/* * Copyright (C) 2002 ARM Ltd. * All Rights Reserved * Copyright (c) 2010-2016, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "platsmp.h" #define VDD_SC1_ARRAY_CLAMP_GFS_CTL 0x15A0 #define SCSS_CPU1CORE_RESET 0xD80 #define SCSS_DBG_STATUS_CORE_PWRDUP 0xE64 #define MSM8960_SAW2_BASE_ADDR 0x02089000 #define APCS_ALIAS0_BASE_ADDR 0xF9088000 /* * Write pen_release in a way that is guaranteed to be visible to all * observers, irrespective of whether they're taking part in coherency * or not. This is necessary for the hotplug code to work reliably. */ void __cpuinit write_pen_release(int val) { pen_release = val; smp_wmb(); __cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release)); outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1)); } static DEFINE_SPINLOCK(boot_lock); void __cpuinit msm_secondary_init(unsigned int cpu) { WARN_ON(msm_platform_secondary_init(cpu)); /* * let the primary processor know we're out of the * pen, then head off into the C entry point */ write_pen_release(-1); /* * Synchronise with the boot thread. */ spin_lock(&boot_lock); spin_unlock(&boot_lock); } static int __cpuinit release_secondary_sim(unsigned long base, unsigned int cpu) { void *base_ptr = ioremap_nocache(base + (cpu * 0x10000), SZ_4K); if (!base_ptr) return -ENODEV; writel_relaxed(0x800, base_ptr+0x04); writel_relaxed(0x3FFF, base_ptr+0x14); mb(); iounmap(base_ptr); return 0; } static int __cpuinit scorpion_release_secondary(void) { void *base_ptr = ioremap_nocache(0x00902000, SZ_4K*2); if (!base_ptr) return -EINVAL; writel_relaxed(0, base_ptr + VDD_SC1_ARRAY_CLAMP_GFS_CTL); dmb(); writel_relaxed(0, base_ptr + SCSS_CPU1CORE_RESET); writel_relaxed(3, base_ptr + SCSS_DBG_STATUS_CORE_PWRDUP); mb(); iounmap(base_ptr); return 0; } static int __cpuinit msm8960_release_secondary(unsigned long base, unsigned int cpu) { void *base_ptr = ioremap_nocache(base + (cpu * 0x10000), SZ_4K); if (!base_ptr) return -ENODEV; writel_relaxed(0x109, base_ptr+0x04); writel_relaxed(0x101, base_ptr+0x04); mb(); ndelay(300); writel_relaxed(0x121, base_ptr+0x04); mb(); udelay(2); writel_relaxed(0x120, base_ptr+0x04); mb(); udelay(2); writel_relaxed(0x100, base_ptr+0x04); mb(); udelay(100); writel_relaxed(0x180, base_ptr+0x04); mb(); iounmap(base_ptr); return 0; } static int __cpuinit msm8974_release_secondary(unsigned long base, unsigned int cpu) { void *base_ptr = ioremap_nocache(base + (cpu * 0x10000), SZ_4K); if (!base_ptr) return -ENODEV; secondary_cpu_hs_init(base_ptr, cpu); writel_relaxed(0x021, base_ptr+0x04); mb(); udelay(2); writel_relaxed(0x020, base_ptr+0x04); mb(); udelay(2); writel_relaxed(0x000, base_ptr+0x04); mb(); writel_relaxed(0x080, base_ptr+0x04); mb(); iounmap(base_ptr); return 0; } static int __cpuinit arm_release_secondary(unsigned long base, unsigned int cpu) { void *base_ptr = ioremap_nocache(base + (cpu * 0x10000), SZ_4K); if (!base_ptr) return -ENODEV; writel_relaxed(0x00000033, base_ptr+0x04); mb(); writel_relaxed(0x10000001, base_ptr+0x14); mb(); udelay(2); writel_relaxed(0x00000031, base_ptr+0x04); mb(); writel_relaxed(0x00000039, base_ptr+0x04); mb(); udelay(2); writel_relaxed(0x00020038, base_ptr+0x04); mb(); udelay(2); writel_relaxed(0x00020008, base_ptr+0x04); mb(); writel_relaxed(0x00020088, base_ptr+0x04); mb(); iounmap(base_ptr); return 0; } static int __cpuinit release_from_pen(unsigned int cpu) { unsigned long timeout; /* Set preset_lpj to avoid subsequent lpj recalculations */ preset_lpj = loops_per_jiffy; /* * set synchronisation state between this boot processor * and the secondary one */ spin_lock(&boot_lock); /* * The secondary processor is waiting to be released from * the holding pen - release it, then wait for it to flag * that it has been released by resetting pen_release. * * Note that "pen_release" is the hardware CPU ID, whereas * "cpu" is Linux's internal ID. */ write_pen_release(cpu_logical_map(cpu)); /* * Send the secondary CPU a soft interrupt, thereby causing * the boot monitor to read the system wide flags register, * and branch to the address found there. */ arch_send_wakeup_ipi_mask(cpumask_of(cpu)); timeout = jiffies + (1 * HZ); while (time_before(jiffies, timeout)) { smp_rmb(); if (pen_release == -1) break; udelay(10); } /* * now the secondary core is starting up let it run its * calibrations, then wait for it to finish */ spin_unlock(&boot_lock); return pen_release != -1 ? -ENOSYS : 0; } DEFINE_PER_CPU(int, cold_boot_done); int __cpuinit scorpion_boot_secondary(unsigned int cpu, struct task_struct *idle) { pr_debug("Starting secondary CPU %d\n", cpu); if (per_cpu(cold_boot_done, cpu) == false) { scorpion_release_secondary(); per_cpu(cold_boot_done, cpu) = true; } return release_from_pen(cpu); } int __cpuinit msm8960_boot_secondary(unsigned int cpu, struct task_struct *idle) { pr_debug("Starting secondary CPU %d\n", cpu); if (per_cpu(cold_boot_done, cpu) == false) { msm8960_release_secondary(0x02088000, cpu); per_cpu(cold_boot_done, cpu) = true; } return release_from_pen(cpu); } int __cpuinit msm8974_boot_secondary(unsigned int cpu, struct task_struct *idle) { pr_debug("Starting secondary CPU %d\n", cpu); if (per_cpu(cold_boot_done, cpu) == false) { if (of_board_is_sim()) release_secondary_sim(APCS_ALIAS0_BASE_ADDR, cpu); else if (!of_board_is_rumi()) msm8974_release_secondary(APCS_ALIAS0_BASE_ADDR, cpu); per_cpu(cold_boot_done, cpu) = true; } return release_from_pen(cpu); } static int __cpuinit msm8916_boot_secondary(unsigned int cpu, struct task_struct *idle) { pr_debug("Starting secondary CPU %d\n", cpu); if (per_cpu(cold_boot_done, cpu) == false) { if (of_board_is_sim()) release_secondary_sim(0xb088000, cpu); else if (!of_board_is_rumi()) arm_release_secondary(0xb088000, cpu); per_cpu(cold_boot_done, cpu) = true; } return release_from_pen(cpu); } static int __cpuinit msm8936_boot_secondary(unsigned int cpu, struct task_struct *idle) { int ret = 0; pr_debug("Starting secondary CPU %d\n", cpu); if (per_cpu(cold_boot_done, cpu) == false) { if (of_board_is_sim()) { ret = msm_unclamp_secondary_arm_cpu_sim(cpu); if (ret) return ret; } else if (!of_board_is_rumi()) { ret = msm_unclamp_secondary_arm_cpu(cpu); if (ret) return ret; } per_cpu(cold_boot_done, cpu) = true; } return release_from_pen(cpu); } static int __cpuinit msm8976_boot_secondary(unsigned int cpu, struct task_struct *idle) { int ret = 0; u32 mpidr = cpu_logical_map(cpu); pr_debug("Starting secondary CPU %d\n", cpu); if (per_cpu(cold_boot_done, cpu) == false) { if (of_board_is_sim()) { ret = msm_unclamp_secondary_arm_cpu_sim(cpu); if (ret) return ret; } else if (!of_board_is_rumi()) { ret = msm8976_unclamp_secondary_arm_cpu(cpu); if (ret) return ret; } if (MPIDR_AFFINITY_LEVEL(mpidr, 1)) { ret = msm8976_cpu_ldo_config(cpu); if (ret) return ret; } per_cpu(cold_boot_done, cpu) = true; } return release_from_pen(cpu); } int __cpuinit arm_boot_secondary(unsigned int cpu, struct task_struct *idle) { pr_debug("Starting secondary CPU %d\n", cpu); if (per_cpu(cold_boot_done, cpu) == false) { if (of_board_is_sim()) release_secondary_sim(APCS_ALIAS0_BASE_ADDR, cpu); else if (!of_board_is_rumi()) arm_release_secondary(APCS_ALIAS0_BASE_ADDR, cpu); per_cpu(cold_boot_done, cpu) = true; } return release_from_pen(cpu); } /* * Initialise the CPU possible map early - this describes the CPUs * which may be present or become present in the system. */ static void __init msm_smp_init_cpus(void) { unsigned int i, ncores = get_core_count(); if (ncores > nr_cpu_ids) { pr_warn("SMP: %u cores greater than maximum (%u), clipping\n", ncores, nr_cpu_ids); ncores = nr_cpu_ids; } for (i = 0; i < ncores; i++) set_cpu_possible(i, true); } static void __init arm_smp_init_cpus(void) { unsigned int i, ncores; ncores = (__raw_readl(MSM_APCS_GCC_BASE + 0x30)) & 0xF; if (ncores > nr_cpu_ids) { pr_warn("SMP: %u cores greater than maximum (%u), clipping\n", ncores, nr_cpu_ids); ncores = nr_cpu_ids; } for (i = 0; i < ncores; i++) set_cpu_possible(i, true); } static int cold_boot_flags[] __initdata = { 0, SCM_FLAG_COLDBOOT_CPU1, SCM_FLAG_COLDBOOT_CPU2, SCM_FLAG_COLDBOOT_CPU3, }; static void __init msm_platform_smp_prepare_cpus_mc(unsigned int max_cpus) { int cpu, map; u32 aff0_mask = 0; u32 aff1_mask = 0; u32 aff2_mask = 0; for_each_present_cpu(cpu) { map = cpu_logical_map(cpu); aff0_mask |= BIT(MPIDR_AFFINITY_LEVEL(map, 0)); aff1_mask |= BIT(MPIDR_AFFINITY_LEVEL(map, 1)); aff2_mask |= BIT(MPIDR_AFFINITY_LEVEL(map, 2)); } if (scm_set_boot_addr_mc(virt_to_phys(msm_secondary_startup), aff0_mask, aff1_mask, aff2_mask, SCM_FLAG_COLDBOOT_MC)) pr_warn("Failed to set CPU boot address\n"); /* Mark CPU0 cold boot flag as done */ per_cpu(cold_boot_done, 0) = true; } static void __init msm_platform_smp_prepare_cpus(unsigned int max_cpus) { int cpu, map; unsigned int flags = 0; if (scm_is_mc_boot_available()) return msm_platform_smp_prepare_cpus_mc(max_cpus); for_each_present_cpu(cpu) { map = cpu_logical_map(cpu); if (map >= ARRAY_SIZE(cold_boot_flags)) { set_cpu_present(cpu, false); __WARN(); continue; } flags |= cold_boot_flags[map]; } if (scm_set_boot_addr(virt_to_phys(msm_secondary_startup), flags)) pr_warn("Failed to set CPU boot address\n"); /* Mark CPU0 cold boot flag as done */ per_cpu(cold_boot_done, 0) = true; } int msm_cpu_disable(unsigned int cpu) { return 0; /* support hotplugging any cpu */ } struct smp_operations arm_smp_ops __initdata = { .smp_init_cpus = arm_smp_init_cpus, .smp_prepare_cpus = msm_platform_smp_prepare_cpus, .smp_secondary_init = msm_secondary_init, .smp_boot_secondary = arm_boot_secondary, #ifdef CONFIG_HOTPLUG .cpu_die = msm_cpu_die, .cpu_kill = msm_cpu_kill, #endif }; struct smp_operations msm8916_smp_ops __initdata = { .smp_init_cpus = arm_smp_init_cpus, .smp_prepare_cpus = msm_platform_smp_prepare_cpus, .smp_secondary_init = msm_secondary_init, .smp_boot_secondary = msm8916_boot_secondary, #ifdef CONFIG_HOTPLUG .cpu_die = msm_cpu_die, .cpu_kill = msm_cpu_kill, .cpu_disable = msm_cpu_disable, #endif }; struct smp_operations msm8976_smp_ops __initdata = { .smp_init_cpus = arm_smp_init_cpus, .smp_prepare_cpus = msm_platform_smp_prepare_cpus_mc, .smp_secondary_init = msm_secondary_init, .smp_boot_secondary = msm8976_boot_secondary, #ifdef CONFIG_HOTPLUG .cpu_die = msm_cpu_die, .cpu_kill = msm_cpu_kill, #endif }; struct smp_operations msm8936_smp_ops __initdata = { .smp_init_cpus = arm_smp_init_cpus, .smp_prepare_cpus = msm_platform_smp_prepare_cpus, .smp_secondary_init = msm_secondary_init, .smp_boot_secondary = msm8936_boot_secondary, #ifdef CONFIG_HOTPLUG .cpu_die = msm_cpu_die, .cpu_kill = msm_cpu_kill, .cpu_disable = msm_cpu_disable, #endif }; struct smp_operations msm8974_smp_ops __initdata = { .smp_init_cpus = msm_smp_init_cpus, .smp_prepare_cpus = msm_platform_smp_prepare_cpus, .smp_secondary_init = msm_secondary_init, .smp_boot_secondary = msm8974_boot_secondary, #ifdef CONFIG_HOTPLUG .cpu_die = msm_cpu_die, .cpu_kill = msm_cpu_kill, #endif }; struct smp_operations msm8960_smp_ops __initdata = { .smp_init_cpus = msm_smp_init_cpus, .smp_prepare_cpus = msm_platform_smp_prepare_cpus, .smp_secondary_init = msm_secondary_init, .smp_boot_secondary = msm8960_boot_secondary, #ifdef CONFIG_HOTPLUG .cpu_die = msm_cpu_die, .cpu_kill = msm_cpu_kill, #endif }; struct smp_operations scorpion_smp_ops __initdata = { .smp_init_cpus = msm_smp_init_cpus, .smp_prepare_cpus = msm_platform_smp_prepare_cpus, .smp_secondary_init = msm_secondary_init, .smp_boot_secondary = scorpion_boot_secondary, #ifdef CONFIG_HOTPLUG .cpu_die = msm_cpu_die, .cpu_kill = msm_cpu_kill, #endif };