/* * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define PWR_ON_MASK BIT(31) #define EN_REST_WAIT_MASK (0xF << 20) #define EN_FEW_WAIT_MASK (0xF << 16) #define CLK_DIS_WAIT_MASK (0xF << 12) #define SW_OVERRIDE_MASK BIT(2) #define HW_CONTROL_MASK BIT(1) #define SW_COLLAPSE_MASK BIT(0) #define GMEM_CLAMP_IO_MASK BIT(0) #define BCR_BLK_ARES_BIT BIT(0) /* Wait 2^n CXO cycles between all states. Here, n=2 (4 cycles). */ #define EN_REST_WAIT_VAL (0x2 << 20) #define EN_FEW_WAIT_VAL (0x8 << 16) #define CLK_DIS_WAIT_VAL (0x2 << 12) #define TIMEOUT_US 100 struct gdsc { struct regulator_dev *rdev; struct regulator_desc rdesc; void __iomem *gdscr; struct clk **clocks; int clock_count; bool toggle_mem; bool toggle_periph; bool toggle_logic; bool resets_asserted; bool root_en; bool force_root_en; int root_clk_idx; bool no_status_check_on_disable; bool is_gdsc_enabled; bool allow_clear; void __iomem *domain_addr; void __iomem *hw_ctrl_addr; void __iomem *sw_reset_addr; u32 gds_timeout; }; enum gdscr_status { ENABLED, DISABLED, }; static DEFINE_MUTEX(gdsc_seq_lock); void gdsc_allow_clear_retention(struct regulator *regulator) { struct gdsc *sc = regulator_get_drvdata(regulator); if (sc) sc->allow_clear = true; } static int poll_gdsc_status(struct gdsc *sc, enum gdscr_status status) { void __iomem *gdscr; int count = sc->gds_timeout; u32 val; if (sc->hw_ctrl_addr) gdscr = sc->hw_ctrl_addr; else gdscr = sc->gdscr; for (; count > 0; count--) { val = readl_relaxed(gdscr); val &= PWR_ON_MASK; switch (status) { case ENABLED: if (val) return 0; break; case DISABLED: if (!val) return 0; break; } /* * There is no guarantee about the delay needed for the enable * bit in the GDSCR to be set or reset after the GDSC state * changes. Hence, keep on checking for a reasonable number * of times until the bit is set with the least possible delay * between succeessive tries. */ udelay(1); } return -ETIMEDOUT; } static int gdsc_is_enabled(struct regulator_dev *rdev) { struct gdsc *sc = rdev_get_drvdata(rdev); uint32_t regval; if (!sc->toggle_logic) return !sc->resets_asserted; regval = readl_relaxed(sc->gdscr); if (regval & PWR_ON_MASK) { /* * The GDSC might be turned on due to TZ/HYP vote on the * votable GDS registers. Check the SW_COLLAPSE_MASK to * determine if HLOS has voted for it. */ if (!(regval & SW_COLLAPSE_MASK)) return true; } return false; } static int gdsc_enable(struct regulator_dev *rdev) { struct gdsc *sc = rdev_get_drvdata(rdev); uint32_t regval, hw_ctrl_regval = 0x0; int i, ret = 0; mutex_lock(&gdsc_seq_lock); if (sc->root_en || sc->force_root_en) clk_prepare_enable(sc->clocks[sc->root_clk_idx]); if (sc->toggle_logic) { if (sc->sw_reset_addr) { regval = readl_relaxed(sc->sw_reset_addr); regval |= BCR_BLK_ARES_BIT; writel_relaxed(regval, sc->sw_reset_addr); /* * BLK_ARES should be kept asserted for 1us before * being de-asserted. */ wmb(); udelay(1); regval &= ~BCR_BLK_ARES_BIT; writel_relaxed(regval, sc->sw_reset_addr); /* Make sure de-assert goes through before continuing */ wmb(); } if (sc->domain_addr) { regval = readl_relaxed(sc->domain_addr); regval &= ~GMEM_CLAMP_IO_MASK; writel_relaxed(regval, sc->domain_addr); /* * Make sure CLAMP_IO is de-asserted before continuing. */ wmb(); } regval = readl_relaxed(sc->gdscr); if (regval & HW_CONTROL_MASK) { dev_warn(&rdev->dev, "Invalid enable while %s is under HW control\n", sc->rdesc.name); mutex_unlock(&gdsc_seq_lock); return -EBUSY; } regval &= ~SW_COLLAPSE_MASK; writel_relaxed(regval, sc->gdscr); /* Wait for 8 XO cycles before polling the status bit. */ mb(); udelay(1); ret = poll_gdsc_status(sc, ENABLED); if (ret) { regval = readl_relaxed(sc->gdscr); if (sc->hw_ctrl_addr) { hw_ctrl_regval = readl_relaxed(sc->hw_ctrl_addr); dev_warn(&rdev->dev, "%s state (after %d us timeout): 0x%x, GDS_HW_CTRL: 0x%x. Re-polling.\n", sc->rdesc.name, sc->gds_timeout, regval, hw_ctrl_regval); ret = poll_gdsc_status(sc, ENABLED); if (ret) { dev_err(&rdev->dev, "%s final state (after additional %d us timeout): 0x%x, GDS_HW_CTRL: 0x%x\n", sc->rdesc.name, sc->gds_timeout, readl_relaxed(sc->gdscr), readl_relaxed(sc->hw_ctrl_addr)); mutex_unlock(&gdsc_seq_lock); return ret; } } else { dev_err(&rdev->dev, "%s enable timed out: 0x%x\n", sc->rdesc.name, regval); udelay(sc->gds_timeout); regval = readl_relaxed(sc->gdscr); dev_err(&rdev->dev, "%s final state: 0x%x (%d us after timeout)\n", sc->rdesc.name, regval, sc->gds_timeout); mutex_unlock(&gdsc_seq_lock); return ret; } } } else { for (i = 0; i < sc->clock_count; i++) if (likely(i != sc->root_clk_idx)) clk_reset(sc->clocks[i], CLK_RESET_DEASSERT); sc->resets_asserted = false; } for (i = 0; i < sc->clock_count; i++) { if (unlikely(i == sc->root_clk_idx)) continue; if (sc->toggle_mem) clk_set_flags(sc->clocks[i], CLKFLAG_RETAIN_MEM); if (sc->toggle_periph) clk_set_flags(sc->clocks[i], CLKFLAG_RETAIN_PERIPH); } /* * If clocks to this power domain were already on, they will take an * additional 4 clock cycles to re-enable after the rail is enabled. * Delay to account for this. A delay is also needed to ensure clocks * are not enabled within 400ns of enabling power to the memories. */ udelay(1); /* Delay to account for staggered memory powerup. */ udelay(1); if (sc->force_root_en) clk_disable_unprepare(sc->clocks[sc->root_clk_idx]); sc->is_gdsc_enabled = true; mutex_unlock(&gdsc_seq_lock); return ret; } static int gdsc_disable(struct regulator_dev *rdev) { struct gdsc *sc = rdev_get_drvdata(rdev); uint32_t regval; int i, ret = 0; mutex_lock(&gdsc_seq_lock); if (sc->force_root_en) clk_prepare_enable(sc->clocks[sc->root_clk_idx]); for (i = sc->clock_count-1; i >= 0; i--) { if (unlikely(i == sc->root_clk_idx)) continue; if (sc->toggle_mem && sc->allow_clear) clk_set_flags(sc->clocks[i], CLKFLAG_NORETAIN_MEM); if (sc->toggle_periph && sc->allow_clear) clk_set_flags(sc->clocks[i], CLKFLAG_NORETAIN_PERIPH); } /* Delay to account for staggered memory powerdown. */ udelay(1); if (sc->toggle_logic) { regval = readl_relaxed(sc->gdscr); if (regval & HW_CONTROL_MASK) { dev_warn(&rdev->dev, "Invalid disable while %s is under HW control\n", sc->rdesc.name); mutex_unlock(&gdsc_seq_lock); return -EBUSY; } regval |= SW_COLLAPSE_MASK; writel_relaxed(regval, sc->gdscr); /* Wait for 8 XO cycles before polling the status bit. */ mb(); udelay(1); if (sc->no_status_check_on_disable) { /* * Add a short delay here to ensure that gdsc_enable * right after it was disabled does not put it in a * wierd state. */ udelay(TIMEOUT_US); } else { ret = poll_gdsc_status(sc, DISABLED); if (ret) dev_err(&rdev->dev, "%s disable timed out: 0x%x\n", sc->rdesc.name, regval); } if (sc->domain_addr) { regval = readl_relaxed(sc->domain_addr); regval |= GMEM_CLAMP_IO_MASK; writel_relaxed(regval, sc->domain_addr); } } else { for (i = sc->clock_count-1; i >= 0; i--) if (likely(i != sc->root_clk_idx)) clk_reset(sc->clocks[i], CLK_RESET_ASSERT); sc->resets_asserted = true; } /* * Check if gdsc_enable was called for this GDSC. If not, the root * clock will not have been enabled prior to this. */ if ((sc->is_gdsc_enabled && sc->root_en) || sc->force_root_en) clk_disable_unprepare(sc->clocks[sc->root_clk_idx]); sc->is_gdsc_enabled = false; mutex_unlock(&gdsc_seq_lock); return ret; } static unsigned int gdsc_get_mode(struct regulator_dev *rdev) { struct gdsc *sc = rdev_get_drvdata(rdev); uint32_t regval; mutex_lock(&gdsc_seq_lock); regval = readl_relaxed(sc->gdscr); mutex_unlock(&gdsc_seq_lock); if (regval & HW_CONTROL_MASK) return REGULATOR_MODE_FAST; return REGULATOR_MODE_NORMAL; } static int gdsc_set_mode(struct regulator_dev *rdev, unsigned int mode) { struct gdsc *sc = rdev_get_drvdata(rdev); uint32_t regval; int ret = 0; mutex_lock(&gdsc_seq_lock); regval = readl_relaxed(sc->gdscr); /* * HW control can only be enable/disabled when SW_COLLAPSE * indicates on. */ if (regval & SW_COLLAPSE_MASK) { dev_err(&rdev->dev, "can't enable hw collapse now\n"); mutex_unlock(&gdsc_seq_lock); return -EBUSY; } switch (mode) { case REGULATOR_MODE_FAST: /* Turn on HW trigger mode */ regval |= HW_CONTROL_MASK; writel_relaxed(regval, sc->gdscr); /* * There may be a race with internal HW trigger signal, * that will result in GDSC going through a power down and * up cycle. In case HW trigger signal is controlled by * firmware that also poll same status bits as we do, FW * might read an 'on' status before the GDSC can finish * power cycle. We wait 1us before returning to ensure * FW can't immediately poll the status bit. */ mb(); udelay(1); break; case REGULATOR_MODE_NORMAL: /* Turn off HW trigger mode */ regval &= ~HW_CONTROL_MASK; writel_relaxed(regval, sc->gdscr); /* * There may be a race with internal HW trigger signal, * that will result in GDSC going through a power down and * up cycle. If we poll too early, status bit will * indicate 'on' before the GDSC can finish the power cycle. * Account for this case by waiting 1us before polling. */ mb(); udelay(1); ret = poll_gdsc_status(sc, ENABLED); if (ret) dev_err(&rdev->dev, "%s set_mode timed out: 0x%x\n", sc->rdesc.name, regval); break; default: ret = -EINVAL; break; } mutex_unlock(&gdsc_seq_lock); return ret; } static struct regulator_ops gdsc_ops = { .is_enabled = gdsc_is_enabled, .enable = gdsc_enable, .disable = gdsc_disable, .set_mode = gdsc_set_mode, .get_mode = gdsc_get_mode, }; static int gdsc_probe(struct platform_device *pdev) { static atomic_t gdsc_count = ATOMIC_INIT(-1); struct regulator_config reg_config = {}; struct regulator_init_data *init_data; struct resource *res; struct gdsc *sc; uint32_t regval, clk_dis_wait_val = CLK_DIS_WAIT_VAL; bool retain_mem, retain_periph, support_hw_trigger; int i, ret; u32 timeout; sc = devm_kzalloc(&pdev->dev, sizeof(struct gdsc), GFP_KERNEL); if (sc == NULL) return -ENOMEM; init_data = of_get_regulator_init_data(&pdev->dev, pdev->dev.of_node); if (init_data == NULL) return -ENOMEM; if (of_get_property(pdev->dev.of_node, "parent-supply", NULL)) init_data->supply_regulator = "parent"; ret = of_property_read_string(pdev->dev.of_node, "regulator-name", &sc->rdesc.name); if (ret) return ret; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) return -EINVAL; sc->gdscr = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (sc->gdscr == NULL) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "domain_addr"); if (res) { sc->domain_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (sc->domain_addr == NULL) return -ENOMEM; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sw_reset"); if (res) { sc->sw_reset_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (sc->sw_reset_addr == NULL) return -ENOMEM; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hw_ctrl_addr"); if (res) { sc->hw_ctrl_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (sc->hw_ctrl_addr == NULL) return -ENOMEM; } sc->gds_timeout = TIMEOUT_US; ret = of_property_read_u32(pdev->dev.of_node, "qcom,gds-timeout", &timeout); if (!ret) sc->gds_timeout = timeout; sc->clock_count = of_property_count_strings(pdev->dev.of_node, "clock-names"); if (sc->clock_count == -EINVAL) { sc->clock_count = 0; } else if (IS_ERR_VALUE(sc->clock_count)) { dev_err(&pdev->dev, "Failed to get clock names\n"); return -EINVAL; } sc->clocks = devm_kzalloc(&pdev->dev, sizeof(struct clk *) * sc->clock_count, GFP_KERNEL); if (!sc->clocks) return -ENOMEM; sc->root_clk_idx = -1; sc->root_en = of_property_read_bool(pdev->dev.of_node, "qcom,enable-root-clk"); sc->force_root_en = of_property_read_bool(pdev->dev.of_node, "qcom,force-enable-root-clk"); for (i = 0; i < sc->clock_count; i++) { const char *clock_name; of_property_read_string_index(pdev->dev.of_node, "clock-names", i, &clock_name); sc->clocks[i] = devm_clk_get(&pdev->dev, clock_name); if (IS_ERR(sc->clocks[i])) { int rc = PTR_ERR(sc->clocks[i]); if (rc != -EPROBE_DEFER) dev_err(&pdev->dev, "Failed to get %s\n", clock_name); return rc; } if (!strcmp(clock_name, "core_root_clk")) sc->root_clk_idx = i; } if ((sc->root_en || sc->force_root_en) && (sc->root_clk_idx == -1)) { dev_err(&pdev->dev, "Failed to get root clock name\n"); return -EINVAL; } sc->rdesc.id = atomic_inc_return(&gdsc_count); sc->rdesc.ops = &gdsc_ops; sc->rdesc.type = REGULATOR_VOLTAGE; sc->rdesc.owner = THIS_MODULE; platform_set_drvdata(pdev, sc); /* * Disable HW trigger: collapse/restore occur based on registers writes. * Disable SW override: Use hardware state-machine for sequencing. */ regval = readl_relaxed(sc->gdscr); regval &= ~(HW_CONTROL_MASK | SW_OVERRIDE_MASK); if (!of_property_read_u32(pdev->dev.of_node, "qcom,clk-dis-wait-val", &clk_dis_wait_val)) clk_dis_wait_val = clk_dis_wait_val << 12; /* Configure wait time between states. */ regval &= ~(EN_REST_WAIT_MASK | EN_FEW_WAIT_MASK | CLK_DIS_WAIT_MASK); regval |= EN_REST_WAIT_VAL | EN_FEW_WAIT_VAL | clk_dis_wait_val; writel_relaxed(regval, sc->gdscr); sc->no_status_check_on_disable = of_property_read_bool(pdev->dev.of_node, "qcom,no-status-check-on-disable"); retain_mem = of_property_read_bool(pdev->dev.of_node, "qcom,retain-mem"); sc->toggle_mem = !retain_mem; retain_periph = of_property_read_bool(pdev->dev.of_node, "qcom,retain-periph"); sc->toggle_periph = !retain_periph; sc->toggle_logic = !of_property_read_bool(pdev->dev.of_node, "qcom,skip-logic-collapse"); support_hw_trigger = of_property_read_bool(pdev->dev.of_node, "qcom,support-hw-trigger"); if (support_hw_trigger) { init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_MODE; init_data->constraints.valid_modes_mask |= REGULATOR_MODE_NORMAL | REGULATOR_MODE_FAST; } if (!sc->toggle_logic) { regval &= ~SW_COLLAPSE_MASK; writel_relaxed(regval, sc->gdscr); ret = poll_gdsc_status(sc, ENABLED); if (ret) { dev_err(&pdev->dev, "%s enable timed out: 0x%x\n", sc->rdesc.name, regval); return ret; } } sc->allow_clear = of_property_read_bool(pdev->dev.of_node, "qcom,disallow-clear"); sc->allow_clear = !sc->allow_clear; for (i = 0; i < sc->clock_count; i++) { if (retain_mem || (regval & PWR_ON_MASK) || !sc->allow_clear) clk_set_flags(sc->clocks[i], CLKFLAG_RETAIN_MEM); else clk_set_flags(sc->clocks[i], CLKFLAG_NORETAIN_MEM); if (retain_periph || (regval & PWR_ON_MASK) || !sc->allow_clear) clk_set_flags(sc->clocks[i], CLKFLAG_RETAIN_PERIPH); else clk_set_flags(sc->clocks[i], CLKFLAG_NORETAIN_PERIPH); } reg_config.dev = &pdev->dev; reg_config.init_data = init_data; reg_config.driver_data = sc; reg_config.of_node = pdev->dev.of_node; sc->rdev = regulator_register(&sc->rdesc, ®_config); if (IS_ERR(sc->rdev)) { dev_err(&pdev->dev, "regulator_register(\"%s\") failed.\n", sc->rdesc.name); return PTR_ERR(sc->rdev); } return 0; } static int gdsc_remove(struct platform_device *pdev) { struct gdsc *sc = platform_get_drvdata(pdev); regulator_unregister(sc->rdev); return 0; } static struct of_device_id gdsc_match_table[] = { { .compatible = "qcom,gdsc" }, {} }; static struct platform_driver gdsc_driver = { .probe = gdsc_probe, .remove = gdsc_remove, .driver = { .name = "gdsc", .of_match_table = gdsc_match_table, .owner = THIS_MODULE, }, }; static int __init gdsc_init(void) { return platform_driver_register(&gdsc_driver); } subsys_initcall(gdsc_init); static void __exit gdsc_exit(void) { platform_driver_unregister(&gdsc_driver); } module_exit(gdsc_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MSM8974 GDSC power rail regulator driver");