/* * Copyright (c) 2004-2008 Reyk Floeter * Copyright (c) 2006-2008 Nick Kossifidis * Copyright (c) 2007-2008 Matthew W. S. Bell * Copyright (c) 2007-2008 Luis Rodriguez * Copyright (c) 2007-2008 Pavel Roskin * Copyright (c) 2007-2008 Jiri Slaby * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ /*********************************\ * Protocol Control Unit Functions * \*********************************/ #include #include "ath5k.h" #include "reg.h" #include "debug.h" /** * DOC: Protocol Control Unit (PCU) functions * * Protocol control unit is responsible to maintain various protocol * properties before a frame is send and after a frame is received to/from * baseband. To be more specific, PCU handles: * * - Buffering of RX and TX frames (after QCU/DCUs) * * - Encrypting and decrypting (using the built-in engine) * * - Generating ACKs, RTS/CTS frames * * - Maintaining TSF * * - FCS * * - Updating beacon data (with TSF etc) * * - Generating virtual CCA * * - RX/Multicast filtering * * - BSSID filtering * * - Various statistics * * -Different operating modes: AP, STA, IBSS * * Note: Most of these functions can be tweaked/bypassed so you can do * them on sw above for debugging or research. For more infos check out PCU * registers on reg.h. */ /** * DOC: ACK rates * * AR5212+ can use higher rates for ack transmission * based on current tx rate instead of the base rate. * It does this to better utilize channel usage. * There is a mapping between G rates (that cover both * CCK and OFDM) and ack rates that we use when setting * rate -> duration table. This mapping is hw-based so * don't change anything. * * To enable this functionality we must set * ah->ah_ack_bitrate_high to true else base rate is * used (1Mb for CCK, 6Mb for OFDM). */ static const unsigned int ack_rates_high[] = /* Tx -> ACK */ /* 1Mb -> 1Mb */ { 0, /* 2MB -> 2Mb */ 1, /* 5.5Mb -> 2Mb */ 1, /* 11Mb -> 2Mb */ 1, /* 6Mb -> 6Mb */ 4, /* 9Mb -> 6Mb */ 4, /* 12Mb -> 12Mb */ 6, /* 18Mb -> 12Mb */ 6, /* 24Mb -> 24Mb */ 8, /* 36Mb -> 24Mb */ 8, /* 48Mb -> 24Mb */ 8, /* 54Mb -> 24Mb */ 8 }; /*******************\ * Helper functions * \*******************/ /** * ath5k_hw_get_frame_duration() - Get tx time of a frame * @ah: The &struct ath5k_hw * @len: Frame's length in bytes * @rate: The @struct ieee80211_rate * @shortpre: Indicate short preample * * Calculate tx duration of a frame given it's rate and length * It extends ieee80211_generic_frame_duration for non standard * bwmodes. */ int ath5k_hw_get_frame_duration(struct ath5k_hw *ah, enum ieee80211_band band, int len, struct ieee80211_rate *rate, bool shortpre) { int sifs, preamble, plcp_bits, sym_time; int bitrate, bits, symbols, symbol_bits; int dur; /* Fallback */ if (!ah->ah_bwmode) { __le16 raw_dur = ieee80211_generic_frame_duration(ah->hw, NULL, band, len, rate); /* subtract difference between long and short preamble */ dur = le16_to_cpu(raw_dur); if (shortpre) dur -= 96; return dur; } bitrate = rate->bitrate; preamble = AR5K_INIT_OFDM_PREAMPLE_TIME; plcp_bits = AR5K_INIT_OFDM_PLCP_BITS; sym_time = AR5K_INIT_OFDM_SYMBOL_TIME; switch (ah->ah_bwmode) { case AR5K_BWMODE_40MHZ: sifs = AR5K_INIT_SIFS_TURBO; preamble = AR5K_INIT_OFDM_PREAMBLE_TIME_MIN; break; case AR5K_BWMODE_10MHZ: sifs = AR5K_INIT_SIFS_HALF_RATE; preamble *= 2; sym_time *= 2; bitrate = DIV_ROUND_UP(bitrate, 2); break; case AR5K_BWMODE_5MHZ: sifs = AR5K_INIT_SIFS_QUARTER_RATE; preamble *= 4; sym_time *= 4; bitrate = DIV_ROUND_UP(bitrate, 4); break; default: sifs = AR5K_INIT_SIFS_DEFAULT_BG; break; } bits = plcp_bits + (len << 3); /* Bit rate is in 100Kbits */ symbol_bits = bitrate * sym_time; symbols = DIV_ROUND_UP(bits * 10, symbol_bits); dur = sifs + preamble + (sym_time * symbols); return dur; } /** * ath5k_hw_get_default_slottime() - Get the default slot time for current mode * @ah: The &struct ath5k_hw */ unsigned int ath5k_hw_get_default_slottime(struct ath5k_hw *ah) { struct ieee80211_channel *channel = ah->ah_current_channel; unsigned int slot_time; switch (ah->ah_bwmode) { case AR5K_BWMODE_40MHZ: slot_time = AR5K_INIT_SLOT_TIME_TURBO; break; case AR5K_BWMODE_10MHZ: slot_time = AR5K_INIT_SLOT_TIME_HALF_RATE; break; case AR5K_BWMODE_5MHZ: slot_time = AR5K_INIT_SLOT_TIME_QUARTER_RATE; break; case AR5K_BWMODE_DEFAULT: default: slot_time = AR5K_INIT_SLOT_TIME_DEFAULT; if ((channel->hw_value == AR5K_MODE_11B) && !ah->ah_short_slot) slot_time = AR5K_INIT_SLOT_TIME_B; break; } return slot_time; } /** * ath5k_hw_get_default_sifs() - Get the default SIFS for current mode * @ah: The &struct ath5k_hw */ unsigned int ath5k_hw_get_default_sifs(struct ath5k_hw *ah) { struct ieee80211_channel *channel = ah->ah_current_channel; unsigned int sifs; switch (ah->ah_bwmode) { case AR5K_BWMODE_40MHZ: sifs = AR5K_INIT_SIFS_TURBO; break; case AR5K_BWMODE_10MHZ: sifs = AR5K_INIT_SIFS_HALF_RATE; break; case AR5K_BWMODE_5MHZ: sifs = AR5K_INIT_SIFS_QUARTER_RATE; break; case AR5K_BWMODE_DEFAULT: sifs = AR5K_INIT_SIFS_DEFAULT_BG; default: if (channel->band == IEEE80211_BAND_5GHZ) sifs = AR5K_INIT_SIFS_DEFAULT_A; break; } return sifs; } /** * ath5k_hw_update_mib_counters() - Update MIB counters (mac layer statistics) * @ah: The &struct ath5k_hw * * Reads MIB counters from PCU and updates sw statistics. Is called after a * MIB interrupt, because one of these counters might have reached their maximum * and triggered the MIB interrupt, to let us read and clear the counter. * * NOTE: Is called in interrupt context! */ void ath5k_hw_update_mib_counters(struct ath5k_hw *ah) { struct ath5k_statistics *stats = &ah->stats; /* Read-And-Clear */ stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL); stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL); stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK); stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL); stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT); } /******************\ * ACK/CTS Timeouts * \******************/ /** * ath5k_hw_write_rate_duration() - Fill rate code to duration table * @ah: The &struct ath5k_hw * * Write the rate code to duration table upon hw reset. This is a helper for * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on * the hardware, based on current mode, for each rate. The rates which are * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have * different rate code so we write their value twice (one for long preamble * and one for short). * * Note: Band doesn't matter here, if we set the values for OFDM it works * on both a and g modes. So all we have to do is set values for all g rates * that include all OFDM and CCK rates. * */ static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah) { struct ieee80211_rate *rate; unsigned int i; /* 802.11g covers both OFDM and CCK */ u8 band = IEEE80211_BAND_2GHZ; /* Write rate duration table */ for (i = 0; i < ah->sbands[band].n_bitrates; i++) { u32 reg; u16 tx_time; if (ah->ah_ack_bitrate_high) rate = &ah->sbands[band].bitrates[ack_rates_high[i]]; /* CCK -> 1Mb */ else if (i < 4) rate = &ah->sbands[band].bitrates[0]; /* OFDM -> 6Mb */ else rate = &ah->sbands[band].bitrates[4]; /* Set ACK timeout */ reg = AR5K_RATE_DUR(rate->hw_value); /* An ACK frame consists of 10 bytes. If you add the FCS, * which ieee80211_generic_frame_duration() adds, * its 14 bytes. Note we use the control rate and not the * actual rate for this rate. See mac80211 tx.c * ieee80211_duration() for a brief description of * what rate we should choose to TX ACKs. */ tx_time = ath5k_hw_get_frame_duration(ah, band, 10, rate, false); ath5k_hw_reg_write(ah, tx_time, reg); if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)) continue; tx_time = ath5k_hw_get_frame_duration(ah, band, 10, rate, true); ath5k_hw_reg_write(ah, tx_time, reg + (AR5K_SET_SHORT_PREAMBLE << 2)); } } /** * ath5k_hw_set_ack_timeout() - Set ACK timeout on PCU * @ah: The &struct ath5k_hw * @timeout: Timeout in usec */ static int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout) { if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK)) <= timeout) return -EINVAL; AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK, ath5k_hw_htoclock(ah, timeout)); return 0; } /** * ath5k_hw_set_cts_timeout() - Set CTS timeout on PCU * @ah: The &struct ath5k_hw * @timeout: Timeout in usec */ static int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout) { if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS)) <= timeout) return -EINVAL; AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS, ath5k_hw_htoclock(ah, timeout)); return 0; } /*******************\ * RX filter Control * \*******************/ /** * ath5k_hw_set_lladdr() - Set station id * @ah: The &struct ath5k_hw * @mac: The card's mac address (array of octets) * * Set station id on hw using the provided mac address */ int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac) { struct ath_common *common = ath5k_hw_common(ah); u32 low_id, high_id; u32 pcu_reg; /* Set new station ID */ memcpy(common->macaddr, mac, ETH_ALEN); pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000; low_id = get_unaligned_le32(mac); high_id = get_unaligned_le16(mac + 4); ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1); return 0; } /** * ath5k_hw_set_bssid() - Set current BSSID on hw * @ah: The &struct ath5k_hw * * Sets the current BSSID and BSSID mask we have from the * common struct into the hardware */ void ath5k_hw_set_bssid(struct ath5k_hw *ah) { struct ath_common *common = ath5k_hw_common(ah); u16 tim_offset = 0; /* * Set BSSID mask on 5212 */ if (ah->ah_version == AR5K_AR5212) ath_hw_setbssidmask(common); /* * Set BSSID */ ath5k_hw_reg_write(ah, get_unaligned_le32(common->curbssid), AR5K_BSS_ID0); ath5k_hw_reg_write(ah, get_unaligned_le16(common->curbssid + 4) | ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1); if (common->curaid == 0) { ath5k_hw_disable_pspoll(ah); return; } AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM, tim_offset ? tim_offset + 4 : 0); ath5k_hw_enable_pspoll(ah, NULL, 0); } /** * ath5k_hw_set_bssid_mask() - Filter out bssids we listen * @ah: The &struct ath5k_hw * @mask: The BSSID mask to set (array of octets) * * BSSID masking is a method used by AR5212 and newer hardware to inform PCU * which bits of the interface's MAC address should be looked at when trying * to decide which packets to ACK. In station mode and AP mode with a single * BSS every bit matters since we lock to only one BSS. In AP mode with * multiple BSSes (virtual interfaces) not every bit matters because hw must * accept frames for all BSSes and so we tweak some bits of our mac address * in order to have multiple BSSes. * * For more information check out ../hw.c of the common ath module. */ void ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask) { struct ath_common *common = ath5k_hw_common(ah); /* Cache bssid mask so that we can restore it * on reset */ memcpy(common->bssidmask, mask, ETH_ALEN); if (ah->ah_version == AR5K_AR5212) ath_hw_setbssidmask(common); } /** * ath5k_hw_set_mcast_filter() - Set multicast filter * @ah: The &struct ath5k_hw * @filter0: Lower 32bits of muticast filter * @filter1: Higher 16bits of multicast filter */ void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1) { ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0); ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1); } /** * ath5k_hw_get_rx_filter() - Get current rx filter * @ah: The &struct ath5k_hw * * Returns the RX filter by reading rx filter and * phy error filter registers. RX filter is used * to set the allowed frame types that PCU will accept * and pass to the driver. For a list of frame types * check out reg.h. */ u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah) { u32 data, filter = 0; filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER); /*Radar detection for 5212*/ if (ah->ah_version == AR5K_AR5212) { data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL); if (data & AR5K_PHY_ERR_FIL_RADAR) filter |= AR5K_RX_FILTER_RADARERR; if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK)) filter |= AR5K_RX_FILTER_PHYERR; } return filter; } /** * ath5k_hw_set_rx_filter() - Set rx filter * @ah: The &struct ath5k_hw * @filter: RX filter mask (see reg.h) * * Sets RX filter register and also handles PHY error filter * register on 5212 and newer chips so that we have proper PHY * error reporting. */ void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter) { u32 data = 0; /* Set PHY error filter register on 5212*/ if (ah->ah_version == AR5K_AR5212) { if (filter & AR5K_RX_FILTER_RADARERR) data |= AR5K_PHY_ERR_FIL_RADAR; if (filter & AR5K_RX_FILTER_PHYERR) data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK; } /* * The AR5210 uses promiscuous mode to detect radar activity */ if (ah->ah_version == AR5K_AR5210 && (filter & AR5K_RX_FILTER_RADARERR)) { filter &= ~AR5K_RX_FILTER_RADARERR; filter |= AR5K_RX_FILTER_PROM; } /*Zero length DMA (phy error reporting) */ if (data) AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); else AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); /*Write RX Filter register*/ ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER); /*Write PHY error filter register on 5212*/ if (ah->ah_version == AR5K_AR5212) ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL); } /****************\ * Beacon control * \****************/ #define ATH5K_MAX_TSF_READ 10 /** * ath5k_hw_get_tsf64() - Get the full 64bit TSF * @ah: The &struct ath5k_hw * * Returns the current TSF */ u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah) { u32 tsf_lower, tsf_upper1, tsf_upper2; int i; unsigned long flags; /* This code is time critical - we don't want to be interrupted here */ local_irq_save(flags); /* * While reading TSF upper and then lower part, the clock is still * counting (or jumping in case of IBSS merge) so we might get * inconsistent values. To avoid this, we read the upper part again * and check it has not been changed. We make the hypothesis that a * maximum of 3 changes can happens in a row (we use 10 as a safe * value). * * Impact on performance is pretty small, since in most cases, only * 3 register reads are needed. */ tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32); for (i = 0; i < ATH5K_MAX_TSF_READ; i++) { tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32); tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32); if (tsf_upper2 == tsf_upper1) break; tsf_upper1 = tsf_upper2; } local_irq_restore(flags); WARN_ON(i == ATH5K_MAX_TSF_READ); return ((u64)tsf_upper1 << 32) | tsf_lower; } #undef ATH5K_MAX_TSF_READ /** * ath5k_hw_set_tsf64() - Set a new 64bit TSF * @ah: The &struct ath5k_hw * @tsf64: The new 64bit TSF * * Sets the new TSF */ void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64) { ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32); ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32); } /** * ath5k_hw_reset_tsf() - Force a TSF reset * @ah: The &struct ath5k_hw * * Forces a TSF reset on PCU */ void ath5k_hw_reset_tsf(struct ath5k_hw *ah) { u32 val; val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF; /* * Each write to the RESET_TSF bit toggles a hardware internal * signal to reset TSF, but if left high it will cause a TSF reset * on the next chip reset as well. Thus we always write the value * twice to clear the signal. */ ath5k_hw_reg_write(ah, val, AR5K_BEACON); ath5k_hw_reg_write(ah, val, AR5K_BEACON); } /** * ath5k_hw_init_beacon_timers() - Initialize beacon timers * @ah: The &struct ath5k_hw * @next_beacon: Next TBTT * @interval: Current beacon interval * * This function is used to initialize beacon timers based on current * operation mode and settings. */ void ath5k_hw_init_beacon_timers(struct ath5k_hw *ah, u32 next_beacon, u32 interval) { u32 timer1, timer2, timer3; /* * Set the additional timers by mode */ switch (ah->opmode) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_STATION: /* In STA mode timer1 is used as next wakeup * timer and timer2 as next CFP duration start * timer. Both in 1/8TUs. */ /* TODO: PCF handling */ if (ah->ah_version == AR5K_AR5210) { timer1 = 0xffffffff; timer2 = 0xffffffff; } else { timer1 = 0x0000ffff; timer2 = 0x0007ffff; } /* Mark associated AP as PCF incapable for now */ AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF); break; case NL80211_IFTYPE_ADHOC: AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM); default: /* On non-STA modes timer1 is used as next DMA * beacon alert (DBA) timer and timer2 as next * software beacon alert. Both in 1/8TUs. */ timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3; timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3; break; } /* Timer3 marks the end of our ATIM window * a zero length window is not allowed because * we 'll get no beacons */ timer3 = next_beacon + 1; /* * Set the beacon register and enable all timers. */ /* When in AP or Mesh Point mode zero timer0 to start TSF */ if (ah->opmode == NL80211_IFTYPE_AP || ah->opmode == NL80211_IFTYPE_MESH_POINT) ath5k_hw_reg_write(ah, 0, AR5K_TIMER0); ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0); ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1); ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2); ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3); /* Force a TSF reset if requested and enable beacons */ if (interval & AR5K_BEACON_RESET_TSF) ath5k_hw_reset_tsf(ah); ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD | AR5K_BEACON_ENABLE), AR5K_BEACON); /* Flush any pending BMISS interrupts on ISR by * performing a clear-on-write operation on PISR * register for the BMISS bit (writing a bit on * ISR toggles a reset for that bit and leaves * the remaining bits intact) */ if (ah->ah_version == AR5K_AR5210) ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR); else ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR); /* TODO: Set enhanced sleep registers on AR5212 * based on vif->bss_conf params, until then * disable power save reporting.*/ AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV); } /** * ath5k_check_timer_win() - Check if timer B is timer A + window * @a: timer a (before b) * @b: timer b (after a) * @window: difference between a and b * @intval: timers are increased by this interval * * This helper function checks if timer B is timer A + window and covers * cases where timer A or B might have already been updated or wrapped * around (Timers are 16 bit). * * Returns true if O.K. */ static inline bool ath5k_check_timer_win(int a, int b, int window, int intval) { /* * 1.) usually B should be A + window * 2.) A already updated, B not updated yet * 3.) A already updated and has wrapped around * 4.) B has wrapped around */ if ((b - a == window) || /* 1.) */ (a - b == intval - window) || /* 2.) */ ((a | 0x10000) - b == intval - window) || /* 3.) */ ((b | 0x10000) - a == window)) /* 4.) */ return true; /* O.K. */ return false; } /** * ath5k_hw_check_beacon_timers() - Check if the beacon timers are correct * @ah: The &struct ath5k_hw * @intval: beacon interval * * This is a workaround for IBSS mode * * The need for this function arises from the fact that we have 4 separate * HW timer registers (TIMER0 - TIMER3), which are closely related to the * next beacon target time (NBTT), and that the HW updates these timers * separately based on the current TSF value. The hardware increments each * timer by the beacon interval, when the local TSF converted to TU is equal * to the value stored in the timer. * * The reception of a beacon with the same BSSID can update the local HW TSF * at any time - this is something we can't avoid. If the TSF jumps to a * time which is later than the time stored in a timer, this timer will not * be updated until the TSF in TU wraps around at 16 bit (the size of the * timers) and reaches the time which is stored in the timer. * * The problem is that these timers are closely related to TIMER0 (NBTT) and * that they define a time "window". When the TSF jumps between two timers * (e.g. ATIM and NBTT), the one in the past will be left behind (not * updated), while the one in the future will be updated every beacon * interval. This causes the window to get larger, until the TSF wraps * around as described above and the timer which was left behind gets * updated again. But - because the beacon interval is usually not an exact * divisor of the size of the timers (16 bit), an unwanted "window" between * these timers has developed! * * This is especially important with the ATIM window, because during * the ATIM window only ATIM frames and no data frames are allowed to be * sent, which creates transmission pauses after each beacon. This symptom * has been described as "ramping ping" because ping times increase linearly * for some time and then drop down again. A wrong window on the DMA beacon * timer has the same effect, so we check for these two conditions. * * Returns true if O.K. */ bool ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval) { unsigned int nbtt, atim, dma; nbtt = ath5k_hw_reg_read(ah, AR5K_TIMER0); atim = ath5k_hw_reg_read(ah, AR5K_TIMER3); dma = ath5k_hw_reg_read(ah, AR5K_TIMER1) >> 3; /* NOTE: SWBA is different. Having a wrong window there does not * stop us from sending data and this condition is caught by * other means (SWBA interrupt) */ if (ath5k_check_timer_win(nbtt, atim, 1, intval) && ath5k_check_timer_win(dma, nbtt, AR5K_TUNE_DMA_BEACON_RESP, intval)) return true; /* O.K. */ return false; } /** * ath5k_hw_set_coverage_class() - Set IEEE 802.11 coverage class * @ah: The &struct ath5k_hw * @coverage_class: IEEE 802.11 coverage class number * * Sets IFS intervals and ACK/CTS timeouts for given coverage class. */ void ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class) { /* As defined by IEEE 802.11-2007 17.3.8.6 */ int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class; int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time; int cts_timeout = ack_timeout; ath5k_hw_set_ifs_intervals(ah, slot_time); ath5k_hw_set_ack_timeout(ah, ack_timeout); ath5k_hw_set_cts_timeout(ah, cts_timeout); ah->ah_coverage_class = coverage_class; } /***************************\ * Init/Start/Stop functions * \***************************/ /** * ath5k_hw_start_rx_pcu() - Start RX engine * @ah: The &struct ath5k_hw * * Starts RX engine on PCU so that hw can process RXed frames * (ACK etc). * * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma */ void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah) { AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); } /** * at5k_hw_stop_rx_pcu() - Stop RX engine * @ah: The &struct ath5k_hw * * Stops RX engine on PCU */ void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah) { AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); } /** * ath5k_hw_set_opmode() - Set PCU operating mode * @ah: The &struct ath5k_hw * @op_mode: One of enum nl80211_iftype * * Configure PCU for the various operating modes (AP/STA etc) */ int ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode) { struct ath_common *common = ath5k_hw_common(ah); u32 pcu_reg, beacon_reg, low_id, high_id; ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode %d\n", op_mode); /* Preserve rest settings */ pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000; pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE | (ah->ah_version == AR5K_AR5210 ? (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0)); beacon_reg = 0; switch (op_mode) { case NL80211_IFTYPE_ADHOC: pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE; beacon_reg |= AR5K_BCR_ADHOC; if (ah->ah_version == AR5K_AR5210) pcu_reg |= AR5K_STA_ID1_NO_PSPOLL; else AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS); break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_MESH_POINT: pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE; beacon_reg |= AR5K_BCR_AP; if (ah->ah_version == AR5K_AR5210) pcu_reg |= AR5K_STA_ID1_NO_PSPOLL; else AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS); break; case NL80211_IFTYPE_STATION: pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE | (ah->ah_version == AR5K_AR5210 ? AR5K_STA_ID1_PWR_SV : 0); case NL80211_IFTYPE_MONITOR: pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE | (ah->ah_version == AR5K_AR5210 ? AR5K_STA_ID1_NO_PSPOLL : 0); break; default: return -EINVAL; } /* * Set PCU registers */ low_id = get_unaligned_le32(common->macaddr); high_id = get_unaligned_le16(common->macaddr + 4); ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1); /* * Set Beacon Control Register on 5210 */ if (ah->ah_version == AR5K_AR5210) ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR); return 0; } /** * ath5k_hw_pcu_init() - Initialize PCU * @ah: The &struct ath5k_hw * @op_mode: One of enum nl80211_iftype * @mode: One of enum ath5k_driver_mode * * This function is used to initialize PCU by setting current * operation mode and various other settings. */ void ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode) { /* Set bssid and bssid mask */ ath5k_hw_set_bssid(ah); /* Set PCU config */ ath5k_hw_set_opmode(ah, op_mode); /* Write rate duration table only on AR5212 and if * virtual interface has already been brought up * XXX: rethink this after new mode changes to * mac80211 are integrated */ if (ah->ah_version == AR5K_AR5212 && ah->nvifs) ath5k_hw_write_rate_duration(ah); /* Set RSSI/BRSSI thresholds * * Note: If we decide to set this value * dynamically, have in mind that when AR5K_RSSI_THR * register is read it might return 0x40 if we haven't * wrote anything to it plus BMISS RSSI threshold is zeroed. * So doing a save/restore procedure here isn't the right * choice. Instead store it on ath5k_hw */ ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES | AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S), AR5K_RSSI_THR); /* MIC QoS support */ if (ah->ah_mac_srev >= AR5K_SREV_AR2413) { ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL); ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL); } /* QoS NOACK Policy */ if (ah->ah_version == AR5K_AR5212) { ath5k_hw_reg_write(ah, AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) | AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) | AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET), AR5K_QOS_NOACK); } /* Restore slot time and ACK timeouts */ if (ah->ah_coverage_class > 0) ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class); /* Set ACK bitrate mode (see ack_rates_high) */ if (ah->ah_version == AR5K_AR5212) { u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB; if (ah->ah_ack_bitrate_high) AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val); else AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val); } return; }