/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include void hsusb_clock_init(void) { int ret; struct clk *iclk, *cclk; ret = clk_get_set_enable("usb_iface_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb_core_clk", 75000000, 1); if(ret) { dprintf(CRITICAL, "failed to set usb_core_clk ret = %d\n", ret); ASSERT(0); } mdelay(20); iclk = clk_get("usb_iface_clk"); cclk = clk_get("usb_core_clk"); clk_disable(iclk); clk_disable(cclk); mdelay(20); /* Start the block reset for usb */ writel(1, USB_HS_BCR); mdelay(20); /* Take usb block out of reset */ writel(0, USB_HS_BCR); mdelay(20); ret = clk_enable(iclk); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret); ASSERT(0); } ret = clk_enable(cclk); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret); ASSERT(0); } } void clock_init_mmc(uint32_t interface) { char clk_name[64]; int ret; snprintf(clk_name, 64, "sdc%u_iface_clk", interface); /* enable interface clock */ ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set sdc1_iface_clk ret = %d\n", ret); ASSERT(0); } } /* Configure MMC clock */ void clock_config_mmc(uint32_t interface, uint32_t freq) { int ret = 0; char clk_name[64]; snprintf(clk_name, 64, "sdc%u_core_clk", interface); if(freq == MMC_CLK_400KHZ) { ret = clk_get_set_enable(clk_name, 400000, 1); } else if(freq == MMC_CLK_50MHZ) { ret = clk_get_set_enable(clk_name, 50000000, 1); } else if(freq == MMC_CLK_200MHZ) { ret = clk_get_set_enable(clk_name, 200000000, 1); } else { dprintf(CRITICAL, "sdc frequency (%d) is not supported\n", freq); ASSERT(0); } if(ret) { dprintf(CRITICAL, "failed to set sdc1_core_clk ret = %d\n", ret); ASSERT(0); } } /* Configure UART clock based on the UART block id*/ void clock_config_uart_dm(uint8_t id) { int ret; ret = clk_get_set_enable("uart3_iface_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set uart3_iface_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("uart3_core_clk", 7372800, 1); if(ret) { dprintf(CRITICAL, "failed to set uart3_core_clk ret = %d\n", ret); ASSERT(0); } } /* Function to asynchronously reset CE. * Function assumes that all the CE clocks are off. */ static void ce_async_reset(uint8_t instance) { if (instance == 1) { /* Start the block reset for CE */ writel(1, GCC_CE1_BCR); udelay(2); /* Take CE block out of reset */ writel(0, GCC_CE1_BCR); udelay(2); } else { dprintf(CRITICAL, "CE instance not supported instance = %d", instance); ASSERT(0); } } void clock_ce_enable(uint8_t instance) { int ret; char clk_name[64]; snprintf(clk_name, 64, "ce%u_src_clk", instance); ret = clk_get_set_enable(clk_name, 100000000, 1); if(ret) { dprintf(CRITICAL, "failed to set ce_src_clk ret = %d\n", ret); ASSERT(0); } snprintf(clk_name, 64, "ce%u_core_clk", instance); ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set ce_core_clk ret = %d\n", ret); ASSERT(0); } snprintf(clk_name, 64, "ce%u_ahb_clk", instance); ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set ce_ahb_clk ret = %d\n", ret); ASSERT(0); } snprintf(clk_name, 64, "ce%u_axi_clk", instance); ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set ce_axi_clk ret = %d\n", ret); ASSERT(0); } /* Wait for 48 * #pipes cycles. * This is necessary as immediately after an access control reset (boot up) * or a debug re-enable, the Crypto core sequentially clears its internal * pipe key storage memory. If pipe key initialization writes are attempted * during this time, they may be overwritten by the internal clearing logic. */ udelay(1); } void clock_ce_disable(uint8_t instance) { struct clk *ahb_clk; struct clk *cclk; struct clk *axi_clk; struct clk *src_clk; char clk_name[64]; snprintf(clk_name, 64, "ce%u_src_clk", instance); src_clk = clk_get(clk_name); snprintf(clk_name, 64, "ce%u_ahb_clk", instance); ahb_clk = clk_get(clk_name); snprintf(clk_name, 64, "ce%u_axi_clk", instance); axi_clk = clk_get(clk_name); snprintf(clk_name, 64, "ce%u_core_clk", instance); cclk = clk_get(clk_name); clk_disable(ahb_clk); clk_disable(axi_clk); clk_disable(cclk); clk_disable(src_clk); /* Some delay for the clocks to stabalize. */ udelay(1); } void clock_config_ce(uint8_t instance) { /* Need to enable the clock before disabling since the clk_disable() * has a check to default to nop when the clk_enable() is not called * on that particular clock. */ clock_ce_enable(instance); clock_ce_disable(instance); ce_async_reset(instance); clock_ce_enable(instance); } void mdp_gdsc_ctrl(uint8_t enable) { uint32_t reg = 0; reg = readl(MDP_GDSCR); if (enable) { if (!(reg & GDSC_POWER_ON_BIT)) { reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK); reg |= GDSC_EN_FEW_WAIT_256_MASK; writel(reg, MDP_GDSCR); while(!(readl(MDP_GDSCR) & (GDSC_POWER_ON_BIT))); } else { dprintf(SPEW, "MDP GDSC already enabled\n"); } } else { reg |= BIT(0); writel(reg, MDP_GDSCR); while(readl(MDP_GDSCR) & (GDSC_POWER_ON_BIT)); } } /* Enable all the MDP branch clocks */ void mdp_clock_enable(void) { int ret; /* Set MDP clock to 100MHz */ ret = clk_get_set_enable("mdp_ahb_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_ahb_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_mdp_clk_src", 200000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_clk_src ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_vsync_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdss vsync clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_mdp_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_mdp_lut_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set lut_mdp clk ret = %d\n", ret); ASSERT(0); } } /* Disable all the MDP branch clocks */ void mdp_clock_disable(void) { clk_disable(clk_get("mdss_vsync_clk")); clk_disable(clk_get("mdss_mdp_clk")); clk_disable(clk_get("mdss_mdp_lut_clk")); clk_disable(clk_get("mdss_mdp_clk_src")); clk_disable(clk_get("mdp_ahb_clk")); } /* Disable all the bus clocks needed by MDP */ void mmss_bus_clocks_disable(void) { /* Disable MDSS AXI clock */ clk_disable(clk_get("mdss_axi_clk")); /* Disable MMSSNOC S0AXI clock */ clk_disable(clk_get("mmss_s0_axi_clk")); /* Disable MMSSNOC AXI clock */ clk_disable(clk_get("mmss_mmssnoc_axi_clk")); } /* Enable all the bus clocks needed by MDP */ void mmss_bus_clocks_enable(void) { int ret; /* Configure MMSSNOC AXI clock */ ret = clk_get_set_enable("mmss_mmssnoc_axi_clk", 100000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mmssnoc_axi_clk ret = %d\n", ret); ASSERT(0); } /* Configure MMSSNOC AXI clock */ ret = clk_get_set_enable("mmss_s0_axi_clk", 100000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mmss_s0_axi_clk ret = %d\n", ret); ASSERT(0); } /* Configure AXI clock */ ret = clk_get_set_enable("mdss_axi_clk", 100000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mdss_axi_clk ret = %d\n", ret); ASSERT(0); } } /* Disable all the branch clocks needed by the DSI controller */ void mmss_dsi_clocks_disable(void) { clk_disable(clk_get("mdss_esc0_clk")); writel(0x0, DSI_PIXEL0_CBCR); writel(0x0, DSI_BYTE0_CBCR); } /* Configure all the branch clocks needed by the DSI controller */ void mmss_dsi_clocks_enable(uint8_t pclk0_m, uint8_t pclk0_n, uint8_t pclk0_d) { int ret; /* Configure Byte clock -autopll- This will not change becasue byte clock does not need any divider*/ writel(0x100, DSI_BYTE0_CFG_RCGR); writel(0x1, DSI_BYTE0_CMD_RCGR); writel(0x1, DSI_BYTE0_CBCR); /* Configure Pixel clock */ writel(0x100, DSI_PIXEL0_CFG_RCGR); writel(0x1, DSI_PIXEL0_CMD_RCGR); writel(0x1, DSI_PIXEL0_CBCR); writel(pclk0_m, DSI_PIXEL0_M); writel(pclk0_n, DSI_PIXEL0_N); writel(pclk0_d, DSI_PIXEL0_D); /* Configure ESC clock */ ret = clk_get_set_enable("mdss_esc0_clk", 0, 1); if (ret) { dprintf(CRITICAL, "failed to set esc0_clk ret = %d\n", ret); ASSERT(0); } }