/* Copyright (c) 2013, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include void hsusb_clock_init(void) { int ret; struct clk *iclk, *cclk; ret = clk_get_set_enable("usb_iface_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb_core_clk", 75000000, 1); if(ret) { dprintf(CRITICAL, "failed to set usb_core_clk ret = %d\n", ret); ASSERT(0); } /* Wait for the clocks to be stable since we are disabling soon after. */ mdelay(1); iclk = clk_get("usb_iface_clk"); cclk = clk_get("usb_core_clk"); clk_disable(iclk); clk_disable(cclk); /* Wait for the clock disable to complete. */ mdelay(1); /* Start the block reset for usb */ writel(1, USB_HS_BCR); /* Wait for reset to complete. */ mdelay(1); /* Take usb block out of reset */ writel(0, USB_HS_BCR); /* Wait for the block to be brought out of reset. */ mdelay(1); ret = clk_enable(iclk); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret); ASSERT(0); } ret = clk_enable(cclk); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret); ASSERT(0); } } void clock_init_mmc(uint32_t interface) { char clk_name[64]; int ret; snprintf(clk_name, 64, "sdc%u_iface_clk", interface); /* enable interface clock */ ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set sdc1_iface_clk ret = %d\n", ret); ASSERT(0); } } /* Configure MMC clock */ void clock_config_mmc(uint32_t interface, uint32_t freq) { int ret; char clk_name[64]; snprintf(clk_name, 64, "sdc%u_core_clk", interface); if(freq == MMC_CLK_400KHZ) { ret = clk_get_set_enable(clk_name, 400000, 1); } else if(freq == MMC_CLK_50MHZ) { ret = clk_get_set_enable(clk_name, 50000000, 1); } else if(freq == MMC_CLK_200MHZ) { ret = clk_get_set_enable(clk_name, 200000000, 1); } else { dprintf(CRITICAL, "sdc frequency (%d) is not supported\n", freq); ASSERT(0); } if(ret) { dprintf(CRITICAL, "failed to set sdc1_core_clk ret = %d\n", ret); ASSERT(0); } } /* Configure UART clock based on the UART block id*/ void clock_config_uart_dm(uint8_t id) { int ret; ret = clk_get_set_enable("uart2_iface_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set uart2_iface_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("uart2_core_clk", 7372800, 1); if(ret) { dprintf(CRITICAL, "failed to set uart2_core_clk ret = %d\n", ret); ASSERT(0); } } /* Configure MDP clock */ void mdp_clock_enable(void) { int ret; ret = clk_get_set_enable("axi_clk_src", 200000000, 1); if(ret) { dprintf(CRITICAL, "failed to set axi_clk_src ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mmss_mmssnoc_axi_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mmss_mmssnoc_axi_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mmss_s0_axi_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mmss_s0_axi_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdp_ahb_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_ahb_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdp_axi_clk" , 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_axi_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdp_vsync_clk" , 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_vsync_clk ret = %d\n", ret); ASSERT(0); } } void mdp_clock_disable(void) { clk_disable(clk_get("mdp_vsync_clk")); clk_disable(clk_get("mdp_axi_clk")); clk_disable(clk_get("mdp_ahb_clk")); clk_disable(clk_get("mmss_s0_axi_clk")); clk_disable(clk_get("mmss_mmssnoc_axi_clk")); } int dsi_vco_set_rate(uint32_t rate) { uint32_t temp, val; unsigned long fb_divider; temp = rate / 10; val = VCO_PARENT_RATE / 10; fb_divider = (temp * VCO_PREF_DIV_RATIO) / val; fb_divider = fb_divider / 2 - 1; temp = readl(DSIPHY_PLL_CTRL(1)); val = (temp & 0xFFFFFF00) | (fb_divider & 0xFF); writel(val, DSIPHY_PLL_CTRL(1)); temp = readl(DSIPHY_PLL_CTRL(2)); val = (temp & 0xFFFFFFF8) | ((fb_divider >> 8) & 0x07); writel(val, DSIPHY_PLL_CTRL(2)); temp = readl(DSIPHY_PLL_CTRL(3)); val = (temp & 0xFFFFFFC0) | (VCO_PREF_DIV_RATIO - 1); writel(val, DSIPHY_PLL_CTRL(3)); return 0; } uint32_t dsi_vco_round_rate(uint32_t rate) { uint32_t vco_rate = rate; if (rate < VCO_MIN_RATE) vco_rate = VCO_MIN_RATE; else if (rate > VCO_MAX_RATE) vco_rate = VCO_MAX_RATE; return vco_rate; } int dsi_byte_clk_set(uint32_t *vcoclk_rate, uint32_t rate) { int div, ret; uint32_t vco_rate, bitclk_rate; uint32_t temp, val; bitclk_rate = 8 * rate; for (div = 1; div < VCO_MAX_DIVIDER; div++) { vco_rate = dsi_vco_round_rate(bitclk_rate * div); if (vco_rate == bitclk_rate * div) break; if (vco_rate < bitclk_rate * div) return -1; } if (vco_rate != bitclk_rate * div) return -1; ret = dsi_vco_set_rate(vco_rate); if (ret) { dprintf(CRITICAL, "fail to set vco rate, ret = %d\n", ret); return ret; } *vcoclk_rate = vco_rate; /* set the bit clk divider */ temp = readl(DSIPHY_PLL_CTRL(8)); val = (temp & 0xFFFFFFF0) | (div - 1); writel(val, DSIPHY_PLL_CTRL(8)); /* set the byte clk divider */ temp = readl(DSIPHY_PLL_CTRL(9)); val = (temp & 0xFFFFFF00) | (vco_rate / rate - 1); writel(val, DSIPHY_PLL_CTRL(9)); return 0; } int dsi_dsi_clk_set(uint32_t vco_rate, uint32_t rate) { uint32_t temp, val; if (vco_rate % rate != 0) { dprintf(CRITICAL, "dsiclk_set_rate invalid rate\n"); return -1; } temp = readl(DSIPHY_PLL_CTRL(10)); val = (temp & 0xFFFFFF00) | (vco_rate / rate - 1); writel(val, DSIPHY_PLL_CTRL(10)); return 0; } void dsi_setup_dividers(uint32_t val, uint32_t cfg_rcgr, uint32_t cmd_rcgr) { uint32_t i = 0; uint32_t term_cnt = 5000; int32_t reg; writel(val, cfg_rcgr); writel(0x1, cmd_rcgr); reg = readl(cmd_rcgr); while (reg & 0x1) { i++; if (i > term_cnt) { dprintf(CRITICAL, "some dsi clock not enabled" "exceeded polling TIMEOUT!\n"); break; } udelay(1); reg = readl(cmd_rcgr); } } void vco_enable(int enable) { if (enable) { writel(0x1, DSIPHY_PLL_CTRL(0)); while (!(readl(DSIPHY_PLL_READY) & 0x01)) udelay(1); } else { writel(0x0, DSIPHY_PLL_CTRL(0)); } } void dsi_clock_enable(uint32_t dsiclk_rate, uint32_t byteclk_rate) { uint32_t vcoclk_rate; int ret; ret = clk_get_set_enable("dsi_ahb_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set dsi_ahb_clk ret = %d\n", ret); ASSERT(0); } ret = dsi_byte_clk_set(&vcoclk_rate, byteclk_rate); if(ret) { dprintf(CRITICAL, "failed to set byteclk ret = %d\n", ret); ASSERT(0); } ret = dsi_dsi_clk_set(vcoclk_rate, dsiclk_rate); if(ret) { dprintf(CRITICAL, "failed to set dsiclk ret = %d\n", ret); ASSERT(0); } vco_enable(1); dsi_setup_dividers(0x105, DSI_PCLK_CFG_RCGR, DSI_PCLK_CMD_RCGR); dsi_setup_dividers(0x101, DSI_BYTE_CFG_RCGR, DSI_BYTE_CMD_RCGR); dsi_setup_dividers(0x101, DSI_CFG_RCGR, DSI_CMD_RCGR); ret = clk_get_set_enable("dsi_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set dsi_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("dsi_byte_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set dsi_byte_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("dsi_esc_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set dsi_esc_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("dsi_pclk_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set dsi_pclk_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdp_lcdc_clk" , 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_lcdc_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdp_dsi_clk" , 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_dsi_clk ret = %d\n", ret); ASSERT(0); } } void dsi_clock_disable(void) { clk_disable(clk_get("mdp_dsi_clk")); clk_disable(clk_get("mdp_lcdc_clk")); clk_disable(clk_get("dsi_pclk_clk")); clk_disable(clk_get("dsi_esc_clk")); clk_disable(clk_get("dsi_byte_clk")); clk_disable(clk_get("dsi_clk")); vco_enable(0); clk_disable(clk_get("dsi_ahb_clk")); } void clock_ce_enable(uint8_t instance) { int ret; char clk_name[64]; snprintf(clk_name, 64, "ce%u_src_clk", instance); ret = clk_get_set_enable(clk_name, 100000000, 1); if(ret) { dprintf(CRITICAL, "failed to set ce_src_clk ret = %d\n", ret); ASSERT(0); } snprintf(clk_name, 64, "ce%u_core_clk", instance); ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set ce_core_clk ret = %d\n", ret); ASSERT(0); } snprintf(clk_name, 64, "ce%u_ahb_clk", instance); ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set ce_ahb_clk ret = %d\n", ret); ASSERT(0); } snprintf(clk_name, 64, "ce%u_axi_clk", instance); ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set ce_axi_clk ret = %d\n", ret); ASSERT(0); } /* Wait for 48 * #pipes cycles. * This is necessary as immediately after an access control reset (boot up) * or a debug re-enable, the Crypto core sequentially clears its internal * pipe key storage memory. If pipe key initialization writes are attempted * during this time, they may be overwritten by the internal clearing logic. */ udelay(1); } void clock_ce_disable(uint8_t instance) { struct clk *ahb_clk; struct clk *cclk; struct clk *axi_clk; struct clk *src_clk; char clk_name[64]; snprintf(clk_name, 64, "ce%u_src_clk", instance); src_clk = clk_get(clk_name); snprintf(clk_name, 64, "ce%u_ahb_clk", instance); ahb_clk = clk_get(clk_name); snprintf(clk_name, 64, "ce%u_axi_clk", instance); axi_clk = clk_get(clk_name); snprintf(clk_name, 64, "ce%u_core_clk", instance); cclk = clk_get(clk_name); clk_disable(ahb_clk); clk_disable(axi_clk); clk_disable(cclk); clk_disable(src_clk); /* Some delay for the clocks to stabalize. */ udelay(1); } /* Function to asynchronously reset CE. * Function assumes that all the CE clocks are off. */ static void ce_async_reset(uint8_t instance) { if (instance == 1) { /* Start the block reset for CE */ writel(1, GCC_CE1_BCR); udelay(2); /* Take CE block out of reset */ writel(0, GCC_CE1_BCR); udelay(2); } else { dprintf(CRITICAL, "CE instance not supported instance = %d", instance); ASSERT(0); } } void clock_config_ce(uint8_t instance) { /* Need to enable the clock before disabling since the clk_disable() * has a check to default to nop when the clk_enable() is not called * on that particular clock. */ clock_ce_enable(instance); clock_ce_disable(instance); ce_async_reset(instance); clock_ce_enable(instance); }