCNSS_WLAN_DATA0], 1); gpio_direction_output(penv->gpios[WCNSS_WLAN_DATA1], 1); gpio_direction_output(penv->gpios[WCNSS_WLAN_DATA2], 1); gpio_set_value(penv->gpios[WCNSS_WLAN_DATA0], 0); gpio_set_value(penv->gpios[WCNSS_WLAN_DATA1], 0); gpio_set_value(penv->gpios[WCNSS_WLAN_DATA2], 0); /* Prepare command and RF register address that need to sent out. */ rf_cmd_and_addr = (((WLAN_RF_READ_REG_CMD) | (rf_reg_addr << WLAN_RF_REG_ADDR_START_OFFSET)) & WLAN_RF_READ_CMD_MASK); /* Send 15 bit RF register address */ for (count = 0; count < WLAN_RF_PREPARE_CMD_DATA; count++) { gpio_set_value(penv->gpios[WCNSS_WLAN_CLK], 0); rf_bit = (rf_cmd_and_addr & 0x1); gpio_set_value(penv->gpios[WCNSS_WLAN_DATA0], rf_bit ? 1 : 0); rf_cmd_and_addr = (rf_cmd_and_addr >> 1); rf_bit = (rf_cmd_and_addr & 0x1); gpio_set_value(penv->gpios[WCNSS_WLAN_DATA1], rf_bit ? 1 : 0); rf_cmd_and_addr = (rf_cmd_and_addr >> 1); rf_bit = (rf_cmd_and_addr & 0x1); gpio_set_value(penv->gpios[WCNSS_WLAN_DATA2], rf_bit ? 1 : 0); rf_cmd_and_addr = (rf_cmd_and_addr >> 1); /* Send the data out penv->gpio_base + WCNSS_WLAN_CLK = 1 */ gpio_set_value(penv->gpios[WCNSS_WLAN_CLK], 1); } /* Pull down the clock signal */ gpio_set_value(penv->gpios[WCNSS_WLAN_CLK], 0); /* Configure data pins to input IO pins */ gpio_direction_input(penv->gpios[WCNSS_WLAN_DATA0]); gpio_direction_input(penv->gpios[WCNSS_WLAN_DATA1]); gpio_direction_input(penv->gpios[WCNSS_WLAN_DATA2]); for (count = 0; count < WLAN_RF_CLK_WAIT_CYCLE; count++) { gpio_set_value(penv->gpios[WCNSS_WLAN_CLK], 1); gpio_set_value(penv->gpios[WCNSS_WLAN_CLK], 0); } rf_bit = 0; /* Read 16 bit RF register value */ for (count = 0; count < WLAN_RF_READ_DATA; count++) { gpio_set_value(penv->gpios[WCNSS_WLAN_CLK], 1); gpio_set_value(penv->gpios[WCNSS_WLAN_CLK], 0); rf_bit = gpio_get_value(penv->gpios[WCNSS_WLAN_DATA0]); rf_data_received |= (rf_bit << (count * WLAN_RF_DATA_LEN + WLAN_RF_DATA0_SHIFT)); if (count != 5) { rf_bit = gpio_get_value(penv->gpios[WCNSS_WLAN_DATA1]); rf_data_received |= (rf_bit << (count * WLAN_RF_DATA_LEN + WLAN_RF_DATA1_SHIFT)); rf_bit = gpio_get_value(penv->gpios[WCNSS_WLAN_DATA2]); rf_data_received |= (rf_bit << (count * WLAN_RF_DATA_LEN + WLAN_RF_DATA2_SHIFT)); } } gpio_set_value(penv->gpios[WCNSS_WLAN_SET], 0); wcnss_gpio_set_state(false); wcnss_pinctrl_set_state(true); return rf_data_received; } static void wcnss_log_iris_regs(void) { int i; u32 reg_val; u32 regs_array[] = { 0x04, 0x05, 0x11, 0x1e, 0x40, 0x48, 0x49, 0x4b, 0x00, 0x01, 0x4d}; pr_info("%s: IRIS Registers [address] : value\n", __func__); for (i = 0; i < ARRAY_SIZE(regs_array); i++) { reg_val = wcnss_rf_read_reg(regs_array[i]); pr_info("[0x%08x] : 0x%08x\n", regs_array[i], reg_val); } } int wcnss_get_mux_control(void) { void __iomem *pmu_conf_reg; u32 reg = 0; if (NULL == penv) return 0; pmu_conf_reg = penv->msm_wcnss_base + PRONTO_PMU_OFFSET; reg = readl_relaxed(pmu_conf_reg); reg |= WCNSS_PMU_CFG_GC_BUS_MUX_SEL_TOP; writel_relaxed(reg, pmu_conf_reg); return 1; } void wcnss_log_debug_regs_on_bite(void) { struct platform_device *pdev = wcnss_get_platform_device(); struct clk *measure; struct clk *wcnss_debug_mux; unsigned long clk_rate; if (wcnss_hardware_type() != WCNSS_PRONTO_HW) return; measure = clk_get(&pdev->dev, "measure"); wcnss_debug_mux = clk_get(&pdev->dev, "wcnss_debug"); if (!IS_ERR(measure) && !IS_ERR(wcnss_debug_mux)) { if (clk_set_parent(measure, wcnss_debug_mux)) { pr_err("Setting measure clk parent failed\n"); return; } if (clk_prepare_enable(measure)) { pr_err("measure clk enable failed\n"); return; } clk_rate = clk_get_rate(measure); pr_debug("wcnss: clock frequency is: %luHz\n", clk_rate); if (clk_rate) { wcnss_pronto_log_debug_regs(); if (wcnss_get_mux_control()) wcnss_log_iris_regs(); } else { pr_err("clock frequency is zero, cannot access PMU or other registers\n"); wcnss_log_iris_regs(); } clk_disable_unprepare(measure); } } #endif /* interface to reset wcnss by sending the reset interrupt */ void wcnss_reset_fiq(bool clk_chk_en) { if (wcnss_hardware_type() == WCNSS_PRONTO_HW) { if (clk_chk_en) { wcnss_log_debug_regs_on_bite(); } else { wcnss_pronto_log_debug_regs(); if (wcnss_get_mux_control()) wcnss_log_iris_regs(); } if (!wcnss_device_is_shutdown()) { /* Insert memory barrier before writing fiq register */ wmb(); __raw_writel(1 << 16, penv->fiq_reg); } else { pr_info("%s: Block FIQ during power up sequence\n", __func__); } } else { wcnss_riva_log_debug_regs(); } } EXPORT_SYMBOL(wcnss_reset_fiq); static int wcnss_create_sysfs(struct device *dev) { int ret; if (!dev) return -ENODEV; ret = device_create_file(dev, &dev_attr_serial_number); if (ret) return ret; ret = device_create_file(dev, &dev_attr_thermal_mitigation); if (ret) goto remove_serial; ret = device_create_file(dev, &dev_attr_wcnss_version); if (ret) goto remove_thermal; ret = device_create_file(dev, &dev_attr_wcnss_mac_addr); if (ret) goto remove_version; return 0; remove_version: device_remove_file(dev, &dev_attr_wcnss_version); remove_thermal: device_remove_file(dev, &dev_attr_thermal_mitigation); remove_serial: device_remove_file(dev, &dev_attr_serial_number); return ret; } static void wcnss_remove_sysfs(struct device *dev) { if (dev) { device_remove_file(dev, &dev_attr_serial_number); device_remove_file(dev, &dev_attr_thermal_mitigation); device_remove_file(dev, &dev_attr_wcnss_version); device_remove_file(dev, &dev_attr_wcnss_mac_addr); } } static void wcnss_pm_qos_add_request(void) { pr_info("%s: add request\n", __func__); pm_qos_add_request(&penv->wcnss_pm_qos_request, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); } static void wcnss_pm_qos_remove_request(void) { pr_info("%s: remove request\n", __func__); pm_qos_remove_request(&penv->wcnss_pm_qos_request); } void wcnss_pm_qos_update_request(int val) { pr_info("%s: update request %d\n", __func__, val); pm_qos_update_request(&penv->wcnss_pm_qos_request, val); } void wcnss_disable_pc_remove_req(void) { mutex_lock(&penv->pm_qos_mutex); if (penv->pc_disabled) { penv->pc_disabled = 0; wcnss_pm_qos_update_request(WCNSS_ENABLE_PC_LATENCY); wcnss_pm_qos_remove_request(); wcnss_allow_suspend(); } mutex_unlock(&penv->pm_qos_mutex); } void wcnss_disable_pc_add_req(void) { mutex_lock(&penv->pm_qos_mutex); if (!penv->pc_disabled) { wcnss_pm_qos_add_request(); wcnss_prevent_suspend(); wcnss_pm_qos_update_request(WCNSS_DISABLE_PC_LATENCY); penv->pc_disabled = 1; } mutex_unlock(&penv->pm_qos_mutex); } static void wcnss_smd_notify_event(void *data, unsigned int event) { int len = 0; if (penv != data) { pr_err("wcnss: invalid env pointer in smd callback\n"); return; } switch (event) { case SMD_EVENT_DATA: len = smd_read_avail(penv->smd_ch); if (len < 0) { pr_err("wcnss: failed to read from smd %d\n", len); return; } schedule_work(&penv->wcnssctrl_rx_work); break; case SMD_EVENT_OPEN: pr_debug("wcnss: opening WCNSS SMD channel :%s", WCNSS_CTRL_CHANNEL); schedule_work(&penv->wcnssctrl_version_work); schedule_work(&penv->wcnss_pm_config_work); cancel_delayed_work(&penv->wcnss_pm_qos_del_req); schedule_delayed_work(&penv->wcnss_pm_qos_del_req, 0); if (penv->wlan_config.is_pronto_vadc && (penv->vadc_dev)) schedule_work(&penv->wcnss_vadc_work); break; case SMD_EVENT_CLOSE: pr_debug("wcnss: closing WCNSS SMD channel :%s", WCNSS_CTRL_CHANNEL); penv->nv_downloaded = 0; penv->is_cbc_done = 0; break; default: break; } } static int wcnss_pinctrl_set_state(bool active) { struct pinctrl_state *pin_state; int ret; pr_debug("%s: Set GPIO state : %d\n", __func__, active); pin_state = active ? penv->wcnss_5wire_active : penv->wcnss_5wire_suspend; if (!IS_ERR_OR_NULL(pin_state)) { ret = pinctrl_select_state(penv->pinctrl, pin_state); if (ret < 0) { pr_err("%s: can not set %s pins\n", __func__, active ? WCNSS_PINCTRL_STATE_DEFAULT : WCNSS_PINCTRL_STATE_SLEEP); return ret; } } else { pr_err("%s: invalid '%s' pinstate\n", __func__, active ? WCNSS_PINCTRL_STATE_DEFAULT : WCNSS_PINCTRL_STATE_SLEEP); return PTR_ERR(pin_state); } return 0; } static int wcnss_pinctrl_init(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; int i; /* Get pinctrl if target uses pinctrl */ penv->pinctrl = devm_pinctrl_get(&pdev->dev); if (IS_ERR_OR_NULL(penv->pinctrl)) { pr_err("%s: failed to get pinctrl\n", __func__); return PTR_ERR(penv->pinctrl); } penv->wcnss_5wire_active = pinctrl_lookup_state(penv->pinctrl, WCNSS_PINCTRL_STATE_DEFAULT); if (IS_ERR_OR_NULL(penv->wcnss_5wire_active)) { pr_err("%s: can not get default pinstate\n", __func__); return PTR_ERR(penv->wcnss_5wire_active); } penv->wcnss_5wire_suspend = pinctrl_lookup_state(penv->pinctrl, WCNSS_PINCTRL_STATE_SLEEP); if (IS_ERR_OR_NULL(penv->wcnss_5wire_suspend)) { pr_warn("%s: can not get sleep pinstate\n", __func__); return PTR_ERR(penv->wcnss_5wire_suspend); } penv->wcnss_gpio_active = pinctrl_lookup_state(penv->pinctrl, WCNSS_PINCTRL_GPIO_STATE_DEFAULT); if (IS_ERR_OR_NULL(penv->wcnss_gpio_active)) pr_warn("%s: can not get gpio default pinstate\n", __func__); for (i = 0; i < WCNSS_WLAN_MAX_GPIO; i++) { penv->gpios[i] = of_get_gpio(node, i); if (penv->gpios[i] < 0) pr_warn("%s: Fail to get 5wire gpio: %d\n", __func__, i); } return 0; } static int wcnss_pronto_gpios_config(struct platform_device *pdev, bool enable) { int rc = 0; int i, j; int WCNSS_WLAN_NUM_GPIOS = 5; /* Use Pinctrl to configure 5 wire GPIOs */ rc = wcnss_pinctrl_init(pdev); if (rc) { pr_err("%s: failed to get pin resources\n", __func__); penv->pinctrl = NULL; goto gpio_probe; } else { rc = wcnss_pinctrl_set_state(true); if (rc) pr_err("%s: failed to set pin state\n", __func__); penv->use_pinctrl = true; return rc; } gpio_probe: for (i = 0; i < WCNSS_WLAN_NUM_GPIOS; i++) { int gpio = of_get_gpio(pdev->dev.of_node, i); if (enable) { rc = gpio_request(gpio, "wcnss_wlan"); if (rc) { pr_err("WCNSS gpio_request %d err %d\n", gpio, rc); goto fail; } } else gpio_free(gpio); } return rc; fail: for (j = WCNSS_WLAN_NUM_GPIOS-1; j >= 0; j--) { int gpio = of_get_gpio(pdev->dev.of_node, i); gpio_free(gpio); } return rc; } static int wcnss_gpios_config(struct resource *gpios_5wire, bool enable) { int i, j; int rc = 0; for (i = gpios_5wire->start; i <= gpios_5wire->end; i++) { if (enable) { rc = gpio_request(i, gpios_5wire->name); if (rc) { pr_err("WCNSS gpio_request %d err %d\n", i, rc); goto fail; } } else gpio_free(i); } return rc; fail: for (j = i-1; j >= gpios_5wire->start; j--) gpio_free(j); return rc; } static int wcnss_wlan_ctrl_probe(struct platform_device *pdev) { if (!penv || !penv->triggered) return -ENODEV; penv->smd_channel_ready = 1; pr_info("%s: SMD ctrl channel up\n", __func__); return 0; } static int wcnss_wlan_ctrl_remove(struct platform_device *pdev) { if (penv) penv->smd_channel_ready = 0; pr_info("%s: SMD ctrl channel down\n", __func__); return 0; } static struct platform_driver wcnss_wlan_ctrl_driver = { .driver = { .name = "WLAN_CTRL", .owner = THIS_MODULE, }, .probe = wcnss_wlan_ctrl_probe, .remove = wcnss_wlan_ctrl_remove, }; static int wcnss_ctrl_remove(struct platform_device *pdev) { if (penv && penv->smd_ch) smd_close(penv->smd_ch); return 0; } static int wcnss_ctrl_probe(struct platform_device *pdev) { int ret = 0; if (!penv || !penv->triggered) return -ENODEV; ret = smd_named_open_on_edge(WCNSS_CTRL_CHANNEL, SMD_APPS_WCNSS, &penv->smd_ch, penv, wcnss_smd_notify_event); if (ret < 0) { pr_err("wcnss: cannot open the smd command channel %s: %d\n", WCNSS_CTRL_CHANNEL, ret); return -ENODEV; } smd_disable_read_intr(penv->smd_ch); return 0; } /* platform device for WCNSS_CTRL SMD channel */ static struct platform_driver wcnss_ctrl_driver = { .driver = { .name = "WCNSS_CTRL", .owner = THIS_MODULE, }, .probe = wcnss_ctrl_probe, .remove = wcnss_ctrl_remove, }; struct device *wcnss_wlan_get_device(void) { if (penv && penv->pdev && penv->smd_channel_ready) return &penv->pdev->dev; return NULL; } EXPORT_SYMBOL(wcnss_wlan_get_device); void wcnss_get_monotonic_boottime(struct timespec *ts) { get_monotonic_boottime(ts); } EXPORT_SYMBOL(wcnss_get_monotonic_boottime); struct platform_device *wcnss_get_platform_device(void) { if (penv && penv->pdev) return penv->pdev; return NULL; } EXPORT_SYMBOL(wcnss_get_platform_device); struct wcnss_wlan_config *wcnss_get_wlan_config(void) { if (penv && penv->pdev) return &penv->wlan_config; return NULL; } EXPORT_SYMBOL(wcnss_get_wlan_config); int wcnss_is_hw_pronto_ver3(void) { if (penv && penv->pdev) { if (penv->wlan_config.is_pronto_v3) return penv->wlan_config.is_pronto_v3; } return 0; } EXPORT_SYMBOL(wcnss_is_hw_pronto_ver3); int wcnss_device_ready(void) { if (penv && penv->pdev && penv->nv_downloaded && !wcnss_device_is_shutdown()) return 1; return 0; } EXPORT_SYMBOL(wcnss_device_ready); bool wcnss_cbc_complete(void) { if (penv && penv->pdev && penv->is_cbc_done && !wcnss_device_is_shutdown()) return true; return false; } EXPORT_SYMBOL(wcnss_cbc_complete); int wcnss_device_is_shutdown(void) { if (penv && penv->is_shutdown) return 1; return 0; } EXPORT_SYMBOL(wcnss_device_is_shutdown); struct resource *wcnss_wlan_get_memory_map(struct device *dev) { if (penv && dev && (dev == &penv->pdev->dev) && penv->smd_channel_ready) return penv->mmio_res; return NULL; } EXPORT_SYMBOL(wcnss_wlan_get_memory_map); int wcnss_wlan_get_dxe_tx_irq(struct device *dev) { if (penv && dev && (dev == &penv->pdev->dev) && penv->tx_irq_res && penv->smd_channel_ready) return penv->tx_irq_res->start; return WCNSS_WLAN_IRQ_INVALID; } EXPORT_SYMBOL(wcnss_wlan_get_dxe_tx_irq); int wcnss_wlan_get_dxe_rx_irq(struct device *dev) { if (penv && dev && (dev == &penv->pdev->dev) && penv->rx_irq_res && penv->smd_channel_ready) return penv->rx_irq_res->start; return WCNSS_WLAN_IRQ_INVALID; } EXPORT_SYMBOL(wcnss_wlan_get_dxe_rx_irq); void wcnss_wlan_register_pm_ops(struct device *dev, const struct dev_pm_ops *pm_ops) { if (penv && dev && (dev == &penv->pdev->dev) && pm_ops) penv->pm_ops = pm_ops; } EXPORT_SYMBOL(wcnss_wlan_register_pm_ops); void wcnss_wlan_unregister_pm_ops(struct device *dev, const struct dev_pm_ops *pm_ops) { if (penv && dev && (dev == &penv->pdev->dev) && pm_ops) { if (penv->pm_ops == NULL) { pr_err("%s: pm_ops is already unregistered.\n", __func__); return; } if (pm_ops->suspend != penv->pm_ops->suspend || pm_ops->resume != penv->pm_ops->resume) pr_err("PM APIs dont match with registered APIs\n"); penv->pm_ops = NULL; } } EXPORT_SYMBOL(wcnss_wlan_unregister_pm_ops); void wcnss_register_thermal_mitigation(struct device *dev, void (*tm_notify)(struct device *, int)) { if (penv && dev && tm_notify) penv->tm_notify = tm_notify; } EXPORT_SYMBOL(wcnss_register_thermal_mitigation); void wcnss_unregister_thermal_mitigation( void (*tm_notify)(struct device *, int)) { if (penv && tm_notify) { if (tm_notify != penv->tm_notify) pr_err("tm_notify doesn't match registered\n"); penv->tm_notify = NULL; } } EXPORT_SYMBOL(wcnss_unregister_thermal_mitigation); unsigned int wcnss_get_serial_number(void) { if (penv) return penv->serial_number; return 0; } EXPORT_SYMBOL(wcnss_get_serial_number); int wcnss_get_wlan_mac_address(char mac_addr[WLAN_MAC_ADDR_SIZE]) { if (!penv) return -ENODEV; memcpy(mac_addr, penv->wlan_nv_macAddr, WLAN_MAC_ADDR_SIZE); pr_debug("%s: Get MAC Addr:" MAC_ADDRESS_STR "\n", __func__, penv->wlan_nv_macAddr[0], penv->wlan_nv_macAddr[1], penv->wlan_nv_macAddr[2], penv->wlan_nv_macAddr[3], penv->wlan_nv_macAddr[4], penv->wlan_nv_macAddr[5]); return 0; } EXPORT_SYMBOL(wcnss_get_wlan_mac_address); static int enable_wcnss_suspend_notify; static int enable_wcnss_suspend_notify_set(const char *val, struct kernel_param *kp) { int ret; ret = param_set_int(val, kp); if (ret) return ret; if (enable_wcnss_suspend_notify) pr_debug("Suspend notification activated for wcnss\n"); return 0; } module_param_call(enable_wcnss_suspend_notify, enable_wcnss_suspend_notify_set, param_get_int, &enable_wcnss_suspend_notify, S_IRUGO | S_IWUSR); int wcnss_xo_auto_detect_enabled(void) { return (has_autodetect_xo == 1 ? 1 : 0); } void wcnss_set_iris_xo_mode(int iris_xo_mode_set) { penv->iris_xo_mode_set = iris_xo_mode_set; } EXPORT_SYMBOL(wcnss_set_iris_xo_mode); int wcnss_wlan_iris_xo_mode(void) { if (penv && penv->pdev && penv->smd_channel_ready) return penv->iris_xo_mode_set; return -ENODEV; } EXPORT_SYMBOL(wcnss_wlan_iris_xo_mode); void wcnss_suspend_notify(void) { void __iomem *pmu_spare_reg; u32 reg = 0; unsigned long flags; if (!enable_wcnss_suspend_notify) return; if (wcnss_hardware_type() == WCNSS_PRONTO_HW) return; /* For Riva */ pmu_spare_reg = penv->msm_wcnss_base + RIVA_SPARE_OFFSET; spin_lock_irqsave(®_spinlock, flags); reg = readl_relaxed(pmu_spare_reg); reg |= RIVA_SUSPEND_BIT; writel_relaxed(reg, pmu_spare_reg); spin_unlock_irqrestore(®_spinlock, flags); } EXPORT_SYMBOL(wcnss_suspend_notify); void wcnss_resume_notify(void) { void __iomem *pmu_spare_reg; u32 reg = 0; unsigned long flags; if (!enable_wcnss_suspend_notify) return; if (wcnss_hardware_type() == WCNSS_PRONTO_HW) return; /* For Riva */ pmu_spare_reg = penv->msm_wcnss_base + RIVA_SPARE_OFFSET; spin_lock_irqsave(®_spinlock, flags); reg = readl_relaxed(pmu_spare_reg); reg &= ~RIVA_SUSPEND_BIT; writel_relaxed(reg, pmu_spare_reg); spin_unlock_irqrestore(®_spinlock, flags); } EXPORT_SYMBOL(wcnss_resume_notify); static int wcnss_wlan_suspend(struct device *dev) { if (penv && dev && (dev == &penv->pdev->dev) && penv->smd_channel_ready && penv->pm_ops && penv->pm_ops->suspend) return penv->pm_ops->suspend(dev); return 0; } static int wcnss_wlan_resume(struct device *dev) { if (penv && dev && (dev == &penv->pdev->dev) && penv->smd_channel_ready && penv->pm_ops && penv->pm_ops->resume) return penv->pm_ops->resume(dev); return 0; } void wcnss_prevent_suspend() { if (penv) wake_lock(&penv->wcnss_wake_lock); } EXPORT_SYMBOL(wcnss_prevent_suspend); void wcnss_allow_suspend() { if (penv) wake_unlock(&penv->wcnss_wake_lock); } EXPORT_SYMBOL(wcnss_allow_suspend); int wcnss_hardware_type(void) { if (penv) return penv->wcnss_hw_type; else return -ENODEV; } EXPORT_SYMBOL(wcnss_hardware_type); int fw_cal_data_available(void) { if (penv) return penv->fw_cal_available; else return -ENODEV; } u32 wcnss_get_wlan_rx_buff_count(void) { if (penv) return penv->wlan_rx_buff_count; else return WCNSS_DEF_WLAN_RX_BUFF_COUNT; } EXPORT_SYMBOL(wcnss_get_wlan_rx_buff_count); int wcnss_set_wlan_unsafe_channel(u16 *unsafe_ch_list, u16 ch_count) { if (penv && unsafe_ch_list && (ch_count <= WCNSS_MAX_CH_NUM)) { memcpy((char *)penv->unsafe_ch_list, (char *)unsafe_ch_list, ch_count * sizeof(u16)); penv->unsafe_ch_count = ch_count; return 0; } else return -ENODEV; } EXPORT_SYMBOL(wcnss_set_wlan_unsafe_channel); int wcnss_get_wlan_unsafe_channel(u16 *unsafe_ch_list, u16 buffer_size, u16 *ch_count) { if (penv) { if (buffer_size < penv->unsafe_ch_count * sizeof(u16)) return -ENODEV; memcpy((char *)unsafe_ch_list, (char *)penv->unsafe_ch_list, penv->unsafe_ch_count * sizeof(u16)); *ch_count = penv->unsafe_ch_count; return 0; } else return -ENODEV; } EXPORT_SYMBOL(wcnss_get_wlan_unsafe_channel); static int wcnss_smd_tx(void *data, int len) { int ret = 0; ret = smd_write_avail(penv->smd_ch); if (ret < len) { pr_err("wcnss: no space available for smd frame\n"); return -ENOSPC; } ret = smd_write(penv->smd_ch, data, len); if (ret < len) { pr_err("wcnss: failed to write Command %d", len); ret = -ENODEV; } return ret; } static int wcnss_get_battery_volt(int *result_uv) { int rc = -1; struct qpnp_vadc_result adc_result; if (!penv->vadc_dev) { pr_err("wcnss: not setting up vadc\n"); return rc; } rc = qpnp_vadc_read(penv->vadc_dev, VBAT_SNS, &adc_result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", VBAT_SNS, rc); return rc; } pr_info("Battery mvolts phy=%lld meas=0x%llx\n", adc_result.physical, adc_result.measurement); *result_uv = (int)adc_result.physical; return 0; } static void wcnss_notify_vbat(enum qpnp_tm_state state, void *ctx) { int rc = 0; mutex_lock(&penv->vbat_monitor_mutex); cancel_delayed_work_sync(&penv->vbatt_work); if (state == ADC_TM_LOW_STATE) { pr_debug("wcnss: low voltage notification triggered\n"); penv->vbat_monitor_params.state_request = ADC_TM_HIGH_THR_ENABLE; penv->vbat_monitor_params.high_thr = WCNSS_VBATT_THRESHOLD + WCNSS_VBATT_GUARD; penv->vbat_monitor_params.low_thr = 0; } else if (state == ADC_TM_HIGH_STATE) { penv->vbat_monitor_params.state_request = ADC_TM_LOW_THR_ENABLE; penv->vbat_monitor_params.low_thr = WCNSS_VBATT_THRESHOLD - WCNSS_VBATT_GUARD; penv->vbat_monitor_params.high_thr = 0; pr_debug("wcnss: high voltage notification triggered\n"); } else { pr_debug("wcnss: unknown voltage notification state: %d\n", state); mutex_unlock(&penv->vbat_monitor_mutex); return; } pr_debug("wcnss: set low thr to %d and high to %d\n", penv->vbat_monitor_params.low_thr, penv->vbat_monitor_params.high_thr); rc = qpnp_adc_tm_channel_measure(penv->adc_tm_dev, &penv->vbat_monitor_params); if (rc) pr_err("%s: tm setup failed: %d\n", __func__, rc); else schedule_delayed_work(&penv->vbatt_work, msecs_to_jiffies(2000)); mutex_unlock(&penv->vbat_monitor_mutex); } static int wcnss_setup_vbat_monitoring(void) { int rc = -1; if (!penv->adc_tm_dev) { pr_err("wcnss: not setting up vbatt\n"); return rc; } penv->vbat_monitor_params.low_thr = WCNSS_VBATT_THRESHOLD; penv->vbat_monitor_params.high_thr = WCNSS_VBATT_THRESHOLD; penv->vbat_monitor_params.state_request = ADC_TM_HIGH_LOW_THR_ENABLE; if (penv->is_vsys_adc_channel) penv->vbat_monitor_params.channel = VSYS; else penv->vbat_monitor_params.channel = VBAT_SNS; penv->vbat_monitor_params.btm_ctx = (void *)penv; penv->vbat_monitor_params.timer_interval = ADC_MEAS1_INTERVAL_1S; penv->vbat_monitor_params.threshold_notification = &wcnss_notify_vbat; pr_debug("wcnss: set low thr to %d and high to %d\n", penv->vbat_monitor_params.low_thr, penv->vbat_monitor_params.high_thr); rc = qpnp_adc_tm_channel_measure(penv->adc_tm_dev, &penv->vbat_monitor_params); if (rc) pr_err("%s: tm setup failed: %d\n", __func__, rc); return rc; } static void wcnss_send_vbatt_indication(struct work_struct *work) { struct vbatt_message vbatt_msg; int ret = 0; vbatt_msg.hdr.msg_type = WCNSS_VBATT_LEVEL_IND; vbatt_msg.hdr.msg_len = sizeof(struct vbatt_message); vbatt_msg.vbatt.threshold = WCNSS_VBATT_THRESHOLD; mutex_lock(&penv->vbat_monitor_mutex); vbatt_msg.vbatt.curr_volt = penv->wlan_config.vbatt; mutex_unlock(&penv->vbat_monitor_mutex); pr_debug("wcnss: send curr_volt: %d to FW\n", vbatt_msg.vbatt.curr_volt); ret = wcnss_smd_tx(&vbatt_msg, vbatt_msg.hdr.msg_len); if (ret < 0) pr_err("wcnss: smd tx failed\n"); } static void wcnss_update_vbatt(struct work_struct *work) { struct vbatt_message vbatt_msg; int ret = 0; vbatt_msg.hdr.msg_type = WCNSS_VBATT_LEVEL_IND; vbatt_msg.hdr.msg_len = sizeof(struct vbatt_message); vbatt_msg.vbatt.threshold = WCNSS_VBATT_THRESHOLD; mutex_lock(&penv->vbat_monitor_mutex); if (penv->vbat_monitor_params.low_thr && (penv->fw_vbatt_state == WCNSS_VBATT_LOW || penv->fw_vbatt_state == WCNSS_CONFIG_UNSPECIFIED)) { vbatt_msg.vbatt.curr_volt = WCNSS_VBATT_HIGH; penv->fw_vbatt_state = WCNSS_VBATT_HIGH; pr_debug("wcnss: send HIGH BATT to FW\n"); } else if (!penv->vbat_monitor_params.low_thr && (penv->fw_vbatt_state == WCNSS_VBATT_HIGH || penv->fw_vbatt_state == WCNSS_CONFIG_UNSPECIFIED)){ vbatt_msg.vbatt.curr_volt = WCNSS_VBATT_LOW; penv->fw_vbatt_state = WCNSS_VBATT_LOW; pr_debug("wcnss: send LOW BATT to FW\n"); } else { mutex_unlock(&penv->vbat_monitor_mutex); return; } mutex_unlock(&penv->vbat_monitor_mutex); ret = wcnss_smd_tx(&vbatt_msg, vbatt_msg.hdr.msg_len); if (ret < 0) pr_err("wcnss: smd tx failed\n"); return; } static unsigned char wcnss_fw_status(void) { int len = 0; int rc = 0; unsigned char fw_status = 0xFF; len = smd_read_avail(penv->smd_ch); if (len < 1) { pr_err("%s: invalid firmware status", __func__); return fw_status; } rc = smd_read(penv->smd_ch, &fw_status, 1); if (rc < 0) { pr_err("%s: incomplete data read from smd\n", __func__); return fw_status; } return fw_status; } static void wcnss_send_cal_rsp(unsigned char fw_status) { struct smd_msg_hdr *rsphdr; unsigned char *msg = NULL; int rc; msg = kmalloc((sizeof(struct smd_msg_hdr) + 1), GFP_KERNEL); if (NULL == msg) { pr_err("wcnss: %s: failed to get memory\n", __func__); return; } rsphdr = (struct smd_msg_hdr *)msg; rsphdr->msg_type = WCNSS_CALDATA_UPLD_RSP; rsphdr->msg_len = sizeof(struct smd_msg_hdr) + 1; memcpy(msg+sizeof(struct smd_msg_hdr), &fw_status, 1); rc = wcnss_smd_tx(msg, rsphdr->msg_len); if (rc < 0) pr_err("wcnss: smd tx failed\n"); kfree(msg); } /* Collect calibrated data from WCNSS */ void extract_cal_data(int len) { int rc; struct cal_data_params calhdr; unsigned char fw_status = WCNSS_RESP_FAIL; if (len < sizeof(struct cal_data_params)) { pr_err("wcnss: incomplete cal header length\n"); return; } rc = smd_read(penv->smd_ch, (unsigned char *)&calhdr, sizeof(struct cal_data_params)); if (rc < sizeof(struct cal_data_params)) { pr_err("wcnss: incomplete cal header read from smd\n"); return; } if (penv->fw_cal_exp_frag != calhdr.frag_number) { pr_err("wcnss: Invalid frgament"); goto exit; } if (calhdr.frag_size > WCNSS_MAX_FRAME_SIZE) { pr_err("wcnss: Invalid fragment size"); goto exit; } if (penv->fw_cal_available) { /* ignore cal upload from SSR */ smd_read(penv->smd_ch, NULL, calhdr.frag_size); penv->fw_cal_exp_frag++; if (calhdr.msg_flags & LAST_FRAGMENT) { penv->fw_cal_exp_frag = 0; goto exit; } return; } if (0 == calhdr.frag_number) { if (calhdr.total_size > MAX_CALIBRATED_DATA_SIZE) { pr_err("wcnss: Invalid cal data size %d", calhdr.total_size); goto exit; } kfree(penv->fw_cal_data); penv->fw_cal_rcvd = 0; penv->fw_cal_data = kmalloc(calhdr.total_size, GFP_KERNEL); if (penv->fw_cal_data == NULL) { smd_read(penv->smd_ch, NULL, calhdr.frag_size); goto exit; } } mutex_lock(&penv->dev_lock); if (penv->fw_cal_rcvd + calhdr.frag_size > MAX_CALIBRATED_DATA_SIZE) { pr_err("calibrated data size is more than expected %d", penv->fw_cal_rcvd + calhdr.frag_size); penv->fw_cal_exp_frag = 0; penv->fw_cal_rcvd = 0; smd_read(penv->smd_ch, NULL, calhdr.frag_size); goto unlock_exit; } rc = smd_read(penv->smd_ch, penv->fw_cal_data + penv->fw_cal_rcvd, calhdr.frag_size); if (rc < calhdr.frag_size) goto unlock_exit; penv->fw_cal_exp_frag++; penv->fw_cal_rcvd += calhdr.frag_size; if (calhdr.msg_flags & LAST_FRAGMENT) { penv->fw_cal_exp_frag = 0; penv->fw_cal_available = true; pr_info("wcnss: cal data collection completed\n"); } mutex_unlock(&penv->dev_lock); wake_up(&penv->read_wait); if (penv->fw_cal_available) { fw_status = WCNSS_RESP_SUCCESS; wcnss_send_cal_rsp(fw_status); } return; unlock_exit: mutex_unlock(&penv->dev_lock); exit: wcnss_send_cal_rsp(fw_status); return; } static void wcnssctrl_rx_handler(struct work_struct *worker) { int len = 0; int rc = 0; unsigned char buf[sizeof(struct wcnss_version)]; unsigned char build[WCNSS_MAX_BUILD_VER_LEN+1]; struct smd_msg_hdr *phdr; struct smd_msg_hdr smd_msg; struct wcnss_version *pversion; int hw_type; unsigned char fw_status = 0; len = smd_read_avail(penv->smd_ch); if (len > WCNSS_MAX_FRAME_SIZE) { pr_err("wcnss: frame larger than the allowed size\n"); smd_read(penv->smd_ch, NULL, len); return; } if (len < sizeof(struct smd_msg_hdr)) { pr_err("wcnss: incomplete header available len = %d\n", len); return; } rc = smd_read(penv->smd_ch, buf, sizeof(struct smd_msg_hdr)); if (rc < sizeof(struct smd_msg_hdr)) { pr_err("wcnss: incomplete header read from smd\n"); return; } len -= sizeof(struct smd_msg_hdr); phdr = (struct smd_msg_hdr *)buf; switch (phdr->msg_type) { case WCNSS_VERSION_RSP: if (len != sizeof(struct wcnss_version) - sizeof(struct smd_msg_hdr)) { pr_err("wcnss: invalid version data from wcnss %d\n", len); return; } rc = smd_read(penv->smd_ch, buf+sizeof(struct smd_msg_hdr), len); if (rc < len) { pr_err("wcnss: incomplete data read from smd\n"); return; } pversion = (struct wcnss_version *)buf; penv->fw_major = pversion->major; penv->fw_minor = pversion->minor; snprintf(penv->wcnss_version, WCNSS_VERSION_LEN, "%02x%02x%02x%02x", pversion->major, pversion->minor, pversion->version, pversion->revision); pr_info("wcnss: version %s\n", penv->wcnss_version); /* schedule work to download nvbin to ccpu */ hw_type = wcnss_hardware_type(); switch (hw_type) { case WCNSS_RIVA_HW: /* supported only if riva major >= 1 and minor >= 4 */ if ((pversion->major >= 1) && (pversion->minor >= 4)) { pr_info("wcnss: schedule dnld work for riva\n"); schedule_work(&penv->wcnssctrl_nvbin_dnld_work); } break; case WCNSS_PRONTO_HW: smd_msg.msg_type = WCNSS_BUILD_VER_REQ; smd_msg.msg_len = sizeof(smd_msg); rc = wcnss_smd_tx(&smd_msg, smd_msg.msg_len); if (rc < 0) pr_err("wcnss: smd tx failed: %s\n", __func__); /* supported only if pronto major >= 1 and minor >= 4 */ if ((pversion->major >= 1) && (pversion->minor >= 4)) { pr_info("wcnss: schedule dnld work for pronto\n"); schedule_work(&penv->wcnssctrl_nvbin_dnld_work); } break; default: pr_info("wcnss: unknown hw type (%d), will not schedule dnld work\n", hw_type); break; } break; case WCNSS_BUILD_VER_RSP: if (len > WCNSS_MAX_BUILD_VER_LEN) { pr_err("wcnss: invalid build version data from wcnss %d\n", len); return; } rc = smd_read(penv->smd_ch, build, len); if (rc < len) { pr_err("wcnss: incomplete data read from smd\n"); return; } build[len] = 0; pr_info("wcnss: build version %s\n", build); break; case WCNSS_NVBIN_DNLD_RSP: penv->nv_downloaded = true; fw_status = wcnss_fw_status(); pr_debug("wcnss: received WCNSS_NVBIN_DNLD_RSP from ccpu %u\n", fw_status); if (fw_status != WAIT_FOR_CBC_IND) penv->is_cbc_done = 1; wcnss_setup_vbat_monitoring(); break; case WCNSS_CALDATA_DNLD_RSP: penv->nv_downloaded = true; fw_status = wcnss_fw_status(); pr_debug("wcnss: received WCNSS_CALDATA_DNLD_RSP from ccpu %u\n", fw_status); break; case WCNSS_CBC_COMPLETE_IND: penv->is_cbc_done = 1; pr_debug("wcnss: received WCNSS_CBC_COMPLETE_IND from FW\n"); break; case WCNSS_CALDATA_UPLD_REQ: extract_cal_data(len); break; default: pr_err("wcnss: invalid message type %d\n", phdr->msg_type); } return; } static void wcnss_send_version_req(struct work_struct *worker) { struct smd_msg_hdr smd_msg; int ret = 0; smd_msg.msg_type = WCNSS_VERSION_REQ; smd_msg.msg_len = sizeof(smd_msg); ret = wcnss_smd_tx(&smd_msg, smd_msg.msg_len); if (ret < 0) pr_err("wcnss: smd tx failed\n"); return; } static void wcnss_send_pm_config(struct work_struct *worker) { struct smd_msg_hdr *hdr; unsigned char *msg = NULL; int rc, prop_len; u32 *payload; if (!of_find_property(penv->pdev->dev.of_node, "qcom,wcnss-pm", &prop_len)) return; msg = kmalloc((sizeof(struct smd_msg_hdr) + prop_len), GFP_KERNEL); if (NULL == msg) { pr_err("wcnss: %s: failed to allocate memory\n", __func__); return; } payload = (u32 *)(msg + sizeof(struct smd_msg_hdr)); prop_len /= sizeof(int); rc = of_property_read_u32_array(penv->pdev->dev.of_node, "qcom,wcnss-pm", payload, prop_len); if (rc < 0) { pr_err("wcnss: property read failed\n"); kfree(msg); return; } pr_debug("%s:size=%d: <%d, %d, %d, %d, %d %d>\n", __func__, prop_len, *payload, *(payload+1), *(payload+2), *(payload+3), *(payload+4), *(payload+5)); hdr = (struct smd_msg_hdr *)msg; hdr->msg_type = WCNSS_PM_CONFIG_REQ; hdr->msg_len = sizeof(struct smd_msg_hdr) + (prop_len * sizeof(int)); rc = wcnss_smd_tx(msg, hdr->msg_len); if (rc < 0) pr_err("wcnss: smd tx failed\n"); kfree(msg); return; } static void wcnss_pm_qos_enable_pc(struct work_struct *worker) { wcnss_disable_pc_remove_req(); return; } static DECLARE_RWSEM(wcnss_pm_sem); static void wcnss_nvbin_dnld(void) { int ret = 0; struct nvbin_dnld_req_msg *dnld_req_msg; unsigned short total_fragments = 0; unsigned short count = 0; unsigned short retry_count = 0; unsigned short cur_frag_size = 0; unsigned char *outbuffer = NULL; const void *nv_blob_addr = NULL; unsigned int nv_blob_size = 0; const struct firmware *nv = NULL; struct device *dev = &penv->pdev->dev; down_read(&wcnss_pm_sem); ret = request_firmware(&nv, NVBIN_FILE, dev); if (ret || !nv || !nv->data || !nv->size) { pr_err("wcnss: %s: request_firmware failed for %s (ret = %d)\n", __func__, NVBIN_FILE, ret); goto out; } /* First 4 bytes in nv blob is validity bitmap. * We cannot validate nv, so skip those 4 bytes. */ nv_blob_addr = nv->data + 4; nv_blob_size = nv->size - 4; total_fragments = TOTALFRAGMENTS(nv_blob_size); pr_info("wcnss: NV bin size: %d, total_fragments: %d\n", nv_blob_size, total_fragments); /* get buffer for nv bin dnld req message */ outbuffer = kmalloc((sizeof(struct nvbin_dnld_req_msg) + NV_FRAGMENT_SIZE), GFP_KERNEL); if (NULL == outbuffer) { pr_err("wcnss: %s: failed to get buffer\n", __func__); goto err_free_nv; } dnld_req_msg = (struct nvbin_dnld_req_msg *)outbuffer; dnld_req_msg->hdr.msg_type = WCNSS_NVBIN_DNLD_REQ; dnld_req_msg->dnld_req_params.msg_flags = 0; for (count = 0; count < total_fragments; count++) { dnld_req_msg->dnld_req_params.frag_number = count; if (count == (total_fragments - 1)) { /* last fragment, take care of boundry condition */ cur_frag_size = nv_blob_size % NV_FRAGMENT_SIZE; if (!cur_frag_size) cur_frag_size = NV_FRAGMENT_SIZE; dnld_req_msg->dnld_req_params.msg_flags |= LAST_FRAGMENT; dnld_req_msg->dnld_req_params.msg_flags |= CAN_RECEIVE_CALDATA; } else { cur_frag_size = NV_FRAGMENT_SIZE; dnld_req_msg->dnld_req_params.msg_flags &= ~LAST_FRAGMENT; } dnld_req_msg->dnld_req_params.nvbin_buffer_size = cur_frag_size; dnld_req_msg->hdr.msg_len = sizeof(struct nvbin_dnld_req_msg) + cur_frag_size; /* copy NV fragment */ memcpy((outbuffer + sizeof(struct nvbin_dnld_req_msg)), (nv_blob_addr + count * NV_FRAGMENT_SIZE), cur_frag_size); ret = wcnss_smd_tx(outbuffer, dnld_req_msg->hdr.msg_len); retry_count = 0; while ((ret == -ENOSPC) && (retry_count <= 3)) { pr_debug("wcnss: %s: smd tx failed, ENOSPC\n", __func__); pr_debug("fragment: %d, len: %d, TotFragments: %d, retry_count: %d\n", count, dnld_req_msg->hdr.msg_len, total_fragments, retry_count); /* wait and try again */ msleep(20); retry_count++; ret = wcnss_smd_tx(outbuffer, dnld_req_msg->hdr.msg_len); } if (ret < 0) { pr_err("wcnss: %s: smd tx failed\n", __func__); pr_err("fragment %d, len: %d, TotFragments: %d, retry_count: %d\n", count, dnld_req_msg->hdr.msg_len, total_fragments, retry_count); goto err_dnld; } } err_dnld: /* free buffer */ kfree(outbuffer); err_free_nv: /* release firmware */ release_firmware(nv); out: up_read(&wcnss_pm_sem); return; } static void wcnss_caldata_dnld(const void *cal_data, unsigned int cal_data_size, bool msg_to_follow) { int ret = 0; struct cal_data_msg *cal_msg; unsigned short total_fragments = 0; unsigned short count = 0; unsigned short retry_count = 0; unsigned short cur_frag_size = 0; unsigned char *outbuffer = NULL; total_fragments = TOTALFRAGMENTS(cal_data_size); outbuffer = kmalloc((sizeof(struct cal_data_msg) + NV_FRAGMENT_SIZE), GFP_KERNEL); if (NULL == outbuffer) { pr_err("wcnss: %s: failed to get buffer\n", __func__); return; } cal_msg = (struct cal_data_msg *)outbuffer; cal_msg->hdr.msg_type = WCNSS_CALDATA_DNLD_REQ; cal_msg->cal_params.msg_flags = 0; for (count = 0; count < total_fragments; count++) { cal_msg->cal_params.frag_number = count; if (count == (total_fragments - 1)) { cur_frag_size = cal_data_size % NV_FRAGMENT_SIZE; if (!cur_frag_size) cur_frag_size = NV_FRAGMENT_SIZE; cal_msg->cal_params.msg_flags |= LAST_FRAGMENT; if (msg_to_follow) cal_msg->cal_params.msg_flags |= MESSAGE_TO_FOLLOW; } else { cur_frag_size = NV_FRAGMENT_SIZE; cal_msg->cal_params.msg_flags &= ~LAST_FRAGMENT; } cal_msg->cal_params.total_size = cal_data_size; cal_msg->cal_params.frag_size = cur_frag_size; cal_msg->hdr.msg_len = sizeof(struct cal_data_msg) + cur_frag_size; memcpy((outbuffer + sizeof(struct cal_data_msg)), (cal_data + count * NV_FRAGMENT_SIZE), cur_frag_size); ret = wcnss_smd_tx(outbuffer, cal_msg->hdr.msg_len); retry_count = 0; while ((ret == -ENOSPC) && (retry_count <= 3)) { pr_debug("wcnss: %s: smd tx failed, ENOSPC\n", __func__); pr_debug("fragment: %d, len: %d, TotFragments: %d, retry_count: %d\n", count, cal_msg->hdr.msg_len, total_fragments, retry_count); /* wait and try again */ msleep(20); retry_count++; ret = wcnss_smd_tx(outbuffer, cal_msg->hdr.msg_len); } if (ret < 0) { pr_err("wcnss: %s: smd tx failed\n", __func__); pr_err("fragment %d, len: %d, TotFragments: %d, retry_count: %d\n", count, cal_msg->hdr.msg_len, total_fragments, retry_count); goto err_dnld; } } err_dnld: /* free buffer */ kfree(outbuffer); return; } static void wcnss_nvbin_dnld_main(struct work_struct *worker) { int retry = 0; if (!FW_CALDATA_CAPABLE()) goto nv_download; if (!penv->fw_cal_available && IS_CAL_DATA_PRESENT != has_calibrated_data && !penv->user_cal_available) { while (!penv->user_cal_available && retry++ < 5) msleep(500); } if (penv->fw_cal_available) { pr_info_ratelimited("wcnss: cal download, using fw cal"); wcnss_caldata_dnld(penv->fw_cal_data, penv->fw_cal_rcvd, true); } else if (penv->user_cal_available) { pr_info_ratelimited("wcnss: cal download, using user cal"); wcnss_caldata_dnld(penv->user_cal_data, penv->user_cal_rcvd, true); } nv_download: pr_info_ratelimited("wcnss: NV download"); wcnss_nvbin_dnld(); return; } static int wcnss_pm_notify(struct notifier_block *b, unsigned long event, void *p) { switch (event) { case PM_SUSPEND_PREPARE: down_write(&wcnss_pm_sem); break; case PM_POST_SUSPEND: up_write(&wcnss_pm_sem); break; } return NOTIFY_DONE; } static struct notifier_block wcnss_pm_notifier = { .notifier_call = wcnss_pm_notify, }; static int wcnss_ctrl_open(struct inode *inode, struct file *file) { int rc = 0; if (!penv || penv->ctrl_device_opened) return -EFAULT; penv->ctrl_device_opened = 1; return rc; } void process_usr_ctrl_cmd(u8 *buf, size_t len) { u16 cmd = buf[0] << 8 | buf[1]; switch (cmd) { case WCNSS_USR_SERIAL_NUM: if (WCNSS_MIN_SERIAL_LEN > len) { pr_err("%s: Invalid serial number\n", __func__); return; } penv->serial_number = buf[2] << 24 | buf[3] << 16 | buf[4] << 8 | buf[5]; break; case WCNSS_USR_HAS_CAL_DATA: if (1 < buf[2]) pr_err("%s: Invalid data for cal %d\n", __func__, buf[2]); has_calibrated_data = buf[2]; break; case WCNSS_USR_WLAN_MAC_ADDR: memcpy(&penv->wlan_nv_macAddr, &buf[2], sizeof(penv->wlan_nv_macAddr)); pr_debug("%s: MAC Addr:" MAC_ADDRESS_STR "\n", __func__, penv->wlan_nv_macAddr[0], penv->wlan_nv_macAddr[1], penv->wlan_nv_macAddr[2], penv->wlan_nv_macAddr[3], penv->wlan_nv_macAddr[4], penv->wlan_nv_macAddr[5]); break; default: pr_err("%s: Invalid command %d\n", __func__, cmd); break; } } static ssize_t wcnss_ctrl_write(struct file *fp, const char __user *user_buffer, size_t count, loff_t *position) { int rc = 0; u8 buf[WCNSS_MAX_CMD_LEN]; if (!penv || !penv->ctrl_device_opened || WCNSS_MAX_CMD_LEN < count || WCNSS_MIN_CMD_LEN > count) return -EFAULT; mutex_lock(&penv->ctrl_lock); rc = copy_from_user(buf, user_buffer, count); if (0 == rc) process_usr_ctrl_cmd(buf, count); mutex_unlock(&penv->ctrl_lock); return rc; } static const struct file_operations wcnss_ctrl_fops = { .owner = THIS_MODULE, .open = wcnss_ctrl_open, .write = wcnss_ctrl_write, }; static struct miscdevice wcnss_usr_ctrl = { .minor = MISC_DYNAMIC_MINOR, .name = CTRL_DEVICE, .fops = &wcnss_ctrl_fops, }; static int wcnss_dt_parse_vreg_level(struct device *dev, int index, const char *current_vreg_name, const char *vreg_name, struct vregs_level *vlevel) { int ret = 0; /* array used to store nominal, low and high voltage values */ u32 voltage_levels[3], current_vreg; ret = of_property_read_u32_array(dev->of_node, vreg_name, voltage_levels, ARRAY_SIZE(voltage_levels)); if (ret) { dev_err(dev, "error reading %s property\n", vreg_name); return ret; } vlevel[index].nominal_min = voltage_levels[0]; vlevel[index].low_power_min = voltage_levels[1]; vlevel[index].max_voltage = voltage_levels[2]; ret = of_property_read_u32(dev->of_node, current_vreg_name, ¤t_vreg); if (ret) { dev_err(dev, "error reading %s property\n", current_vreg_name); return ret; } vlevel[index].uA_load = current_vreg; return ret; } static int wcnss_trigger_config(struct platform_device *pdev) { int ret; int rc, index = 0; struct qcom_wcnss_opts *pdata; struct resource *res; int is_pronto_vadc; int is_pronto_v3; int pil_retry = 0; int has_pronto_hw = of_property_read_bool(pdev->dev.of_node, "qcom,has-pronto-hw"); is_pronto_vadc = of_property_read_bool(pdev->dev.of_node, "qcom,is-pronto-vadc"); is_pronto_v3 = of_property_read_bool(pdev->dev.of_node, "qcom,is-pronto-v3"); penv->is_vsys_adc_channel = of_property_read_bool(pdev->dev.of_node, "qcom,has-vsys-adc-channel"); if (of_property_read_u32(pdev->dev.of_node, "qcom,wlan-rx-buff-count", &penv->wlan_rx_buff_count)) { penv->wlan_rx_buff_count = WCNSS_DEF_WLAN_RX_BUFF_COUNT; } ret = wcnss_dt_parse_vreg_level(&pdev->dev, index, "qcom,pronto-vddmx-current", "qcom,vddmx-voltage-level", penv->wlan_config.pronto_vlevel); if (ret) { dev_err(&pdev->dev, "error reading voltage-level property\n"); goto fail; } index++; ret = wcnss_dt_parse_vreg_level(&pdev->dev, index, "qcom,pronto-vddcx-current", "qcom,vddcx-voltage-level", penv->wlan_config.pronto_vlevel); if (ret) { dev_err(&pdev->dev, "error reading voltage-level property\n"); goto fail; } index++; ret = wcnss_dt_parse_vreg_level(&pdev->dev, index, "qcom,pronto-vddpx-current", "qcom,vddpx-voltage-level", penv->wlan_config.pronto_vlevel); if (ret) { dev_err(&pdev->dev, "error reading voltage-level property\n"); goto fail; } /* assign 0 to index now onwards, index variable re used to * represent iris regulator index */ index = 0; ret = wcnss_dt_parse_vreg_level(&pdev->dev, index, "qcom,iris-vddxo-current", "qcom,iris-vddxo-voltage-level", penv->wlan_config.iris_vlevel); if (ret) { dev_err(&pdev->dev, "error reading voltage-level property\n"); goto fail; } index++; ret = wcnss_dt_parse_vreg_level(&pdev->dev, index, "qcom,iris-vddrfa-current", "qcom,iris-vddrfa-voltage-level", penv->wlan_config.iris_vlevel); if (ret) { dev_err(&pdev->dev, "error reading voltage-level property\n"); goto fail; } index++; ret = wcnss_dt_parse_vreg_level(&pdev->dev, index, "qcom,iris-vddpa-current", "qcom,iris-vddpa-voltage-level", penv->wlan_config.iris_vlevel); if (ret) { dev_err(&pdev->dev, "error reading voltage-level property\n"); goto fail; } index++; ret = wcnss_dt_parse_vreg_level(&pdev->dev, index, "qcom,iris-vdddig-current", "qcom,iris-vdddig-voltage-level", penv->wlan_config.iris_vlevel); if (ret) { dev_err(&pdev->dev, "error reading voltage-level property\n"); goto fail; } /* make sure we are only triggered once */ if (penv->triggered) return 0; penv->triggered = 1; /* initialize the WCNSS device configuration */ pdata = pdev->dev.platform_data; if (WCNSS_CONFIG_UNSPECIFIED == has_48mhz_xo) { if (has_pronto_hw) { has_48mhz_xo = of_property_read_bool(pdev->dev.of_node, "qcom,has-48mhz-xo"); } else { has_48mhz_xo = pdata->has_48mhz_xo; } } penv->wcnss_hw_type = (has_pronto_hw) ? WCNSS_PRONTO_HW : WCNSS_RIVA_HW; penv->wlan_config.use_48mhz_xo = has_48mhz_xo; penv->wlan_config.is_pronto_vadc = is_pronto_vadc; penv->wlan_config.is_pronto_v3 = is_pronto_v3; if (WCNSS_CONFIG_UNSPECIFIED == has_autodetect_xo && has_pronto_hw) { has_autodetect_xo = of_property_read_bool(pdev->dev.of_node, "qcom,has-autodetect-xo"); } penv->thermal_mitigation = 0; strlcpy(penv->wcnss_version, "INVALID", WCNSS_VERSION_LEN); /* Configure 5 wire GPIOs */ if (!has_pronto_hw) { penv->gpios_5wire = platform_get_resource_byname(pdev, IORESOURCE_IO, "wcnss_gpios_5wire"); /* allocate 5-wire GPIO resources */ if (!penv->gpios_5wire) { dev_err(&pdev->dev, "insufficient IO resources\n"); ret = -ENOENT; goto fail_gpio_res; } ret = wcnss_gpios_config(penv->gpios_5wire, true); } else ret = wcnss_pronto_gpios_config(pdev, true); if (ret) { dev_err(&pdev->dev, "WCNSS gpios config failed.\n"); goto fail_gpio_res; } /* allocate resources */ penv->mmio_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "wcnss_mmio"); penv->tx_irq_res = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "wcnss_wlantx_irq"); penv->rx_irq_res = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "wcnss_wlanrx_irq"); if (!(penv->mmio_res && penv->tx_irq_res && penv->rx_irq_res)) { dev_err(&pdev->dev, "insufficient resources\n"); ret = -ENOENT; goto fail_res; } INIT_WORK(&penv->wcnssctrl_rx_work, wcnssctrl_rx_handler); INIT_WORK(&penv->wcnssctrl_version_work, wcnss_send_version_req); INIT_WORK(&penv->wcnss_pm_config_work, wcnss_send_pm_config); INIT_WORK(&penv->wcnssctrl_nvbin_dnld_work, wcnss_nvbin_dnld_main); INIT_DELAYED_WORK(&penv->wcnss_pm_qos_del_req, wcnss_pm_qos_enable_pc); wake_lock_init(&penv->wcnss_wake_lock, WAKE_LOCK_SUSPEND, "wcnss"); /* Add pm_qos request to disable power collapse for DDR */ wcnss_disable_pc_add_req(); if (wcnss_hardware_type() == WCNSS_PRONTO_HW) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pronto_phy_base"); if (!res) { ret = -EIO; pr_err("%s: resource pronto_phy_base failed\n", __func__); goto fail_ioremap; } penv->msm_wcnss_base = devm_ioremap_resource(&pdev->dev, res); } else { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "riva_phy_base"); if (!res) { ret = -EIO; pr_err("%s: resource riva_phy_base failed\n", __func__); goto fail_ioremap; } penv->msm_wcnss_base = devm_ioremap_resource(&pdev->dev, res); } if (!penv->msm_wcnss_base) { ret = -ENOMEM; pr_err("%s: ioremap wcnss physical failed\n", __func__); goto fail_ioremap; } penv->wlan_config.msm_wcnss_base = penv->msm_wcnss_base; if (wcnss_hardware_type() == WCNSS_RIVA_HW) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "riva_ccu_base"); if (!res) { ret = -EIO; pr_err("%s: resource riva_ccu_base failed\n", __func__); goto fail_ioremap; } penv->riva_ccu_base = devm_ioremap_resource(&pdev->dev, res); if (!penv->riva_ccu_base) { ret = -ENOMEM; pr_err("%s: ioremap riva ccu physical failed\n", __func__); goto fail_ioremap; } } else { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pronto_a2xb_base"); if (!res) { ret = -EIO; pr_err("%s: resource pronto_a2xb_base failed\n", __func__); goto fail_ioremap; } penv->pronto_a2xb_base = devm_ioremap_resource(&pdev->dev, res); if (!penv->pronto_a2xb_base) { ret = -ENOMEM; pr_err("%s: ioremap pronto a2xb physical failed\n", __func__); goto fail_ioremap; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pronto_ccpu_base"); if (!res) { ret = -EIO; pr_err("%s: resource pronto_ccpu_base failed\n", __func__); goto fail_ioremap; } penv->pronto_ccpu_base = devm_ioremap_resource(&pdev->dev, res); if (!penv->pronto_ccpu_base) { ret = -ENOMEM; pr_err("%s: ioremap pronto ccpu physical failed\n", __func__); goto fail_ioremap; } /* for reset FIQ */ res = platform_get_resource_byname(penv->pdev, IORESOURCE_MEM, "wcnss_fiq"); if (!res) { dev_err(&pdev->dev, "insufficient irq mem resources\n"); ret = -ENOENT; goto fail_ioremap; } penv->fiq_reg = ioremap_nocache(res->start, resource_size(res)); if (!penv->fiq_reg) { pr_err("wcnss: %s: ioremap_nocache() failed fiq_reg addr:%pr\n", __func__, &res->start); ret = -ENOMEM; goto fail_ioremap; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pronto_saw2_base"); if (!res) { ret = -EIO; pr_err("%s: resource pronto_saw2_base failed\n", __func__); goto fail_ioremap2; } penv->pronto_saw2_base = devm_ioremap_resource(&pdev->dev, res); if (!penv->pronto_saw2_base) { pr_err("%s: ioremap wcnss physical(saw2) failed\n", __func__); ret = -ENOMEM; goto fail_ioremap2; } penv->pronto_pll_base = penv->msm_wcnss_base + PRONTO_PLL_MODE_OFFSET; if (!penv->pronto_pll_base) { pr_err("%s: ioremap wcnss physical(pll) failed\n", __func__); ret = -ENOMEM; goto fail_ioremap2; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "wlan_tx_phy_aborts"); if (!res) { ret = -EIO; pr_err("%s: resource wlan_tx_phy_aborts failed\n", __func__); goto fail_ioremap2; } penv->wlan_tx_phy_aborts = devm_ioremap_resource(&pdev->dev, res); if (!penv->wlan_tx_phy_aborts) { ret = -ENOMEM; pr_err("%s: ioremap wlan TX PHY failed\n", __func__); goto fail_ioremap2; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "wlan_brdg_err_source"); if (!res) { ret = -EIO; pr_err("%s: resource wlan_brdg_err_source failed\n", __func__); goto fail_ioremap2; } penv->wlan_brdg_err_source = devm_ioremap_resource(&pdev->dev, res); if (!penv->wlan_brdg_err_source) { ret = -ENOMEM; pr_err("%s: ioremap wlan BRDG ERR failed\n", __func__); goto fail_ioremap2; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "wlan_tx_status"); if (!res) { ret = -EIO; pr_err("%s: resource wlan_tx_status failed\n", __func__); goto fail_ioremap2; } penv->wlan_tx_status = devm_ioremap_resource(&pdev->dev, res); if (!penv->wlan_tx_status) { ret = -ENOMEM; pr_err("%s: ioremap wlan TX STATUS failed\n", __func__); goto fail_ioremap2; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "alarms_txctl"); if (!res) { ret = -EIO; pr_err("%s: resource alarms_txctl failed\n", __func__); goto fail_ioremap2; } penv->alarms_txctl = devm_ioremap_resource(&pdev->dev, res); if (!penv->alarms_txctl) { ret = -ENOMEM; pr_err("%s: ioremap alarms TXCTL failed\n", __func__); goto fail_ioremap2; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "alarms_tactl"); if (!res) { ret = -EIO; pr_err("%s: resource alarms_tactl failed\n", __func__); goto fail_ioremap2; } penv->alarms_tactl = devm_ioremap_resource(&pdev->dev, res); if (!penv->alarms_tactl) { ret = -ENOMEM; pr_err("%s: ioremap alarms TACTL failed\n", __func__); goto fail_ioremap2; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pronto_mcu_base"); if (!res) { ret = -EIO; pr_err("%s: resource pronto_mcu_base failed\n", __func__); goto fail_ioremap2; } penv->pronto_mcu_base = devm_ioremap_resource(&pdev->dev, res); if (!penv->pronto_mcu_base) { ret = -ENOMEM; pr_err("%s: ioremap pronto mcu physical failed\n", __func__); goto fail_ioremap2; } } penv->adc_tm_dev = qpnp_get_adc_tm(&penv->pdev->dev, "wcnss"); if (IS_ERR(penv->adc_tm_dev)) { pr_err("%s: adc get failed\n", __func__); penv->adc_tm_dev = NULL; } else { INIT_DELAYED_WORK(&penv->vbatt_work, wcnss_update_vbatt); penv->fw_vbatt_state = WCNSS_CONFIG_UNSPECIFIED; } if (penv->wlan_config.is_pronto_vadc) { penv->vadc_dev = qpnp_get_vadc(&penv->pdev->dev, "wcnss"); if (IS_ERR(penv->vadc_dev)) { pr_err("%s: vadc get failed\n", __func__); penv->vadc_dev = NULL; } else { rc = wcnss_get_battery_volt(&penv->wlan_config.vbatt); INIT_WORK(&penv->wcnss_vadc_work, wcnss_send_vbatt_indication); if (rc < 0) pr_err("Failed to get battery voltage with error= %d\n", rc); } } do { /* trigger initialization of the WCNSS */ penv->pil = subsystem_get(WCNSS_PIL_DEVICE); if (IS_ERR(penv->pil)) { dev_err(&pdev->dev, "Peripheral Loader failed on WCNSS.\n"); ret = PTR_ERR(penv->pil); wcnss_disable_pc_add_req(); wcnss_pronto_log_debug_regs(); } } while (pil_retry++ < WCNSS_MAX_PIL_RETRY && IS_ERR(penv->pil)); if (IS_ERR(penv->pil)) { wcnss_reset_fiq(false); if (penv->wcnss_notif_hdle) subsys_notif_unregister_notifier(penv->wcnss_notif_hdle, &wnb); penv->pil = NULL; goto fail_ioremap2; } /* Remove pm_qos request */ wcnss_disable_pc_remove_req(); return 0; fail_ioremap2: if (penv->fiq_reg) iounmap(penv->fiq_reg); fail_ioremap: wake_lock_destroy(&penv->wcnss_wake_lock); fail_res: if (!has_pronto_hw) wcnss_gpios_config(penv->gpios_5wire, false); else if (penv->use_pinctrl) wcnss_pinctrl_set_state(false); else wcnss_pronto_gpios_config(pdev, false); fail_gpio_res: wcnss_disable_pc_remove_req(); fail: if (penv->wcnss_notif_hdle) subsys_notif_unregister_notifier(penv->wcnss_notif_hdle, &wnb); penv = NULL; return ret; } /* wlan prop driver cannot invoke cancel_work_sync * function directly, so to invoke this function it * call wcnss_flush_work function */ void wcnss_flush_work(struct work_struct *work) { struct work_struct *cnss_work = work; if (cnss_work != NULL) cancel_work_sync(cnss_work); } EXPORT_SYMBOL(wcnss_flush_work); /* wlan prop driver cannot invoke show_stack * function directly, so to invoke this function it * call wcnss_dump_stack function */ void wcnss_dump_stack(struct task_struct *task) { show_stack(task, NULL); } EXPORT_SYMBOL(wcnss_dump_stack); /* wlan prop driver cannot invoke cancel_delayed_work_sync * function directly, so to invoke this function it call * wcnss_flush_delayed_work function */ void wcnss_flush_delayed_work(struct delayed_work *dwork) { struct delayed_work *cnss_dwork = dwork; if (cnss_dwork != NULL) cancel_delayed_work_sync(cnss_dwork); } EXPORT_SYMBOL(wcnss_flush_delayed_work); /* wlan prop driver cannot invoke INIT_WORK function * directly, so to invoke this function call * wcnss_init_work function. */ void wcnss_init_work(struct work_struct *work , void *callbackptr) { if (work && callbackptr) INIT_WORK(work, callbackptr); } EXPORT_SYMBOL(wcnss_init_work); /* wlan prop driver cannot invoke INIT_DELAYED_WORK * function directly, so to invoke this function * call wcnss_init_delayed_work function. */ void wcnss_init_delayed_work(struct delayed_work *dwork , void *callbackptr) { if (dwork && callbackptr) INIT_DELAYED_WORK(dwork, callbackptr); } EXPORT_SYMBOL(wcnss_init_delayed_work); static int wcnss_node_open(struct inode *inode, struct file *file) { struct platform_device *pdev; int rc = 0; if (!penv) return -EFAULT; if (!penv->triggered) { pr_info(DEVICE " triggered by userspace\n"); pdev = penv->pdev; rc = wcnss_trigger_config(pdev); if (rc) return -EFAULT; } mutex_lock(&penv->dev_lock); penv->user_cal_rcvd = 0; penv->user_cal_read = 0; penv->user_cal_available = false; penv->user_cal_data = NULL; penv->device_opened = 1; mutex_unlock(&penv->dev_lock); return rc; } static ssize_t wcnss_wlan_read(struct file *fp, char __user *buffer, size_t count, loff_t *position) { int rc = 0; if (!penv || !penv->device_opened) return -EFAULT; rc = wait_event_interruptible(penv->read_wait, penv->fw_cal_rcvd > penv->user_cal_read || penv->fw_cal_available); if (rc < 0) return rc; mutex_lock(&penv->dev_lock); if (penv->fw_cal_available && penv->fw_cal_rcvd == penv->user_cal_read) { rc = 0; goto exit; } if (count > penv->fw_cal_rcvd - penv->user_cal_read) count = penv->fw_cal_rcvd - penv->user_cal_read; rc = copy_to_user(buffer, penv->fw_cal_data + penv->user_cal_read, count); if (rc == 0) { penv->user_cal_read += count; rc = count; } exit: mutex_unlock(&penv->dev_lock); return rc; } /* first (valid) write to this device should be 4 bytes cal file size */ static ssize_t wcnss_wlan_write(struct file *fp, const char __user *user_buffer, size_t count, loff_t *position) { int rc = 0; u32 size = 0; if (!penv || !penv->device_opened || penv->user_cal_available) return -EFAULT; if (penv->user_cal_rcvd == 0 && count >= 4 && !penv->user_cal_data) { rc = copy_from_user((void *)&size, user_buffer, 4); if (!size || size > MAX_CALIBRATED_DATA_SIZE) { pr_err(DEVICE " invalid size to write %d\n", size); return -EFAULT; } rc += count; count -= 4; penv->user_cal_exp_size = size; penv->user_cal_data = kmalloc(size, GFP_KERNEL); if (penv->user_cal_data == NULL) { pr_err(DEVICE " no memory to write\n"); return -ENOMEM; } if (0 == count) goto exit; } else if (penv->user_cal_rcvd == 0 && count < 4) return -EFAULT; if ((UINT32_MAX - count < penv->user_cal_rcvd) || MAX_CALIBRATED_DATA_SIZE < count + penv->user_cal_rcvd) { pr_err(DEVICE " invalid size to write %zu\n", count + penv->user_cal_rcvd); rc = -ENOMEM; goto exit; } rc = copy_from_user((void *)penv->user_cal_data + penv->user_cal_rcvd, user_buffer, count); if (0 == rc) { penv->user_cal_rcvd += count; rc += count; } if (penv->user_cal_rcvd == penv->user_cal_exp_size) { penv->user_cal_available = true; pr_info_ratelimited("wcnss: user cal written"); } exit: return rc; } static int wcnss_notif_cb(struct notifier_block *this, unsigned long code, void *ss_handle) { struct platform_device *pdev = wcnss_get_platform_device(); struct wcnss_wlan_config *pwlanconfig = wcnss_get_wlan_config(); struct notif_data *data = (struct notif_data *)ss_handle; int ret, xo_mode; pr_info("%s: wcnss notification event: %lu\n", __func__, code); if (code == SUBSYS_PROXY_VOTE) { if (pdev && pwlanconfig) { ret = wcnss_wlan_power(&pdev->dev, pwlanconfig, WCNSS_WLAN_SWITCH_ON, &xo_mode); wcnss_set_iris_xo_mode(xo_mode); if (ret) pr_err("Failed to execute wcnss_wlan_power\n"); } } else if (code == SUBSYS_PROXY_UNVOTE) { if (pdev && pwlanconfig) { /* Temporary workaround as some pronto images have an * issue of sending an interrupt that it is capable of * voting for it's resources too early. */ msleep(20); wcnss_wlan_power(&pdev->dev, pwlanconfig, WCNSS_WLAN_SWITCH_OFF, NULL); } } else if ((code == SUBSYS_BEFORE_SHUTDOWN && data && data->crashed) || code == SUBSYS_SOC_RESET) { wcnss_disable_pc_add_req(); schedule_delayed_work(&penv->wcnss_pm_qos_del_req, msecs_to_jiffies(WCNSS_PM_QOS_TIMEOUT)); penv->is_shutdown = 1; wcnss_log_debug_regs_on_bite(); } else if (code == SUBSYS_POWERUP_FAILURE) { if (pdev && pwlanconfig) wcnss_wlan_power(&pdev->dev, pwlanconfig, WCNSS_WLAN_SWITCH_OFF, NULL); wcnss_pronto_log_debug_regs(); wcnss_disable_pc_remove_req(); } else if (SUBSYS_BEFORE_SHUTDOWN == code) { wcnss_disable_pc_add_req(); schedule_delayed_work(&penv->wcnss_pm_qos_del_req, msecs_to_jiffies(WCNSS_PM_QOS_TIMEOUT)); penv->is_shutdown = 1; } else if (SUBSYS_AFTER_POWERUP == code) penv->is_shutdown = 0; return NOTIFY_DONE; } static const struct file_operations wcnss_node_fops = { .owner = THIS_MODULE, .open = wcnss_node_open, .read = wcnss_wlan_read, .write = wcnss_wlan_write, }; static struct miscdevice wcnss_misc = { .minor = MISC_DYNAMIC_MINOR, .name = DEVICE, .fops = &wcnss_node_fops, }; static int wcnss_wlan_probe(struct platform_device *pdev) { int ret = 0; /* verify we haven't been called more than once */ if (penv) { dev_err(&pdev->dev, "cannot handle multiple devices.\n"); return -ENODEV; } /* create an environment to track the device */ penv = devm_kzalloc(&pdev->dev, sizeof(*penv), GFP_KERNEL); if (!penv) { dev_err(&pdev->dev, "cannot allocate device memory.\n"); return -ENOMEM; } penv->pdev = pdev; /* register sysfs entries */ ret = wcnss_create_sysfs(&pdev->dev); if (ret) { penv = NULL; return -ENOENT; } /* register wcnss event notification */ penv->wcnss_notif_hdle = subsys_notif_register_notifier("wcnss", &wnb); if (IS_ERR(penv->wcnss_notif_hdle)) { pr_err("wcnss: register event notification failed!\n"); return PTR_ERR(penv->wcnss_notif_hdle); } mutex_init(&penv->dev_lock); mutex_init(&penv->ctrl_lock); mutex_init(&penv->vbat_monitor_mutex); mutex_init(&penv->pm_qos_mutex); init_waitqueue_head(&penv->read_wait); /* Since we were built into the kernel we'll be called as part * of kernel initialization. We don't know if userspace * applications are available to service PIL at this time * (they probably are not), so we simply create a device node * here. When userspace is available it should touch the * device so that we know that WCNSS configuration can take * place */ pr_info(DEVICE " probed in built-in mode\n"); misc_register(&wcnss_usr_ctrl); return misc_register(&wcnss_misc); } static int wcnss_wlan_remove(struct platform_device *pdev) { if (penv->wcnss_notif_hdle) subsys_notif_unregister_notifier(penv->wcnss_notif_hdle, &wnb); wcnss_remove_sysfs(&pdev->dev); penv = NULL; return 0; } static const struct dev_pm_ops wcnss_wlan_pm_ops = { .suspend = wcnss_wlan_suspend, .resume = wcnss_wlan_resume, }; #ifdef CONFIG_WCNSS_CORE_PRONTO static struct of_device_id msm_wcnss_pronto_match[] = { {.compatible = "qcom,wcnss_wlan"}, {} }; #endif static struct platform_driver wcnss_wlan_driver = { .driver = { .name = DEVICE, .owner = THIS_MODULE, .pm = &wcnss_wlan_pm_ops, #ifdef CONFIG_WCNSS_CORE_PRONTO .of_match_table = msm_wcnss_pronto_match, #endif }, .probe = wcnss_wlan_probe, .remove = wcnss_wlan_remove, }; static int __init wcnss_wlan_init(void) { platform_driver_register(&wcnss_wlan_driver); platform_driver_register(&wcnss_wlan_ctrl_driver); platform_driver_register(&wcnss_ctrl_driver); register_pm_notifier(&wcnss_pm_notifier); return 0; } static void __exit wcnss_wlan_exit(void) { if (penv) { if (penv->pil) subsystem_put(penv->pil); penv = NULL; } unregister_pm_notifier(&wcnss_pm_notifier); platform_driver_unregister(&wcnss_ctrl_driver); platform_driver_unregister(&wcnss_wlan_ctrl_driver); platform_driver_unregister(&wcnss_wlan_driver); } module_init(wcnss_wlan_init); module_exit(wcnss_wlan_exit); MODULE_LICENSE("GPL v2"); MODULE_VERSION(VERSION); MODULE_DESCRIPTION(DEVICE "Driver");