/* * Copyright (c) 2012, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of The Linux Foundation nor * the names of its contributors may be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include /* * When enabling/disabling a clock, check the halt bit up to this number * number of times (with a 1 us delay in between) before continuing. */ #define HALT_CHECK_MAX_LOOPS 100 /* For clock without halt checking, wait this long after enables/disables. */ #define HALT_CHECK_DELAY_US 10 struct clk_freq_tbl local_dummy_freq = F_END; /* * Clock enable/disable functions */ static int branch_clk_is_halted(const struct branch *clk) { int invert = (clk->halt_check == ENABLE); int status_bit = readl_relaxed(clk->halt_reg) & BIT(clk->halt_bit); return invert ? !status_bit : status_bit; } static void __branch_clk_enable_reg(const struct branch *clk, const char *name) { uint32_t reg_val; if (clk->en_mask) { reg_val = readl_relaxed(clk->ctl_reg); reg_val |= clk->en_mask; writel_relaxed(reg_val, clk->ctl_reg); } /* Wait for clock to enable before returning. */ if (clk->halt_check == DELAY) udelay(HALT_CHECK_DELAY_US); else if (clk->halt_check == ENABLE || clk->halt_check == HALT || clk->halt_check == ENABLE_VOTED || clk->halt_check == HALT_VOTED) { int count; /* Wait up to HALT_CHECK_MAX_LOOPS for clock to enable. */ for (count = HALT_CHECK_MAX_LOOPS; branch_clk_is_halted(clk) && count > 0; count--) udelay(1); } } /* Perform any register operations required to enable the clock. */ static void __local_clk_enable_reg(struct rcg_clk *clk) { uint32_t reg_val; void *const reg = clk->b.ctl_reg; if(clk->current_freq == &local_dummy_freq) dprintf(CRITICAL, "Attempting to enable %s before setting its rate.", clk->c.dbg_name); /* * Program the NS register, if applicable. NS registers are not * set in the set_rate path because power can be saved by deferring * the selection of a clocked source until the clock is enabled. */ if (clk->ns_mask) { reg_val = readl_relaxed(clk->ns_reg); reg_val &= ~(clk->ns_mask); reg_val |= (clk->current_freq->ns_val & clk->ns_mask); writel_relaxed(reg_val, clk->ns_reg); } /* Enable MN counter, if applicable. */ reg_val = readl_relaxed(reg); if (clk->current_freq->mnd_en_mask) { reg_val |= clk->current_freq->mnd_en_mask; writel_relaxed(reg_val, reg); } /* Enable root. */ if (clk->root_en_mask) { reg_val |= clk->root_en_mask; writel_relaxed(reg_val, reg); } __branch_clk_enable_reg(&clk->b, clk->c.dbg_name); } /* Enable a clock and any related power rail. */ int local_clk_enable(struct clk *c) { int rc; struct clk_freq_tbl *cf; struct rcg_clk *clk = to_rcg_clk(c); cf = clk->current_freq; rc = clk_enable(clk->depends); if (rc) goto err_dep; __local_clk_enable_reg(clk); clk->enabled = true; err_dep: return rc; } /* Disable a clock and any related power rail. */ void local_clk_disable(struct clk *c) { /*TODO: Stub function for now.*/ } /* * Frequency-related functions */ /* Set a clock's frequency. */ static int _local_clk_set_rate(struct rcg_clk *clk, struct clk_freq_tbl *nf) { struct clk_freq_tbl *cf; int rc = 0; /* Check if frequency is actually changed. */ cf = clk->current_freq; if (nf == cf) goto unlock; if (clk->enabled) { rc = clk_enable(nf->src_clk); if (rc) { goto unlock; } } /* Perform clock-specific frequency switch operations. */ ASSERT(clk->set_rate); clk->set_rate(clk, nf); /* * Current freq must be updated before __local_clk_enable_reg() * is called to make sure the MNCNTR_EN bit is set correctly. */ clk->current_freq = nf; /* Enable any clocks that were disabled. */ if (clk->bank_masks == NULL) { if (clk->enabled) __local_clk_enable_reg(clk); } unlock: return rc; } /* Set a clock to an exact rate. */ int local_clk_set_rate(struct clk *c, unsigned rate) { struct rcg_clk *clk = to_rcg_clk(c); struct clk_freq_tbl *nf; for (nf = clk->freq_tbl; nf->freq_hz != FREQ_END && nf->freq_hz != rate; nf++) ; if (nf->freq_hz == FREQ_END) return ERR_INVALID_ARGS; return _local_clk_set_rate(clk, nf); } /* Get the currently-set rate of a clock in Hz. */ unsigned local_clk_get_rate(struct clk *c) { /* TODO: Stub function for now. */ return 0; } /* Check if a clock is currently enabled. */ int local_clk_is_enabled(struct clk *clk) { return to_rcg_clk(clk)->enabled; } /* Return a supported rate that's at least the specified rate. */ long local_clk_round_rate(struct clk *c, unsigned rate) { struct rcg_clk *clk = to_rcg_clk(c); struct clk_freq_tbl *f; for (f = clk->freq_tbl; f->freq_hz != FREQ_END; f++) if (f->freq_hz >= rate) return f->freq_hz; return ERR_INVALID_ARGS; } struct clk *local_clk_get_parent(struct clk *clk) { return to_rcg_clk(clk)->current_freq->src_clk; } /* * Branch clocks functions */ int branch_clk_enable(struct clk *clk) { struct branch_clk *branch = to_branch_clk(clk); __branch_clk_enable_reg(&branch->b, branch->c.dbg_name); branch->enabled = true; return 0; } void branch_clk_disable(struct clk *clk) { struct branch_clk *branch = to_branch_clk(clk); /* TODO: Stub function for now */ } struct clk *branch_clk_get_parent(struct clk *clk) { struct branch_clk *branch = to_branch_clk(clk); return branch->parent; } int branch_clk_set_parent(struct clk *clk, struct clk *parent) { /* This is a stub function. */ return 0; } int branch_clk_is_enabled(struct clk *clk) { struct branch_clk *branch = to_branch_clk(clk); return branch->enabled; } /**/ /* For clocks with MND dividers. */ void set_rate_mnd(struct rcg_clk *clk, struct clk_freq_tbl *nf) { uint32_t ns_reg_val, ctl_reg_val; /* Assert MND reset. */ ns_reg_val = readl_relaxed(clk->ns_reg); ns_reg_val |= BIT(7); writel_relaxed(ns_reg_val, clk->ns_reg); /* Program M and D values. */ writel_relaxed(nf->md_val, clk->md_reg); /* If the clock has a separate CC register, program it. */ if (clk->ns_reg != clk->b.ctl_reg) { ctl_reg_val = readl_relaxed(clk->b.ctl_reg); ctl_reg_val &= ~(clk->ctl_mask); ctl_reg_val |= nf->ctl_val; writel_relaxed(ctl_reg_val, clk->b.ctl_reg); } /* Deassert MND reset. */ ns_reg_val &= ~BIT(7); writel_relaxed(ns_reg_val, clk->ns_reg); } void set_rate_mnd_banked(struct rcg_clk *clk, struct clk_freq_tbl *nf) { struct bank_masks *banks = clk->bank_masks; const struct bank_mask_info *new_bank_masks; const struct bank_mask_info *old_bank_masks; uint32_t ns_reg_val, ctl_reg_val; uint32_t bank_sel; /* * Determine active bank and program the other one. If the clock is * off, program the active bank since bank switching won't work if * both banks aren't running. */ ctl_reg_val = readl_relaxed(clk->b.ctl_reg); bank_sel = !!(ctl_reg_val & banks->bank_sel_mask); /* If clock isn't running, don't switch banks. */ bank_sel ^= (!clk->enabled || clk->current_freq->freq_hz == 0); if (bank_sel == 0) { new_bank_masks = &banks->bank1_mask; old_bank_masks = &banks->bank0_mask; } else { new_bank_masks = &banks->bank0_mask; old_bank_masks = &banks->bank1_mask; } ns_reg_val = readl_relaxed(clk->ns_reg); /* Assert bank MND reset. */ ns_reg_val |= new_bank_masks->rst_mask; writel_relaxed(ns_reg_val, clk->ns_reg); /* * Program NS only if the clock is enabled, since the NS will be set * as part of the enable procedure and should remain with a low-power * MUX input selected until then. */ if (clk->enabled) { ns_reg_val &= ~(new_bank_masks->ns_mask); ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask); writel_relaxed(ns_reg_val, clk->ns_reg); } writel_relaxed(nf->md_val, new_bank_masks->md_reg); /* Enable counter only if clock is enabled. */ if (clk->enabled) ctl_reg_val |= new_bank_masks->mnd_en_mask; else ctl_reg_val &= ~(new_bank_masks->mnd_en_mask); ctl_reg_val &= ~(new_bank_masks->mode_mask); ctl_reg_val |= (nf->ctl_val & new_bank_masks->mode_mask); writel_relaxed(ctl_reg_val, clk->b.ctl_reg); /* Deassert bank MND reset. */ ns_reg_val &= ~(new_bank_masks->rst_mask); writel_relaxed(ns_reg_val, clk->ns_reg); /* * Switch to the new bank if clock is running. If it isn't, then * no switch is necessary since we programmed the active bank. */ if (clk->enabled && clk->current_freq->freq_hz) { ctl_reg_val ^= banks->bank_sel_mask; writel_relaxed(ctl_reg_val, clk->b.ctl_reg); /* * Wait at least 6 cycles of slowest bank's clock * for the glitch-free MUX to fully switch sources. */ udelay(1); /* Disable old bank's MN counter. */ ctl_reg_val &= ~(old_bank_masks->mnd_en_mask); writel_relaxed(ctl_reg_val, clk->b.ctl_reg); /* Program old bank to a low-power source and divider. */ ns_reg_val &= ~(old_bank_masks->ns_mask); ns_reg_val |= (clk->freq_tbl->ns_val & old_bank_masks->ns_mask); writel_relaxed(ns_reg_val, clk->ns_reg); } /* * If this freq requires the MN counter to be enabled, * update the enable mask to match the current bank. */ if (nf->mnd_en_mask) nf->mnd_en_mask = new_bank_masks->mnd_en_mask; /* Update the NS mask to match the current bank. */ clk->ns_mask = new_bank_masks->ns_mask; } void set_rate_nop(struct rcg_clk *clk, struct clk_freq_tbl *nf) { /* * Nothing to do for fixed-rate or integer-divider clocks. Any settings * in NS registers are applied in the enable path, since power can be * saved by leaving an un-clocked or slowly-clocked source selected * until the clock is enabled. */ }