/* Copyright (c) 2013-2015, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PMIC_ARB_CHANNEL_NUM 0 #define PMIC_ARB_OWNER_ID 0 #define RECOVERY_MODE 0x77665502 #define FASTBOOT_MODE 0x77665500 #define BOOT_DEVICE_MASK(val) ((val & 0x3E) >>1) #define SSD_CE_INSTANCE 1 #define CE2_INSTANCE 2 #define CE_EE 1 #define CE_FIFO_SIZE 64 #define CE_READ_PIPE 3 #define CE_WRITE_PIPE 2 #define CE_READ_PIPE_LOCK_GRP 0 #define CE_WRITE_PIPE_LOCK_GRP 0 #define CE_ARRAY_SIZE 20 enum cdp_subtype { CDP_SUBTYPE_SMB349 = 0, CDP_SUBTYPE_9x25_SMB349, CDP_SUBTYPE_9x25_SMB1357, CDP_SUBTYPE_9x35, CDP_SUBTYPE_SMB1357, CDP_SUBTYPE_SMB350, CDP_SUBTYPE_9x35_M }; enum mtp_subtype { MTP_SUBTYPE_SMB349 = 0, MTP_SUBTYPE_9x25_SMB349, MTP_SUBTYPE_9x25_SMB1357, MTP_SUBTYPE_9x35, MTP_SUBTYPE_9x35_M }; enum rcm_subtype { RCM_SUBTYPE_SMB349 = 0, RCM_SUBTYPE_9x25_SMB349, RCM_SUBTYPE_9x25_SMB1357, RCM_SUBTYPE_9x35, RCM_SUBTYPE_SMB1357, RCM_SUBTYPE_SMB350, RCM_SUBTYPE_9x35_M }; enum liquid_subtype { LIQUID_SUBTYPE_STANDALONE = 0, LIQUID_SUBTYPE_9x25, }; static void set_sdc_power_ctrl(void); static uint32_t mmc_pwrctl_base[] = { MSM_SDC1_BASE, MSM_SDC2_BASE }; static uint32_t mmc_sdhci_base[] = { MSM_SDC1_SDHCI_BASE, MSM_SDC2_SDHCI_BASE }; static uint32_t mmc_sdc_pwrctl_irq[] = { SDCC1_PWRCTL_IRQ, SDCC2_PWRCTL_IRQ }; struct mmc_device *dev; struct ufs_dev ufs_device; extern void ulpi_write(unsigned val, unsigned reg); extern int _emmc_recovery_init(void); void target_early_init(void) { #if WITH_DEBUG_UART uart_dm_init(7, 0, BLSP2_UART1_BASE); #endif } /* Return 1 if vol_up pressed */ static int target_volume_up() { uint8_t status = 0; struct pm8x41_gpio gpio; /* Configure the GPIO */ gpio.direction = PM_GPIO_DIR_IN; gpio.function = 0; gpio.pull = PM_GPIO_PULL_UP_30; gpio.vin_sel = 2; pm8x41_gpio_config(2, &gpio); /* Wait for the pmic gpio config to take effect */ thread_sleep(1); /* Get status of P_GPIO_2 */ pm8x41_gpio_get(2, &status); return !status; /* active low */ } /* Return 1 if vol_down pressed */ uint32_t target_volume_down() { return pm8x41_resin_status(); } static void target_keystatus() { keys_init(); if(target_volume_down()) keys_post_event(KEY_VOLUMEDOWN, 1); if(target_volume_up()) keys_post_event(KEY_VOLUMEUP, 1); } void target_uninit(void) { if(platform_boot_dev_isemmc()) { mmc_put_card_to_sleep(dev); sdhci_mode_disable(&dev->host); } } /* Do target specific usb initialization */ void target_usb_init(void) { uint32_t val; /* Select and enable external configuration with USB PHY */ ulpi_write(ULPI_MISC_A_VBUSVLDEXTSEL | ULPI_MISC_A_VBUSVLDEXT, ULPI_MISC_A_SET); /* Enable sess_vld */ val = readl(USB_GENCONFIG_2) | GEN2_SESS_VLD_CTRL_EN; writel(val, USB_GENCONFIG_2); /* Enable external vbus configuration in the LINK */ val = readl(USB_USBCMD); val |= SESS_VLD_CTRL; writel(val, USB_USBCMD); } void target_usb_stop(void) { /* Disable VBUS mimicing in the controller. */ ulpi_write(ULPI_MISC_A_VBUSVLDEXTSEL | ULPI_MISC_A_VBUSVLDEXT, ULPI_MISC_A_CLEAR); } static void set_sdc_power_ctrl() { /* Drive strength configs for sdc pins */ struct tlmm_cfgs sdc1_hdrv_cfg[] = { { SDC1_CLK_HDRV_CTL_OFF, TLMM_CUR_VAL_16MA, TLMM_HDRV_MASK }, { SDC1_CMD_HDRV_CTL_OFF, TLMM_CUR_VAL_10MA, TLMM_HDRV_MASK }, { SDC1_DATA_HDRV_CTL_OFF, TLMM_CUR_VAL_10MA, TLMM_HDRV_MASK }, }; /* Pull configs for sdc pins */ struct tlmm_cfgs sdc1_pull_cfg[] = { { SDC1_CLK_PULL_CTL_OFF, TLMM_NO_PULL, TLMM_PULL_MASK }, { SDC1_CMD_PULL_CTL_OFF, TLMM_PULL_UP, TLMM_PULL_MASK }, { SDC1_DATA_PULL_CTL_OFF, TLMM_PULL_UP, TLMM_PULL_MASK }, { SDC1_RCLK_PULL_CTL_OFF, TLMM_PULL_DOWN, TLMM_PULL_MASK }, }; /* Set the drive strength & pull control values */ tlmm_set_hdrive_ctrl(sdc1_hdrv_cfg, ARRAY_SIZE(sdc1_hdrv_cfg)); tlmm_set_pull_ctrl(sdc1_pull_cfg, ARRAY_SIZE(sdc1_pull_cfg)); } void target_sdc_init() { struct mmc_config_data config; /* Set drive strength & pull ctrl values */ set_sdc_power_ctrl(); config.bus_width = DATA_BUS_WIDTH_8BIT; /* Try slot 1*/ config.slot = 1; config.max_clk_rate = MMC_CLK_192MHZ; config.sdhc_base = mmc_sdhci_base[config.slot - 1]; config.pwrctl_base = mmc_pwrctl_base[config.slot - 1]; config.pwr_irq = mmc_sdc_pwrctl_irq[config.slot - 1]; config.hs400_support = 1; if (!(dev = mmc_init(&config))) { /* Try slot 2 */ config.slot = 2; config.max_clk_rate = MMC_CLK_200MHZ; config.sdhc_base = mmc_sdhci_base[config.slot - 1]; config.pwrctl_base = mmc_pwrctl_base[config.slot - 1]; config.pwr_irq = mmc_sdc_pwrctl_irq[config.slot - 1]; if (!(dev = mmc_init(&config))) { dprintf(CRITICAL, "mmc init failed!"); ASSERT(0); } } } void *target_mmc_device() { if (platform_boot_dev_isemmc()) return (void *) dev; else return (void *) &ufs_device; } void target_init(void) { dprintf(INFO, "target_init()\n"); spmi_init(PMIC_ARB_CHANNEL_NUM, PMIC_ARB_OWNER_ID); target_keystatus(); if (target_use_signed_kernel()) target_crypto_init_params(); platform_read_boot_config(); #ifdef MMC_SDHCI_SUPPORT if (platform_boot_dev_isemmc()) target_sdc_init(); #endif #ifdef UFS_SUPPORT if(!platform_boot_dev_isemmc()) { ufs_device.base = UFS_BASE; ufs_init(&ufs_device); } #endif /* Storage initialization is complete, read the partition table info */ if (partition_read_table()) { dprintf(CRITICAL, "Error reading the partition table info\n"); ASSERT(0); } } void target_load_ssd_keystore(void) { uint64_t ptn; int index; uint64_t size; uint32_t *buffer = NULL; if (!target_is_ssd_enabled()) return; index = partition_get_index("ssd"); ptn = partition_get_offset(index); if (ptn == 0){ dprintf(CRITICAL, "Error: ssd partition not found\n"); return; } size = partition_get_size(index); if (size == 0) { dprintf(CRITICAL, "Error: invalid ssd partition size\n"); return; } buffer = memalign(CACHE_LINE, ROUNDUP(size, CACHE_LINE)); if (!buffer) { dprintf(CRITICAL, "Error: allocating memory for ssd buffer\n"); return; } if (mmc_read(ptn, buffer, size)) { dprintf(CRITICAL, "Error: cannot read data\n"); free(buffer); return; } clock_ce_enable(SSD_CE_INSTANCE); scm_protect_keystore(buffer, size); clock_ce_disable(SSD_CE_INSTANCE); free(buffer); } /* Do any target specific intialization needed before entering fastboot mode */ void target_fastboot_init(void) { /* We are entering fastboot mode, so read partition table */ mmc_read_partition_table(1); if (target_is_ssd_enabled()) { clock_ce_enable(SSD_CE_INSTANCE); target_load_ssd_keystore(); } } /* Initialize target specific USB handlers */ target_usb_iface_t* target_usb30_init() { target_usb_iface_t *t_usb_iface; t_usb_iface = calloc(1, sizeof(target_usb_iface_t)); ASSERT(t_usb_iface); t_usb_iface->mux_config = target_usb_phy_mux_configure; t_usb_iface->phy_reset = target_usb_phy_reset; t_usb_iface->clock_init = clock_usb30_init; t_usb_iface->vbus_override = 1; return t_usb_iface; } unsigned board_machtype(void) { return LINUX_MACHTYPE_UNKNOWN; } /* Detect the target type */ void target_detect(struct board_data *board) { /* This is alreay filled as part of board.c */ } void set_cdp_baseband(struct board_data *board) { uint32_t platform_subtype; platform_subtype = board->platform_subtype; switch(platform_subtype) { case CDP_SUBTYPE_9x25_SMB349: case CDP_SUBTYPE_9x25_SMB1357: board->baseband = BASEBAND_MDM; break; case CDP_SUBTYPE_9x35: case CDP_SUBTYPE_9x35_M: board->baseband = BASEBAND_MDM2; break; case CDP_SUBTYPE_SMB349: case CDP_SUBTYPE_SMB1357: case CDP_SUBTYPE_SMB350: board->baseband = BASEBAND_APQ; break; default: dprintf(CRITICAL, "CDP platform subtype :%u is not supported\n", platform_subtype); ASSERT(0); }; } void set_mtp_baseband(struct board_data *board) { uint32_t platform_subtype; platform_subtype = board->platform_subtype; switch(platform_subtype) { case MTP_SUBTYPE_9x25_SMB349: case MTP_SUBTYPE_9x25_SMB1357: board->baseband = BASEBAND_MDM; break; case MTP_SUBTYPE_9x35: case MTP_SUBTYPE_9x35_M: board->baseband = BASEBAND_MDM2; break; case MTP_SUBTYPE_SMB349: board->baseband = BASEBAND_APQ; break; default: dprintf(CRITICAL, "MTP platform subtype :%u is not supported\n", platform_subtype); ASSERT(0); }; } void set_rcm_baseband(struct board_data *board) { uint32_t platform_subtype; platform_subtype = board->platform_subtype; switch(platform_subtype) { case RCM_SUBTYPE_9x25_SMB349: case RCM_SUBTYPE_9x25_SMB1357: board->baseband = BASEBAND_MDM; break; case RCM_SUBTYPE_9x35: case RCM_SUBTYPE_9x35_M: board->baseband = BASEBAND_MDM2; break; case RCM_SUBTYPE_SMB349: case RCM_SUBTYPE_SMB1357: case RCM_SUBTYPE_SMB350: board->baseband = BASEBAND_APQ; break; default: dprintf(CRITICAL, "RCM platform subtype :%u is not supported\n", platform_subtype); ASSERT(0); }; } void set_liquid_baseband(struct board_data *board) { uint32_t platform_subtype; platform_subtype = board->platform_subtype; switch(platform_subtype) { case LIQUID_SUBTYPE_STANDALONE: board->baseband = BASEBAND_APQ; break; case LIQUID_SUBTYPE_9x25: board->baseband = BASEBAND_MDM; break; default: dprintf(CRITICAL, "Liquid platform subtype :%u is not supported\n",platform_subtype); ASSERT(0); } } static uint8_t splash_override; /* Returns 1 if target supports continuous splash screen. */ int target_cont_splash_screen() { uint8_t splash_screen = 0; if(!splash_override) { switch(board_hardware_id()) { case HW_PLATFORM_SURF: case HW_PLATFORM_MTP: case HW_PLATFORM_FLUID: case HW_PLATFORM_LIQUID: dprintf(SPEW, "Target_cont_splash=1\n"); splash_screen = 1; break; default: dprintf(SPEW, "Target_cont_splash=0\n"); splash_screen = 0; } } return splash_screen; } void target_force_cont_splash_disable(uint8_t override) { splash_override = override; } /* Detect the modem type */ void target_baseband_detect(struct board_data *board) { uint32_t platform; uint32_t platform_subtype; uint32_t platform_hardware; platform = board->platform; platform_hardware = board->platform_hw; switch(platform_hardware) { case HW_PLATFORM_SURF: set_cdp_baseband(board); break; case HW_PLATFORM_MTP: set_mtp_baseband(board); break; case HW_PLATFORM_RCM: set_rcm_baseband(board); break; case HW_PLATFORM_LIQUID: set_liquid_baseband(board); break; case HW_PLATFORM_SBC: board->baseband = BASEBAND_APQ; break; default: dprintf(CRITICAL, "Platform :%u is not supported\n", platform_hardware); ASSERT(0); }; } unsigned target_baseband() { return board_baseband(); } void target_serialno(unsigned char *buf) { unsigned int serialno; if (target_is_emmc_boot()) { serialno = mmc_get_psn(); snprintf((char *)buf, 13, "%x", serialno); } } int emmc_recovery_init(void) { return _emmc_recovery_init(); } unsigned check_reboot_mode(void) { uint32_t restart_reason = 0; uint32_t restart_reason_addr; restart_reason_addr = RESTART_REASON_ADDR; /* Read reboot reason and scrub it */ restart_reason = readl(restart_reason_addr); writel(0x00, restart_reason_addr); return restart_reason; } void reboot_device(unsigned reboot_reason) { uint8_t reset_type = 0; /* Write the reboot reason */ writel(reboot_reason, RESTART_REASON_ADDR); if(reboot_reason == FASTBOOT_MODE || reboot_reason == RECOVERY_MODE) reset_type = PON_PSHOLD_WARM_RESET; else reset_type = PON_PSHOLD_HARD_RESET; pm8x41_reset_configure(reset_type); /* Drop PS_HOLD for MSM */ writel(0x00, MPM2_MPM_PS_HOLD); mdelay(5000); dprintf(CRITICAL, "Rebooting failed\n"); } void shutdown_device() { dprintf(CRITICAL, "Going down for shutdown.\n"); /* Configure PMIC for shutdown. */ pm8x41_reset_configure(PON_PSHOLD_SHUTDOWN); /* Drop PS_HOLD for MSM */ writel(0x00, MPM2_MPM_PS_HOLD); mdelay(5000); dprintf(CRITICAL, "Shutdown failed\n"); ASSERT(0); } /* identify the usb controller to be used for the target */ const char * target_usb_controller() { return "dwc"; } /* mux hs phy to route to dwc controller */ static void phy_mux_configure_with_jdr() { uint32_t val; val = readl(COPSS_USB_CONTROL_WITH_JDR); /* Note: there are no details regarding this bit in hpg or swi. */ val |= BIT(8); writel(val, COPSS_USB_CONTROL_WITH_JDR); } /* configure hs phy mux if using dwc controller */ void target_usb_phy_mux_configure(void) { if(!strcmp(target_usb_controller(), "dwc")) { phy_mux_configure_with_jdr(); } } void target_usb_phy_reset(void) { uint32_t val; /* SS PHY reset */ val = readl(GCC_USB3_PHY_BCR) | BIT(0); writel(val, GCC_USB3_PHY_BCR); udelay(10); writel(val & ~BIT(0), GCC_USB3_PHY_BCR); /* HS PHY reset */ /* Note: reg/bit details are not mentioned in hpg or swi. */ val = readl(COPSS_USB_CONTROL_WITH_JDR) | BIT(11); writel(val, COPSS_USB_CONTROL_WITH_JDR); udelay(10); writel(val & ~BIT(11), COPSS_USB_CONTROL_WITH_JDR); /* PHY_COMMON reset */ val = readl(GCC_USB30_PHY_COM_BCR) | BIT(0); writel(val, GCC_USB30_PHY_COM_BCR); udelay(10); writel(val & ~BIT(0), GCC_USB30_PHY_COM_BCR); } bool target_warm_boot(void) { uint8_t is_cold_boot = pm8x41_get_is_cold_boot(); if (is_cold_boot) return false; else return true; } /* Set up params for h/w CE. */ void target_crypto_init_params() { struct crypto_init_params ce_params; /* Set up base addresses and instance. */ ce_params.crypto_instance = CE2_INSTANCE; ce_params.crypto_base = MSM_CE2_BASE; ce_params.bam_base = MSM_CE2_BAM_BASE; /* Set up BAM config. */ ce_params.bam_ee = CE_EE; ce_params.pipes.read_pipe = CE_READ_PIPE; ce_params.pipes.write_pipe = CE_WRITE_PIPE; ce_params.pipes.read_pipe_grp = CE_READ_PIPE_LOCK_GRP; ce_params.pipes.write_pipe_grp = CE_WRITE_PIPE_LOCK_GRP; /* Assign buffer sizes. */ ce_params.num_ce = CE_ARRAY_SIZE; ce_params.read_fifo_size = CE_FIFO_SIZE; ce_params.write_fifo_size = CE_FIFO_SIZE; /* BAM is initialized by TZ for this platform. * Do not do it again as the initialization address space * is locked. */ ce_params.do_bam_init = 0; crypto_init_params(&ce_params); } crypto_engine_type board_ce_type(void) { return CRYPTO_ENGINE_TYPE_HW; }