/* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "wcd9310.h" static int cfilt_adjust_ms = 10; module_param(cfilt_adjust_ms, int, 0644); MODULE_PARM_DESC(cfilt_adjust_ms, "delay after adjusting cfilt voltage in ms"); #define WCD9310_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\ SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\ SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000) #define NUM_DECIMATORS 10 #define NUM_INTERPOLATORS 7 #define BITS_PER_REG 8 #define TABLA_CFILT_FAST_MODE 0x00 #define TABLA_CFILT_SLOW_MODE 0x40 #define MBHC_FW_READ_ATTEMPTS 15 #define MBHC_FW_READ_TIMEOUT 2000000 #define MBHC_VDDIO_SWITCH_WAIT_MS 10 #define COMP_DIGITAL_DB_GAIN_APPLY(a, b) \ (((a) <= 0) ? ((a) - b) : (a)) #define SLIM_CLOSE_TIMEOUT 1000 /* The wait time value comes from codec HW specification */ #define COMP_BRINGUP_WAIT_TIME 2000 enum { MBHC_USE_HPHL_TRIGGER = 1, MBHC_USE_MB_TRIGGER = 2 }; #define MBHC_NUM_DCE_PLUG_DETECT 3 #define NUM_ATTEMPTS_INSERT_DETECT 25 #define NUM_ATTEMPTS_TO_REPORT 5 #define TABLA_JACK_MASK (SND_JACK_HEADSET | SND_JACK_OC_HPHL | \ SND_JACK_OC_HPHR | SND_JACK_LINEOUT | \ SND_JACK_UNSUPPORTED) #define TABLA_I2S_MASTER_MODE_MASK 0x08 #define TABLA_OCP_ATTEMPT 1 enum { AIF1_PB = 0, AIF1_CAP, AIF2_PB, AIF2_CAP, AIF3_PB, AIF3_CAP, NUM_CODEC_DAIS, }; enum { RX_MIX1_INP_SEL_ZERO = 0, RX_MIX1_INP_SEL_SRC1, RX_MIX1_INP_SEL_SRC2, RX_MIX1_INP_SEL_IIR1, RX_MIX1_INP_SEL_IIR2, RX_MIX1_INP_SEL_RX1, RX_MIX1_INP_SEL_RX2, RX_MIX1_INP_SEL_RX3, RX_MIX1_INP_SEL_RX4, RX_MIX1_INP_SEL_RX5, RX_MIX1_INP_SEL_RX6, RX_MIX1_INP_SEL_RX7, }; #define MAX_PA_GAIN_OPTIONS 13 #define TABLA_MCLK_RATE_12288KHZ 12288000 #define TABLA_MCLK_RATE_9600KHZ 9600000 #define TABLA_FAKE_INS_THRESHOLD_MS 2500 #define TABLA_FAKE_REMOVAL_MIN_PERIOD_MS 50 #define TABLA_MBHC_BUTTON_MIN 0x8000 #define TABLA_MBHC_FAKE_INSERT_LOW 10 #define TABLA_MBHC_FAKE_INSERT_HIGH 80 #define TABLA_MBHC_FAKE_INS_HIGH_NO_GPIO 150 #define TABLA_MBHC_STATUS_REL_DETECTION 0x0C #define TABLA_MBHC_GPIO_REL_DEBOUNCE_TIME_MS 50 #define TABLA_MBHC_FAKE_INS_DELTA_MV 200 #define TABLA_MBHC_FAKE_INS_DELTA_SCALED_MV 300 #define TABLA_HS_DETECT_PLUG_TIME_MS (5 * 1000) #define TABLA_HS_DETECT_PLUG_INERVAL_MS 100 #define TABLA_GPIO_IRQ_DEBOUNCE_TIME_US 5000 #define TABLA_MBHC_GND_MIC_SWAP_THRESHOLD 2 #define TABLA_RX_PORT_START_NUMBER 10 #define TABLA_ACQUIRE_LOCK(x) do { \ mutex_lock_nested(&x, SINGLE_DEPTH_NESTING); \ } while (0) #define TABLA_RELEASE_LOCK(x) do { mutex_unlock(&x); } while (0) static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0); static const DECLARE_TLV_DB_SCALE(line_gain, 0, 7, 1); static const DECLARE_TLV_DB_SCALE(analog_gain, 0, 25, 1); static struct snd_soc_dai_driver tabla_dai[]; static const DECLARE_TLV_DB_SCALE(aux_pga_gain, 0, 2, 0); static int tabla_codec_enable_slimrx(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event); static int tabla_codec_enable_slimtx(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event); enum tabla_bandgap_type { TABLA_BANDGAP_OFF = 0, TABLA_BANDGAP_AUDIO_MODE, TABLA_BANDGAP_MBHC_MODE, }; struct mbhc_micbias_regs { u16 cfilt_val; u16 cfilt_ctl; u16 mbhc_reg; u16 int_rbias; u16 ctl_reg; u8 cfilt_sel; }; /* Codec supports 2 IIR filters */ enum { IIR1 = 0, IIR2, IIR_MAX, }; /* Codec supports 5 bands */ enum { BAND1 = 0, BAND2, BAND3, BAND4, BAND5, BAND_MAX, }; enum { COMPANDER_1 = 0, COMPANDER_2, COMPANDER_MAX, }; enum { COMPANDER_FS_8KHZ = 0, COMPANDER_FS_16KHZ, COMPANDER_FS_32KHZ, COMPANDER_FS_48KHZ, COMPANDER_FS_96KHZ, COMPANDER_FS_192KHZ, COMPANDER_FS_MAX, }; enum { COMP_SHUTDWN_TIMEOUT_PCM_1 = 0, COMP_SHUTDWN_TIMEOUT_PCM_240, COMP_SHUTDWN_TIMEOUT_PCM_480, COMP_SHUTDWN_TIMEOUT_PCM_960, COMP_SHUTDWN_TIMEOUT_PCM_1440, COMP_SHUTDWN_TIMEOUT_PCM_2880, COMP_SHUTDWN_TIMEOUT_PCM_5760, }; /* Flags to track of PA and DAC state. * PA and DAC should be tracked separately as AUXPGA loopback requires * only PA to be turned on without DAC being on. */ enum tabla_priv_ack_flags { TABLA_HPHL_PA_OFF_ACK = 0, TABLA_HPHR_PA_OFF_ACK, TABLA_HPHL_DAC_OFF_ACK, TABLA_HPHR_DAC_OFF_ACK }; struct comp_sample_dependent_params { u32 peak_det_timeout; u32 rms_meter_div_fact; u32 rms_meter_resamp_fact; u32 shutdown_timeout; }; struct comp_dgtl_gain_offset { u8 whole_db_gain; u8 half_db_gain; }; static const struct comp_dgtl_gain_offset comp_dgtl_gain[MAX_PA_GAIN_OPTIONS] = { {0, 0}, {1, 1}, {3, 0}, {4, 1}, {6, 0}, {7, 1}, {9, 0}, {10, 1}, {12, 0}, {13, 1}, {15, 0}, {16, 1}, {18, 0}, }; /* Data used by MBHC */ struct mbhc_internal_cal_data { u16 dce_z; u16 dce_mb; u16 sta_z; u16 sta_mb; u32 t_sta_dce; u32 t_dce; u32 t_sta; u32 micb_mv; u16 v_ins_hu; u16 v_ins_h; u16 v_b1_hu; u16 v_b1_h; u16 v_b1_huc; u16 v_brh; u16 v_brl; u16 v_no_mic; u8 npoll; u8 nbounce_wait; s16 adj_v_hs_max; u16 adj_v_ins_hu; u16 adj_v_ins_h; s16 v_inval_ins_low; s16 v_inval_ins_high; }; struct tabla_reg_address { u16 micb_4_ctl; u16 micb_4_int_rbias; u16 micb_4_mbhc; }; enum tabla_mbhc_plug_type { PLUG_TYPE_INVALID = -1, PLUG_TYPE_NONE, PLUG_TYPE_HEADSET, PLUG_TYPE_HEADPHONE, PLUG_TYPE_HIGH_HPH, PLUG_TYPE_GND_MIC_SWAP, }; enum tabla_mbhc_state { MBHC_STATE_NONE = -1, MBHC_STATE_POTENTIAL, MBHC_STATE_POTENTIAL_RECOVERY, MBHC_STATE_RELEASE, }; struct hpf_work { struct tabla_priv *tabla; u32 decimator; u8 tx_hpf_cut_of_freq; struct delayed_work dwork; }; static struct hpf_work tx_hpf_work[NUM_DECIMATORS]; static const struct wcd9xxx_ch tabla_rx_chs[TABLA_RX_MAX] = { WCD9XXX_CH(TABLA_RX_PORT_START_NUMBER, 0), WCD9XXX_CH(TABLA_RX_PORT_START_NUMBER + 1, 1), WCD9XXX_CH(TABLA_RX_PORT_START_NUMBER + 2, 2), WCD9XXX_CH(TABLA_RX_PORT_START_NUMBER + 3, 3), WCD9XXX_CH(TABLA_RX_PORT_START_NUMBER + 4, 4), WCD9XXX_CH(TABLA_RX_PORT_START_NUMBER + 5, 5), WCD9XXX_CH(TABLA_RX_PORT_START_NUMBER + 6, 6) }; static const struct wcd9xxx_ch tabla_tx_chs[TABLA_TX_MAX] = { WCD9XXX_CH(0, 0), WCD9XXX_CH(1, 1), WCD9XXX_CH(2, 2), WCD9XXX_CH(3, 3), WCD9XXX_CH(4, 4), WCD9XXX_CH(5, 5), WCD9XXX_CH(6, 6), WCD9XXX_CH(7, 7), WCD9XXX_CH(8, 8), WCD9XXX_CH(9, 9) }; static const u32 vport_check_table[NUM_CODEC_DAIS] = { 0, /* AIF1_PB */ (1 << AIF2_CAP) | (1 << AIF3_CAP), /* AIF1_CAP */ 0, /* AIF2_PB */ (1 << AIF1_CAP) | (1 << AIF3_CAP), /* AIF2_CAP */ 0, /* AIF2_PB */ (1 << AIF1_CAP) | (1 << AIF2_CAP), /* AIF2_CAP */ }; static const u32 vport_i2s_check_table[NUM_CODEC_DAIS] = { 0, /* AIF1_PB */ 0, /* AIF1_CAP */ }; struct tabla_priv { struct snd_soc_codec *codec; struct tabla_reg_address reg_addr; u32 adc_count; u32 cfilt1_cnt; u32 cfilt2_cnt; u32 cfilt3_cnt; u32 rx_bias_count; s32 dmic_1_2_clk_cnt; s32 dmic_3_4_clk_cnt; s32 dmic_5_6_clk_cnt; enum tabla_bandgap_type bandgap_type; bool mclk_enabled; bool clock_active; bool config_mode_active; bool mbhc_polling_active; unsigned long mbhc_fake_ins_start; int buttons_pressed; enum tabla_mbhc_state mbhc_state; struct tabla_mbhc_config mbhc_cfg; struct mbhc_internal_cal_data mbhc_data; u32 ldo_h_count; u32 micbias_enable_count[TABLA_NUM_MICBIAS]; struct wcd9xxx_pdata *pdata; u32 anc_slot; bool anc_func; bool no_mic_headset_override; /* Delayed work to report long button press */ struct delayed_work mbhc_btn_dwork; struct mbhc_micbias_regs mbhc_bias_regs; bool mbhc_micbias_switched; /* track PA/DAC state */ unsigned long hph_pa_dac_state; /*track tabla interface type*/ u8 intf_type; u32 hph_status; /* track headhpone status */ /* define separate work for left and right headphone OCP to avoid * additional checking on which OCP event to report so no locking * to ensure synchronization is required */ struct work_struct hphlocp_work; /* reporting left hph ocp off */ struct work_struct hphrocp_work; /* reporting right hph ocp off */ u8 hphlocp_cnt; /* headphone left ocp retry */ u8 hphrocp_cnt; /* headphone right ocp retry */ /* Work to perform MBHC Firmware Read */ struct delayed_work mbhc_firmware_dwork; const struct firmware *mbhc_fw; /* num of slim ports required */ struct wcd9xxx_codec_dai_data dai[NUM_CODEC_DAIS]; /*compander*/ int comp_enabled[COMPANDER_MAX]; u32 comp_fs[COMPANDER_MAX]; u8 comp_gain_offset[TABLA_SB_PGD_MAX_NUMBER_OF_RX_SLAVE_DEV_PORTS - 1]; /* Maintain the status of AUX PGA */ int aux_pga_cnt; u8 aux_l_gain; u8 aux_r_gain; struct delayed_work mbhc_insert_dwork; unsigned long mbhc_last_resume; /* in jiffies */ u8 current_plug; struct work_struct hs_correct_plug_work; bool hs_detect_work_stop; bool hs_polling_irq_prepared; bool lpi_enabled; /* low power insertion detection */ bool in_gpio_handler; /* Currently, only used for mbhc purpose, to protect * concurrent execution of mbhc threaded irq handlers and * kill race between DAPM and MBHC.But can serve as a * general lock to protect codec resource */ struct mutex codec_resource_lock; /* Work to perform polling on microphone voltage * in order to correct plug type once plug type * is detected as headphone */ struct work_struct hs_correct_plug_work_nogpio; bool gpio_irq_resend; struct wake_lock irq_resend_wlock; #ifdef CONFIG_DEBUG_FS struct dentry *debugfs_poke; struct dentry *debugfs_mbhc; #endif }; static const u32 comp_shift[] = { 0, 1, }; static const int comp_rx_path[] = { COMPANDER_1, COMPANDER_1, COMPANDER_2, COMPANDER_2, COMPANDER_2, COMPANDER_2, COMPANDER_MAX, }; static const struct comp_sample_dependent_params comp_samp_params[COMPANDER_FS_MAX] = { { .peak_det_timeout = 0x6, .rms_meter_div_fact = 0x9 << 4, .rms_meter_resamp_fact = 0x06, .shutdown_timeout = COMP_SHUTDWN_TIMEOUT_PCM_240 << 3, }, { .peak_det_timeout = 0x7, .rms_meter_div_fact = 0xA << 4, .rms_meter_resamp_fact = 0x0C, .shutdown_timeout = COMP_SHUTDWN_TIMEOUT_PCM_480 << 3, }, { .peak_det_timeout = 0x8, .rms_meter_div_fact = 0xB << 4, .rms_meter_resamp_fact = 0x30, .shutdown_timeout = COMP_SHUTDWN_TIMEOUT_PCM_960 << 3, }, { .peak_det_timeout = 0x9, .rms_meter_div_fact = 0xB << 4, .rms_meter_resamp_fact = 0x28, .shutdown_timeout = COMP_SHUTDWN_TIMEOUT_PCM_1440 << 3, }, { .peak_det_timeout = 0xA, .rms_meter_div_fact = 0xC << 4, .rms_meter_resamp_fact = 0x50, .shutdown_timeout = COMP_SHUTDWN_TIMEOUT_PCM_2880 << 3, }, { .peak_det_timeout = 0xB, .rms_meter_div_fact = 0xC << 4, .rms_meter_resamp_fact = 0x50, .shutdown_timeout = COMP_SHUTDWN_TIMEOUT_PCM_5760 << 3, }, }; static unsigned short rx_digital_gain_reg[] = { TABLA_A_CDC_RX1_VOL_CTL_B2_CTL, TABLA_A_CDC_RX2_VOL_CTL_B2_CTL, TABLA_A_CDC_RX3_VOL_CTL_B2_CTL, TABLA_A_CDC_RX4_VOL_CTL_B2_CTL, TABLA_A_CDC_RX5_VOL_CTL_B2_CTL, TABLA_A_CDC_RX6_VOL_CTL_B2_CTL, TABLA_A_CDC_RX7_VOL_CTL_B2_CTL, }; static unsigned short tx_digital_gain_reg[] = { TABLA_A_CDC_TX1_VOL_CTL_GAIN, TABLA_A_CDC_TX2_VOL_CTL_GAIN, TABLA_A_CDC_TX3_VOL_CTL_GAIN, TABLA_A_CDC_TX4_VOL_CTL_GAIN, TABLA_A_CDC_TX5_VOL_CTL_GAIN, TABLA_A_CDC_TX6_VOL_CTL_GAIN, TABLA_A_CDC_TX7_VOL_CTL_GAIN, TABLA_A_CDC_TX8_VOL_CTL_GAIN, TABLA_A_CDC_TX9_VOL_CTL_GAIN, TABLA_A_CDC_TX10_VOL_CTL_GAIN, }; static int tabla_codec_enable_charge_pump(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_POST_PMU: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL, 0x01, 0x01); snd_soc_update_bits(codec, TABLA_A_CDC_CLSG_CTL, 0x08, 0x08); usleep_range(200, 200); snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x10, 0x00); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_RESET_CTL, 0x10, 0x10); usleep_range(20, 20); snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x08, 0x08); snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x10, 0x10); snd_soc_update_bits(codec, TABLA_A_CDC_CLSG_CTL, 0x08, 0x00); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL, 0x01, 0x00); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_RESET_CTL, 0x10, 0x00); snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x08, 0x00); break; } return 0; } static int tabla_get_anc_slot(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); ucontrol->value.integer.value[0] = tabla->anc_slot; return 0; } static int tabla_put_anc_slot(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); tabla->anc_slot = ucontrol->value.integer.value[0]; return 0; } static int tabla_get_anc_func(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); mutex_lock(&codec->dapm.codec->mutex); ucontrol->value.integer.value[0] = (tabla->anc_func == true ? 1 : 0); mutex_unlock(&codec->dapm.codec->mutex); return 0; } static int tabla_put_anc_func(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); struct snd_soc_dapm_context *dapm = &codec->dapm; mutex_lock(&dapm->codec->mutex); tabla->anc_func = (!ucontrol->value.integer.value[0] ? false : true); dev_dbg(codec->dev, "%s: anc_func %x", __func__, tabla->anc_func); if (tabla->anc_func == true) { snd_soc_dapm_enable_pin(dapm, "ANC HPHR"); snd_soc_dapm_enable_pin(dapm, "ANC HPHL"); snd_soc_dapm_enable_pin(dapm, "ANC HEADPHONE"); snd_soc_dapm_disable_pin(dapm, "HPHR"); snd_soc_dapm_disable_pin(dapm, "HPHL"); snd_soc_dapm_disable_pin(dapm, "HEADPHONE"); } else { snd_soc_dapm_disable_pin(dapm, "ANC HPHR"); snd_soc_dapm_disable_pin(dapm, "ANC HPHL"); snd_soc_dapm_disable_pin(dapm, "ANC HEADPHONE"); snd_soc_dapm_enable_pin(dapm, "HPHR"); snd_soc_dapm_enable_pin(dapm, "HPHL"); snd_soc_dapm_enable_pin(dapm, "HEADPHONE"); } snd_soc_dapm_sync(dapm); mutex_unlock(&dapm->codec->mutex); return 0; } static int tabla_pa_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u8 ear_pa_gain; struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); ear_pa_gain = snd_soc_read(codec, TABLA_A_RX_EAR_GAIN); ear_pa_gain = ear_pa_gain >> 5; if (ear_pa_gain == 0x00) { ucontrol->value.integer.value[0] = 0; } else if (ear_pa_gain == 0x04) { ucontrol->value.integer.value[0] = 1; } else { pr_err("%s: ERROR: Unsupported Ear Gain = 0x%x\n", __func__, ear_pa_gain); return -EINVAL; } pr_debug("%s: ear_pa_gain = 0x%x\n", __func__, ear_pa_gain); return 0; } static int tabla_pa_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u8 ear_pa_gain; struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); pr_debug("%s: ucontrol->value.integer.value[0] = %ld\n", __func__, ucontrol->value.integer.value[0]); switch (ucontrol->value.integer.value[0]) { case 0: ear_pa_gain = 0x00; break; case 1: ear_pa_gain = 0x80; break; default: return -EINVAL; } snd_soc_update_bits(codec, TABLA_A_RX_EAR_GAIN, 0xE0, ear_pa_gain); return 0; } static int tabla_get_iir_enable_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; ucontrol->value.integer.value[0] = snd_soc_read(codec, (TABLA_A_CDC_IIR1_CTL + 16 * iir_idx)) & (1 << band_idx); pr_debug("%s: IIR #%d band #%d enable %d\n", __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[0]); return 0; } static int tabla_put_iir_enable_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; int value = ucontrol->value.integer.value[0]; /* Mask first 5 bits, 6-8 are reserved */ snd_soc_update_bits(codec, (TABLA_A_CDC_IIR1_CTL + 16 * iir_idx), (1 << band_idx), (value << band_idx)); pr_debug("%s: IIR #%d band #%d enable %d\n", __func__, iir_idx, band_idx, value); return 0; } static uint32_t get_iir_band_coeff(struct snd_soc_codec *codec, int iir_idx, int band_idx, int coeff_idx) { /* Address does not automatically update if reading */ snd_soc_write(codec, (TABLA_A_CDC_IIR1_COEF_B1_CTL + 16 * iir_idx), (band_idx * BAND_MAX + coeff_idx) & 0x1F); /* Mask bits top 2 bits since they are reserved */ return ((snd_soc_read(codec, (TABLA_A_CDC_IIR1_COEF_B2_CTL + 16 * iir_idx)) << 24) | (snd_soc_read(codec, (TABLA_A_CDC_IIR1_COEF_B3_CTL + 16 * iir_idx)) << 16) | (snd_soc_read(codec, (TABLA_A_CDC_IIR1_COEF_B4_CTL + 16 * iir_idx)) << 8) | (snd_soc_read(codec, (TABLA_A_CDC_IIR1_COEF_B5_CTL + 16 * iir_idx)))) & 0x3FFFFFFF; } static int tabla_get_iir_band_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; ucontrol->value.integer.value[0] = get_iir_band_coeff(codec, iir_idx, band_idx, 0); ucontrol->value.integer.value[1] = get_iir_band_coeff(codec, iir_idx, band_idx, 1); ucontrol->value.integer.value[2] = get_iir_band_coeff(codec, iir_idx, band_idx, 2); ucontrol->value.integer.value[3] = get_iir_band_coeff(codec, iir_idx, band_idx, 3); ucontrol->value.integer.value[4] = get_iir_band_coeff(codec, iir_idx, band_idx, 4); pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n" "%s: IIR #%d band #%d b1 = 0x%x\n" "%s: IIR #%d band #%d b2 = 0x%x\n" "%s: IIR #%d band #%d a1 = 0x%x\n" "%s: IIR #%d band #%d a2 = 0x%x\n", __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[0], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[1], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[2], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[3], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[4]); return 0; } static void set_iir_band_coeff(struct snd_soc_codec *codec, int iir_idx, int band_idx, int coeff_idx, uint32_t value) { /* Mask top 3 bits, 6-8 are reserved */ /* Update address manually each time */ snd_soc_write(codec, (TABLA_A_CDC_IIR1_COEF_B1_CTL + 16 * iir_idx), (band_idx * BAND_MAX + coeff_idx) & 0x1F); /* Mask top 2 bits, 7-8 are reserved */ snd_soc_write(codec, (TABLA_A_CDC_IIR1_COEF_B2_CTL + 16 * iir_idx), (value >> 24) & 0x3F); /* Isolate 8bits at a time */ snd_soc_write(codec, (TABLA_A_CDC_IIR1_COEF_B3_CTL + 16 * iir_idx), (value >> 16) & 0xFF); snd_soc_write(codec, (TABLA_A_CDC_IIR1_COEF_B4_CTL + 16 * iir_idx), (value >> 8) & 0xFF); snd_soc_write(codec, (TABLA_A_CDC_IIR1_COEF_B5_CTL + 16 * iir_idx), value & 0xFF); } static int tabla_put_iir_band_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; set_iir_band_coeff(codec, iir_idx, band_idx, 0, ucontrol->value.integer.value[0]); set_iir_band_coeff(codec, iir_idx, band_idx, 1, ucontrol->value.integer.value[1]); set_iir_band_coeff(codec, iir_idx, band_idx, 2, ucontrol->value.integer.value[2]); set_iir_band_coeff(codec, iir_idx, band_idx, 3, ucontrol->value.integer.value[3]); set_iir_band_coeff(codec, iir_idx, band_idx, 4, ucontrol->value.integer.value[4]); pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n" "%s: IIR #%d band #%d b1 = 0x%x\n" "%s: IIR #%d band #%d b2 = 0x%x\n" "%s: IIR #%d band #%d a1 = 0x%x\n" "%s: IIR #%d band #%d a2 = 0x%x\n", __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 0), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 1), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 2), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 3), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 4)); return 0; } static int tabla_compander_gain_offset( struct snd_soc_codec *codec, u32 enable, unsigned int pa_reg, unsigned int vol_reg, int mask, int event, struct comp_dgtl_gain_offset *gain_offset, int index) { unsigned int pa_gain = snd_soc_read(codec, pa_reg); unsigned int digital_vol = snd_soc_read(codec, vol_reg); int pa_mode = pa_gain & mask; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: pa_gain(0x%x=0x%x)digital_vol(0x%x=0x%x)event(0x%x) index(%d)\n", __func__, pa_reg, pa_gain, vol_reg, digital_vol, event, index); if (((pa_gain & 0xF) + 1) > ARRAY_SIZE(comp_dgtl_gain) || (index >= ARRAY_SIZE(tabla->comp_gain_offset))) { pr_err("%s: Out of array boundary\n", __func__); return -EINVAL; } if (SND_SOC_DAPM_EVENT_ON(event) && (enable != 0)) { gain_offset->whole_db_gain = COMP_DIGITAL_DB_GAIN_APPLY( (digital_vol - comp_dgtl_gain[pa_gain & 0xF].whole_db_gain), comp_dgtl_gain[pa_gain & 0xF].half_db_gain); pr_debug("%s: listed whole_db_gain:0x%x, adjusted whole_db_gain:0x%x\n", __func__, comp_dgtl_gain[pa_gain & 0xF].whole_db_gain, gain_offset->whole_db_gain); gain_offset->half_db_gain = comp_dgtl_gain[pa_gain & 0xF].half_db_gain; tabla->comp_gain_offset[index] = digital_vol - gain_offset->whole_db_gain ; } if (SND_SOC_DAPM_EVENT_OFF(event) && (pa_mode == 0)) { gain_offset->whole_db_gain = digital_vol + tabla->comp_gain_offset[index]; pr_debug("%s: listed whole_db_gain:0x%x, adjusted whole_db_gain:0x%x\n", __func__, comp_dgtl_gain[pa_gain & 0xF].whole_db_gain, gain_offset->whole_db_gain); gain_offset->half_db_gain = 0; } pr_debug("%s: half_db_gain(%d)whole_db_gain(%d)comp_gain_offset[%d](%d)\n", __func__, gain_offset->half_db_gain, gain_offset->whole_db_gain, index, tabla->comp_gain_offset[index]); return 0; } static int tabla_config_gain_compander( struct snd_soc_codec *codec, u32 compander, u32 enable, int event) { int value = 0; int mask = 1 << 4; struct comp_dgtl_gain_offset gain_offset = {0, 0}; if (compander >= COMPANDER_MAX) { pr_err("%s: Error, invalid compander channel\n", __func__); return -EINVAL; } if ((enable == 0) || SND_SOC_DAPM_EVENT_OFF(event)) value = 1 << 4; if (compander == COMPANDER_1) { tabla_compander_gain_offset(codec, enable, TABLA_A_RX_HPH_L_GAIN, TABLA_A_CDC_RX1_VOL_CTL_B2_CTL, mask, event, &gain_offset, 0); snd_soc_update_bits(codec, TABLA_A_RX_HPH_L_GAIN, mask, value); snd_soc_update_bits(codec, TABLA_A_CDC_RX1_VOL_CTL_B2_CTL, 0xFF, gain_offset.whole_db_gain); snd_soc_update_bits(codec, TABLA_A_CDC_RX1_B6_CTL, 0x02, gain_offset.half_db_gain); tabla_compander_gain_offset(codec, enable, TABLA_A_RX_HPH_R_GAIN, TABLA_A_CDC_RX2_VOL_CTL_B2_CTL, mask, event, &gain_offset, 1); snd_soc_update_bits(codec, TABLA_A_RX_HPH_R_GAIN, mask, value); snd_soc_update_bits(codec, TABLA_A_CDC_RX2_VOL_CTL_B2_CTL, 0xFF, gain_offset.whole_db_gain); snd_soc_update_bits(codec, TABLA_A_CDC_RX2_B6_CTL, 0x02, gain_offset.half_db_gain); } else if (compander == COMPANDER_2) { tabla_compander_gain_offset(codec, enable, TABLA_A_RX_LINE_1_GAIN, TABLA_A_CDC_RX3_VOL_CTL_B2_CTL, mask, event, &gain_offset, 2); snd_soc_update_bits(codec, TABLA_A_RX_LINE_1_GAIN, mask, value); snd_soc_update_bits(codec, TABLA_A_CDC_RX3_VOL_CTL_B2_CTL, 0xFF, gain_offset.whole_db_gain); snd_soc_update_bits(codec, TABLA_A_CDC_RX3_B6_CTL, 0x02, gain_offset.half_db_gain); tabla_compander_gain_offset(codec, enable, TABLA_A_RX_LINE_3_GAIN, TABLA_A_CDC_RX4_VOL_CTL_B2_CTL, mask, event, &gain_offset, 3); snd_soc_update_bits(codec, TABLA_A_RX_LINE_3_GAIN, mask, value); snd_soc_update_bits(codec, TABLA_A_CDC_RX4_VOL_CTL_B2_CTL, 0xFF, gain_offset.whole_db_gain); snd_soc_update_bits(codec, TABLA_A_CDC_RX4_B6_CTL, 0x02, gain_offset.half_db_gain); tabla_compander_gain_offset(codec, enable, TABLA_A_RX_LINE_2_GAIN, TABLA_A_CDC_RX5_VOL_CTL_B2_CTL, mask, event, &gain_offset, 4); snd_soc_update_bits(codec, TABLA_A_RX_LINE_2_GAIN, mask, value); snd_soc_update_bits(codec, TABLA_A_CDC_RX5_VOL_CTL_B2_CTL, 0xFF, gain_offset.whole_db_gain); snd_soc_update_bits(codec, TABLA_A_CDC_RX5_B6_CTL, 0x02, gain_offset.half_db_gain); tabla_compander_gain_offset(codec, enable, TABLA_A_RX_LINE_4_GAIN, TABLA_A_CDC_RX6_VOL_CTL_B2_CTL, mask, event, &gain_offset, 5); snd_soc_update_bits(codec, TABLA_A_RX_LINE_4_GAIN, mask, value); snd_soc_update_bits(codec, TABLA_A_CDC_RX6_VOL_CTL_B2_CTL, 0xFF, gain_offset.whole_db_gain); snd_soc_update_bits(codec, TABLA_A_CDC_RX6_B6_CTL, 0x02, gain_offset.half_db_gain); } return 0; } static int tabla_get_compander(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int comp = ((struct soc_multi_mixer_control *) kcontrol->private_value)->max; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); ucontrol->value.integer.value[0] = tabla->comp_enabled[comp]; return 0; } static int tabla_set_compander(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); int comp = ((struct soc_multi_mixer_control *) kcontrol->private_value)->max; int value = ucontrol->value.integer.value[0]; pr_debug("%s: compander #%d enable %d\n", __func__, comp + 1, value); if (value == tabla->comp_enabled[comp]) { pr_debug("%s: compander #%d enable %d no change\n", __func__, comp + 1, value); return 0; } tabla->comp_enabled[comp] = value; return 0; } static int tabla_config_compander(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u32 rate = tabla->comp_fs[w->shift]; pr_debug("%s: compander #%d enable %d event %d widget name %s\n", __func__, w->shift + 1, tabla->comp_enabled[w->shift], event , w->name); if (tabla->comp_enabled[w->shift] == 0) goto rtn; if ((w->shift == COMPANDER_1) && (tabla->anc_func)) { pr_debug("%s: ANC is enabled so compander #%d cannot be enabled\n", __func__, w->shift + 1); goto rtn; } switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Update compander sample rate */ snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_FS_CFG + w->shift * 8, 0x07, rate); /* Enable both L/R compander clocks */ snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_B2_CTL, 1 << comp_shift[w->shift], 1 << comp_shift[w->shift]); /* Toggle compander reset bits */ snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_RESET_CTL, 1 << comp_shift[w->shift], 1 << comp_shift[w->shift]); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_RESET_CTL, 1 << comp_shift[w->shift], 0); tabla_config_gain_compander(codec, w->shift, 1, event); /* Compander enable -> 0x370/0x378 */ snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B1_CTL + w->shift * 8, 0x03, 0x03); /* Update the RMS meter resampling */ snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B3_CTL + w->shift * 8, 0xFF, 0x01); snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B2_CTL + w->shift * 8, 0xF0, 0x50); usleep_range(COMP_BRINGUP_WAIT_TIME, COMP_BRINGUP_WAIT_TIME); break; case SND_SOC_DAPM_POST_PMU: /* Set sample rate dependent paramater */ if (w->shift == COMPANDER_1) { snd_soc_update_bits(codec, TABLA_A_CDC_CLSG_CTL, 0x11, 0x00); snd_soc_write(codec, TABLA_A_CDC_CONN_CLSG_CTL, 0x11); } snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B2_CTL + w->shift * 8, 0x0F, comp_samp_params[rate].peak_det_timeout); snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B2_CTL + w->shift * 8, 0xF0, comp_samp_params[rate].rms_meter_div_fact); snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B3_CTL + w->shift * 8, 0xFF, comp_samp_params[rate].rms_meter_resamp_fact); snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B1_CTL + w->shift * 8, 0x38, comp_samp_params[rate].shutdown_timeout); break; case SND_SOC_DAPM_PRE_PMD: break; case SND_SOC_DAPM_POST_PMD: /* Disable the compander */ snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B1_CTL + w->shift * 8, 0x03, 0x00); /* Toggle compander reset bits */ snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_RESET_CTL, 1 << comp_shift[w->shift], 1 << comp_shift[w->shift]); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_RESET_CTL, 1 << comp_shift[w->shift], 0); /* Turn off the clock for compander in pair */ snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_B2_CTL, 0x03 << comp_shift[w->shift], 0); /* Restore the gain */ tabla_config_gain_compander(codec, w->shift, tabla->comp_enabled[w->shift], event); if (w->shift == COMPANDER_1) { snd_soc_update_bits(codec, TABLA_A_CDC_CLSG_CTL, 0x11, 0x11); snd_soc_write(codec, TABLA_A_CDC_CONN_CLSG_CTL, 0x14); } break; } rtn: return 0; } static int tabla_codec_hphr_dem_input_selection(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: compander#1->enable(%d) reg(0x%x = 0x%x) event(%d)\n", __func__, tabla->comp_enabled[COMPANDER_1], TABLA_A_CDC_RX1_B6_CTL, snd_soc_read(codec, TABLA_A_CDC_RX1_B6_CTL), event); switch (event) { case SND_SOC_DAPM_POST_PMU: if (tabla->comp_enabled[COMPANDER_1] && !tabla->anc_func) snd_soc_update_bits(codec, TABLA_A_CDC_RX1_B6_CTL, 1 << w->shift, 0); else snd_soc_update_bits(codec, TABLA_A_CDC_RX1_B6_CTL, 1 << w->shift, 1 << w->shift); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, TABLA_A_CDC_RX1_B6_CTL, 1 << w->shift, 0); break; default: return -EINVAL; } return 0; } static int tabla_codec_hphl_dem_input_selection(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: compander#1->enable(%d) reg(0x%x = 0x%x) event(%d)\n", __func__, tabla->comp_enabled[COMPANDER_1], TABLA_A_CDC_RX2_B6_CTL, snd_soc_read(codec, TABLA_A_CDC_RX2_B6_CTL), event); switch (event) { case SND_SOC_DAPM_POST_PMU: if (tabla->comp_enabled[COMPANDER_1] && !tabla->anc_func) snd_soc_update_bits(codec, TABLA_A_CDC_RX2_B6_CTL, 1 << w->shift, 0); else snd_soc_update_bits(codec, TABLA_A_CDC_RX2_B6_CTL, 1 << w->shift, 1 << w->shift); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, TABLA_A_CDC_RX2_B6_CTL, 1 << w->shift, 0); break; default: return -EINVAL; } return 0; } static const char *const tabla_anc_func_text[] = {"OFF", "ON"}; static const struct soc_enum tabla_anc_func_enum = SOC_ENUM_SINGLE_EXT(2, tabla_anc_func_text); static const char *tabla_ear_pa_gain_text[] = {"POS_6_DB", "POS_2_DB"}; static const struct soc_enum tabla_ear_pa_gain_enum[] = { SOC_ENUM_SINGLE_EXT(2, tabla_ear_pa_gain_text), }; /*cut of frequency for high pass filter*/ static const char *cf_text[] = { "MIN_3DB_4Hz", "MIN_3DB_75Hz", "MIN_3DB_150Hz" }; static const struct soc_enum cf_dec1_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX1_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec2_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX2_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec3_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX3_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec4_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX4_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec5_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX5_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec6_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX6_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec7_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX7_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec8_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX8_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec9_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX9_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec10_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX10_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_rxmix1_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX1_B4_CTL, 1, 3, cf_text); static const struct soc_enum cf_rxmix2_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX2_B4_CTL, 1, 3, cf_text); static const struct soc_enum cf_rxmix3_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX3_B4_CTL, 1, 3, cf_text); static const struct soc_enum cf_rxmix4_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX4_B4_CTL, 1, 3, cf_text); static const struct soc_enum cf_rxmix5_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX5_B4_CTL, 1, 3, cf_text) ; static const struct soc_enum cf_rxmix6_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX6_B4_CTL, 1, 3, cf_text); static const struct soc_enum cf_rxmix7_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX7_B4_CTL, 1, 3, cf_text); static const struct snd_kcontrol_new tabla_snd_controls[] = { SOC_ENUM_EXT("EAR PA Gain", tabla_ear_pa_gain_enum[0], tabla_pa_gain_get, tabla_pa_gain_put), SOC_SINGLE_TLV("LINEOUT1 Volume", TABLA_A_RX_LINE_1_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("LINEOUT2 Volume", TABLA_A_RX_LINE_2_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("LINEOUT3 Volume", TABLA_A_RX_LINE_3_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("LINEOUT4 Volume", TABLA_A_RX_LINE_4_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("LINEOUT5 Volume", TABLA_A_RX_LINE_5_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("HPHL Volume", TABLA_A_RX_HPH_L_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("HPHR Volume", TABLA_A_RX_HPH_R_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_S8_TLV("RX1 Digital Volume", TABLA_A_CDC_RX1_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX2 Digital Volume", TABLA_A_CDC_RX2_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX3 Digital Volume", TABLA_A_CDC_RX3_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX4 Digital Volume", TABLA_A_CDC_RX4_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX5 Digital Volume", TABLA_A_CDC_RX5_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX6 Digital Volume", TABLA_A_CDC_RX6_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX7 Digital Volume", TABLA_A_CDC_RX7_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC1 Volume", TABLA_A_CDC_TX1_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC2 Volume", TABLA_A_CDC_TX2_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC3 Volume", TABLA_A_CDC_TX3_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC4 Volume", TABLA_A_CDC_TX4_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC5 Volume", TABLA_A_CDC_TX5_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC6 Volume", TABLA_A_CDC_TX6_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC7 Volume", TABLA_A_CDC_TX7_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC8 Volume", TABLA_A_CDC_TX8_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC9 Volume", TABLA_A_CDC_TX9_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC10 Volume", TABLA_A_CDC_TX10_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP1 Volume", TABLA_A_CDC_IIR1_GAIN_B1_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP2 Volume", TABLA_A_CDC_IIR1_GAIN_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP3 Volume", TABLA_A_CDC_IIR1_GAIN_B3_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP4 Volume", TABLA_A_CDC_IIR1_GAIN_B4_CTL, -84, 40, digital_gain), SOC_SINGLE_TLV("ADC1 Volume", TABLA_A_TX_1_2_EN, 5, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC2 Volume", TABLA_A_TX_1_2_EN, 1, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC3 Volume", TABLA_A_TX_3_4_EN, 5, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC4 Volume", TABLA_A_TX_3_4_EN, 1, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC5 Volume", TABLA_A_TX_5_6_EN, 5, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC6 Volume", TABLA_A_TX_5_6_EN, 1, 3, 0, analog_gain), SOC_SINGLE_TLV("AUX_PGA_LEFT Volume", TABLA_A_AUX_L_GAIN, 0, 39, 0, aux_pga_gain), SOC_SINGLE_TLV("AUX_PGA_RIGHT Volume", TABLA_A_AUX_R_GAIN, 0, 39, 0, aux_pga_gain), SOC_SINGLE("MICBIAS1 CAPLESS Switch", TABLA_A_MICB_1_CTL, 4, 1, 1), SOC_SINGLE("MICBIAS2 CAPLESS Switch", TABLA_A_MICB_2_CTL, 4, 1, 1), SOC_SINGLE("MICBIAS3 CAPLESS Switch", TABLA_A_MICB_3_CTL, 4, 1, 1), SOC_SINGLE_EXT("ANC Slot", SND_SOC_NOPM, 0, 0, 100, tabla_get_anc_slot, tabla_put_anc_slot), SOC_ENUM_EXT("ANC Function", tabla_anc_func_enum, tabla_get_anc_func, tabla_put_anc_func), SOC_ENUM("TX1 HPF cut off", cf_dec1_enum), SOC_ENUM("TX2 HPF cut off", cf_dec2_enum), SOC_ENUM("TX3 HPF cut off", cf_dec3_enum), SOC_ENUM("TX4 HPF cut off", cf_dec4_enum), SOC_ENUM("TX5 HPF cut off", cf_dec5_enum), SOC_ENUM("TX6 HPF cut off", cf_dec6_enum), SOC_ENUM("TX7 HPF cut off", cf_dec7_enum), SOC_ENUM("TX8 HPF cut off", cf_dec8_enum), SOC_ENUM("TX9 HPF cut off", cf_dec9_enum), SOC_ENUM("TX10 HPF cut off", cf_dec10_enum), SOC_SINGLE("TX1 HPF Switch", TABLA_A_CDC_TX1_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX2 HPF Switch", TABLA_A_CDC_TX2_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX3 HPF Switch", TABLA_A_CDC_TX3_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX4 HPF Switch", TABLA_A_CDC_TX4_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX5 HPF Switch", TABLA_A_CDC_TX5_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX6 HPF Switch", TABLA_A_CDC_TX6_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX7 HPF Switch", TABLA_A_CDC_TX7_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX8 HPF Switch", TABLA_A_CDC_TX8_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX9 HPF Switch", TABLA_A_CDC_TX9_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX10 HPF Switch", TABLA_A_CDC_TX10_MUX_CTL, 3, 1, 0), SOC_SINGLE("RX1 HPF Switch", TABLA_A_CDC_RX1_B5_CTL, 2, 1, 0), SOC_SINGLE("RX2 HPF Switch", TABLA_A_CDC_RX2_B5_CTL, 2, 1, 0), SOC_SINGLE("RX3 HPF Switch", TABLA_A_CDC_RX3_B5_CTL, 2, 1, 0), SOC_SINGLE("RX4 HPF Switch", TABLA_A_CDC_RX4_B5_CTL, 2, 1, 0), SOC_SINGLE("RX5 HPF Switch", TABLA_A_CDC_RX5_B5_CTL, 2, 1, 0), SOC_SINGLE("RX6 HPF Switch", TABLA_A_CDC_RX6_B5_CTL, 2, 1, 0), SOC_SINGLE("RX7 HPF Switch", TABLA_A_CDC_RX7_B5_CTL, 2, 1, 0), SOC_ENUM("RX1 HPF cut off", cf_rxmix1_enum), SOC_ENUM("RX2 HPF cut off", cf_rxmix2_enum), SOC_ENUM("RX3 HPF cut off", cf_rxmix3_enum), SOC_ENUM("RX4 HPF cut off", cf_rxmix4_enum), SOC_ENUM("RX5 HPF cut off", cf_rxmix5_enum), SOC_ENUM("RX6 HPF cut off", cf_rxmix6_enum), SOC_ENUM("RX7 HPF cut off", cf_rxmix7_enum), SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band1", IIR2, BAND1, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band2", IIR2, BAND2, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band3", IIR2, BAND3, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band4", IIR2, BAND4, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band5", IIR2, BAND5, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band1", IIR1, BAND1, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band2", IIR1, BAND2, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band3", IIR1, BAND3, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band4", IIR1, BAND4, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band5", IIR1, BAND5, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band1", IIR2, BAND1, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band2", IIR2, BAND2, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band3", IIR2, BAND3, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band4", IIR2, BAND4, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band5", IIR2, BAND5, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_EXT("COMP1 Switch", SND_SOC_NOPM, 1, COMPANDER_1, 0, tabla_get_compander, tabla_set_compander), SOC_SINGLE_EXT("COMP2 Switch", SND_SOC_NOPM, 0, COMPANDER_2, 0, tabla_get_compander, tabla_set_compander), }; static const struct snd_kcontrol_new tabla_1_x_snd_controls[] = { SOC_SINGLE("MICBIAS4 CAPLESS Switch", TABLA_1_A_MICB_4_CTL, 4, 1, 1), }; static const struct snd_kcontrol_new tabla_2_higher_snd_controls[] = { SOC_SINGLE("MICBIAS4 CAPLESS Switch", TABLA_2_A_MICB_4_CTL, 4, 1, 1), }; static const char *rx_mix1_text[] = { "ZERO", "SRC1", "SRC2", "IIR1", "IIR2", "RX1", "RX2", "RX3", "RX4", "RX5", "RX6", "RX7" }; static const char *rx_mix2_text[] = { "ZERO", "SRC1", "SRC2", "IIR1", "IIR2" }; static const char *rx_dsm_text[] = { "CIC_OUT", "DSM_INV" }; static const char *sb_tx1_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC1" }; static const char *sb_tx2_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC2" }; static const char *sb_tx3_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC3" }; static const char *sb_tx4_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC4" }; static const char *sb_tx5_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC5" }; static const char *sb_tx6_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC6" }; static const char const *sb_tx7_to_tx10_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC1", "DEC2", "DEC3", "DEC4", "DEC5", "DEC6", "DEC7", "DEC8", "DEC9", "DEC10" }; static const char *dec1_mux_text[] = { "ZERO", "DMIC1", "ADC6", }; static const char *dec2_mux_text[] = { "ZERO", "DMIC2", "ADC5", }; static const char *dec3_mux_text[] = { "ZERO", "DMIC3", "ADC4", }; static const char *dec4_mux_text[] = { "ZERO", "DMIC4", "ADC3", }; static const char *dec5_mux_text[] = { "ZERO", "DMIC5", "ADC2", }; static const char *dec6_mux_text[] = { "ZERO", "DMIC6", "ADC1", }; static const char const *dec7_mux_text[] = { "ZERO", "DMIC1", "DMIC6", "ADC1", "ADC6", "ANC1_FB", "ANC2_FB", }; static const char *dec8_mux_text[] = { "ZERO", "DMIC2", "DMIC5", "ADC2", "ADC5", }; static const char *dec9_mux_text[] = { "ZERO", "DMIC4", "DMIC5", "ADC2", "ADC3", "ADCMB", "ANC1_FB", "ANC2_FB", }; static const char *dec10_mux_text[] = { "ZERO", "DMIC3", "DMIC6", "ADC1", "ADC4", "ADCMB", "ANC1_FB", "ANC2_FB", }; static const char const *anc_mux_text[] = { "ZERO", "ADC1", "ADC2", "ADC3", "ADC4", "ADC5", "ADC6", "ADC_MB", "RSVD_1", "DMIC1", "DMIC2", "DMIC3", "DMIC4", "DMIC5", "DMIC6" }; static const char const *anc1_fb_mux_text[] = { "ZERO", "EAR_HPH_L", "EAR_LINE_1", }; static const char *const iir_inp1_text[] = { "ZERO", "DEC1", "DEC2", "DEC3", "DEC4", "DEC5", "DEC6", "DEC7", "DEC8", "DEC9", "DEC10", "RX1", "RX2", "RX3", "RX4", "RX5", "RX6", "RX7" }; static const struct soc_enum rx_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX1_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX1_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx_mix1_inp3_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX1_B2_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx2_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX2_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx2_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX2_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx3_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX3_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx3_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX3_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx4_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX4_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx4_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX4_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx5_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX5_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx5_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX5_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx6_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX6_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx6_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX6_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx7_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX7_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx7_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX7_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx1_mix2_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX1_B3_CTL, 0, 5, rx_mix2_text); static const struct soc_enum rx1_mix2_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX1_B3_CTL, 3, 5, rx_mix2_text); static const struct soc_enum rx2_mix2_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX2_B3_CTL, 0, 5, rx_mix2_text); static const struct soc_enum rx2_mix2_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX2_B3_CTL, 3, 5, rx_mix2_text); static const struct soc_enum rx3_mix2_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX3_B3_CTL, 0, 5, rx_mix2_text); static const struct soc_enum rx3_mix2_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX3_B3_CTL, 3, 5, rx_mix2_text); static const struct soc_enum rx4_dsm_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX4_B6_CTL, 4, 2, rx_dsm_text); static const struct soc_enum rx6_dsm_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX6_B6_CTL, 4, 2, rx_dsm_text); static const struct soc_enum sb_tx1_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B1_CTL, 0, 9, sb_tx1_mux_text); static const struct soc_enum sb_tx2_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B2_CTL, 0, 9, sb_tx2_mux_text); static const struct soc_enum sb_tx3_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B3_CTL, 0, 9, sb_tx3_mux_text); static const struct soc_enum sb_tx4_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B4_CTL, 0, 9, sb_tx4_mux_text); static const struct soc_enum sb_tx5_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B5_CTL, 0, 9, sb_tx5_mux_text); static const struct soc_enum sb_tx6_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B6_CTL, 0, 9, sb_tx6_mux_text); static const struct soc_enum sb_tx7_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B7_CTL, 0, 18, sb_tx7_to_tx10_mux_text); static const struct soc_enum sb_tx8_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B8_CTL, 0, 18, sb_tx7_to_tx10_mux_text); static const struct soc_enum sb_tx9_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B9_CTL, 0, 18, sb_tx7_to_tx10_mux_text); static const struct soc_enum sb_tx10_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B10_CTL, 0, 18, sb_tx7_to_tx10_mux_text); static const struct soc_enum dec1_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 0, 3, dec1_mux_text); static const struct soc_enum dec2_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 2, 3, dec2_mux_text); static const struct soc_enum dec3_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 4, 3, dec3_mux_text); static const struct soc_enum dec4_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 6, 3, dec4_mux_text); static const struct soc_enum dec5_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B2_CTL, 0, 3, dec5_mux_text); static const struct soc_enum dec6_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B2_CTL, 2, 3, dec6_mux_text); static const struct soc_enum dec7_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B2_CTL, 4, 7, dec7_mux_text); static const struct soc_enum dec8_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B3_CTL, 0, 7, dec8_mux_text); static const struct soc_enum dec9_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B3_CTL, 3, 8, dec9_mux_text); static const struct soc_enum dec10_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B4_CTL, 0, 8, dec10_mux_text); static const struct soc_enum anc1_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_ANC_B1_CTL, 0, 16, anc_mux_text); static const struct soc_enum anc2_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_ANC_B1_CTL, 4, 16, anc_mux_text); static const struct soc_enum anc1_fb_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_ANC_B2_CTL, 0, 3, anc1_fb_mux_text); static const struct soc_enum iir1_inp1_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_EQ1_B1_CTL, 0, 18, iir_inp1_text); static const struct soc_enum iir2_inp1_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_EQ2_B1_CTL, 0, 18, iir_inp1_text); static const struct snd_kcontrol_new rx_mix1_inp1_mux = SOC_DAPM_ENUM("RX1 MIX1 INP1 Mux", rx_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx_mix1_inp2_mux = SOC_DAPM_ENUM("RX1 MIX1 INP2 Mux", rx_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx_mix1_inp3_mux = SOC_DAPM_ENUM("RX1 MIX1 INP3 Mux", rx_mix1_inp3_chain_enum); static const struct snd_kcontrol_new rx2_mix1_inp1_mux = SOC_DAPM_ENUM("RX2 MIX1 INP1 Mux", rx2_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx2_mix1_inp2_mux = SOC_DAPM_ENUM("RX2 MIX1 INP2 Mux", rx2_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx3_mix1_inp1_mux = SOC_DAPM_ENUM("RX3 MIX1 INP1 Mux", rx3_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx3_mix1_inp2_mux = SOC_DAPM_ENUM("RX3 MIX1 INP2 Mux", rx3_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx4_mix1_inp1_mux = SOC_DAPM_ENUM("RX4 MIX1 INP1 Mux", rx4_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx4_mix1_inp2_mux = SOC_DAPM_ENUM("RX4 MIX1 INP2 Mux", rx4_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx5_mix1_inp1_mux = SOC_DAPM_ENUM("RX5 MIX1 INP1 Mux", rx5_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx5_mix1_inp2_mux = SOC_DAPM_ENUM("RX5 MIX1 INP2 Mux", rx5_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx6_mix1_inp1_mux = SOC_DAPM_ENUM("RX6 MIX1 INP1 Mux", rx6_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx6_mix1_inp2_mux = SOC_DAPM_ENUM("RX6 MIX1 INP2 Mux", rx6_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx7_mix1_inp1_mux = SOC_DAPM_ENUM("RX7 MIX1 INP1 Mux", rx7_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx7_mix1_inp2_mux = SOC_DAPM_ENUM("RX7 MIX1 INP2 Mux", rx7_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx1_mix2_inp1_mux = SOC_DAPM_ENUM("RX1 MIX2 INP1 Mux", rx1_mix2_inp1_chain_enum); static const struct snd_kcontrol_new rx1_mix2_inp2_mux = SOC_DAPM_ENUM("RX1 MIX2 INP2 Mux", rx1_mix2_inp2_chain_enum); static const struct snd_kcontrol_new rx2_mix2_inp1_mux = SOC_DAPM_ENUM("RX2 MIX2 INP1 Mux", rx2_mix2_inp1_chain_enum); static const struct snd_kcontrol_new rx2_mix2_inp2_mux = SOC_DAPM_ENUM("RX2 MIX2 INP2 Mux", rx2_mix2_inp2_chain_enum); static const struct snd_kcontrol_new rx3_mix2_inp1_mux = SOC_DAPM_ENUM("RX3 MIX2 INP1 Mux", rx3_mix2_inp1_chain_enum); static const struct snd_kcontrol_new rx3_mix2_inp2_mux = SOC_DAPM_ENUM("RX3 MIX2 INP2 Mux", rx3_mix2_inp2_chain_enum); static const struct snd_kcontrol_new rx4_dsm_mux = SOC_DAPM_ENUM("RX4 DSM MUX Mux", rx4_dsm_enum); static const struct snd_kcontrol_new rx6_dsm_mux = SOC_DAPM_ENUM("RX6 DSM MUX Mux", rx6_dsm_enum); static const struct snd_kcontrol_new sb_tx1_mux = SOC_DAPM_ENUM("SLIM TX1 MUX Mux", sb_tx1_mux_enum); static const struct snd_kcontrol_new sb_tx2_mux = SOC_DAPM_ENUM("SLIM TX2 MUX Mux", sb_tx2_mux_enum); static const struct snd_kcontrol_new sb_tx3_mux = SOC_DAPM_ENUM("SLIM TX3 MUX Mux", sb_tx3_mux_enum); static const struct snd_kcontrol_new sb_tx4_mux = SOC_DAPM_ENUM("SLIM TX4 MUX Mux", sb_tx4_mux_enum); static const struct snd_kcontrol_new sb_tx5_mux = SOC_DAPM_ENUM("SLIM TX5 MUX Mux", sb_tx5_mux_enum); static const struct snd_kcontrol_new sb_tx6_mux = SOC_DAPM_ENUM("SLIM TX6 MUX Mux", sb_tx6_mux_enum); static const struct snd_kcontrol_new sb_tx7_mux = SOC_DAPM_ENUM("SLIM TX7 MUX Mux", sb_tx7_mux_enum); static const struct snd_kcontrol_new sb_tx8_mux = SOC_DAPM_ENUM("SLIM TX8 MUX Mux", sb_tx8_mux_enum); static const struct snd_kcontrol_new sb_tx9_mux = SOC_DAPM_ENUM("SLIM TX9 MUX Mux", sb_tx9_mux_enum); static const struct snd_kcontrol_new sb_tx10_mux = SOC_DAPM_ENUM("SLIM TX10 MUX Mux", sb_tx10_mux_enum); static int wcd9310_put_dec_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *w = wlist->widgets[0]; struct snd_soc_codec *codec = w->codec; struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int dec_mux, decimator; char *dec_name = NULL; char *widget_name = NULL; char *temp; u16 tx_mux_ctl_reg; u8 adc_dmic_sel = 0x0; int ret = 0; if (ucontrol->value.enumerated.item[0] > e->max - 1) return -EINVAL; dec_mux = ucontrol->value.enumerated.item[0]; widget_name = kstrndup(w->name, 15, GFP_KERNEL); if (!widget_name) return -ENOMEM; temp = widget_name; dec_name = strsep(&widget_name, " "); widget_name = temp; if (!dec_name) { pr_err("%s: Invalid decimator = %s\n", __func__, w->name); ret = -EINVAL; goto out; } ret = kstrtouint(strpbrk(dec_name, "123456789"), 10, &decimator); if (ret < 0) { pr_err("%s: Invalid decimator = %s\n", __func__, dec_name); ret = -EINVAL; goto out; } dev_dbg(w->dapm->dev, "%s(): widget = %s dec_name = %s decimator = %u" " dec_mux = %u\n", __func__, w->name, dec_name, decimator, dec_mux); switch (decimator) { case 1: case 2: case 3: case 4: case 5: case 6: if (dec_mux == 1) adc_dmic_sel = 0x1; else adc_dmic_sel = 0x0; break; case 7: case 8: case 9: case 10: if ((dec_mux == 1) || (dec_mux == 2)) adc_dmic_sel = 0x1; else adc_dmic_sel = 0x0; break; default: pr_err("%s: Invalid Decimator = %u\n", __func__, decimator); ret = -EINVAL; goto out; } tx_mux_ctl_reg = TABLA_A_CDC_TX1_MUX_CTL + 8 * (decimator - 1); snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x1, adc_dmic_sel); ret = snd_soc_dapm_put_enum_double(kcontrol, ucontrol); out: kfree(widget_name); return ret; } #define WCD9310_DEC_ENUM(xname, xenum) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_enum_double, \ .get = snd_soc_dapm_get_enum_double, \ .put = wcd9310_put_dec_enum, \ .private_value = (unsigned long)&xenum } static const struct snd_kcontrol_new dec1_mux = WCD9310_DEC_ENUM("DEC1 MUX Mux", dec1_mux_enum); static const struct snd_kcontrol_new dec2_mux = WCD9310_DEC_ENUM("DEC2 MUX Mux", dec2_mux_enum); static const struct snd_kcontrol_new dec3_mux = WCD9310_DEC_ENUM("DEC3 MUX Mux", dec3_mux_enum); static const struct snd_kcontrol_new dec4_mux = WCD9310_DEC_ENUM("DEC4 MUX Mux", dec4_mux_enum); static const struct snd_kcontrol_new dec5_mux = WCD9310_DEC_ENUM("DEC5 MUX Mux", dec5_mux_enum); static const struct snd_kcontrol_new dec6_mux = WCD9310_DEC_ENUM("DEC6 MUX Mux", dec6_mux_enum); static const struct snd_kcontrol_new dec7_mux = WCD9310_DEC_ENUM("DEC7 MUX Mux", dec7_mux_enum); static const struct snd_kcontrol_new dec8_mux = WCD9310_DEC_ENUM("DEC8 MUX Mux", dec8_mux_enum); static const struct snd_kcontrol_new dec9_mux = WCD9310_DEC_ENUM("DEC9 MUX Mux", dec9_mux_enum); static const struct snd_kcontrol_new dec10_mux = WCD9310_DEC_ENUM("DEC10 MUX Mux", dec10_mux_enum); static const struct snd_kcontrol_new iir1_inp1_mux = SOC_DAPM_ENUM("IIR1 INP1 Mux", iir1_inp1_mux_enum); static const struct snd_kcontrol_new iir2_inp1_mux = SOC_DAPM_ENUM("IIR2 INP1 Mux", iir2_inp1_mux_enum); static const struct snd_kcontrol_new anc1_mux = SOC_DAPM_ENUM("ANC1 MUX Mux", anc1_mux_enum); static const struct snd_kcontrol_new anc2_mux = SOC_DAPM_ENUM("ANC2 MUX Mux", anc2_mux_enum); static const struct snd_kcontrol_new anc1_fb_mux = SOC_DAPM_ENUM("ANC1 FB MUX Mux", anc1_fb_mux_enum); static const struct snd_kcontrol_new dac1_switch[] = { SOC_DAPM_SINGLE("Switch", TABLA_A_RX_EAR_EN, 5, 1, 0) }; static const struct snd_kcontrol_new hphl_switch[] = { SOC_DAPM_SINGLE("Switch", TABLA_A_RX_HPH_L_DAC_CTL, 6, 1, 0) }; static const struct snd_kcontrol_new hphl_pa_mix[] = { SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN, 7, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN, 7, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch", TABLA_A_AUX_L_PA_CONN_INV, 7, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch", TABLA_A_AUX_R_PA_CONN_INV, 7, 1, 0), }; static const struct snd_kcontrol_new hphr_pa_mix[] = { SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN, 6, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN, 6, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch", TABLA_A_AUX_L_PA_CONN_INV, 6, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch", TABLA_A_AUX_R_PA_CONN_INV, 6, 1, 0), }; static const struct snd_kcontrol_new lineout1_pa_mix[] = { SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN, 5, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN, 5, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch", TABLA_A_AUX_L_PA_CONN_INV, 5, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch", TABLA_A_AUX_R_PA_CONN_INV, 5, 1, 0), }; static const struct snd_kcontrol_new lineout2_pa_mix[] = { SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN, 4, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN, 4, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch", TABLA_A_AUX_L_PA_CONN_INV, 4, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch", TABLA_A_AUX_R_PA_CONN_INV, 4, 1, 0), }; static const struct snd_kcontrol_new lineout3_pa_mix[] = { SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN, 3, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN, 3, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch", TABLA_A_AUX_L_PA_CONN_INV, 3, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch", TABLA_A_AUX_R_PA_CONN_INV, 3, 1, 0), }; static const struct snd_kcontrol_new lineout4_pa_mix[] = { SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN, 2, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN, 2, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch", TABLA_A_AUX_L_PA_CONN_INV, 2, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch", TABLA_A_AUX_R_PA_CONN_INV, 2, 1, 0), }; static const struct snd_kcontrol_new lineout5_pa_mix[] = { SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN, 1, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN, 1, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch", TABLA_A_AUX_L_PA_CONN_INV, 1, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch", TABLA_A_AUX_R_PA_CONN_INV, 1, 1, 0), }; static const struct snd_kcontrol_new ear_pa_mix[] = { SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN, 0, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN, 0, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch", TABLA_A_AUX_L_PA_CONN_INV, 0, 1, 0), SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch", TABLA_A_AUX_R_PA_CONN_INV, 0, 1, 0), }; static const struct snd_kcontrol_new lineout3_ground_switch = SOC_DAPM_SINGLE("Switch", TABLA_A_RX_LINE_3_DAC_CTL, 6, 1, 0); static const struct snd_kcontrol_new lineout4_ground_switch = SOC_DAPM_SINGLE("Switch", TABLA_A_RX_LINE_4_DAC_CTL, 6, 1, 0); /* virtual port entries */ static int slim_tx_mixer_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; ucontrol->value.integer.value[0] = widget->value; return 0; } static int slim_tx_mixer_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; struct snd_soc_codec *codec = widget->codec; struct tabla_priv *tabla_p = snd_soc_codec_get_drvdata(codec); struct wcd9xxx *core = dev_get_drvdata(codec->dev->parent); struct soc_multi_mixer_control *mixer = ((struct soc_multi_mixer_control *)kcontrol->private_value); u32 dai_id = widget->shift; u32 port_id = mixer->shift; u32 enable = ucontrol->value.integer.value[0]; u32 vtable = vport_check_table[dai_id]; pr_debug("%s: wname %s cname %s value %u shift %d item %ld\n", __func__, widget->name, ucontrol->id.name, widget->value, widget->shift, ucontrol->value.integer.value[0]); mutex_lock(&codec->mutex); if (tabla_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) { if (dai_id != AIF1_CAP) { dev_err(codec->dev, "%s: invalid AIF for I2C mode\n", __func__); mutex_unlock(&codec->mutex); return -EINVAL; } } switch (dai_id) { case AIF1_CAP: case AIF2_CAP: case AIF3_CAP: /* only add to the list if value not set */ if (enable && !(widget->value & 1 << port_id)) { if (tabla_p->intf_type == WCD9XXX_INTERFACE_TYPE_SLIMBUS) vtable = vport_check_table[dai_id]; if (tabla_p->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) vtable = vport_i2s_check_table[dai_id]; if (wcd9xxx_tx_vport_validation( vtable, port_id, tabla_p->dai)) { dev_dbg(codec->dev, "%s: TX%u is used by other virtual port\n", __func__, port_id + 1); mutex_unlock(&codec->mutex); return 0; } widget->value |= 1 << port_id; list_add_tail(&core->tx_chs[port_id].list, &tabla_p->dai[dai_id].wcd9xxx_ch_list ); } else if (!enable && (widget->value & 1 << port_id)) { widget->value &= ~(1 << port_id); list_del_init(&core->tx_chs[port_id].list); } else { if (enable) dev_dbg(codec->dev, "%s: TX%u port is used by this virtual port\n", __func__, port_id + 1); else dev_dbg(codec->dev, "%s: TX%u port is not used by this virtual port\n", __func__, port_id + 1); /* avoid update power function */ mutex_unlock(&codec->mutex); return 0; } break; default: pr_err("Unknown AIF %d\n", dai_id); mutex_unlock(&codec->mutex); return -EINVAL; } pr_debug("%s: name %s sname %s updated value %u shift %d\n", __func__, widget->name, widget->sname, widget->value, widget->shift); snd_soc_dapm_mixer_update_power(widget, kcontrol, enable); mutex_unlock(&codec->mutex); return 0; } static int slim_rx_mux_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; ucontrol->value.enumerated.item[0] = widget->value; return 0; } static const char *const slim_rx_mux_text[] = { "ZERO", "AIF1_PB", "AIF2_PB", "AIF3_PB" }; static int slim_rx_mux_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; struct snd_soc_codec *codec = widget->codec; struct tabla_priv *tabla_p = snd_soc_codec_get_drvdata(codec); struct wcd9xxx *core = dev_get_drvdata(codec->dev->parent); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; u32 port_id = widget->shift; pr_debug("%s: wname %s cname %s value %u shift %d item %u\n", __func__, widget->name, ucontrol->id.name, widget->value, widget->shift, ucontrol->value.enumerated.item[0]); widget->value = ucontrol->value.enumerated.item[0]; mutex_lock(&codec->mutex); if (tabla_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) { if (widget->value > 1) { dev_err(codec->dev, "%s: invalid AIF for I2C mode\n", __func__); goto err; } } /* value need to match the Virtual port and AIF number */ switch (widget->value) { case 0: list_del_init(&core->rx_chs[port_id].list); break; case 1: if (wcd9xxx_rx_vport_validation(port_id + TABLA_RX_PORT_START_NUMBER, &tabla_p->dai[AIF1_PB].wcd9xxx_ch_list)) { dev_dbg(codec->dev, "%s: RX%u is used by current requesting AIF_PB itself\n", __func__, port_id + 1); goto rtn; } list_add_tail(&core->rx_chs[port_id].list, &tabla_p->dai[AIF1_PB].wcd9xxx_ch_list); break; case 2: if (wcd9xxx_rx_vport_validation(port_id + TABLA_RX_PORT_START_NUMBER, &tabla_p->dai[AIF1_PB].wcd9xxx_ch_list)) { dev_dbg(codec->dev, "%s: RX%u is used by current requesting AIF_PB itself\n", __func__, port_id + 1); goto rtn; } list_add_tail(&core->rx_chs[port_id].list, &tabla_p->dai[AIF2_PB].wcd9xxx_ch_list); break; case 3: if (wcd9xxx_rx_vport_validation(port_id + TABLA_RX_PORT_START_NUMBER, &tabla_p->dai[AIF1_PB].wcd9xxx_ch_list)) { dev_dbg(codec->dev, "%s: RX%u is used by current requesting AIF_PB itself\n", __func__, port_id + 1); goto rtn; } list_add_tail(&core->rx_chs[port_id].list, &tabla_p->dai[AIF3_PB].wcd9xxx_ch_list); break; default: pr_err("Unknown AIF %d\n", widget->value); goto err; } rtn: snd_soc_dapm_mux_update_power(widget, kcontrol, 1, widget->value, e); mutex_unlock(&codec->mutex); return 0; err: mutex_unlock(&codec->mutex); return -EINVAL; } static const struct soc_enum slim_rx_mux_enum = SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(slim_rx_mux_text), slim_rx_mux_text); static const struct snd_kcontrol_new slim_rx_mux[TABLA_RX_MAX] = { SOC_DAPM_ENUM_EXT("SLIM RX1 Mux", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put), SOC_DAPM_ENUM_EXT("SLIM RX2 Mux", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put), SOC_DAPM_ENUM_EXT("SLIM RX3 Mux", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put), SOC_DAPM_ENUM_EXT("SLIM RX4 Mux", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put), SOC_DAPM_ENUM_EXT("SLIM RX5 Mux", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put), SOC_DAPM_ENUM_EXT("SLIM RX6 Mux", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put), SOC_DAPM_ENUM_EXT("SLIM RX7 Mux", slim_rx_mux_enum, slim_rx_mux_get, slim_rx_mux_put), }; static const struct snd_kcontrol_new aif_cap_mixer[] = { SOC_SINGLE_EXT("SLIM TX1", SND_SOC_NOPM, TABLA_TX1, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX2", SND_SOC_NOPM, TABLA_TX2, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX3", SND_SOC_NOPM, TABLA_TX3, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX4", SND_SOC_NOPM, TABLA_TX4, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX5", SND_SOC_NOPM, TABLA_TX5, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX6", SND_SOC_NOPM, TABLA_TX6, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX7", SND_SOC_NOPM, TABLA_TX7, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX8", SND_SOC_NOPM, TABLA_TX8, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX9", SND_SOC_NOPM, TABLA_TX9, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), SOC_SINGLE_EXT("SLIM TX10", SND_SOC_NOPM, TABLA_TX10, 1, 0, slim_tx_mixer_get, slim_tx_mixer_put), }; static void tabla_codec_enable_adc_block(struct snd_soc_codec *codec, int enable) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s %d\n", __func__, enable); if (enable) { tabla->adc_count++; snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL, 0x2, 0x2); } else { tabla->adc_count--; if (!tabla->adc_count) snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL, 0x2, 0x0); } } static int tabla_codec_enable_adc(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; u16 adc_reg; u8 init_bit_shift; pr_debug("%s %d\n", __func__, event); if (w->reg == TABLA_A_TX_1_2_EN) adc_reg = TABLA_A_TX_1_2_TEST_CTL; else if (w->reg == TABLA_A_TX_3_4_EN) adc_reg = TABLA_A_TX_3_4_TEST_CTL; else if (w->reg == TABLA_A_TX_5_6_EN) adc_reg = TABLA_A_TX_5_6_TEST_CTL; else { pr_err("%s: Error, invalid adc register\n", __func__); return -EINVAL; } if (w->shift == 3) init_bit_shift = 6; else if (w->shift == 7) init_bit_shift = 7; else { pr_err("%s: Error, invalid init bit postion adc register\n", __func__); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: tabla_codec_enable_adc_block(codec, 1); snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift, 1 << init_bit_shift); break; case SND_SOC_DAPM_POST_PMU: snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift, 0x00); break; case SND_SOC_DAPM_POST_PMD: tabla_codec_enable_adc_block(codec, 0); break; } return 0; } static void tabla_codec_enable_audio_mode_bandgap(struct snd_soc_codec *codec) { snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x80); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x04, 0x04); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x01, 0x01); usleep_range(1000, 1000); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x00); } static void tabla_codec_enable_bandgap(struct snd_soc_codec *codec, enum tabla_bandgap_type choice) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); /* TODO lock resources accessed by audio streams and threaded * interrupt handlers */ pr_debug("%s, choice is %d, current is %d\n", __func__, choice, tabla->bandgap_type); if (tabla->bandgap_type == choice) return; if ((tabla->bandgap_type == TABLA_BANDGAP_OFF) && (choice == TABLA_BANDGAP_AUDIO_MODE)) { tabla_codec_enable_audio_mode_bandgap(codec); } else if (choice == TABLA_BANDGAP_MBHC_MODE) { /* bandgap mode becomes fast, * mclk should be off or clk buff source souldn't be VBG * Let's turn off mclk always */ WARN_ON(snd_soc_read(codec, TABLA_A_CLK_BUFF_EN2) & (1 << 2)); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x2, 0x2); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x80); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x4, 0x4); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x01, 0x01); usleep_range(1000, 1000); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x00); } else if ((tabla->bandgap_type == TABLA_BANDGAP_MBHC_MODE) && (choice == TABLA_BANDGAP_AUDIO_MODE)) { snd_soc_write(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x50); usleep_range(100, 100); tabla_codec_enable_audio_mode_bandgap(codec); } else if (choice == TABLA_BANDGAP_OFF) { snd_soc_write(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x50); } else { pr_err("%s: Error, Invalid bandgap settings\n", __func__); } tabla->bandgap_type = choice; } static void tabla_codec_disable_clock_block(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s\n", __func__); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x04, 0x00); usleep_range(50, 50); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x02, 0x02); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x05, 0x00); usleep_range(50, 50); tabla->clock_active = false; } static int tabla_codec_mclk_index(const struct tabla_priv *tabla) { if (tabla->mbhc_cfg.mclk_rate == TABLA_MCLK_RATE_12288KHZ) return 0; else if (tabla->mbhc_cfg.mclk_rate == TABLA_MCLK_RATE_9600KHZ) return 1; else { BUG_ON(1); return -EINVAL; } } static void tabla_enable_rx_bias(struct snd_soc_codec *codec, u32 enable) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); if (enable) { tabla->rx_bias_count++; if (tabla->rx_bias_count == 1) snd_soc_update_bits(codec, TABLA_A_RX_COM_BIAS, 0x80, 0x80); } else { tabla->rx_bias_count--; if (!tabla->rx_bias_count) snd_soc_update_bits(codec, TABLA_A_RX_COM_BIAS, 0x80, 0x00); } } static int tabla_codec_enable_config_mode(struct snd_soc_codec *codec, int enable) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: enable = %d\n", __func__, enable); if (enable) { snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_FREQ, 0x10, 0); /* bandgap mode to fast */ snd_soc_write(codec, TABLA_A_BIAS_CONFIG_MODE_BG_CTL, 0x17); usleep_range(5, 5); snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_FREQ, 0x80, 0x80); snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_TEST, 0x80, 0x80); usleep_range(10, 10); snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_TEST, 0x80, 0); usleep_range(10000, 10000); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x08, 0x08); } else { snd_soc_update_bits(codec, TABLA_A_BIAS_CONFIG_MODE_BG_CTL, 0x1, 0); snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_FREQ, 0x80, 0); /* clk source to ext clk and clk buff ref to VBG */ snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x0C, 0x04); } tabla->config_mode_active = enable ? true : false; return 0; } static int tabla_codec_enable_clock_block(struct snd_soc_codec *codec, int config_mode) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: config_mode = %d\n", __func__, config_mode); /* transit to RCO requires mclk off */ WARN_ON(snd_soc_read(codec, TABLA_A_CLK_BUFF_EN2) & (1 << 2)); if (config_mode) { /* enable RCO and switch to it */ tabla_codec_enable_config_mode(codec, 1); snd_soc_write(codec, TABLA_A_CLK_BUFF_EN2, 0x02); usleep_range(1000, 1000); } else { /* switch to MCLK */ snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x08, 0x00); if (tabla->mbhc_polling_active) { snd_soc_write(codec, TABLA_A_CLK_BUFF_EN2, 0x02); tabla_codec_enable_config_mode(codec, 0); } } snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x01, 0x01); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x02, 0x00); /* on MCLK */ snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x04, 0x04); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_MCLK_CTL, 0x01, 0x01); usleep_range(50, 50); tabla->clock_active = true; return 0; } static int tabla_codec_enable_aux_pga(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_AUDIO_MODE); tabla_enable_rx_bias(codec, 1); snd_soc_update_bits(codec, TABLA_A_AUX_COM_CTL, 0x08, 0x08); /* Enable Zero Cross detect for AUX PGA channel * and set the initial AUX PGA gain to NEG_0P0_DB * to avoid glitches. */ if (w->reg == TABLA_A_AUX_L_EN) { snd_soc_update_bits(codec, TABLA_A_AUX_L_EN, 0x20, 0x20); tabla->aux_l_gain = snd_soc_read(codec, TABLA_A_AUX_L_GAIN); snd_soc_write(codec, TABLA_A_AUX_L_GAIN, 0x1F); } else { snd_soc_update_bits(codec, TABLA_A_AUX_R_EN, 0x20, 0x20); tabla->aux_r_gain = snd_soc_read(codec, TABLA_A_AUX_R_GAIN); snd_soc_write(codec, TABLA_A_AUX_R_GAIN, 0x1F); } if (tabla->aux_pga_cnt++ == 1 && !tabla->mclk_enabled) { tabla_codec_enable_clock_block(codec, 1); pr_debug("AUX PGA enabled RC osc\n"); } break; case SND_SOC_DAPM_POST_PMU: if (w->reg == TABLA_A_AUX_L_EN) snd_soc_write(codec, TABLA_A_AUX_L_GAIN, tabla->aux_l_gain); else snd_soc_write(codec, TABLA_A_AUX_R_GAIN, tabla->aux_r_gain); break; case SND_SOC_DAPM_PRE_PMD: /* Mute AUX PGA channel in use before disabling AUX PGA */ if (w->reg == TABLA_A_AUX_L_EN) { tabla->aux_l_gain = snd_soc_read(codec, TABLA_A_AUX_L_GAIN); snd_soc_write(codec, TABLA_A_AUX_L_GAIN, 0x1F); } else { tabla->aux_r_gain = snd_soc_read(codec, TABLA_A_AUX_R_GAIN); snd_soc_write(codec, TABLA_A_AUX_R_GAIN, 0x1F); } break; case SND_SOC_DAPM_POST_PMD: tabla_enable_rx_bias(codec, 0); snd_soc_update_bits(codec, TABLA_A_AUX_COM_CTL, 0x08, 0x00); if (w->reg == TABLA_A_AUX_L_EN) { snd_soc_write(codec, TABLA_A_AUX_L_GAIN, tabla->aux_l_gain); snd_soc_update_bits(codec, TABLA_A_AUX_L_EN, 0x20, 0x00); } else { snd_soc_write(codec, TABLA_A_AUX_R_GAIN, tabla->aux_r_gain); snd_soc_update_bits(codec, TABLA_A_AUX_R_EN, 0x20, 0x00); } if (tabla->aux_pga_cnt-- == 0) { if (tabla->mbhc_polling_active) tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_MBHC_MODE); else tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_OFF); if (!tabla->mclk_enabled && !tabla->mbhc_polling_active) { tabla_codec_enable_clock_block(codec, 0); } } break; } return 0; } static int tabla_codec_enable_lineout(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; u16 lineout_gain_reg; pr_debug("%s %d %s\n", __func__, event, w->name); switch (w->shift) { case 0: lineout_gain_reg = TABLA_A_RX_LINE_1_GAIN; break; case 1: lineout_gain_reg = TABLA_A_RX_LINE_2_GAIN; break; case 2: lineout_gain_reg = TABLA_A_RX_LINE_3_GAIN; break; case 3: lineout_gain_reg = TABLA_A_RX_LINE_4_GAIN; break; case 4: lineout_gain_reg = TABLA_A_RX_LINE_5_GAIN; break; default: pr_err("%s: Error, incorrect lineout register value\n", __func__); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, lineout_gain_reg, 0x40, 0x40); break; case SND_SOC_DAPM_POST_PMU: pr_debug("%s: sleeping 16 ms after %s PA turn on\n", __func__, w->name); usleep_range(16000, 16000); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, lineout_gain_reg, 0x40, 0x00); break; } return 0; } static int tabla_codec_enable_dmic(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u8 dmic_clk_en; s32 *dmic_clk_cnt; unsigned int dmic; int ret; ret = kstrtouint(strpbrk(w->name, "123456"), 10, &dmic); if (ret < 0) { pr_err("%s: Invalid DMIC line on the codec\n", __func__); return -EINVAL; } switch (dmic) { case 1: case 2: dmic_clk_en = 0x01; dmic_clk_cnt = &(tabla->dmic_1_2_clk_cnt); pr_debug("%s() event %d DMIC%d dmic_1_2_clk_cnt %d\n", __func__, event, dmic, *dmic_clk_cnt); break; case 3: case 4: dmic_clk_en = 0x04; dmic_clk_cnt = &(tabla->dmic_3_4_clk_cnt); pr_debug("%s() event %d DMIC%d dmic_3_4_clk_cnt %d\n", __func__, event, dmic, *dmic_clk_cnt); break; case 5: case 6: dmic_clk_en = 0x10; dmic_clk_cnt = &(tabla->dmic_5_6_clk_cnt); pr_debug("%s() event %d DMIC%d dmic_5_6_clk_cnt %d\n", __func__, event, dmic, *dmic_clk_cnt); break; default: pr_err("%s: Invalid DMIC Selection\n", __func__); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: (*dmic_clk_cnt)++; if (*dmic_clk_cnt == 1) snd_soc_update_bits(codec, TABLA_A_CDC_CLK_DMIC_CTL, dmic_clk_en, dmic_clk_en); break; case SND_SOC_DAPM_POST_PMD: (*dmic_clk_cnt)--; if (*dmic_clk_cnt == 0) snd_soc_update_bits(codec, TABLA_A_CDC_CLK_DMIC_CTL, dmic_clk_en, 0); break; } return 0; } /* called under codec_resource_lock acquisition */ static void tabla_codec_start_hs_polling(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); struct wcd9xxx *tabla_core = dev_get_drvdata(codec->dev->parent); int mbhc_state = tabla->mbhc_state; pr_debug("%s: enter\n", __func__); if (!tabla->mbhc_polling_active) { pr_debug("Polling is not active, do not start polling\n"); return; } snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x84); if (tabla->no_mic_headset_override) { pr_debug("%s setting button threshold to min", __func__); /* set to min */ snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B4_CTL, 0x80); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B3_CTL, 0x00); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B6_CTL, 0x80); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B5_CTL, 0x00); } else if (unlikely(mbhc_state == MBHC_STATE_POTENTIAL)) { pr_debug("%s recovering MBHC state machine\n", __func__); tabla->mbhc_state = MBHC_STATE_POTENTIAL_RECOVERY; /* set to max button press threshold */ snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B2_CTL, 0x7F); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B1_CTL, 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B4_CTL, (TABLA_IS_1_X(tabla_core->version) ? 0x07 : 0x7F)); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B3_CTL, 0xFF); /* set to max */ snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B6_CTL, 0x7F); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B5_CTL, 0xFF); } snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x1); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x0); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x1); pr_debug("%s: leave\n", __func__); } /* called under codec_resource_lock acquisition */ static void tabla_codec_pause_hs_polling(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: enter\n", __func__); if (!tabla->mbhc_polling_active) { pr_debug("polling not active, nothing to pause\n"); return; } snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x01); msleep(20); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x00); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); pr_debug("%s: leave\n", __func__); } static void tabla_codec_switch_cfilt_mode(struct snd_soc_codec *codec, int mode) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u8 reg_mode_val, cur_mode_val; bool mbhc_was_polling = false; if (mode) reg_mode_val = TABLA_CFILT_FAST_MODE; else reg_mode_val = TABLA_CFILT_SLOW_MODE; cur_mode_val = snd_soc_read(codec, tabla->mbhc_bias_regs.cfilt_ctl) & 0x40; if (cur_mode_val != reg_mode_val) { TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); if (tabla->mbhc_polling_active) { tabla_codec_pause_hs_polling(codec); mbhc_was_polling = true; } snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40, reg_mode_val); if (mbhc_was_polling) tabla_codec_start_hs_polling(codec); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); pr_debug("%s: CFILT mode change (%x to %x)\n", __func__, cur_mode_val, reg_mode_val); } else { pr_debug("%s: CFILT Value is already %x\n", __func__, cur_mode_val); } } static void tabla_codec_update_cfilt_usage(struct snd_soc_codec *codec, u8 cfilt_sel, int inc) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u32 *cfilt_cnt_ptr = NULL; u16 micb_cfilt_reg; switch (cfilt_sel) { case TABLA_CFILT1_SEL: cfilt_cnt_ptr = &tabla->cfilt1_cnt; micb_cfilt_reg = TABLA_A_MICB_CFILT_1_CTL; break; case TABLA_CFILT2_SEL: cfilt_cnt_ptr = &tabla->cfilt2_cnt; micb_cfilt_reg = TABLA_A_MICB_CFILT_2_CTL; break; case TABLA_CFILT3_SEL: cfilt_cnt_ptr = &tabla->cfilt3_cnt; micb_cfilt_reg = TABLA_A_MICB_CFILT_3_CTL; break; default: return; /* should not happen */ } if (inc) { if (!(*cfilt_cnt_ptr)++) { /* Switch CFILT to slow mode if MBHC CFILT being used */ if (cfilt_sel == tabla->mbhc_bias_regs.cfilt_sel) tabla_codec_switch_cfilt_mode(codec, 0); snd_soc_update_bits(codec, micb_cfilt_reg, 0x80, 0x80); } } else { /* check if count not zero, decrement * then check if zero, go ahead disable cfilter */ if ((*cfilt_cnt_ptr) && !--(*cfilt_cnt_ptr)) { snd_soc_update_bits(codec, micb_cfilt_reg, 0x80, 0); /* Switch CFILT to fast mode if MBHC CFILT being used */ if (cfilt_sel == tabla->mbhc_bias_regs.cfilt_sel) tabla_codec_switch_cfilt_mode(codec, 1); } } } static int tabla_find_k_value(unsigned int ldoh_v, unsigned int cfilt_mv) { int rc = -EINVAL; unsigned min_mv, max_mv; switch (ldoh_v) { case TABLA_LDOH_1P95_V: min_mv = 160; max_mv = 1800; break; case TABLA_LDOH_2P35_V: min_mv = 200; max_mv = 2200; break; case TABLA_LDOH_2P75_V: min_mv = 240; max_mv = 2600; break; case TABLA_LDOH_2P85_V: min_mv = 250; max_mv = 2700; break; default: goto done; } if (cfilt_mv < min_mv || cfilt_mv > max_mv) goto done; for (rc = 4; rc <= 44; rc++) { min_mv = max_mv * (rc) / 44; if (min_mv >= cfilt_mv) { rc -= 4; break; } } done: return rc; } static bool tabla_is_hph_pa_on(struct snd_soc_codec *codec) { u8 hph_reg_val = 0; hph_reg_val = snd_soc_read(codec, TABLA_A_RX_HPH_CNP_EN); return (hph_reg_val & 0x30) ? true : false; } static bool tabla_is_hph_dac_on(struct snd_soc_codec *codec, int left) { u8 hph_reg_val = 0; if (left) hph_reg_val = snd_soc_read(codec, TABLA_A_RX_HPH_L_DAC_CTL); else hph_reg_val = snd_soc_read(codec, TABLA_A_RX_HPH_R_DAC_CTL); return (hph_reg_val & 0xC0) ? true : false; } static void tabla_turn_onoff_override(struct snd_soc_codec *codec, bool on) { snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x04, on << 2); } /* called under codec_resource_lock acquisition */ static void tabla_codec_drive_v_to_micbias(struct snd_soc_codec *codec, int usec) { int cfilt_k_val; bool set = true; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); if (tabla->mbhc_data.micb_mv != VDDIO_MICBIAS_MV && tabla->mbhc_micbias_switched) { pr_debug("%s: set mic V to micbias V\n", __func__); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x2, 0x2); tabla_turn_onoff_override(codec, true); while (1) { cfilt_k_val = tabla_find_k_value( tabla->pdata->micbias.ldoh_v, set ? tabla->mbhc_data.micb_mv : VDDIO_MICBIAS_MV); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_val, 0xFC, (cfilt_k_val << 2)); if (!set) break; usleep_range(usec, usec); set = false; } tabla_turn_onoff_override(codec, false); } } /* called under codec_resource_lock acquisition */ static void __tabla_codec_switch_micbias(struct snd_soc_codec *codec, int vddio_switch, bool restartpolling, bool checkpolling) { int cfilt_k_val; bool override; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); if (vddio_switch && !tabla->mbhc_micbias_switched && (!checkpolling || tabla->mbhc_polling_active)) { if (restartpolling) tabla_codec_pause_hs_polling(codec); override = snd_soc_read(codec, TABLA_A_CDC_MBHC_B1_CTL) & 0x04; if (!override) tabla_turn_onoff_override(codec, true); /* Adjust threshold if Mic Bias voltage changes */ if (tabla->mbhc_data.micb_mv != VDDIO_MICBIAS_MV) { cfilt_k_val = tabla_find_k_value( tabla->pdata->micbias.ldoh_v, VDDIO_MICBIAS_MV); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_val, 0xFC, (cfilt_k_val << 2)); usleep_range(cfilt_adjust_ms * 1000, cfilt_adjust_ms * 1000); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B1_CTL, tabla->mbhc_data.adj_v_ins_hu & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B2_CTL, (tabla->mbhc_data.adj_v_ins_hu >> 8) & 0xFF); pr_debug("%s: Programmed MBHC thresholds to VDDIO\n", __func__); } /* enable MIC BIAS Switch to VDDIO */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x80); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x10, 0x00); if (!override) tabla_turn_onoff_override(codec, false); if (restartpolling) tabla_codec_start_hs_polling(codec); tabla->mbhc_micbias_switched = true; pr_debug("%s: VDDIO switch enabled\n", __func__); } else if (!vddio_switch && tabla->mbhc_micbias_switched) { if ((!checkpolling || tabla->mbhc_polling_active) && restartpolling) tabla_codec_pause_hs_polling(codec); /* Reprogram thresholds */ if (tabla->mbhc_data.micb_mv != VDDIO_MICBIAS_MV) { cfilt_k_val = tabla_find_k_value( tabla->pdata->micbias.ldoh_v, tabla->mbhc_data.micb_mv); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_val, 0xFC, (cfilt_k_val << 2)); usleep_range(cfilt_adjust_ms * 1000, cfilt_adjust_ms * 1000); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B1_CTL, tabla->mbhc_data.v_ins_hu & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B2_CTL, (tabla->mbhc_data.v_ins_hu >> 8) & 0xFF); pr_debug("%s: Programmed MBHC thresholds to MICBIAS\n", __func__); } /* Disable MIC BIAS Switch to VDDIO */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x00); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x10, 0x00); if ((!checkpolling || tabla->mbhc_polling_active) && restartpolling) tabla_codec_start_hs_polling(codec); tabla->mbhc_micbias_switched = false; pr_debug("%s: VDDIO switch disabled\n", __func__); } } static void tabla_codec_switch_micbias(struct snd_soc_codec *codec, int vddio_switch) { return __tabla_codec_switch_micbias(codec, vddio_switch, true, true); } static int tabla_codec_enable_micbias(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u16 micb_int_reg; int micb_line; u8 cfilt_sel_val = 0; char *internal1_text = "Internal1"; char *internal2_text = "Internal2"; char *internal3_text = "Internal3"; const char *micbias1_text = "MIC BIAS1 "; const char *micbias2_text = "MIC BIAS2 "; const char *micbias3_text = "MIC BIAS3 "; const char *micbias4_text = "MIC BIAS4 "; u32 *micbias_enable_count; u16 wreg; pr_debug("%s %d\n", __func__, event); if (strnstr(w->name, micbias1_text, strlen(micbias1_text))) { wreg = TABLA_A_MICB_1_CTL; micb_int_reg = TABLA_A_MICB_1_INT_RBIAS; cfilt_sel_val = tabla->pdata->micbias.bias1_cfilt_sel; micb_line = TABLA_MICBIAS1; } else if (strnstr(w->name, micbias2_text, strlen(micbias2_text))) { wreg = TABLA_A_MICB_2_CTL; micb_int_reg = TABLA_A_MICB_2_INT_RBIAS; cfilt_sel_val = tabla->pdata->micbias.bias2_cfilt_sel; micb_line = TABLA_MICBIAS2; } else if (strnstr(w->name, micbias3_text, strlen(micbias3_text))) { wreg = TABLA_A_MICB_3_CTL; micb_int_reg = TABLA_A_MICB_3_INT_RBIAS; cfilt_sel_val = tabla->pdata->micbias.bias3_cfilt_sel; micb_line = TABLA_MICBIAS3; } else if (strnstr(w->name, micbias4_text, strlen(micbias4_text))) { wreg = tabla->reg_addr.micb_4_ctl; micb_int_reg = tabla->reg_addr.micb_4_int_rbias; cfilt_sel_val = tabla->pdata->micbias.bias4_cfilt_sel; micb_line = TABLA_MICBIAS4; } else { pr_err("%s: Error, invalid micbias register\n", __func__); return -EINVAL; } micbias_enable_count = &tabla->micbias_enable_count[micb_line]; pr_debug("%s: counter %d\n", __func__, *micbias_enable_count); switch (event) { case SND_SOC_DAPM_PRE_PMU: if (++*micbias_enable_count > 1) { pr_debug("%s: do nothing, counter %d\n", __func__, *micbias_enable_count); break; } /* Decide whether to switch the micbias for MBHC */ if (wreg == tabla->mbhc_bias_regs.ctl_reg) { TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla_codec_switch_micbias(codec, 0); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); } snd_soc_update_bits(codec, wreg, 0x0E, 0x0A); tabla_codec_update_cfilt_usage(codec, cfilt_sel_val, 1); if (strnstr(w->name, internal1_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0xE0, 0xE0); else if (strnstr(w->name, internal2_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x1C, 0x1C); else if (strnstr(w->name, internal3_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x3, 0x3); snd_soc_update_bits(codec, wreg, 1 << 7, 1 << 7); break; case SND_SOC_DAPM_POST_PMU: if (*micbias_enable_count > 1) { pr_debug("%s: do nothing, counter %d\n", __func__, *micbias_enable_count); break; } usleep_range(20000, 20000); if (tabla->mbhc_polling_active && tabla->mbhc_cfg.micbias == micb_line) { TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla_codec_pause_hs_polling(codec); tabla_codec_start_hs_polling(codec); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); } break; case SND_SOC_DAPM_POST_PMD: if (--*micbias_enable_count > 0) { pr_debug("%s: do nothing, counter %d\n", __func__, *micbias_enable_count); break; } snd_soc_update_bits(codec, wreg, 1 << 7, 0); if ((wreg == tabla->mbhc_bias_regs.ctl_reg) && tabla_is_hph_pa_on(codec)) { TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla_codec_switch_micbias(codec, 1); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); } if (strnstr(w->name, internal1_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x80, 0x00); else if (strnstr(w->name, internal2_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x10, 0x00); else if (strnstr(w->name, internal3_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x2, 0x0); tabla_codec_update_cfilt_usage(codec, cfilt_sel_val, 0); break; } return 0; } static void tx_hpf_corner_freq_callback(struct work_struct *work) { struct delayed_work *hpf_delayed_work; struct hpf_work *hpf_work; struct tabla_priv *tabla; struct snd_soc_codec *codec; u16 tx_mux_ctl_reg; u8 hpf_cut_of_freq; hpf_delayed_work = to_delayed_work(work); hpf_work = container_of(hpf_delayed_work, struct hpf_work, dwork); tabla = hpf_work->tabla; codec = hpf_work->tabla->codec; hpf_cut_of_freq = hpf_work->tx_hpf_cut_of_freq; tx_mux_ctl_reg = TABLA_A_CDC_TX1_MUX_CTL + (hpf_work->decimator - 1) * 8; pr_debug("%s(): decimator %u hpf_cut_of_freq 0x%x\n", __func__, hpf_work->decimator, (unsigned int)hpf_cut_of_freq); snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30, hpf_cut_of_freq << 4); } #define TX_MUX_CTL_CUT_OFF_FREQ_MASK 0x30 #define CF_MIN_3DB_4HZ 0x0 #define CF_MIN_3DB_75HZ 0x1 #define CF_MIN_3DB_150HZ 0x2 static int tabla_codec_enable_ldo_h(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event); static int tabla_codec_enable_micbias_power(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: tabla->mbhc_cfg.mclk_cb_fn(codec, 1, true); tabla_codec_enable_ldo_h(w, kcontrol, event); tabla_codec_enable_micbias(w, kcontrol, event); break; case SND_SOC_DAPM_POST_PMU: tabla->mbhc_cfg.mclk_cb_fn(codec, 0, true); break; case SND_SOC_DAPM_POST_PMD: tabla_codec_enable_micbias(w, kcontrol, event); tabla_codec_enable_ldo_h(w, kcontrol, event); break; } return 0; } static int tabla_codec_enable_dec(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; unsigned int decimator; char *dec_name = NULL; char *widget_name = NULL; char *temp; int ret = 0; u16 dec_reset_reg, tx_vol_ctl_reg, tx_mux_ctl_reg; u8 dec_hpf_cut_of_freq; int offset; pr_debug("%s %d\n", __func__, event); widget_name = kstrndup(w->name, 15, GFP_KERNEL); if (!widget_name) return -ENOMEM; temp = widget_name; dec_name = strsep(&widget_name, " "); widget_name = temp; if (!dec_name) { pr_err("%s: Invalid decimator = %s\n", __func__, w->name); ret = -EINVAL; goto out; } ret = kstrtouint(strpbrk(dec_name, "123456789"), 10, &decimator); if (ret < 0) { pr_err("%s: Invalid decimator = %s\n", __func__, dec_name); ret = -EINVAL; goto out; } pr_debug("%s(): widget = %s dec_name = %s decimator = %u\n", __func__, w->name, dec_name, decimator); if (w->reg == TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL) { dec_reset_reg = TABLA_A_CDC_CLK_TX_RESET_B1_CTL; offset = 0; } else if (w->reg == TABLA_A_CDC_CLK_TX_CLK_EN_B2_CTL) { dec_reset_reg = TABLA_A_CDC_CLK_TX_RESET_B2_CTL; offset = 8; } else { pr_err("%s: Error, incorrect dec\n", __func__); return -EINVAL; } tx_vol_ctl_reg = TABLA_A_CDC_TX1_VOL_CTL_CFG + 8 * (decimator -1); tx_mux_ctl_reg = TABLA_A_CDC_TX1_MUX_CTL + 8 * (decimator - 1); switch (event) { case SND_SOC_DAPM_PRE_PMU: // Enableable TX digital mute */ snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01); snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 1 << w->shift); snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 0x0); dec_hpf_cut_of_freq = snd_soc_read(codec, tx_mux_ctl_reg); dec_hpf_cut_of_freq = (dec_hpf_cut_of_freq & 0x30) >> 4; tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq = dec_hpf_cut_of_freq; if ((dec_hpf_cut_of_freq != CF_MIN_3DB_150HZ)) { /* set cut of freq to CF_MIN_3DB_150HZ (0x1); */ snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30, CF_MIN_3DB_150HZ << 4); } /* enable HPF */ snd_soc_update_bits(codec, tx_mux_ctl_reg , 0x08, 0x00); break; case SND_SOC_DAPM_POST_PMU: /* Disable TX digital mute */ snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x00); if (tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq != CF_MIN_3DB_150HZ) { schedule_delayed_work(&tx_hpf_work[decimator - 1].dwork, msecs_to_jiffies(300)); } /* apply the digital gain after the decimator is enabled*/ if ((w->shift + offset) < ARRAY_SIZE(tx_digital_gain_reg)) snd_soc_write(codec, tx_digital_gain_reg[w->shift + offset], snd_soc_read(codec, tx_digital_gain_reg[w->shift + offset]) ); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01); cancel_delayed_work_sync(&tx_hpf_work[decimator - 1].dwork); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x08); snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30, (tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq) << 4); break; } out: kfree(widget_name); return ret; } static int tabla_codec_reset_interpolator(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %d %s\n", __func__, event, w->name); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_RESET_CTL, 1 << w->shift, 1 << w->shift); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_RESET_CTL, 1 << w->shift, 0x0); break; case SND_SOC_DAPM_POST_PMU: /* apply the digital gain after the interpolator is enabled*/ if ((w->shift) < ARRAY_SIZE(rx_digital_gain_reg)) snd_soc_write(codec, rx_digital_gain_reg[w->shift], snd_soc_read(codec, rx_digital_gain_reg[w->shift]) ); break; } return 0; } static void tabla_enable_ldo_h(struct snd_soc_codec *codec, u32 enable) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); if (enable) { if (++tabla->ldo_h_count == 1) snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x80, 0x80); } else { if (--tabla->ldo_h_count == 0) snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x80, 0x00); } } static int tabla_codec_enable_ldo_h(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: tabla_enable_ldo_h(codec, 1); usleep_range(1000, 1000); break; case SND_SOC_DAPM_POST_PMD: tabla_enable_ldo_h(codec, 0); usleep_range(1000, 1000); break; } return 0; } static int tabla_codec_enable_rx_bias(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: tabla_enable_rx_bias(codec, 1); break; case SND_SOC_DAPM_POST_PMD: tabla_enable_rx_bias(codec, 0); break; } return 0; } static int tabla_hphr_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %s %d\n", __func__, w->name, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, w->reg, 0x40, 0x40); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, w->reg, 0x40, 0x00); break; } return 0; } static void tabla_snd_soc_jack_report(struct tabla_priv *tabla, struct snd_soc_jack *jack, int status, int mask) { /* XXX: wake_lock_timeout()? */ snd_soc_jack_report_no_dapm(jack, status, mask); } static void hphocp_off_report(struct tabla_priv *tabla, u32 jack_status, int irq) { struct snd_soc_codec *codec; if (!tabla) { pr_err("%s: Bad tabla private data\n", __func__); return; } pr_debug("%s: clear ocp status %x\n", __func__, jack_status); codec = tabla->codec; if (tabla->hph_status & jack_status) { tabla->hph_status &= ~jack_status; if (tabla->mbhc_cfg.headset_jack) tabla_snd_soc_jack_report(tabla, tabla->mbhc_cfg.headset_jack, tabla->hph_status, TABLA_JACK_MASK); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x00); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x10); /* reset retry counter as PA is turned off signifying * start of new OCP detection session */ if (WCD9XXX_IRQ_HPH_PA_OCPL_FAULT) tabla->hphlocp_cnt = 0; else tabla->hphrocp_cnt = 0; wcd9xxx_enable_irq(codec->control_data, irq); } } static void hphlocp_off_report(struct work_struct *work) { struct tabla_priv *tabla = container_of(work, struct tabla_priv, hphlocp_work); hphocp_off_report(tabla, SND_JACK_OC_HPHL, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); } static void hphrocp_off_report(struct work_struct *work) { struct tabla_priv *tabla = container_of(work, struct tabla_priv, hphrocp_work); hphocp_off_report(tabla, SND_JACK_OC_HPHR, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); } static int tabla_codec_enable_anc(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; const char *filename; const struct firmware *fw; int i; int ret; int num_anc_slots; struct anc_header *anc_head; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u32 anc_writes_size = 0; int anc_size_remaining; u32 *anc_ptr; u16 reg; u8 mask, val, old_val; u8 mbhc_micb_ctl_val; pr_debug("%s: DAPM Event %d ANC func is %d\n", __func__, event, tabla->anc_func); if (tabla->anc_func == 0) return 0; switch (event) { case SND_SOC_DAPM_PRE_PMU: mbhc_micb_ctl_val = snd_soc_read(codec, tabla->mbhc_bias_regs.ctl_reg); if (!(mbhc_micb_ctl_val & 0x80)) { TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla_codec_switch_micbias(codec, 1); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); } filename = "wcd9310/wcd9310_anc.bin"; ret = request_firmware(&fw, filename, codec->dev); if (ret != 0) { dev_err(codec->dev, "Failed to acquire ANC data: %d\n", ret); return -ENODEV; } if (fw->size < sizeof(struct anc_header)) { dev_err(codec->dev, "Not enough data\n"); release_firmware(fw); return -ENOMEM; } /* First number is the number of register writes */ anc_head = (struct anc_header *)(fw->data); anc_ptr = (u32 *)((u32)fw->data + sizeof(struct anc_header)); anc_size_remaining = fw->size - sizeof(struct anc_header); num_anc_slots = anc_head->num_anc_slots; if (tabla->anc_slot >= num_anc_slots) { dev_err(codec->dev, "Invalid ANC slot selected\n"); release_firmware(fw); return -EINVAL; } for (i = 0; i < num_anc_slots; i++) { if (anc_size_remaining < TABLA_PACKED_REG_SIZE) { dev_err(codec->dev, "Invalid register format\n"); release_firmware(fw); return -EINVAL; } anc_writes_size = (u32)(*anc_ptr); anc_size_remaining -= sizeof(u32); anc_ptr += 1; if (anc_writes_size * TABLA_PACKED_REG_SIZE > anc_size_remaining) { dev_err(codec->dev, "Invalid register format\n"); release_firmware(fw); return -ENOMEM; } if (tabla->anc_slot == i) break; anc_size_remaining -= (anc_writes_size * TABLA_PACKED_REG_SIZE); anc_ptr += anc_writes_size; } if (i == num_anc_slots) { dev_err(codec->dev, "Selected ANC slot not present\n"); release_firmware(fw); return -ENOMEM; } for (i = 0; i < anc_writes_size; i++) { TABLA_CODEC_UNPACK_ENTRY(anc_ptr[i], reg, mask, val); old_val = snd_soc_read(codec, reg); snd_soc_write(codec, reg, (old_val & ~mask) | (val & mask)); } usleep_range(10000, 10000); snd_soc_update_bits(codec, TABLA_A_RX_HPH_CNP_EN, 0x30, 0x30); msleep(30); release_firmware(fw); TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); /* if MBHC polling is active, set TX7_MBHC_EN bit 7 */ if (tabla->mbhc_polling_active) snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x80, 0x80); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); break; case SND_SOC_DAPM_POST_PMD: /* schedule work is required because at the time HPH PA DAPM * event callback is called by DAPM framework, CODEC dapm mutex * would have been locked while snd_soc_jack_report also * attempts to acquire same lock. */ if (w->shift == 5) { clear_bit(TABLA_HPHL_PA_OFF_ACK, &tabla->hph_pa_dac_state); clear_bit(TABLA_HPHL_DAC_OFF_ACK, &tabla->hph_pa_dac_state); if (tabla->hph_status & SND_JACK_OC_HPHL) schedule_work(&tabla->hphlocp_work); } else if (w->shift == 4) { clear_bit(TABLA_HPHR_PA_OFF_ACK, &tabla->hph_pa_dac_state); clear_bit(TABLA_HPHR_DAC_OFF_ACK, &tabla->hph_pa_dac_state); if (tabla->hph_status & SND_JACK_OC_HPHR) schedule_work(&tabla->hphrocp_work); } TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla_codec_switch_micbias(codec, 0); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_update_bits(codec, TABLA_A_RX_HPH_CNP_EN, 0x30, 0x00); msleep(40); /* unset TX7_MBHC_EN bit 7 */ snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x80, 0x00); snd_soc_update_bits(codec, TABLA_A_CDC_ANC1_CTL, 0x01, 0x00); snd_soc_update_bits(codec, TABLA_A_CDC_ANC2_CTL, 0x01, 0x00); msleep(20); snd_soc_write(codec, TABLA_A_CDC_CLK_ANC_RESET_CTL, 0x0F); snd_soc_write(codec, TABLA_A_CDC_CLK_ANC_CLK_EN_CTL, 0); snd_soc_write(codec, TABLA_A_CDC_CLK_ANC_RESET_CTL, 0xFF); break; } return 0; } static int tabla_hph_pa_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u8 mbhc_micb_ctl_val; pr_debug("%s: event = %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: mbhc_micb_ctl_val = snd_soc_read(codec, tabla->mbhc_bias_regs.ctl_reg); if (!(mbhc_micb_ctl_val & 0x80)) { TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla_codec_switch_micbias(codec, 1); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); } break; case SND_SOC_DAPM_POST_PMD: /* schedule work is required because at the time HPH PA DAPM * event callback is called by DAPM framework, CODEC dapm mutex * would have been locked while snd_soc_jack_report also * attempts to acquire same lock. */ if (w->shift == 5) { clear_bit(TABLA_HPHL_PA_OFF_ACK, &tabla->hph_pa_dac_state); clear_bit(TABLA_HPHL_DAC_OFF_ACK, &tabla->hph_pa_dac_state); if (tabla->hph_status & SND_JACK_OC_HPHL) schedule_work(&tabla->hphlocp_work); } else if (w->shift == 4) { clear_bit(TABLA_HPHR_PA_OFF_ACK, &tabla->hph_pa_dac_state); clear_bit(TABLA_HPHR_DAC_OFF_ACK, &tabla->hph_pa_dac_state); if (tabla->hph_status & SND_JACK_OC_HPHR) schedule_work(&tabla->hphrocp_work); } TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla_codec_switch_micbias(codec, 0); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); pr_debug("%s: sleep 10 ms after %s PA disable.\n", __func__, w->name); usleep_range(10000, 10000); break; } return 0; } static void tabla_get_mbhc_micbias_regs(struct snd_soc_codec *codec, struct mbhc_micbias_regs *micbias_regs) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); unsigned int cfilt; switch (tabla->mbhc_cfg.micbias) { case TABLA_MICBIAS1: cfilt = tabla->pdata->micbias.bias1_cfilt_sel; micbias_regs->mbhc_reg = TABLA_A_MICB_1_MBHC; micbias_regs->int_rbias = TABLA_A_MICB_1_INT_RBIAS; micbias_regs->ctl_reg = TABLA_A_MICB_1_CTL; break; case TABLA_MICBIAS2: cfilt = tabla->pdata->micbias.bias2_cfilt_sel; micbias_regs->mbhc_reg = TABLA_A_MICB_2_MBHC; micbias_regs->int_rbias = TABLA_A_MICB_2_INT_RBIAS; micbias_regs->ctl_reg = TABLA_A_MICB_2_CTL; break; case TABLA_MICBIAS3: cfilt = tabla->pdata->micbias.bias3_cfilt_sel; micbias_regs->mbhc_reg = TABLA_A_MICB_3_MBHC; micbias_regs->int_rbias = TABLA_A_MICB_3_INT_RBIAS; micbias_regs->ctl_reg = TABLA_A_MICB_3_CTL; break; case TABLA_MICBIAS4: cfilt = tabla->pdata->micbias.bias4_cfilt_sel; micbias_regs->mbhc_reg = tabla->reg_addr.micb_4_mbhc; micbias_regs->int_rbias = tabla->reg_addr.micb_4_int_rbias; micbias_regs->ctl_reg = tabla->reg_addr.micb_4_ctl; break; default: /* Should never reach here */ pr_err("%s: Invalid MIC BIAS for MBHC\n", __func__); return; } micbias_regs->cfilt_sel = cfilt; switch (cfilt) { case TABLA_CFILT1_SEL: micbias_regs->cfilt_val = TABLA_A_MICB_CFILT_1_VAL; micbias_regs->cfilt_ctl = TABLA_A_MICB_CFILT_1_CTL; tabla->mbhc_data.micb_mv = tabla->pdata->micbias.cfilt1_mv; break; case TABLA_CFILT2_SEL: micbias_regs->cfilt_val = TABLA_A_MICB_CFILT_2_VAL; micbias_regs->cfilt_ctl = TABLA_A_MICB_CFILT_2_CTL; tabla->mbhc_data.micb_mv = tabla->pdata->micbias.cfilt2_mv; break; case TABLA_CFILT3_SEL: micbias_regs->cfilt_val = TABLA_A_MICB_CFILT_3_VAL; micbias_regs->cfilt_ctl = TABLA_A_MICB_CFILT_3_CTL; tabla->mbhc_data.micb_mv = tabla->pdata->micbias.cfilt3_mv; break; } } static const struct snd_soc_dapm_widget tabla_dapm_i2s_widgets[] = { SND_SOC_DAPM_SUPPLY("RX_I2S_CLK", TABLA_A_CDC_CLK_RX_I2S_CTL, 4, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("TX_I2S_CLK", TABLA_A_CDC_CLK_TX_I2S_CTL, 4, 0, NULL, 0), }; static int tabla_lineout_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %s %d\n", __func__, w->name, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, w->reg, 0x40, 0x40); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, w->reg, 0x40, 0x00); break; } return 0; } static int tabla_ear_pa_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, TABLA_A_RX_EAR_EN, 0x50, 0x50); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_update_bits(codec, TABLA_A_RX_EAR_EN, 0x10, 0x00); snd_soc_update_bits(codec, TABLA_A_RX_EAR_EN, 0x40, 0x00); break; } return 0; } static const struct snd_soc_dapm_widget tabla_1_x_dapm_widgets[] = { SND_SOC_DAPM_MICBIAS_E("MIC BIAS4 External", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), }; static const struct snd_soc_dapm_widget tabla_2_higher_dapm_widgets[] = { SND_SOC_DAPM_MICBIAS_E("MIC BIAS4 External", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), }; static const struct snd_soc_dapm_route audio_i2s_map[] = { {"RX_I2S_CLK", NULL, "CDC_CONN"}, {"SLIM RX1", NULL, "RX_I2S_CLK"}, {"SLIM RX2", NULL, "RX_I2S_CLK"}, {"SLIM RX3", NULL, "RX_I2S_CLK"}, {"SLIM RX4", NULL, "RX_I2S_CLK"}, {"SLIM TX7", NULL, "TX_I2S_CLK"}, {"SLIM TX8", NULL, "TX_I2S_CLK"}, {"SLIM TX9", NULL, "TX_I2S_CLK"}, {"SLIM TX10", NULL, "TX_I2S_CLK"}, }; static const struct snd_soc_dapm_route audio_map[] = { /* SLIMBUS Connections */ {"AIF1 CAP", NULL, "AIF1_CAP Mixer"}, {"AIF2 CAP", NULL, "AIF2_CAP Mixer"}, {"AIF3 CAP", NULL, "AIF3_CAP Mixer"}, /* SLIM_MIXER("AIF1_CAP Mixer"),*/ {"AIF1_CAP Mixer", "SLIM TX1", "SLIM TX1 MUX"}, {"AIF1_CAP Mixer", "SLIM TX2", "SLIM TX2 MUX"}, {"AIF1_CAP Mixer", "SLIM TX3", "SLIM TX3 MUX"}, {"AIF1_CAP Mixer", "SLIM TX4", "SLIM TX4 MUX"}, {"AIF1_CAP Mixer", "SLIM TX5", "SLIM TX5 MUX"}, {"AIF1_CAP Mixer", "SLIM TX6", "SLIM TX6 MUX"}, {"AIF1_CAP Mixer", "SLIM TX7", "SLIM TX7 MUX"}, {"AIF1_CAP Mixer", "SLIM TX8", "SLIM TX8 MUX"}, {"AIF1_CAP Mixer", "SLIM TX9", "SLIM TX9 MUX"}, {"AIF1_CAP Mixer", "SLIM TX10", "SLIM TX10 MUX"}, /* SLIM_MIXER("AIF2_CAP Mixer"),*/ {"AIF2_CAP Mixer", "SLIM TX1", "SLIM TX1 MUX"}, {"AIF2_CAP Mixer", "SLIM TX2", "SLIM TX2 MUX"}, {"AIF2_CAP Mixer", "SLIM TX3", "SLIM TX3 MUX"}, {"AIF2_CAP Mixer", "SLIM TX4", "SLIM TX4 MUX"}, {"AIF2_CAP Mixer", "SLIM TX5", "SLIM TX5 MUX"}, {"AIF2_CAP Mixer", "SLIM TX6", "SLIM TX6 MUX"}, {"AIF2_CAP Mixer", "SLIM TX7", "SLIM TX7 MUX"}, {"AIF2_CAP Mixer", "SLIM TX8", "SLIM TX8 MUX"}, {"AIF2_CAP Mixer", "SLIM TX9", "SLIM TX9 MUX"}, {"AIF2_CAP Mixer", "SLIM TX10", "SLIM TX10 MUX"}, /* SLIM_MIXER("AIF3_CAP Mixer"),*/ {"AIF3_CAP Mixer", "SLIM TX1", "SLIM TX1 MUX"}, {"AIF3_CAP Mixer", "SLIM TX2", "SLIM TX2 MUX"}, {"AIF3_CAP Mixer", "SLIM TX3", "SLIM TX3 MUX"}, {"AIF3_CAP Mixer", "SLIM TX4", "SLIM TX4 MUX"}, {"AIF3_CAP Mixer", "SLIM TX5", "SLIM TX5 MUX"}, {"AIF3_CAP Mixer", "SLIM TX6", "SLIM TX6 MUX"}, {"AIF3_CAP Mixer", "SLIM TX7", "SLIM TX7 MUX"}, {"AIF3_CAP Mixer", "SLIM TX8", "SLIM TX8 MUX"}, {"AIF3_CAP Mixer", "SLIM TX9", "SLIM TX9 MUX"}, {"AIF3_CAP Mixer", "SLIM TX10", "SLIM TX10 MUX"}, {"SLIM TX1 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX2 MUX", "DEC2", "DEC2 MUX"}, {"SLIM TX3 MUX", "DEC3", "DEC3 MUX"}, {"SLIM TX3 MUX", "RMIX1", "RX1 MIX1"}, {"SLIM TX3 MUX", "RMIX2", "RX2 MIX1"}, {"SLIM TX3 MUX", "RMIX3", "RX3 MIX1"}, {"SLIM TX3 MUX", "RMIX4", "RX4 MIX1"}, {"SLIM TX3 MUX", "RMIX5", "RX5 MIX1"}, {"SLIM TX3 MUX", "RMIX6", "RX6 MIX1"}, {"SLIM TX3 MUX", "RMIX7", "RX7 MIX1"}, {"SLIM TX4 MUX", "DEC4", "DEC4 MUX"}, {"SLIM TX5 MUX", "DEC5", "DEC5 MUX"}, {"SLIM TX5 MUX", "RMIX1", "RX1 MIX1"}, {"SLIM TX5 MUX", "RMIX2", "RX2 MIX1"}, {"SLIM TX5 MUX", "RMIX3", "RX3 MIX1"}, {"SLIM TX5 MUX", "RMIX4", "RX4 MIX1"}, {"SLIM TX5 MUX", "RMIX5", "RX5 MIX1"}, {"SLIM TX5 MUX", "RMIX6", "RX6 MIX1"}, {"SLIM TX5 MUX", "RMIX7", "RX7 MIX1"}, {"SLIM TX6 MUX", "DEC6", "DEC6 MUX"}, {"SLIM TX7 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX7 MUX", "DEC2", "DEC2 MUX"}, {"SLIM TX7 MUX", "DEC3", "DEC3 MUX"}, {"SLIM TX7 MUX", "DEC4", "DEC4 MUX"}, {"SLIM TX7 MUX", "DEC5", "DEC5 MUX"}, {"SLIM TX7 MUX", "DEC6", "DEC6 MUX"}, {"SLIM TX7 MUX", "DEC7", "DEC7 MUX"}, {"SLIM TX7 MUX", "DEC8", "DEC8 MUX"}, {"SLIM TX7 MUX", "DEC9", "DEC9 MUX"}, {"SLIM TX7 MUX", "DEC10", "DEC10 MUX"}, {"SLIM TX7 MUX", "RMIX1", "RX1 MIX1"}, {"SLIM TX7 MUX", "RMIX2", "RX2 MIX1"}, {"SLIM TX7 MUX", "RMIX3", "RX3 MIX1"}, {"SLIM TX7 MUX", "RMIX4", "RX4 MIX1"}, {"SLIM TX7 MUX", "RMIX5", "RX5 MIX1"}, {"SLIM TX7 MUX", "RMIX6", "RX6 MIX1"}, {"SLIM TX7 MUX", "RMIX7", "RX7 MIX1"}, {"SLIM TX8 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX8 MUX", "DEC2", "DEC2 MUX"}, {"SLIM TX8 MUX", "DEC3", "DEC3 MUX"}, {"SLIM TX8 MUX", "DEC4", "DEC4 MUX"}, {"SLIM TX8 MUX", "DEC5", "DEC5 MUX"}, {"SLIM TX8 MUX", "DEC6", "DEC6 MUX"}, {"SLIM TX8 MUX", "DEC7", "DEC7 MUX"}, {"SLIM TX8 MUX", "DEC8", "DEC8 MUX"}, {"SLIM TX8 MUX", "DEC9", "DEC9 MUX"}, {"SLIM TX8 MUX", "DEC10", "DEC10 MUX"}, {"SLIM TX9 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX9 MUX", "DEC2", "DEC2 MUX"}, {"SLIM TX9 MUX", "DEC3", "DEC3 MUX"}, {"SLIM TX9 MUX", "DEC4", "DEC4 MUX"}, {"SLIM TX9 MUX", "DEC5", "DEC5 MUX"}, {"SLIM TX9 MUX", "DEC6", "DEC6 MUX"}, {"SLIM TX9 MUX", "DEC7", "DEC7 MUX"}, {"SLIM TX9 MUX", "DEC8", "DEC8 MUX"}, {"SLIM TX9 MUX", "DEC9", "DEC9 MUX"}, {"SLIM TX9 MUX", "DEC10", "DEC10 MUX"}, {"SLIM TX10 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX10 MUX", "DEC2", "DEC2 MUX"}, {"SLIM TX10 MUX", "DEC3", "DEC3 MUX"}, {"SLIM TX10 MUX", "DEC4", "DEC4 MUX"}, {"SLIM TX10 MUX", "DEC5", "DEC5 MUX"}, {"SLIM TX10 MUX", "DEC6", "DEC6 MUX"}, {"SLIM TX10 MUX", "DEC7", "DEC7 MUX"}, {"SLIM TX10 MUX", "DEC8", "DEC8 MUX"}, {"SLIM TX10 MUX", "DEC9", "DEC9 MUX"}, {"SLIM TX10 MUX", "DEC10", "DEC10 MUX"}, /* Earpiece (RX MIX1) */ {"EAR", NULL, "EAR PA"}, {"EAR PA", NULL, "EAR_PA_MIXER"}, {"EAR_PA_MIXER", NULL, "DAC1"}, {"DAC1", NULL, "CP"}, {"ANC1 FB MUX", "EAR_HPH_L", "RX1 MIX2"}, {"ANC1 FB MUX", "EAR_LINE_1", "RX2 MIX2"}, /* Headset (RX MIX1 and RX MIX2) */ {"HEADPHONE", NULL, "HPHL"}, {"HEADPHONE", NULL, "HPHR"}, {"HPHL", NULL, "HPHL_PA_MIXER"}, {"HPHL_PA_MIXER", NULL, "HPHL DAC"}, {"HPHR", NULL, "HPHR_PA_MIXER"}, {"HPHR_PA_MIXER", NULL, "HPHR DAC"}, {"HPHL DAC", NULL, "CP"}, {"HPHR DAC", NULL, "CP"}, {"ANC HEADPHONE", NULL, "ANC HPHL"}, {"ANC HEADPHONE", NULL, "ANC HPHR"}, {"ANC HPHL", NULL, "HPHL_PA_MIXER"}, {"ANC HPHR", NULL, "HPHR_PA_MIXER"}, {"ANC1 MUX", "ADC1", "ADC1"}, {"ANC1 MUX", "ADC2", "ADC2"}, {"ANC1 MUX", "ADC3", "ADC3"}, {"ANC1 MUX", "ADC4", "ADC4"}, {"ANC1 MUX", "DMIC1", "DMIC1"}, {"ANC1 MUX", "DMIC2", "DMIC2"}, {"ANC1 MUX", "DMIC3", "DMIC3"}, {"ANC1 MUX", "DMIC4", "DMIC4"}, {"ANC2 MUX", "ADC1", "ADC1"}, {"ANC2 MUX", "ADC2", "ADC2"}, {"ANC2 MUX", "ADC3", "ADC3"}, {"ANC2 MUX", "ADC4", "ADC4"}, {"ANC HPHR", NULL, "CDC_CONN"}, {"DAC1", "Switch", "RX1 CHAIN"}, {"HPHL DAC", "Switch", "RX1 CHAIN"}, {"HPHR DAC", NULL, "RX2 CHAIN"}, {"LINEOUT1", NULL, "LINEOUT1 PA"}, {"LINEOUT2", NULL, "LINEOUT2 PA"}, {"LINEOUT3", NULL, "LINEOUT3 PA"}, {"LINEOUT4", NULL, "LINEOUT4 PA"}, {"LINEOUT5", NULL, "LINEOUT5 PA"}, {"LINEOUT1 PA", NULL, "LINEOUT1_PA_MIXER"}, {"LINEOUT1_PA_MIXER", NULL, "LINEOUT1 DAC"}, {"LINEOUT2 PA", NULL, "LINEOUT2_PA_MIXER"}, {"LINEOUT2_PA_MIXER", NULL, "LINEOUT2 DAC"}, {"LINEOUT3 PA", NULL, "LINEOUT3_PA_MIXER"}, {"LINEOUT3_PA_MIXER", NULL, "LINEOUT3 DAC"}, {"LINEOUT4 PA", NULL, "LINEOUT4_PA_MIXER"}, {"LINEOUT4_PA_MIXER", NULL, "LINEOUT4 DAC"}, {"LINEOUT5 PA", NULL, "LINEOUT5_PA_MIXER"}, {"LINEOUT5_PA_MIXER", NULL, "LINEOUT5 DAC"}, {"LINEOUT1 DAC", NULL, "RX3 MIX2"}, {"LINEOUT5 DAC", NULL, "RX7 MIX1"}, {"RX1 CHAIN", NULL, "RX1 MIX2"}, {"RX2 CHAIN", NULL, "RX2 MIX2"}, {"RX1 MIX2", NULL, "ANC1 MUX"}, {"RX2 MIX2", NULL, "ANC2 MUX"}, {"CP", NULL, "RX_BIAS"}, {"LINEOUT1 DAC", NULL, "RX_BIAS"}, {"LINEOUT2 DAC", NULL, "RX_BIAS"}, {"LINEOUT3 DAC", NULL, "RX_BIAS"}, {"LINEOUT4 DAC", NULL, "RX_BIAS"}, {"LINEOUT5 DAC", NULL, "RX_BIAS"}, {"RX1 MIX1", NULL, "COMP1_CLK"}, {"RX2 MIX1", NULL, "COMP1_CLK"}, {"RX3 MIX1", NULL, "COMP2_CLK"}, {"RX5 MIX1", NULL, "COMP2_CLK"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP1"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP2"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP3"}, {"RX2 MIX1", NULL, "RX2 MIX1 INP1"}, {"RX2 MIX1", NULL, "RX2 MIX1 INP2"}, {"RX3 MIX1", NULL, "RX3 MIX1 INP1"}, {"RX3 MIX1", NULL, "RX3 MIX1 INP2"}, {"RX4 MIX1", NULL, "RX4 MIX1 INP1"}, {"RX4 MIX1", NULL, "RX4 MIX1 INP2"}, {"RX5 MIX1", NULL, "RX5 MIX1 INP1"}, {"RX5 MIX1", NULL, "RX5 MIX1 INP2"}, {"RX6 MIX1", NULL, "RX6 MIX1 INP1"}, {"RX6 MIX1", NULL, "RX6 MIX1 INP2"}, {"RX7 MIX1", NULL, "RX7 MIX1 INP1"}, {"RX7 MIX1", NULL, "RX7 MIX1 INP2"}, {"RX1 MIX2", NULL, "RX1 MIX1"}, {"RX1 MIX2", NULL, "RX1 MIX2 INP1"}, {"RX1 MIX2", NULL, "RX1 MIX2 INP2"}, {"RX2 MIX2", NULL, "RX2 MIX1"}, {"RX2 MIX2", NULL, "RX2 MIX2 INP1"}, {"RX2 MIX2", NULL, "RX2 MIX2 INP2"}, {"RX3 MIX2", NULL, "RX3 MIX1"}, {"RX3 MIX2", NULL, "RX3 MIX2 INP1"}, {"RX3 MIX2", NULL, "RX3 MIX2 INP2"}, /* SLIM_MUX("AIF1_PB", "AIF1 PB"),*/ {"SLIM RX1 MUX", "AIF1_PB", "AIF1 PB"}, {"SLIM RX2 MUX", "AIF1_PB", "AIF1 PB"}, {"SLIM RX3 MUX", "AIF1_PB", "AIF1 PB"}, {"SLIM RX4 MUX", "AIF1_PB", "AIF1 PB"}, {"SLIM RX5 MUX", "AIF1_PB", "AIF1 PB"}, {"SLIM RX6 MUX", "AIF1_PB", "AIF1 PB"}, {"SLIM RX7 MUX", "AIF1_PB", "AIF1 PB"}, /* SLIM_MUX("AIF2_PB", "AIF2 PB"),*/ {"SLIM RX1 MUX", "AIF2_PB", "AIF2 PB"}, {"SLIM RX2 MUX", "AIF2_PB", "AIF2 PB"}, {"SLIM RX3 MUX", "AIF2_PB", "AIF2 PB"}, {"SLIM RX4 MUX", "AIF2_PB", "AIF2 PB"}, {"SLIM RX5 MUX", "AIF2_PB", "AIF2 PB"}, {"SLIM RX6 MUX", "AIF2_PB", "AIF2 PB"}, {"SLIM RX7 MUX", "AIF2_PB", "AIF2 PB"}, /* SLIM_MUX("AIF3_PB", "AIF3 PB"),*/ {"SLIM RX1 MUX", "AIF3_PB", "AIF3 PB"}, {"SLIM RX2 MUX", "AIF3_PB", "AIF3 PB"}, {"SLIM RX3 MUX", "AIF3_PB", "AIF3 PB"}, {"SLIM RX4 MUX", "AIF3_PB", "AIF3 PB"}, {"SLIM RX5 MUX", "AIF3_PB", "AIF3 PB"}, {"SLIM RX6 MUX", "AIF3_PB", "AIF3 PB"}, {"SLIM RX7 MUX", "AIF3_PB", "AIF3 PB"}, {"SLIM RX1", NULL, "SLIM RX1 MUX"}, {"SLIM RX2", NULL, "SLIM RX2 MUX"}, {"SLIM RX3", NULL, "SLIM RX3 MUX"}, {"SLIM RX4", NULL, "SLIM RX4 MUX"}, {"SLIM RX5", NULL, "SLIM RX5 MUX"}, {"SLIM RX6", NULL, "SLIM RX6 MUX"}, {"SLIM RX7", NULL, "SLIM RX7 MUX"}, /* Mixer control for output path */ {"RX1 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX1 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX1 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX1 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX1 MIX1 INP1", "RX5", "SLIM RX5"}, {"RX1 MIX1 INP1", "RX6", "SLIM RX6"}, {"RX1 MIX1 INP1", "RX7", "SLIM RX7"}, {"RX1 MIX1 INP1", "IIR1", "IIR1"}, {"RX1 MIX1 INP1", "IIR2", "IIR2"}, {"RX1 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX1 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX1 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX1 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX1 MIX1 INP2", "RX5", "SLIM RX5"}, {"RX1 MIX1 INP2", "RX6", "SLIM RX6"}, {"RX1 MIX1 INP2", "RX7", "SLIM RX7"}, {"RX1 MIX1 INP2", "IIR1", "IIR1"}, {"RX1 MIX1 INP2", "IIR2", "IIR2"}, {"RX1 MIX1 INP3", "RX1", "SLIM RX1"}, {"RX1 MIX1 INP3", "RX2", "SLIM RX2"}, {"RX1 MIX1 INP3", "RX3", "SLIM RX3"}, {"RX1 MIX1 INP3", "RX4", "SLIM RX4"}, {"RX1 MIX1 INP3", "RX5", "SLIM RX5"}, {"RX1 MIX1 INP3", "RX6", "SLIM RX6"}, {"RX1 MIX1 INP3", "RX7", "SLIM RX7"}, {"RX2 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX2 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX2 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX2 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX2 MIX1 INP1", "RX5", "SLIM RX5"}, {"RX2 MIX1 INP1", "RX6", "SLIM RX6"}, {"RX2 MIX1 INP1", "RX7", "SLIM RX7"}, {"RX2 MIX1 INP1", "IIR1", "IIR1"}, {"RX2 MIX1 INP1", "IIR2", "IIR2"}, {"RX2 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX2 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX2 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX2 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX2 MIX1 INP2", "RX5", "SLIM RX5"}, {"RX2 MIX1 INP2", "RX6", "SLIM RX6"}, {"RX2 MIX1 INP2", "RX7", "SLIM RX7"}, {"RX2 MIX1 INP2", "IIR1", "IIR1"}, {"RX2 MIX1 INP2", "IIR2", "IIR2"}, {"RX3 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX3 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX3 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX3 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX3 MIX1 INP1", "RX5", "SLIM RX5"}, {"RX3 MIX1 INP1", "RX6", "SLIM RX6"}, {"RX3 MIX1 INP1", "RX7", "SLIM RX7"}, {"RX3 MIX1 INP1", "IIR1", "IIR1"}, {"RX3 MIX1 INP1", "IIR2", "IIR2"}, {"RX3 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX3 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX3 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX3 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX3 MIX1 INP2", "RX5", "SLIM RX5"}, {"RX3 MIX1 INP2", "RX6", "SLIM RX6"}, {"RX3 MIX1 INP2", "RX7", "SLIM RX7"}, {"RX3 MIX1 INP2", "IIR1", "IIR1"}, {"RX3 MIX1 INP2", "IIR2", "IIR2"}, {"RX4 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX4 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX4 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX4 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX4 MIX1 INP1", "RX5", "SLIM RX5"}, {"RX4 MIX1 INP1", "RX6", "SLIM RX6"}, {"RX4 MIX1 INP1", "RX7", "SLIM RX7"}, {"RX4 MIX1 INP1", "IIR1", "IIR1"}, {"RX4 MIX1 INP1", "IIR2", "IIR2"}, {"RX4 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX4 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX4 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX4 MIX1 INP2", "RX5", "SLIM RX5"}, {"RX4 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX4 MIX1 INP2", "RX6", "SLIM RX6"}, {"RX4 MIX1 INP2", "RX7", "SLIM RX7"}, {"RX4 MIX1 INP2", "IIR1", "IIR1"}, {"RX4 MIX1 INP2", "IIR2", "IIR2"}, {"RX5 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX5 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX5 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX5 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX5 MIX1 INP1", "RX5", "SLIM RX5"}, {"RX5 MIX1 INP1", "RX6", "SLIM RX6"}, {"RX5 MIX1 INP1", "RX7", "SLIM RX7"}, {"RX5 MIX1 INP1", "IIR1", "IIR1"}, {"RX5 MIX1 INP1", "IIR2", "IIR2"}, {"RX5 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX5 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX5 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX5 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX5 MIX1 INP2", "RX5", "SLIM RX5"}, {"RX5 MIX1 INP2", "RX6", "SLIM RX6"}, {"RX5 MIX1 INP2", "RX7", "SLIM RX7"}, {"RX5 MIX1 INP2", "IIR1", "IIR1"}, {"RX5 MIX1 INP2", "IIR2", "IIR2"}, {"RX6 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX6 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX6 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX6 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX6 MIX1 INP1", "RX5", "SLIM RX5"}, {"RX6 MIX1 INP1", "RX6", "SLIM RX6"}, {"RX6 MIX1 INP1", "RX7", "SLIM RX7"}, {"RX6 MIX1 INP1", "IIR1", "IIR1"}, {"RX6 MIX1 INP1", "IIR2", "IIR2"}, {"RX6 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX6 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX6 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX6 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX6 MIX1 INP2", "RX5", "SLIM RX5"}, {"RX6 MIX1 INP2", "RX6", "SLIM RX6"}, {"RX6 MIX1 INP2", "RX7", "SLIM RX7"}, {"RX6 MIX1 INP2", "IIR1", "IIR1"}, {"RX6 MIX1 INP2", "IIR2", "IIR2"}, {"RX7 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX7 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX7 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX7 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX7 MIX1 INP1", "RX5", "SLIM RX5"}, {"RX7 MIX1 INP1", "RX6", "SLIM RX6"}, {"RX7 MIX1 INP1", "RX7", "SLIM RX7"}, {"RX7 MIX1 INP1", "IIR1", "IIR1"}, {"RX7 MIX1 INP1", "IIR2", "IIR2"}, {"RX7 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX7 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX7 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX7 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX7 MIX1 INP2", "RX5", "SLIM RX5"}, {"RX7 MIX1 INP2", "RX6", "SLIM RX6"}, {"RX7 MIX1 INP2", "RX7", "SLIM RX7"}, {"RX7 MIX1 INP2", "IIR1", "IIR1"}, {"RX7 MIX1 INP2", "IIR2", "IIR2"}, {"RX1 MIX2 INP1", "IIR1", "IIR1"}, {"RX1 MIX2 INP1", "IIR2", "IIR2"}, {"RX1 MIX2 INP2", "IIR1", "IIR1"}, {"RX1 MIX2 INP2", "IIR2", "IIR2"}, {"RX2 MIX2 INP1", "IIR1", "IIR1"}, {"RX2 MIX2 INP1", "IIR2", "IIR2"}, {"RX2 MIX2 INP2", "IIR1", "IIR1"}, {"RX2 MIX2 INP2", "IIR2", "IIR2"}, {"RX3 MIX2 INP1", "IIR1", "IIR1"}, {"RX3 MIX2 INP1", "IIR2", "IIR2"}, {"RX3 MIX2 INP2", "IIR1", "IIR1"}, {"RX3 MIX2 INP2", "IIR2", "IIR2"}, /* Decimator Inputs */ {"DEC1 MUX", "DMIC1", "DMIC1"}, {"DEC1 MUX", "ADC6", "ADC6"}, {"DEC1 MUX", NULL, "CDC_CONN"}, {"DEC2 MUX", "DMIC2", "DMIC2"}, {"DEC2 MUX", "ADC5", "ADC5"}, {"DEC2 MUX", NULL, "CDC_CONN"}, {"DEC3 MUX", "DMIC3", "DMIC3"}, {"DEC3 MUX", "ADC4", "ADC4"}, {"DEC3 MUX", NULL, "CDC_CONN"}, {"DEC4 MUX", "DMIC4", "DMIC4"}, {"DEC4 MUX", "ADC3", "ADC3"}, {"DEC4 MUX", NULL, "CDC_CONN"}, {"DEC5 MUX", "DMIC5", "DMIC5"}, {"DEC5 MUX", "ADC2", "ADC2"}, {"DEC5 MUX", NULL, "CDC_CONN"}, {"DEC6 MUX", "DMIC6", "DMIC6"}, {"DEC6 MUX", "ADC1", "ADC1"}, {"DEC6 MUX", NULL, "CDC_CONN"}, {"DEC7 MUX", "DMIC1", "DMIC1"}, {"DEC7 MUX", "DMIC6", "DMIC6"}, {"DEC7 MUX", "ADC1", "ADC1"}, {"DEC7 MUX", "ADC6", "ADC6"}, {"DEC7 MUX", NULL, "CDC_CONN"}, {"DEC8 MUX", "DMIC2", "DMIC2"}, {"DEC8 MUX", "DMIC5", "DMIC5"}, {"DEC8 MUX", "ADC2", "ADC2"}, {"DEC8 MUX", "ADC5", "ADC5"}, {"DEC8 MUX", NULL, "CDC_CONN"}, {"DEC9 MUX", "DMIC4", "DMIC4"}, {"DEC9 MUX", "DMIC5", "DMIC5"}, {"DEC9 MUX", "ADC2", "ADC2"}, {"DEC9 MUX", "ADC3", "ADC3"}, {"DEC9 MUX", NULL, "CDC_CONN"}, {"DEC10 MUX", "DMIC3", "DMIC3"}, {"DEC10 MUX", "DMIC6", "DMIC6"}, {"DEC10 MUX", "ADC1", "ADC1"}, {"DEC10 MUX", "ADC4", "ADC4"}, {"DEC10 MUX", NULL, "CDC_CONN"}, /* ADC Connections */ {"ADC1", NULL, "AMIC1"}, {"ADC2", NULL, "AMIC2"}, {"ADC3", NULL, "AMIC3"}, {"ADC4", NULL, "AMIC4"}, {"ADC5", NULL, "AMIC5"}, {"ADC6", NULL, "AMIC6"}, /* AUX PGA Connections */ {"HPHL_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"}, {"HPHL_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"}, {"HPHL_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"}, {"HPHL_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"}, {"HPHR_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"}, {"HPHR_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"}, {"HPHR_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"}, {"HPHR_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"}, {"LINEOUT1_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"}, {"LINEOUT1_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"}, {"LINEOUT1_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"}, {"LINEOUT1_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"}, {"LINEOUT2_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"}, {"LINEOUT2_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"}, {"LINEOUT2_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"}, {"LINEOUT2_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"}, {"LINEOUT3_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"}, {"LINEOUT3_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"}, {"LINEOUT3_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"}, {"LINEOUT3_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"}, {"LINEOUT4_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"}, {"LINEOUT4_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"}, {"LINEOUT4_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"}, {"LINEOUT4_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"}, {"LINEOUT5_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"}, {"LINEOUT5_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"}, {"LINEOUT5_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"}, {"LINEOUT5_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"}, {"EAR_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"}, {"EAR_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"}, {"EAR_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"}, {"EAR_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"}, {"AUX_PGA_Left", NULL, "AMIC5"}, {"AUX_PGA_Right", NULL, "AMIC6"}, {"IIR1", NULL, "IIR1 INP1 MUX"}, {"IIR1 INP1 MUX", "DEC1", "DEC1 MUX"}, {"IIR1 INP1 MUX", "DEC2", "DEC2 MUX"}, {"IIR1 INP1 MUX", "DEC3", "DEC3 MUX"}, {"IIR1 INP1 MUX", "DEC4", "DEC4 MUX"}, {"IIR1 INP1 MUX", "DEC5", "DEC5 MUX"}, {"IIR1 INP1 MUX", "DEC6", "DEC6 MUX"}, {"IIR1 INP1 MUX", "DEC7", "DEC7 MUX"}, {"IIR1 INP1 MUX", "DEC8", "DEC8 MUX"}, {"IIR1 INP1 MUX", "DEC9", "DEC9 MUX"}, {"IIR1 INP1 MUX", "DEC10", "DEC10 MUX"}, {"IIR2", NULL, "IIR2 INP1 MUX"}, {"IIR2 INP1 MUX", "DEC1", "DEC1 MUX"}, {"IIR2 INP1 MUX", "DEC2", "DEC2 MUX"}, {"IIR2 INP1 MUX", "DEC3", "DEC3 MUX"}, {"IIR2 INP1 MUX", "DEC4", "DEC4 MUX"}, {"IIR2 INP1 MUX", "DEC5", "DEC5 MUX"}, {"IIR2 INP1 MUX", "DEC6", "DEC6 MUX"}, {"IIR2 INP1 MUX", "DEC7", "DEC7 MUX"}, {"IIR2 INP1 MUX", "DEC8", "DEC8 MUX"}, {"IIR2 INP1 MUX", "DEC9", "DEC9 MUX"}, {"IIR2 INP1 MUX", "DEC10", "DEC10 MUX"}, {"MIC BIAS1 Internal1", NULL, "LDO_H"}, {"MIC BIAS1 Internal2", NULL, "LDO_H"}, {"MIC BIAS1 External", NULL, "LDO_H"}, {"MIC BIAS2 Internal1", NULL, "LDO_H"}, {"MIC BIAS2 Internal2", NULL, "LDO_H"}, {"MIC BIAS2 Internal3", NULL, "LDO_H"}, {"MIC BIAS2 External", NULL, "LDO_H"}, {"MIC BIAS3 Internal1", NULL, "LDO_H"}, {"MIC BIAS3 Internal2", NULL, "LDO_H"}, {"MIC BIAS3 External", NULL, "LDO_H"}, {"MIC BIAS4 External", NULL, "LDO_H"}, }; static const struct snd_soc_dapm_route tabla_1_x_lineout_2_to_4_map[] = { {"RX4 DSM MUX", "DSM_INV", "RX3 MIX2"}, {"RX4 DSM MUX", "CIC_OUT", "RX4 MIX1"}, {"LINEOUT2 DAC", NULL, "RX4 DSM MUX"}, {"LINEOUT3 DAC", NULL, "RX5 MIX1"}, {"LINEOUT3 DAC GROUND", "Switch", "RX3 MIX2"}, {"LINEOUT3 DAC", NULL, "LINEOUT3 DAC GROUND"}, {"RX6 DSM MUX", "DSM_INV", "RX5 MIX1"}, {"RX6 DSM MUX", "CIC_OUT", "RX6 MIX1"}, {"LINEOUT4 DAC", NULL, "RX6 DSM MUX"}, {"LINEOUT4 DAC GROUND", "Switch", "RX4 DSM MUX"}, {"LINEOUT4 DAC", NULL, "LINEOUT4 DAC GROUND"}, }; static const struct snd_soc_dapm_route tabla_2_x_lineout_2_to_4_map[] = { {"RX4 DSM MUX", "DSM_INV", "RX3 MIX2"}, {"RX4 DSM MUX", "CIC_OUT", "RX4 MIX1"}, {"LINEOUT3 DAC", NULL, "RX4 DSM MUX"}, {"LINEOUT2 DAC", NULL, "RX5 MIX1"}, {"RX6 DSM MUX", "DSM_INV", "RX5 MIX1"}, {"RX6 DSM MUX", "CIC_OUT", "RX6 MIX1"}, {"LINEOUT4 DAC", NULL, "RX6 DSM MUX"}, }; static int tabla_readable(struct snd_soc_codec *ssc, unsigned int reg) { int i; struct wcd9xxx *tabla_core = dev_get_drvdata(ssc->dev->parent); if (TABLA_IS_1_X(tabla_core->version)) { for (i = 0; i < ARRAY_SIZE(tabla_1_reg_readable); i++) { if (tabla_1_reg_readable[i] == reg) return 1; } } else { for (i = 0; i < ARRAY_SIZE(tabla_2_reg_readable); i++) { if (tabla_2_reg_readable[i] == reg) return 1; } } return tabla_reg_readable[reg]; } static bool tabla_is_digital_gain_register(unsigned int reg) { bool rtn = false; switch (reg) { case TABLA_A_CDC_RX1_VOL_CTL_B2_CTL: case TABLA_A_CDC_RX2_VOL_CTL_B2_CTL: case TABLA_A_CDC_RX3_VOL_CTL_B2_CTL: case TABLA_A_CDC_RX4_VOL_CTL_B2_CTL: case TABLA_A_CDC_RX5_VOL_CTL_B2_CTL: case TABLA_A_CDC_RX6_VOL_CTL_B2_CTL: case TABLA_A_CDC_RX7_VOL_CTL_B2_CTL: case TABLA_A_CDC_TX1_VOL_CTL_GAIN: case TABLA_A_CDC_TX2_VOL_CTL_GAIN: case TABLA_A_CDC_TX3_VOL_CTL_GAIN: case TABLA_A_CDC_TX4_VOL_CTL_GAIN: case TABLA_A_CDC_TX5_VOL_CTL_GAIN: case TABLA_A_CDC_TX6_VOL_CTL_GAIN: case TABLA_A_CDC_TX7_VOL_CTL_GAIN: case TABLA_A_CDC_TX8_VOL_CTL_GAIN: case TABLA_A_CDC_TX9_VOL_CTL_GAIN: case TABLA_A_CDC_TX10_VOL_CTL_GAIN: rtn = true; break; default: break; } return rtn; } static int tabla_volatile(struct snd_soc_codec *ssc, unsigned int reg) { /* Registers lower than 0x100 are top level registers which can be * written by the Tabla core driver. */ if ((reg >= TABLA_A_CDC_MBHC_EN_CTL) || (reg < 0x100)) return 1; /* IIR Coeff registers are not cacheable */ if ((reg >= TABLA_A_CDC_IIR1_COEF_B1_CTL) && (reg <= TABLA_A_CDC_IIR2_COEF_B5_CTL)) return 1; /* ANC filter registers are not cacheable */ if ((reg >= TABLA_A_CDC_ANC1_FILT1_B1_CTL) && (reg <= TABLA_A_CDC_ANC1_FILT2_B3_CTL)) return 1; if ((reg >= TABLA_A_CDC_ANC2_FILT1_B1_CTL) && (reg <= TABLA_A_CDC_ANC2_FILT2_B3_CTL)) return 1; /* Digital gain register is not cacheable so we have to write * the setting even it is the same */ if (tabla_is_digital_gain_register(reg)) return 1; /* HPH status registers */ if (reg == TABLA_A_RX_HPH_L_STATUS || reg == TABLA_A_RX_HPH_R_STATUS) return 1; if (reg == TABLA_A_CDC_COMP1_SHUT_DOWN_STATUS || reg == TABLA_A_CDC_COMP2_SHUT_DOWN_STATUS) return 1; return 0; } #define TABLA_FORMATS (SNDRV_PCM_FMTBIT_S16_LE) static int tabla_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { int ret; if (reg == SND_SOC_NOPM) return 0; BUG_ON(reg > TABLA_MAX_REGISTER); if (!tabla_volatile(codec, reg)) { ret = snd_soc_cache_write(codec, reg, value); if (ret != 0) dev_err(codec->dev, "Cache write to %x failed: %d\n", reg, ret); } return wcd9xxx_reg_write(codec->control_data, reg, value); } static unsigned int tabla_read(struct snd_soc_codec *codec, unsigned int reg) { unsigned int val; int ret; if (reg == SND_SOC_NOPM) return 0; BUG_ON(reg > TABLA_MAX_REGISTER); if (!tabla_volatile(codec, reg) && tabla_readable(codec, reg) && reg < codec->driver->reg_cache_size) { ret = snd_soc_cache_read(codec, reg, &val); if (ret >= 0) { return val; } else dev_err(codec->dev, "Cache read from %x failed: %d\n", reg, ret); } val = wcd9xxx_reg_read(codec->control_data, reg); return val; } static s16 tabla_get_current_v_ins(struct tabla_priv *tabla, bool hu) { s16 v_ins; if ((tabla->mbhc_data.micb_mv != VDDIO_MICBIAS_MV) && tabla->mbhc_micbias_switched) v_ins = hu ? (s16)tabla->mbhc_data.adj_v_ins_hu : (s16)tabla->mbhc_data.adj_v_ins_h; else v_ins = hu ? (s16)tabla->mbhc_data.v_ins_hu : (s16)tabla->mbhc_data.v_ins_h; return v_ins; } static s16 tabla_get_current_v_hs_max(struct tabla_priv *tabla) { s16 v_hs_max; struct tabla_mbhc_plug_type_cfg *plug_type; plug_type = TABLA_MBHC_CAL_PLUG_TYPE_PTR(tabla->mbhc_cfg.calibration); if ((tabla->mbhc_data.micb_mv != VDDIO_MICBIAS_MV) && tabla->mbhc_micbias_switched) v_hs_max = tabla->mbhc_data.adj_v_hs_max; else v_hs_max = plug_type->v_hs_max; return v_hs_max; } static void tabla_codec_calibrate_rel(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B3_CTL, tabla->mbhc_data.v_b1_hu & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B4_CTL, (tabla->mbhc_data.v_b1_hu >> 8) & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B5_CTL, tabla->mbhc_data.v_b1_h & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B6_CTL, (tabla->mbhc_data.v_b1_h >> 8) & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B9_CTL, tabla->mbhc_data.v_brh & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B10_CTL, (tabla->mbhc_data.v_brh >> 8) & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B11_CTL, tabla->mbhc_data.v_brl & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B12_CTL, (tabla->mbhc_data.v_brl >> 8) & 0xFF); } static void tabla_codec_calibrate_hs_polling(struct snd_soc_codec *codec) { u8 *n_ready, *n_cic; struct tabla_mbhc_btn_detect_cfg *btn_det; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); const s16 v_ins_hu = tabla_get_current_v_ins(tabla, true); btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->mbhc_cfg.calibration); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B1_CTL, v_ins_hu & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B2_CTL, (v_ins_hu >> 8) & 0xFF); tabla_codec_calibrate_rel(codec); n_ready = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_READY); snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B1_CTL, n_ready[tabla_codec_mclk_index(tabla)]); snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B2_CTL, tabla->mbhc_data.npoll); snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B3_CTL, tabla->mbhc_data.nbounce_wait); n_cic = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_CIC); snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B6_CTL, n_cic[tabla_codec_mclk_index(tabla)]); } static int tabla_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct wcd9xxx *tabla_core = dev_get_drvdata(dai->codec->dev->parent); pr_debug("%s(): substream = %s stream = %d\n" , __func__, substream->name, substream->stream); if ((tabla_core != NULL) && (tabla_core->dev != NULL) && (tabla_core->dev->parent != NULL)) pm_runtime_get_sync(tabla_core->dev->parent); return 0; } static void tabla_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct wcd9xxx *tabla_core = dev_get_drvdata(dai->codec->dev->parent); struct tabla_priv *tabla = snd_soc_codec_get_drvdata(dai->codec); u32 active = 0; pr_debug("%s(): substream = %s stream = %d\n" , __func__, substream->name, substream->stream); if (tabla->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) return; if (dai->id <= NUM_CODEC_DAIS) { if (tabla->dai[dai->id].ch_mask) { active = 1; pr_debug("%s(): Codec DAI: chmask[%d] = 0x%lx\n", __func__, dai->id, tabla->dai[dai->id].ch_mask); } } if ((tabla_core != NULL) && (tabla_core->dev != NULL) && (tabla_core->dev->parent != NULL) && (active == 0)) { pm_runtime_mark_last_busy(tabla_core->dev->parent); pm_runtime_put(tabla_core->dev->parent); } } int tabla_mclk_enable(struct snd_soc_codec *codec, int mclk_enable, bool dapm) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: mclk_enable = %u, dapm = %d\n", __func__, mclk_enable, dapm); if (dapm) TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); if (mclk_enable) { tabla->mclk_enabled = true; if (tabla->mbhc_polling_active) { tabla_codec_pause_hs_polling(codec); tabla_codec_disable_clock_block(codec); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_AUDIO_MODE); tabla_codec_enable_clock_block(codec, 0); tabla_codec_calibrate_hs_polling(codec); tabla_codec_start_hs_polling(codec); } else { tabla_codec_disable_clock_block(codec); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_AUDIO_MODE); tabla_codec_enable_clock_block(codec, 0); } } else { if (!tabla->mclk_enabled) { if (dapm) TABLA_RELEASE_LOCK(tabla->codec_resource_lock); pr_err("Error, MCLK already diabled\n"); return -EINVAL; } tabla->mclk_enabled = false; if (tabla->mbhc_polling_active) { tabla_codec_pause_hs_polling(codec); tabla_codec_disable_clock_block(codec); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_MBHC_MODE); tabla_enable_rx_bias(codec, 1); tabla_codec_enable_clock_block(codec, 1); tabla_codec_calibrate_hs_polling(codec); tabla_codec_start_hs_polling(codec); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x05, 0x01); } else { tabla_codec_disable_clock_block(codec); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_OFF); } } if (dapm) TABLA_RELEASE_LOCK(tabla->codec_resource_lock); return 0; } static int tabla_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { pr_debug("%s\n", __func__); return 0; } static int tabla_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { u8 val = 0; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(dai->codec); pr_debug("%s\n", __func__); switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: /* CPU is master */ if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) { if (dai->id == AIF1_CAP) snd_soc_update_bits(dai->codec, TABLA_A_CDC_CLK_TX_I2S_CTL, TABLA_I2S_MASTER_MODE_MASK, 0); else if (dai->id == AIF1_PB) snd_soc_update_bits(dai->codec, TABLA_A_CDC_CLK_RX_I2S_CTL, TABLA_I2S_MASTER_MODE_MASK, 0); } break; case SND_SOC_DAIFMT_CBM_CFM: /* CPU is slave */ if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) { val = TABLA_I2S_MASTER_MODE_MASK; if (dai->id == AIF1_CAP) snd_soc_update_bits(dai->codec, TABLA_A_CDC_CLK_TX_I2S_CTL, val, val); else if (dai->id == AIF1_PB) snd_soc_update_bits(dai->codec, TABLA_A_CDC_CLK_RX_I2S_CTL, val, val); } break; default: return -EINVAL; } return 0; } static int tabla_set_channel_map(struct snd_soc_dai *dai, unsigned int tx_num, unsigned int *tx_slot, unsigned int rx_num, unsigned int *rx_slot) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(dai->codec); struct wcd9xxx *core = dev_get_drvdata(dai->codec->dev->parent); if (!tx_slot && !rx_slot) { pr_err("%s: Invalid\n", __func__); return -EINVAL; } pr_debug("%s(): dai_name = %s DAI-ID %x tx_ch %d rx_ch %d\n" "tabla->intf_type %d\n", __func__, dai->name, dai->id, tx_num, rx_num, tabla->intf_type); if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_SLIMBUS) wcd9xxx_init_slimslave(core, core->slim->laddr, tx_num, tx_slot, rx_num, rx_slot); return 0; } static int tabla_get_channel_map(struct snd_soc_dai *dai, unsigned int *tx_num, unsigned int *tx_slot, unsigned int *rx_num, unsigned int *rx_slot) { struct tabla_priv *tabla_p = snd_soc_codec_get_drvdata(dai->codec); u32 i = 0; struct wcd9xxx_ch *ch; switch (dai->id) { case AIF1_PB: case AIF2_PB: case AIF3_PB: if (!rx_slot || !rx_num) { pr_err("%s: Invalid rx_slot %d or rx_num %d\n", __func__, (u32) rx_slot, (u32) rx_num); return -EINVAL; } list_for_each_entry(ch, &tabla_p->dai[dai->id].wcd9xxx_ch_list, list) { rx_slot[i++] = ch->ch_num; } *rx_num = i; break; case AIF1_CAP: case AIF2_CAP: case AIF3_CAP: if (!tx_slot || !tx_num) { pr_err("%s: Invalid tx_slot %d or tx_num %d\n", __func__, (u32) tx_slot, (u32) tx_num); return -EINVAL; } list_for_each_entry(ch, &tabla_p->dai[dai->id].wcd9xxx_ch_list, list) { tx_slot[i++] = ch->ch_num; } *tx_num = i; break; default: pr_err("%s: Invalid DAI ID %x\n", __func__, dai->id); break; } return 0; } static int tabla_set_interpolator_rate(struct snd_soc_dai *dai, u8 rx_fs_rate_reg_val, u32 compander_fs, u32 sample_rate) { u32 j; u8 rx_mix1_inp; u16 rx_mix_1_reg_1, rx_mix_1_reg_2; u16 rx_fs_reg; u8 rx_mix_1_reg_1_val, rx_mix_1_reg_2_val; struct snd_soc_codec *codec = dai->codec; struct wcd9xxx_ch *ch; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); list_for_each_entry(ch, &tabla->dai[dai->id].wcd9xxx_ch_list, list) { rx_mix1_inp = ch->port - RX_MIX1_INP_SEL_RX1; if ((rx_mix1_inp < RX_MIX1_INP_SEL_RX1) || (rx_mix1_inp > RX_MIX1_INP_SEL_RX7)) { pr_err("%s: Invalid TABLA_RX%u port. Dai ID is %d\n", __func__, rx_mix1_inp - 5 , dai->id); return -EINVAL; } rx_mix_1_reg_1 = TABLA_A_CDC_CONN_RX1_B1_CTL; for (j = 0; j < NUM_INTERPOLATORS; j++) { rx_mix_1_reg_2 = rx_mix_1_reg_1 + 1; rx_mix_1_reg_1_val = snd_soc_read(codec, rx_mix_1_reg_1); rx_mix_1_reg_2_val = snd_soc_read(codec, rx_mix_1_reg_2); if (((rx_mix_1_reg_1_val & 0x0F) == rx_mix1_inp) || (((rx_mix_1_reg_1_val >> 4) & 0x0F) == rx_mix1_inp) || ((rx_mix_1_reg_2_val & 0x0F) == rx_mix1_inp)) { rx_fs_reg = TABLA_A_CDC_RX1_B5_CTL + 8 * j; pr_debug("%s: AIF_PB DAI(%d) connected to RX%u\n", __func__, dai->id, j + 1); pr_debug("%s: set RX%u sample rate to %u\n", __func__, j + 1, sample_rate); snd_soc_update_bits(codec, rx_fs_reg, 0xE0, rx_fs_rate_reg_val); if (comp_rx_path[j] < COMPANDER_MAX) tabla->comp_fs[comp_rx_path[j]] = compander_fs; } if (j <= 2) rx_mix_1_reg_1 += 3; else rx_mix_1_reg_1 += 2; } } return 0; } static int tabla_set_decimator_rate(struct snd_soc_dai *dai, u8 tx_fs_rate_reg_val, u32 sample_rate) { struct snd_soc_codec *codec = dai->codec; struct wcd9xxx_ch *ch; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u32 tx_port; u16 tx_port_reg, tx_fs_reg; u8 tx_port_reg_val; s8 decimator; list_for_each_entry(ch, &tabla->dai[dai->id].wcd9xxx_ch_list, list) { tx_port = ch->port + 1; pr_debug("%s: dai->id = %d, tx_port = %d", __func__, dai->id, tx_port); if ((tx_port < 1) || (tx_port > NUM_DECIMATORS)) { pr_err("%s: Invalid SLIM TX%u port. DAI ID is %d\n", __func__, tx_port, dai->id); return -EINVAL; } tx_port_reg = TABLA_A_CDC_CONN_TX_SB_B1_CTL + (tx_port - 1); tx_port_reg_val = snd_soc_read(codec, tx_port_reg); decimator = 0; if ((tx_port >= 1) && (tx_port <= 6)) { tx_port_reg_val = tx_port_reg_val & 0x0F; if (tx_port_reg_val == 0x8) decimator = tx_port; } else if ((tx_port >= 7) && (tx_port <= NUM_DECIMATORS)) { tx_port_reg_val = tx_port_reg_val & 0x1F; if ((tx_port_reg_val >= 0x8) && (tx_port_reg_val <= 0x11)) { decimator = (tx_port_reg_val - 0x8) + 1; } } if (decimator) { /* SLIM_TX port has a DEC as input */ tx_fs_reg = TABLA_A_CDC_TX1_CLK_FS_CTL + 8 * (decimator - 1); pr_debug("%s: set DEC%u (-> SLIM_TX%u) rate to %u\n", __func__, decimator, tx_port, sample_rate); snd_soc_update_bits(codec, tx_fs_reg, 0x07, tx_fs_rate_reg_val); } else { if ((tx_port_reg_val >= 0x1) && (tx_port_reg_val <= 0x7)) { pr_debug("%s: RMIX%u going to SLIM TX%u\n", __func__, tx_port_reg_val, tx_port); } else if ((tx_port_reg_val >= 0x8) && (tx_port_reg_val <= 0x11)) { pr_err("%s: ERROR: Should not be here\n", __func__); pr_err("%s: ERROR: DEC connected to SLIM TX%u\n", __func__, tx_port); return -EINVAL; } else if (tx_port_reg_val == 0) { pr_debug("%s: no signal to SLIM TX%u\n", __func__, tx_port); } else { pr_err("%s: ERROR: wrong signal to SLIM TX%u\n", __func__, tx_port); pr_err("%s: ERROR: wrong signal = %u\n", __func__, tx_port_reg_val); return -EINVAL; } } } return 0; } static int tabla_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_codec *codec = dai->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(dai->codec); u8 tx_fs_rate_reg_val, rx_fs_rate_reg_val; u32 compander_fs; int ret; pr_debug("%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__, dai->name, dai->id, params_rate(params), params_channels(params)); switch (params_rate(params)) { case 8000: tx_fs_rate_reg_val = 0x00; rx_fs_rate_reg_val = 0x00; compander_fs = COMPANDER_FS_8KHZ; break; case 16000: tx_fs_rate_reg_val = 0x01; rx_fs_rate_reg_val = 0x20; compander_fs = COMPANDER_FS_16KHZ; break; case 32000: tx_fs_rate_reg_val = 0x02; rx_fs_rate_reg_val = 0x40; compander_fs = COMPANDER_FS_32KHZ; break; case 48000: tx_fs_rate_reg_val = 0x03; rx_fs_rate_reg_val = 0x60; compander_fs = COMPANDER_FS_48KHZ; break; case 96000: tx_fs_rate_reg_val = 0x04; rx_fs_rate_reg_val = 0x80; compander_fs = COMPANDER_FS_96KHZ; break; case 192000: tx_fs_rate_reg_val = 0x05; rx_fs_rate_reg_val = 0xA0; compander_fs = COMPANDER_FS_192KHZ; break; default: pr_err("%s: Invalid sampling rate %d\n", __func__, params_rate(params)); return -EINVAL; } switch (substream->stream) { case SNDRV_PCM_STREAM_CAPTURE: ret = tabla_set_decimator_rate(dai, tx_fs_rate_reg_val, params_rate(params)); if (ret < 0) { pr_err("%s: set decimator rate failed %d\n", __func__, ret); return ret; } if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) { switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_TX_I2S_CTL, 0x20, 0x20); break; case SNDRV_PCM_FORMAT_S32_LE: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_TX_I2S_CTL, 0x20, 0x00); break; default: pr_err("%s: Invalid format %d\n", __func__, params_format(params)); return -EINVAL; } snd_soc_update_bits(codec, TABLA_A_CDC_CLK_TX_I2S_CTL, 0x07, tx_fs_rate_reg_val); } else { switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: tabla->dai[dai->id].bit_width = 16; break; default: pr_err("%s: Invalid TX format %d\n", __func__, params_format(params)); return -EINVAL; } tabla->dai[dai->id].rate = params_rate(params); } break; case SNDRV_PCM_STREAM_PLAYBACK: ret = tabla_set_interpolator_rate(dai, rx_fs_rate_reg_val, compander_fs, params_rate(params)); if (ret < 0) { pr_err("%s: set decimator rate failed %d\n", __func__, ret); return ret; } if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) { switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_I2S_CTL, 0x20, 0x20); break; case SNDRV_PCM_FORMAT_S32_LE: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_I2S_CTL, 0x20, 0x00); break; default: pr_err("%s: Invalid RX format %d\n", __func__, params_format(params)); return -EINVAL; } snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_I2S_CTL, 0x03, (rx_fs_rate_reg_val >> 0x05)); } else { switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: tabla->dai[dai->id].bit_width = 16; break; default: pr_err("%s: Invalid format %d\n", __func__, params_format(params)); return -EINVAL; } tabla->dai[dai->id].rate = params_rate(params); } break; default: pr_err("%s: Invalid stream type %d\n", __func__, substream->stream); return -EINVAL; } return 0; } static struct snd_soc_dai_ops tabla_dai_ops = { .startup = tabla_startup, .shutdown = tabla_shutdown, .hw_params = tabla_hw_params, .set_sysclk = tabla_set_dai_sysclk, .set_fmt = tabla_set_dai_fmt, .set_channel_map = tabla_set_channel_map, .get_channel_map = tabla_get_channel_map, }; static struct snd_soc_dai_driver tabla_dai[] = { { .name = "tabla_rx1", .id = AIF1_PB, .playback = { .stream_name = "AIF1 Playback", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_max = 192000, .rate_min = 8000, .channels_min = 1, .channels_max = 2, }, .ops = &tabla_dai_ops, }, { .name = "tabla_tx1", .id = AIF1_CAP, .capture = { .stream_name = "AIF1 Capture", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_max = 192000, .rate_min = 8000, .channels_min = 1, .channels_max = 4, }, .ops = &tabla_dai_ops, }, { .name = "tabla_rx2", .id = AIF2_PB, .playback = { .stream_name = "AIF2 Playback", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_min = 8000, .rate_max = 192000, .channels_min = 1, .channels_max = 2, }, .ops = &tabla_dai_ops, }, { .name = "tabla_tx2", .id = AIF2_CAP, .capture = { .stream_name = "AIF2 Capture", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_max = 192000, .rate_min = 8000, .channels_min = 1, .channels_max = 4, }, .ops = &tabla_dai_ops, }, { .name = "tabla_tx3", .id = AIF3_CAP, .capture = { .stream_name = "AIF3 Capture", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_max = 48000, .rate_min = 8000, .channels_min = 1, .channels_max = 2, }, .ops = &tabla_dai_ops, }, { .name = "tabla_rx3", .id = AIF3_PB, .playback = { .stream_name = "AIF3 Playback", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_min = 8000, .rate_max = 192000, .channels_min = 1, .channels_max = 2, }, .ops = &tabla_dai_ops, }, }; static struct snd_soc_dai_driver tabla_i2s_dai[] = { { .name = "tabla_i2s_rx1", .id = AIF1_PB, .playback = { .stream_name = "AIF1 Playback", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_max = 192000, .rate_min = 8000, .channels_min = 1, .channels_max = 4, }, .ops = &tabla_dai_ops, }, { .name = "tabla_i2s_tx1", .id = AIF1_CAP, .capture = { .stream_name = "AIF1 Capture", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_max = 192000, .rate_min = 8000, .channels_min = 1, .channels_max = 4, }, .ops = &tabla_dai_ops, }, }; static int tabla_codec_enable_chmask(struct tabla_priv *tabla_p, int event, int index) { int ret = 0; struct wcd9xxx_ch *ch; switch (event) { case SND_SOC_DAPM_POST_PMU: list_for_each_entry(ch, &tabla_p->dai[index].wcd9xxx_ch_list, list) { ret = wcd9xxx_get_slave_port(ch->ch_num); if (ret < 0) { pr_err("%s: Invalid slave port ID: %d\n", __func__, ret); ret = -EINVAL; break; } tabla_p->dai[index].ch_mask |= 1 << ret; } break; case SND_SOC_DAPM_POST_PMD: ret = wait_event_timeout(tabla_p->dai[index].dai_wait, (tabla_p->dai[index].ch_mask == 0), msecs_to_jiffies(SLIM_CLOSE_TIMEOUT)); if (!ret) { pr_err("%s: Slim close tx/rx wait timeout\n", __func__); ret = -EINVAL; } break; } return ret; } static int tabla_codec_enable_slimrx(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct wcd9xxx *core; struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla_p = snd_soc_codec_get_drvdata(codec); u32 ret = 0; struct wcd9xxx_codec_dai_data *dai; core = dev_get_drvdata(codec->dev->parent); pr_debug("%s: event called! codec name %s num_dai %d\n" "stream name %s event %d\n", __func__, w->codec->name, w->codec->num_dai, w->sname, event); /* Execute the callback only if interface type is slimbus */ if (tabla_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) { if (event == SND_SOC_DAPM_POST_PMD && (core != NULL) && (core->dev != NULL) && (core->dev->parent != NULL)) { pm_runtime_mark_last_busy(core->dev->parent); pm_runtime_put(core->dev->parent); } return 0; } pr_debug("%s: w->name %s w->shift %d event %d\n", __func__, w->name, w->shift, event); dai = &tabla_p->dai[w->shift]; switch (event) { case SND_SOC_DAPM_POST_PMU: ret = tabla_codec_enable_chmask(tabla_p, SND_SOC_DAPM_POST_PMU, w->shift); ret = wcd9xxx_cfg_slim_sch_rx(core, &dai->wcd9xxx_ch_list, dai->rate, dai->bit_width, &dai->grph); break; case SND_SOC_DAPM_POST_PMD: ret = wcd9xxx_close_slim_sch_rx(core, &dai->wcd9xxx_ch_list, dai->grph); ret = tabla_codec_enable_chmask(tabla_p, SND_SOC_DAPM_POST_PMD, w->shift); if (ret < 0) { ret = wcd9xxx_disconnect_port(core, &dai->wcd9xxx_ch_list, dai->grph); pr_info("%s: Disconnect RX port, ret = %d\n", __func__, ret); } if ((core != NULL) && (core->dev != NULL) && (core->dev->parent != NULL)) { pm_runtime_mark_last_busy(core->dev->parent); pm_runtime_put(core->dev->parent); } break; } return ret; } static int tabla_codec_enable_slimtx(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct wcd9xxx *core; struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla_p = snd_soc_codec_get_drvdata(codec); u32 ret = 0; struct wcd9xxx_codec_dai_data *dai; core = dev_get_drvdata(codec->dev->parent); pr_debug("%s: event called! codec name %s num_dai %d\n" "stream name %s\n", __func__, w->codec->name, w->codec->num_dai, w->sname); /* Execute the callback only if interface type is slimbus */ if (tabla_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) { if (event == SND_SOC_DAPM_POST_PMD && (core != NULL) && (core->dev != NULL) && (core->dev->parent != NULL)) { pm_runtime_mark_last_busy(core->dev->parent); pm_runtime_put(core->dev->parent); } return 0; } pr_debug("%s(): %s %d\n", __func__, w->name, event); dai = &tabla_p->dai[w->shift]; switch (event) { case SND_SOC_DAPM_POST_PMU: ret = tabla_codec_enable_chmask(tabla_p, SND_SOC_DAPM_POST_PMU, w->shift); ret = wcd9xxx_cfg_slim_sch_tx(core, &dai->wcd9xxx_ch_list, dai->rate, dai->bit_width, &dai->grph); break; case SND_SOC_DAPM_POST_PMD: ret = wcd9xxx_close_slim_sch_tx(core, &dai->wcd9xxx_ch_list, dai->grph); ret = tabla_codec_enable_chmask(tabla_p, SND_SOC_DAPM_POST_PMD, w->shift); if (ret < 0) { ret = wcd9xxx_disconnect_port(core, &dai->wcd9xxx_ch_list, dai->grph); pr_info("%s: Disconnect TX port, ret = %d\n", __func__, ret); } if ((core != NULL) && (core->dev != NULL) && (core->dev->parent != NULL)) { pm_runtime_mark_last_busy(core->dev->parent); pm_runtime_put(core->dev->parent); } break; } return ret; } /* Todo: Have seperate dapm widgets for I2S and Slimbus. * Might Need to have callbacks registered only for slimbus */ static const struct snd_soc_dapm_widget tabla_dapm_widgets[] = { /*RX stuff */ SND_SOC_DAPM_OUTPUT("EAR"), SND_SOC_DAPM_PGA_E("EAR PA", SND_SOC_NOPM, 0, 0, NULL, 0, tabla_ear_pa_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_MIXER("DAC1", SND_SOC_NOPM, 0, 0, dac1_switch, ARRAY_SIZE(dac1_switch)), SND_SOC_DAPM_AIF_IN_E("AIF1 PB", "AIF1 Playback", 0, SND_SOC_NOPM, AIF1_PB, 0, tabla_codec_enable_slimrx, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_IN_E("AIF2 PB", "AIF2 Playback", 0, SND_SOC_NOPM, AIF2_PB, 0, tabla_codec_enable_slimrx, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_IN_E("AIF3 PB", "AIF3 Playback", 0, SND_SOC_NOPM, AIF3_PB, 0, tabla_codec_enable_slimrx, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX("SLIM RX1 MUX", SND_SOC_NOPM, TABLA_RX1, 0, &slim_rx_mux[TABLA_RX1]), SND_SOC_DAPM_MUX("SLIM RX2 MUX", SND_SOC_NOPM, TABLA_RX2, 0, &slim_rx_mux[TABLA_RX2]), SND_SOC_DAPM_MUX("SLIM RX3 MUX", SND_SOC_NOPM, TABLA_RX3, 0, &slim_rx_mux[TABLA_RX3]), SND_SOC_DAPM_MUX("SLIM RX4 MUX", SND_SOC_NOPM, TABLA_RX4, 0, &slim_rx_mux[TABLA_RX4]), SND_SOC_DAPM_MUX("SLIM RX5 MUX", SND_SOC_NOPM, TABLA_RX5, 0, &slim_rx_mux[TABLA_RX5]), SND_SOC_DAPM_MUX("SLIM RX6 MUX", SND_SOC_NOPM, TABLA_RX6, 0, &slim_rx_mux[TABLA_RX6]), SND_SOC_DAPM_MUX("SLIM RX7 MUX", SND_SOC_NOPM, TABLA_RX7, 0, &slim_rx_mux[TABLA_RX7]), SND_SOC_DAPM_MIXER("SLIM RX1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SLIM RX2", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SLIM RX3", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SLIM RX4", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SLIM RX5", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SLIM RX6", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SLIM RX7", SND_SOC_NOPM, 0, 0, NULL, 0), /* Headphone */ SND_SOC_DAPM_OUTPUT("HEADPHONE"), SND_SOC_DAPM_PGA_E("HPHL", TABLA_A_RX_HPH_CNP_EN, 5, 0, NULL, 0, tabla_hph_pa_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER("HPHL DAC", TABLA_A_RX_HPH_L_DAC_CTL, 7, 0, hphl_switch, ARRAY_SIZE(hphl_switch)), SND_SOC_DAPM_PGA_E("HPHR", TABLA_A_RX_HPH_CNP_EN, 4, 0, NULL, 0, tabla_hph_pa_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_DAC_E("HPHR DAC", NULL, TABLA_A_RX_HPH_R_DAC_CTL, 7, 0, tabla_hphr_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* Speaker */ SND_SOC_DAPM_OUTPUT("LINEOUT1"), SND_SOC_DAPM_OUTPUT("LINEOUT2"), SND_SOC_DAPM_OUTPUT("LINEOUT3"), SND_SOC_DAPM_OUTPUT("LINEOUT4"), SND_SOC_DAPM_OUTPUT("LINEOUT5"), SND_SOC_DAPM_PGA_E("LINEOUT1 PA", TABLA_A_RX_LINE_CNP_EN, 0, 0, NULL, 0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("LINEOUT2 PA", TABLA_A_RX_LINE_CNP_EN, 1, 0, NULL, 0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("LINEOUT3 PA", TABLA_A_RX_LINE_CNP_EN, 2, 0, NULL, 0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("LINEOUT4 PA", TABLA_A_RX_LINE_CNP_EN, 3, 0, NULL, 0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("LINEOUT5 PA", TABLA_A_RX_LINE_CNP_EN, 4, 0, NULL, 0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_DAC_E("LINEOUT1 DAC", NULL, TABLA_A_RX_LINE_1_DAC_CTL, 7, 0 , tabla_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_DAC_E("LINEOUT2 DAC", NULL, TABLA_A_RX_LINE_2_DAC_CTL, 7, 0 , tabla_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_DAC_E("LINEOUT3 DAC", NULL, TABLA_A_RX_LINE_3_DAC_CTL, 7, 0 , tabla_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SWITCH("LINEOUT3 DAC GROUND", SND_SOC_NOPM, 0, 0, &lineout3_ground_switch), SND_SOC_DAPM_DAC_E("LINEOUT4 DAC", NULL, TABLA_A_RX_LINE_4_DAC_CTL, 7, 0 , tabla_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SWITCH("LINEOUT4 DAC GROUND", SND_SOC_NOPM, 0, 0, &lineout4_ground_switch), SND_SOC_DAPM_DAC_E("LINEOUT5 DAC", NULL, TABLA_A_RX_LINE_5_DAC_CTL, 7, 0 , tabla_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER_E("RX1 MIX2", TABLA_A_CDC_CLK_RX_B1_CTL, 0, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MIXER_E("RX2 MIX2", TABLA_A_CDC_CLK_RX_B1_CTL, 1, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MIXER_E("RX3 MIX2", TABLA_A_CDC_CLK_RX_B1_CTL, 2, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MIXER_E("RX4 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 3, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MIXER_E("RX5 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 4, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MIXER_E("RX6 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 5, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MIXER_E("RX7 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 6, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MIXER("RX1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("RX2 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("RX3 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MUX_E("RX4 DSM MUX", TABLA_A_CDC_CLK_RX_B1_CTL, 3, 0, &rx4_dsm_mux, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("RX6 DSM MUX", TABLA_A_CDC_CLK_RX_B1_CTL, 5, 0, &rx6_dsm_mux, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER_E("RX1 CHAIN", SND_SOC_NOPM, 5, 0, NULL, 0, tabla_codec_hphr_dem_input_selection, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD), SND_SOC_DAPM_MIXER_E("RX2 CHAIN", SND_SOC_NOPM, 5, 0, NULL, 0, tabla_codec_hphl_dem_input_selection, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD), SND_SOC_DAPM_MUX("RX1 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX1 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX1 MIX1 INP3", SND_SOC_NOPM, 0, 0, &rx_mix1_inp3_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX4 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx4_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX4 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx4_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX5 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx5_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX5 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx5_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX6 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx6_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX6 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx6_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX7 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx7_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX7 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx7_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX1 MIX2 INP1", SND_SOC_NOPM, 0, 0, &rx1_mix2_inp1_mux), SND_SOC_DAPM_MUX("RX1 MIX2 INP2", SND_SOC_NOPM, 0, 0, &rx1_mix2_inp2_mux), SND_SOC_DAPM_MUX("RX2 MIX2 INP1", SND_SOC_NOPM, 0, 0, &rx2_mix2_inp1_mux), SND_SOC_DAPM_MUX("RX2 MIX2 INP2", SND_SOC_NOPM, 0, 0, &rx2_mix2_inp2_mux), SND_SOC_DAPM_MUX("RX3 MIX2 INP1", SND_SOC_NOPM, 0, 0, &rx3_mix2_inp1_mux), SND_SOC_DAPM_MUX("RX3 MIX2 INP2", SND_SOC_NOPM, 0, 0, &rx3_mix2_inp2_mux), SND_SOC_DAPM_SUPPLY("CP", TABLA_A_CP_EN, 0, 0, tabla_codec_enable_charge_pump, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_SUPPLY("RX_BIAS", SND_SOC_NOPM, 0, 0, tabla_codec_enable_rx_bias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* TX */ SND_SOC_DAPM_SUPPLY("CDC_CONN", TABLA_A_CDC_CLK_OTHR_CTL, 2, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("LDO_H", SND_SOC_NOPM, 0, 0, tabla_codec_enable_ldo_h, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("COMP1_CLK", SND_SOC_NOPM, 0, 0, tabla_config_compander, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD), SND_SOC_DAPM_SUPPLY("COMP2_CLK", SND_SOC_NOPM, 1, 0, tabla_config_compander, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD), SND_SOC_DAPM_INPUT("AMIC1"), SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 External", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 Internal1", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 Internal2", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("ADC1", NULL, TABLA_A_TX_1_2_EN, 7, 0, tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_INPUT("AMIC3"), SND_SOC_DAPM_ADC_E("ADC3", NULL, TABLA_A_TX_3_4_EN, 7, 0, tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_INPUT("AMIC4"), SND_SOC_DAPM_ADC_E("ADC4", NULL, TABLA_A_TX_3_4_EN, 3, 0, tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_INPUT("AMIC5"), SND_SOC_DAPM_ADC_E("ADC5", NULL, TABLA_A_TX_5_6_EN, 7, 0, tabla_codec_enable_adc, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_INPUT("AMIC6"), SND_SOC_DAPM_ADC_E("ADC6", NULL, TABLA_A_TX_5_6_EN, 3, 0, tabla_codec_enable_adc, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MUX_E("DEC1 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 0, 0, &dec1_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC2 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 1, 0, &dec2_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC3 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 2, 0, &dec3_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC4 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 3, 0, &dec4_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC5 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 4, 0, &dec5_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC6 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 5, 0, &dec6_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC7 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 6, 0, &dec7_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC8 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 7, 0, &dec8_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC9 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B2_CTL, 0, 0, &dec9_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC10 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B2_CTL, 1, 0, &dec10_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX("ANC1 MUX", SND_SOC_NOPM, 0, 0, &anc1_mux), SND_SOC_DAPM_MUX("ANC2 MUX", SND_SOC_NOPM, 0, 0, &anc2_mux), SND_SOC_DAPM_OUTPUT("ANC HEADPHONE"), SND_SOC_DAPM_PGA_E("ANC HPHL", SND_SOC_NOPM, 0, 0, NULL, 0, tabla_codec_enable_anc, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("ANC HPHR", SND_SOC_NOPM, 0, 0, NULL, 0, tabla_codec_enable_anc, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX("ANC1 FB MUX", SND_SOC_NOPM, 0, 0, &anc1_fb_mux), SND_SOC_DAPM_INPUT("AMIC2"), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 External", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Power External", TABLA_A_MICB_2_CTL, 7, 0, tabla_codec_enable_micbias_power, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal1", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal2", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal3", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS3 External", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS3 Internal1", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS3 Internal2", SND_SOC_NOPM, 0, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("ADC2", NULL, TABLA_A_TX_1_2_EN, 3, 0, tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_OUT_E("AIF1 CAP", "AIF1 Capture", 0, SND_SOC_NOPM, AIF1_CAP, 0, tabla_codec_enable_slimtx, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_OUT_E("AIF2 CAP", "AIF2 Capture", 0, SND_SOC_NOPM, AIF2_CAP, 0, tabla_codec_enable_slimtx, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_OUT_E("AIF3 CAP", "AIF3 Capture", 0, SND_SOC_NOPM, AIF3_CAP, 0, tabla_codec_enable_slimtx, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER("AIF1_CAP Mixer", SND_SOC_NOPM, AIF1_CAP, 0, aif_cap_mixer, ARRAY_SIZE(aif_cap_mixer)), SND_SOC_DAPM_MIXER("AIF2_CAP Mixer", SND_SOC_NOPM, AIF2_CAP, 0, aif_cap_mixer, ARRAY_SIZE(aif_cap_mixer)), SND_SOC_DAPM_MIXER("AIF3_CAP Mixer", SND_SOC_NOPM, AIF3_CAP, 0, aif_cap_mixer, ARRAY_SIZE(aif_cap_mixer)), SND_SOC_DAPM_MUX("SLIM TX1 MUX", SND_SOC_NOPM, TABLA_TX1, 0, &sb_tx1_mux), SND_SOC_DAPM_MUX("SLIM TX2 MUX", SND_SOC_NOPM, TABLA_TX2, 0, &sb_tx2_mux), SND_SOC_DAPM_MUX("SLIM TX3 MUX", SND_SOC_NOPM, TABLA_TX3, 0, &sb_tx3_mux), SND_SOC_DAPM_MUX("SLIM TX4 MUX", SND_SOC_NOPM, TABLA_TX4, 0, &sb_tx4_mux), SND_SOC_DAPM_MUX("SLIM TX5 MUX", SND_SOC_NOPM, TABLA_TX5, 0, &sb_tx5_mux), SND_SOC_DAPM_MUX("SLIM TX6 MUX", SND_SOC_NOPM, TABLA_TX6, 0, &sb_tx6_mux), SND_SOC_DAPM_MUX("SLIM TX7 MUX", SND_SOC_NOPM, TABLA_TX7, 0, &sb_tx7_mux), SND_SOC_DAPM_MUX("SLIM TX8 MUX", SND_SOC_NOPM, TABLA_TX8, 0, &sb_tx8_mux), SND_SOC_DAPM_MUX("SLIM TX9 MUX", SND_SOC_NOPM, TABLA_TX9, 0, &sb_tx9_mux), SND_SOC_DAPM_MUX("SLIM TX10 MUX", SND_SOC_NOPM, TABLA_TX10, 0, &sb_tx10_mux), /* Digital Mic Inputs */ SND_SOC_DAPM_ADC_E("DMIC1", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC2", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC3", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC4", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC5", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC6", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* Sidetone */ SND_SOC_DAPM_MUX("IIR1 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir1_inp1_mux), SND_SOC_DAPM_PGA("IIR1", TABLA_A_CDC_CLK_SD_CTL, 0, 0, NULL, 0), SND_SOC_DAPM_MUX("IIR2 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir2_inp1_mux), SND_SOC_DAPM_PGA("IIR2", TABLA_A_CDC_CLK_SD_CTL, 1, 0, NULL, 0), /* AUX PGA */ SND_SOC_DAPM_ADC_E("AUX_PGA_Left", NULL, TABLA_A_AUX_L_EN, 7, 0, tabla_codec_enable_aux_pga, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("AUX_PGA_Right", NULL, TABLA_A_AUX_R_EN, 7, 0, tabla_codec_enable_aux_pga, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), /* Lineout, ear and HPH PA Mixers */ SND_SOC_DAPM_MIXER("HPHL_PA_MIXER", SND_SOC_NOPM, 0, 0, hphl_pa_mix, ARRAY_SIZE(hphl_pa_mix)), SND_SOC_DAPM_MIXER("HPHR_PA_MIXER", SND_SOC_NOPM, 0, 0, hphr_pa_mix, ARRAY_SIZE(hphr_pa_mix)), SND_SOC_DAPM_MIXER("LINEOUT1_PA_MIXER", SND_SOC_NOPM, 0, 0, lineout1_pa_mix, ARRAY_SIZE(lineout1_pa_mix)), SND_SOC_DAPM_MIXER("LINEOUT2_PA_MIXER", SND_SOC_NOPM, 0, 0, lineout2_pa_mix, ARRAY_SIZE(lineout2_pa_mix)), SND_SOC_DAPM_MIXER("LINEOUT3_PA_MIXER", SND_SOC_NOPM, 0, 0, lineout3_pa_mix, ARRAY_SIZE(lineout3_pa_mix)), SND_SOC_DAPM_MIXER("LINEOUT4_PA_MIXER", SND_SOC_NOPM, 0, 0, lineout4_pa_mix, ARRAY_SIZE(lineout4_pa_mix)), SND_SOC_DAPM_MIXER("LINEOUT5_PA_MIXER", SND_SOC_NOPM, 0, 0, lineout5_pa_mix, ARRAY_SIZE(lineout5_pa_mix)), SND_SOC_DAPM_MIXER("EAR_PA_MIXER", SND_SOC_NOPM, 0, 0, ear_pa_mix, ARRAY_SIZE(ear_pa_mix)), }; static short tabla_codec_read_sta_result(struct snd_soc_codec *codec) { u8 bias_msb, bias_lsb; short bias_value; bias_msb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B3_STATUS); bias_lsb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B2_STATUS); bias_value = (bias_msb << 8) | bias_lsb; return bias_value; } static short tabla_codec_read_dce_result(struct snd_soc_codec *codec) { u8 bias_msb, bias_lsb; short bias_value; bias_msb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B5_STATUS); bias_lsb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B4_STATUS); bias_value = (bias_msb << 8) | bias_lsb; return bias_value; } static void tabla_turn_onoff_rel_detection(struct snd_soc_codec *codec, bool on) { snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x02, on << 1); } static short __tabla_codec_sta_dce(struct snd_soc_codec *codec, int dce, bool override_bypass, bool noreldetection) { short bias_value; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL); if (noreldetection) tabla_turn_onoff_rel_detection(codec, false); /* Turn on the override */ if (!override_bypass) snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x4, 0x4); if (dce) { snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x4); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x0); usleep_range(tabla->mbhc_data.t_sta_dce, tabla->mbhc_data.t_sta_dce); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x4); usleep_range(tabla->mbhc_data.t_dce, tabla->mbhc_data.t_dce); bias_value = tabla_codec_read_dce_result(codec); } else { snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x2); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x0); usleep_range(tabla->mbhc_data.t_sta_dce, tabla->mbhc_data.t_sta_dce); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x2); usleep_range(tabla->mbhc_data.t_sta, tabla->mbhc_data.t_sta); bias_value = tabla_codec_read_sta_result(codec); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x0); } /* Turn off the override after measuring mic voltage */ if (!override_bypass) snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x04, 0x00); if (noreldetection) tabla_turn_onoff_rel_detection(codec, true); wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL); return bias_value; } static short tabla_codec_sta_dce(struct snd_soc_codec *codec, int dce, bool norel) { return __tabla_codec_sta_dce(codec, dce, false, norel); } /* called only from interrupt which is under codec_resource_lock acquisition */ static short tabla_codec_setup_hs_polling(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); short bias_value; u8 cfilt_mode = 0; pr_debug("%s: enter, mclk_enabled %d\n", __func__, tabla->mclk_enabled); if (!tabla->mbhc_cfg.calibration) { pr_err("Error, no tabla calibration\n"); return -ENODEV; } if (!tabla->mclk_enabled) { tabla_codec_disable_clock_block(codec); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_MBHC_MODE); tabla_enable_rx_bias(codec, 1); tabla_codec_enable_clock_block(codec, 1); } snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x05, 0x01); if (!tabla->mbhc_cfg.micbias_always_on) { /* Make sure CFILT is in fast mode, save current mode */ cfilt_mode = snd_soc_read(codec, tabla->mbhc_bias_regs.cfilt_ctl); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x70, 0x00); } snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x1F, 0x16); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x2, 0x2); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x84); snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x80, 0x80); snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x1F, 0x1C); snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_TEST_CTL, 0x40, 0x40); snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x80, 0x00); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x00); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x2, 0x2); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); tabla_codec_calibrate_hs_polling(codec); /* don't flip override */ bias_value = __tabla_codec_sta_dce(codec, 1, true, true); if (!tabla->mbhc_cfg.micbias_always_on) snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40, cfilt_mode); snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x13, 0x00); return bias_value; } static int tabla_cancel_btn_work(struct tabla_priv *tabla) { int r = 0; struct wcd9xxx *core = dev_get_drvdata(tabla->codec->dev->parent); if (cancel_delayed_work_sync(&tabla->mbhc_btn_dwork)) { /* if scheduled mbhc_btn_dwork is canceled from here, * we have to unlock from here instead btn_work */ wcd9xxx_unlock_sleep(core); r = 1; } return r; } /* called under codec_resource_lock acquisition */ void tabla_set_and_turnoff_hph_padac(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u8 wg_time; wg_time = snd_soc_read(codec, TABLA_A_RX_HPH_CNP_WG_TIME) ; wg_time += 1; /* If headphone PA is on, check if userspace receives * removal event to sync-up PA's state */ if (tabla_is_hph_pa_on(codec)) { pr_debug("%s PA is on, setting PA_OFF_ACK\n", __func__); set_bit(TABLA_HPHL_PA_OFF_ACK, &tabla->hph_pa_dac_state); set_bit(TABLA_HPHR_PA_OFF_ACK, &tabla->hph_pa_dac_state); } else { pr_debug("%s PA is off\n", __func__); } if (tabla_is_hph_dac_on(codec, 1)) set_bit(TABLA_HPHL_DAC_OFF_ACK, &tabla->hph_pa_dac_state); if (tabla_is_hph_dac_on(codec, 0)) set_bit(TABLA_HPHR_DAC_OFF_ACK, &tabla->hph_pa_dac_state); snd_soc_update_bits(codec, TABLA_A_RX_HPH_CNP_EN, 0x30, 0x00); snd_soc_update_bits(codec, TABLA_A_RX_HPH_L_DAC_CTL, 0x80, 0x00); snd_soc_update_bits(codec, TABLA_A_RX_HPH_R_DAC_CTL, 0xC0, 0x00); usleep_range(wg_time * 1000, wg_time * 1000); } static void tabla_clr_and_turnon_hph_padac(struct tabla_priv *tabla) { bool pa_turned_on = false; struct snd_soc_codec *codec = tabla->codec; u8 wg_time; wg_time = snd_soc_read(codec, TABLA_A_RX_HPH_CNP_WG_TIME) ; wg_time += 1; if (test_and_clear_bit(TABLA_HPHR_DAC_OFF_ACK, &tabla->hph_pa_dac_state)) { pr_debug("%s: HPHR clear flag and enable DAC\n", __func__); snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_R_DAC_CTL, 0xC0, 0xC0); } if (test_and_clear_bit(TABLA_HPHL_DAC_OFF_ACK, &tabla->hph_pa_dac_state)) { pr_debug("%s: HPHL clear flag and enable DAC\n", __func__); snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_L_DAC_CTL, 0xC0, 0xC0); } if (test_and_clear_bit(TABLA_HPHR_PA_OFF_ACK, &tabla->hph_pa_dac_state)) { pr_debug("%s: HPHR clear flag and enable PA\n", __func__); snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_CNP_EN, 0x10, 1 << 4); pa_turned_on = true; } if (test_and_clear_bit(TABLA_HPHL_PA_OFF_ACK, &tabla->hph_pa_dac_state)) { pr_debug("%s: HPHL clear flag and enable PA\n", __func__); snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_CNP_EN, 0x20, 1 << 5); pa_turned_on = true; } if (pa_turned_on) { pr_debug("%s: PA was turned off by MBHC and not by DAPM\n", __func__); usleep_range(wg_time * 1000, wg_time * 1000); } } /* called under codec_resource_lock acquisition */ static void tabla_codec_enable_mbhc_micbias(struct snd_soc_codec *codec, bool enable) { int r; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); if (!tabla->mbhc_cfg.micbias_always_on) return; if (enable) { TABLA_RELEASE_LOCK(tabla->codec_resource_lock); tabla_codec_update_cfilt_usage(codec, tabla->mbhc_bias_regs.cfilt_sel, 1); r = snd_soc_dapm_force_enable_pin(&codec->dapm, "MIC BIAS2 Power External"); snd_soc_dapm_sync(&codec->dapm); TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); pr_debug("%s: Turning on MICBIAS2 r %d\n", __func__, r); } else { TABLA_RELEASE_LOCK(tabla->codec_resource_lock); r = snd_soc_dapm_disable_pin(&codec->dapm, "MIC BIAS2 Power External"); snd_soc_dapm_sync(&codec->dapm); tabla_codec_update_cfilt_usage(codec, tabla->mbhc_bias_regs.cfilt_sel, 0); TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); pr_debug("%s: Turning off MICBIAS2 r %d\n", __func__, r); } } /* called under codec_resource_lock acquisition */ static void tabla_codec_report_plug(struct snd_soc_codec *codec, int insertion, enum snd_jack_types jack_type) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: enter insertion %d hph_status %x\n", __func__, insertion, tabla->hph_status); if (!insertion) { /* Report removal */ tabla->hph_status &= ~jack_type; if (tabla->mbhc_cfg.headset_jack) { /* cancel possibly scheduled btn work and * report release if we reported button press */ if (tabla_cancel_btn_work(tabla)) { pr_debug("%s: button press is canceled\n", __func__); } else if (tabla->buttons_pressed) { pr_debug("%s: Reporting release for reported " "button press %d\n", __func__, jack_type); tabla_snd_soc_jack_report(tabla, tabla->mbhc_cfg.button_jack, 0, tabla->buttons_pressed); tabla->buttons_pressed &= ~TABLA_JACK_BUTTON_MASK; } if (jack_type == SND_JACK_HEADSET) tabla_codec_enable_mbhc_micbias(codec, false); pr_debug("%s: Reporting removal %d(%x)\n", __func__, jack_type, tabla->hph_status); tabla_snd_soc_jack_report(tabla, tabla->mbhc_cfg.headset_jack, tabla->hph_status, TABLA_JACK_MASK); } tabla_set_and_turnoff_hph_padac(codec); hphocp_off_report(tabla, SND_JACK_OC_HPHR, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); hphocp_off_report(tabla, SND_JACK_OC_HPHL, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); tabla->current_plug = PLUG_TYPE_NONE; tabla->mbhc_polling_active = false; } else { if (tabla->mbhc_cfg.detect_extn_cable) { /* Report removal of current jack type */ if (tabla->hph_status != jack_type && tabla->mbhc_cfg.headset_jack) { pr_debug("%s: Reporting removal (%x)\n", __func__, tabla->hph_status); tabla_snd_soc_jack_report(tabla, tabla->mbhc_cfg.headset_jack, 0, TABLA_JACK_MASK); tabla->hph_status = 0; } } /* Report insertion */ tabla->hph_status |= jack_type; if (jack_type == SND_JACK_HEADPHONE) tabla->current_plug = PLUG_TYPE_HEADPHONE; else if (jack_type == SND_JACK_UNSUPPORTED) tabla->current_plug = PLUG_TYPE_GND_MIC_SWAP; else if (jack_type == SND_JACK_HEADSET) { tabla->mbhc_polling_active = true; tabla->current_plug = PLUG_TYPE_HEADSET; tabla_codec_enable_mbhc_micbias(codec, true); } else if (jack_type == SND_JACK_LINEOUT) tabla->current_plug = PLUG_TYPE_HIGH_HPH; if (tabla->mbhc_cfg.headset_jack) { pr_debug("%s: Reporting insertion %d(%x)\n", __func__, jack_type, tabla->hph_status); tabla_snd_soc_jack_report(tabla, tabla->mbhc_cfg.headset_jack, tabla->hph_status, TABLA_JACK_MASK); } tabla_clr_and_turnon_hph_padac(tabla); } pr_debug("%s: leave hph_status %x\n", __func__, tabla->hph_status); } static int tabla_codec_enable_hs_detect(struct snd_soc_codec *codec, int insertion, int trigger, bool padac_off) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); int central_bias_enabled = 0; const struct tabla_mbhc_general_cfg *generic = TABLA_MBHC_CAL_GENERAL_PTR(tabla->mbhc_cfg.calibration); const struct tabla_mbhc_plug_detect_cfg *plug_det = TABLA_MBHC_CAL_PLUG_DET_PTR(tabla->mbhc_cfg.calibration); pr_debug("%s: enter insertion(%d) trigger(0x%x)\n", __func__, insertion, trigger); if (!tabla->mbhc_cfg.calibration) { pr_err("Error, no tabla calibration\n"); return -EINVAL; } snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x1, 0); /* Make sure mic bias and Mic line schmitt trigger * are turned OFF */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x01); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x90, 0x00); if (insertion) { pr_debug("%s: setup for insertion\n", __func__); tabla_codec_switch_micbias(codec, 0); /* DAPM can manipulate PA/DAC bits concurrently */ if (padac_off == true) { tabla_set_and_turnoff_hph_padac(codec); } if (trigger & MBHC_USE_HPHL_TRIGGER) { /* Enable HPH Schmitt Trigger */ snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x11, 0x11); snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x0C, plug_det->hph_current << 2); snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x02, 0x02); } if (trigger & MBHC_USE_MB_TRIGGER) { /* enable the mic line schmitt trigger */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x60, plug_det->mic_current << 5); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x80); usleep_range(plug_det->t_mic_pid, plug_det->t_mic_pid); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x00); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x10, 0x10); } /* setup for insetion detection */ snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x2, 0); } else { pr_debug("setup for removal detection\n"); /* Make sure the HPH schmitt trigger is OFF */ snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x12, 0x00); /* enable the mic line schmitt trigger */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x00); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x60, plug_det->mic_current << 5); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x80); usleep_range(plug_det->t_mic_pid, plug_det->t_mic_pid); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x10, 0x10); /* Setup for low power removal detection */ snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x2, 0x2); } if (snd_soc_read(codec, TABLA_A_CDC_MBHC_B1_CTL) & 0x4) { /* called called by interrupt */ if (!(tabla->clock_active)) { tabla_codec_enable_config_mode(codec, 1); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x06, 0); usleep_range(generic->t_shutdown_plug_rem, generic->t_shutdown_plug_rem); tabla_codec_enable_config_mode(codec, 0); } else snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x06, 0); } snd_soc_update_bits(codec, tabla->mbhc_bias_regs.int_rbias, 0x80, 0); /* If central bandgap disabled */ if (!(snd_soc_read(codec, TABLA_A_PIN_CTL_OE1) & 1)) { snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE1, 0x3, 0x3); usleep_range(generic->t_bg_fast_settle, generic->t_bg_fast_settle); central_bias_enabled = 1; } /* If LDO_H disabled */ if (snd_soc_read(codec, TABLA_A_PIN_CTL_OE0) & 0x80) { snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE0, 0x10, 0); snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE0, 0x80, 0x80); usleep_range(generic->t_ldoh, generic->t_ldoh); snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE0, 0x80, 0); if (central_bias_enabled) snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE1, 0x1, 0); } snd_soc_update_bits(codec, tabla->reg_addr.micb_4_mbhc, 0x3, tabla->mbhc_cfg.micbias); wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x1, 0x1); pr_debug("%s: leave\n", __func__); return 0; } static u16 tabla_codec_v_sta_dce(struct snd_soc_codec *codec, bool dce, s16 vin_mv) { struct tabla_priv *tabla; s16 diff, zero; u32 mb_mv, in; u16 value; tabla = snd_soc_codec_get_drvdata(codec); mb_mv = tabla->mbhc_data.micb_mv; if (mb_mv == 0) { pr_err("%s: Mic Bias voltage is set to zero\n", __func__); return -EINVAL; } if (dce) { diff = (tabla->mbhc_data.dce_mb) - (tabla->mbhc_data.dce_z); zero = (tabla->mbhc_data.dce_z); } else { diff = (tabla->mbhc_data.sta_mb) - (tabla->mbhc_data.sta_z); zero = (tabla->mbhc_data.sta_z); } in = (u32) diff * vin_mv; value = (u16) (in / mb_mv) + zero; return value; } static s32 tabla_codec_sta_dce_v(struct snd_soc_codec *codec, s8 dce, u16 bias_value) { struct tabla_priv *tabla; s16 value, z, mb; s32 mv; tabla = snd_soc_codec_get_drvdata(codec); value = bias_value; if (dce) { z = (tabla->mbhc_data.dce_z); mb = (tabla->mbhc_data.dce_mb); mv = (value - z) * (s32)tabla->mbhc_data.micb_mv / (mb - z); } else { z = (tabla->mbhc_data.sta_z); mb = (tabla->mbhc_data.sta_mb); mv = (value - z) * (s32)tabla->mbhc_data.micb_mv / (mb - z); } return mv; } static void btn_lpress_fn(struct work_struct *work) { struct delayed_work *delayed_work; struct tabla_priv *tabla; short bias_value; int dce_mv, sta_mv; struct wcd9xxx *core; pr_debug("%s:\n", __func__); delayed_work = to_delayed_work(work); tabla = container_of(delayed_work, struct tabla_priv, mbhc_btn_dwork); core = dev_get_drvdata(tabla->codec->dev->parent); if (tabla) { if (tabla->mbhc_cfg.button_jack) { bias_value = tabla_codec_read_sta_result(tabla->codec); sta_mv = tabla_codec_sta_dce_v(tabla->codec, 0, bias_value); bias_value = tabla_codec_read_dce_result(tabla->codec); dce_mv = tabla_codec_sta_dce_v(tabla->codec, 1, bias_value); pr_debug("%s: Reporting long button press event" " STA: %d, DCE: %d\n", __func__, sta_mv, dce_mv); tabla_snd_soc_jack_report(tabla, tabla->mbhc_cfg.button_jack, tabla->buttons_pressed, tabla->buttons_pressed); } } else { pr_err("%s: Bad tabla private data\n", __func__); } pr_debug("%s: leave\n", __func__); wcd9xxx_unlock_sleep(core); } static u16 tabla_get_cfilt_reg(struct snd_soc_codec *codec, u8 cfilt) { u16 reg; switch (cfilt) { case TABLA_CFILT1_SEL: reg = TABLA_A_MICB_CFILT_1_CTL; break; case TABLA_CFILT2_SEL: reg = TABLA_A_MICB_CFILT_2_CTL; break; case TABLA_CFILT3_SEL: reg = TABLA_A_MICB_CFILT_3_CTL; break; default: BUG(); } return reg; } void tabla_mbhc_cal(struct snd_soc_codec *codec) { struct tabla_priv *tabla; struct tabla_mbhc_btn_detect_cfg *btn_det; u8 cfilt_mode, micbias2_cfilt_mode, bg_mode; u8 ncic, nmeas, navg; u32 mclk_rate; u32 dce_wait, sta_wait; u8 *n_cic; void *calibration; u16 bias2_ctl; tabla = snd_soc_codec_get_drvdata(codec); calibration = tabla->mbhc_cfg.calibration; wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL); tabla_turn_onoff_rel_detection(codec, false); /* First compute the DCE / STA wait times * depending on tunable parameters. * The value is computed in microseconds */ btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(calibration); n_cic = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_CIC); ncic = n_cic[tabla_codec_mclk_index(tabla)]; nmeas = TABLA_MBHC_CAL_BTN_DET_PTR(calibration)->n_meas; navg = TABLA_MBHC_CAL_GENERAL_PTR(calibration)->mbhc_navg; mclk_rate = tabla->mbhc_cfg.mclk_rate; dce_wait = (1000 * 512 * ncic * (nmeas + 1)) / (mclk_rate / 1000); sta_wait = (1000 * 128 * (navg + 1)) / (mclk_rate / 1000); tabla->mbhc_data.t_dce = dce_wait; tabla->mbhc_data.t_sta = sta_wait; /* LDOH and CFILT are already configured during pdata handling. * Only need to make sure CFILT and bandgap are in Fast mode. * Need to restore defaults once calculation is done. */ cfilt_mode = snd_soc_read(codec, tabla->mbhc_bias_regs.cfilt_ctl); micbias2_cfilt_mode = snd_soc_read(codec, tabla_get_cfilt_reg(codec, tabla->pdata->micbias.bias2_cfilt_sel)); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40, TABLA_CFILT_FAST_MODE); snd_soc_update_bits(codec, tabla_get_cfilt_reg(codec, tabla->pdata->micbias.bias2_cfilt_sel), 0x40, TABLA_CFILT_FAST_MODE); bg_mode = snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x02, 0x02); /* Micbias, CFILT, LDOH, MBHC MUX mode settings * to perform ADC calibration */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x60, tabla->mbhc_cfg.micbias << 5); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x00); snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x60, 0x60); snd_soc_write(codec, TABLA_A_TX_7_MBHC_TEST_CTL, 0x78); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x04, 0x04); /* MICBIAS2 routing for calibration */ bias2_ctl = snd_soc_read(codec, TABLA_A_MICB_2_CTL); snd_soc_update_bits(codec, TABLA_A_MICB_1_MBHC, 0x03, TABLA_MICBIAS2); snd_soc_write(codec, TABLA_A_MICB_2_CTL, snd_soc_read(codec, tabla->mbhc_bias_regs.ctl_reg)); /* DCE measurement for 0 volts */ snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x0A); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x04); snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x02); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x81); usleep_range(100, 100); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x04); usleep_range(tabla->mbhc_data.t_dce, tabla->mbhc_data.t_dce); tabla->mbhc_data.dce_z = tabla_codec_read_dce_result(codec); /* DCE measurment for MB voltage */ snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x0A); snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x02); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x82); usleep_range(100, 100); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x04); usleep_range(tabla->mbhc_data.t_dce, tabla->mbhc_data.t_dce); tabla->mbhc_data.dce_mb = tabla_codec_read_dce_result(codec); /* Sta measuremnt for 0 volts */ snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x0A); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x02); snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x02); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x81); usleep_range(100, 100); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x02); usleep_range(tabla->mbhc_data.t_sta, tabla->mbhc_data.t_sta); tabla->mbhc_data.sta_z = tabla_codec_read_sta_result(codec); /* STA Measurement for MB Voltage */ snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x82); usleep_range(100, 100); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x02); usleep_range(tabla->mbhc_data.t_sta, tabla->mbhc_data.t_sta); tabla->mbhc_data.sta_mb = tabla_codec_read_sta_result(codec); /* Restore default settings. */ snd_soc_write(codec, TABLA_A_MICB_2_CTL, bias2_ctl); snd_soc_update_bits(codec, TABLA_A_MICB_1_MBHC, 0x03, tabla->mbhc_cfg.micbias); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x04, 0x00); snd_soc_update_bits(codec, tabla_get_cfilt_reg(codec, tabla->pdata->micbias.bias2_cfilt_sel), 0x40, micbias2_cfilt_mode); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40, cfilt_mode); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x02, bg_mode); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x84); usleep_range(100, 100); wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL); tabla_turn_onoff_rel_detection(codec, true); } void *tabla_mbhc_cal_btn_det_mp(const struct tabla_mbhc_btn_detect_cfg* btn_det, const enum tabla_mbhc_btn_det_mem mem) { void *ret = &btn_det->_v_btn_low; switch (mem) { case TABLA_BTN_DET_GAIN: ret += sizeof(btn_det->_n_cic); case TABLA_BTN_DET_N_CIC: ret += sizeof(btn_det->_n_ready); case TABLA_BTN_DET_N_READY: ret += sizeof(btn_det->_v_btn_high[0]) * btn_det->num_btn; case TABLA_BTN_DET_V_BTN_HIGH: ret += sizeof(btn_det->_v_btn_low[0]) * btn_det->num_btn; case TABLA_BTN_DET_V_BTN_LOW: /* do nothing */ break; default: ret = NULL; } return ret; } static s16 tabla_scale_v_micb_vddio(struct tabla_priv *tabla, int v, bool tovddio) { int r; int vddio_k, mb_k; vddio_k = tabla_find_k_value(tabla->pdata->micbias.ldoh_v, VDDIO_MICBIAS_MV); mb_k = tabla_find_k_value(tabla->pdata->micbias.ldoh_v, tabla->mbhc_data.micb_mv); if (tovddio) r = v * vddio_k / mb_k; else r = v * mb_k / vddio_k; return r; } static void tabla_mbhc_calc_rel_thres(struct snd_soc_codec *codec, s16 mv) { s16 deltamv; struct tabla_priv *tabla; struct tabla_mbhc_btn_detect_cfg *btn_det; tabla = snd_soc_codec_get_drvdata(codec); btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->mbhc_cfg.calibration); tabla->mbhc_data.v_b1_h = tabla_codec_v_sta_dce(codec, DCE, mv + btn_det->v_btn_press_delta_cic); tabla->mbhc_data.v_brh = tabla->mbhc_data.v_b1_h; tabla->mbhc_data.v_brl = TABLA_MBHC_BUTTON_MIN; deltamv = mv + btn_det->v_btn_press_delta_sta; tabla->mbhc_data.v_b1_hu = tabla_codec_v_sta_dce(codec, STA, deltamv); deltamv = mv + btn_det->v_btn_press_delta_cic; tabla->mbhc_data.v_b1_huc = tabla_codec_v_sta_dce(codec, DCE, deltamv); } static void tabla_mbhc_set_rel_thres(struct snd_soc_codec *codec, s16 mv) { tabla_mbhc_calc_rel_thres(codec, mv); tabla_codec_calibrate_rel(codec); } static s16 tabla_mbhc_highest_btn_mv(struct snd_soc_codec *codec) { struct tabla_priv *tabla; struct tabla_mbhc_btn_detect_cfg *btn_det; u16 *btn_high; tabla = snd_soc_codec_get_drvdata(codec); btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->mbhc_cfg.calibration); btn_high = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_V_BTN_HIGH); return btn_high[btn_det->num_btn - 1]; } static void tabla_mbhc_calc_thres(struct snd_soc_codec *codec) { struct tabla_priv *tabla; struct tabla_mbhc_btn_detect_cfg *btn_det; struct tabla_mbhc_plug_type_cfg *plug_type; u8 *n_ready; tabla = snd_soc_codec_get_drvdata(codec); btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->mbhc_cfg.calibration); plug_type = TABLA_MBHC_CAL_PLUG_TYPE_PTR(tabla->mbhc_cfg.calibration); n_ready = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_READY); if (tabla->mbhc_cfg.mclk_rate == TABLA_MCLK_RATE_12288KHZ) { tabla->mbhc_data.npoll = 4; tabla->mbhc_data.nbounce_wait = 30; } else if (tabla->mbhc_cfg.mclk_rate == TABLA_MCLK_RATE_9600KHZ) { tabla->mbhc_data.npoll = 7; tabla->mbhc_data.nbounce_wait = 23; } tabla->mbhc_data.t_sta_dce = ((1000 * 256) / (tabla->mbhc_cfg.mclk_rate / 1000) * n_ready[tabla_codec_mclk_index(tabla)]) + 10; tabla->mbhc_data.v_ins_hu = tabla_codec_v_sta_dce(codec, STA, plug_type->v_hs_max); tabla->mbhc_data.v_ins_h = tabla_codec_v_sta_dce(codec, DCE, plug_type->v_hs_max); tabla->mbhc_data.v_inval_ins_low = TABLA_MBHC_FAKE_INSERT_LOW; if (tabla->mbhc_cfg.gpio) tabla->mbhc_data.v_inval_ins_high = TABLA_MBHC_FAKE_INSERT_HIGH; else tabla->mbhc_data.v_inval_ins_high = TABLA_MBHC_FAKE_INS_HIGH_NO_GPIO; if (tabla->mbhc_data.micb_mv != VDDIO_MICBIAS_MV) { tabla->mbhc_data.adj_v_hs_max = tabla_scale_v_micb_vddio(tabla, plug_type->v_hs_max, true); tabla->mbhc_data.adj_v_ins_hu = tabla_codec_v_sta_dce(codec, STA, tabla->mbhc_data.adj_v_hs_max); tabla->mbhc_data.adj_v_ins_h = tabla_codec_v_sta_dce(codec, DCE, tabla->mbhc_data.adj_v_hs_max); tabla->mbhc_data.v_inval_ins_low = tabla_scale_v_micb_vddio(tabla, tabla->mbhc_data.v_inval_ins_low, false); tabla->mbhc_data.v_inval_ins_high = tabla_scale_v_micb_vddio(tabla, tabla->mbhc_data.v_inval_ins_high, false); } tabla_mbhc_calc_rel_thres(codec, tabla_mbhc_highest_btn_mv(codec)); tabla->mbhc_data.v_no_mic = tabla_codec_v_sta_dce(codec, STA, plug_type->v_no_mic); } void tabla_mbhc_init(struct snd_soc_codec *codec) { struct tabla_priv *tabla; struct tabla_mbhc_general_cfg *generic; struct tabla_mbhc_btn_detect_cfg *btn_det; int n; u8 *n_cic, *gain; struct wcd9xxx *tabla_core = dev_get_drvdata(codec->dev->parent); tabla = snd_soc_codec_get_drvdata(codec); generic = TABLA_MBHC_CAL_GENERAL_PTR(tabla->mbhc_cfg.calibration); btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->mbhc_cfg.calibration); for (n = 0; n < 8; n++) { if ((!TABLA_IS_1_X(tabla_core->version)) || n != 7) { snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_FEATURE_B1_CFG, 0x07, n); snd_soc_write(codec, TABLA_A_CDC_MBHC_FEATURE_B2_CFG, btn_det->c[n]); } } snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B2_CTL, 0x07, btn_det->nc); n_cic = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_CIC); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_TIMER_B6_CTL, 0xFF, n_cic[tabla_codec_mclk_index(tabla)]); gain = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_GAIN); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B2_CTL, 0x78, gain[tabla_codec_mclk_index(tabla)] << 3); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_TIMER_B4_CTL, 0x70, generic->mbhc_nsa << 4); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_TIMER_B4_CTL, 0x0F, btn_det->n_meas); snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B5_CTL, generic->mbhc_navg); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x80, 0x80); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x78, btn_det->mbhc_nsc << 3); snd_soc_update_bits(codec, tabla->reg_addr.micb_4_mbhc, 0x03, TABLA_MICBIAS2); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x02, 0x02); snd_soc_update_bits(codec, TABLA_A_MBHC_SCALING_MUX_2, 0xF0, 0xF0); /* override mbhc's micbias */ snd_soc_update_bits(codec, TABLA_A_MICB_1_MBHC, 0x03, tabla->mbhc_cfg.micbias); } static bool tabla_mbhc_fw_validate(const struct firmware *fw) { u32 cfg_offset; struct tabla_mbhc_imped_detect_cfg *imped_cfg; struct tabla_mbhc_btn_detect_cfg *btn_cfg; if (fw->size < TABLA_MBHC_CAL_MIN_SIZE) return false; /* previous check guarantees that there is enough fw data up * to num_btn */ btn_cfg = TABLA_MBHC_CAL_BTN_DET_PTR(fw->data); cfg_offset = (u32) ((void *) btn_cfg - (void *) fw->data); if (fw->size < (cfg_offset + TABLA_MBHC_CAL_BTN_SZ(btn_cfg))) return false; /* previous check guarantees that there is enough fw data up * to start of impedance detection configuration */ imped_cfg = TABLA_MBHC_CAL_IMPED_DET_PTR(fw->data); cfg_offset = (u32) ((void *) imped_cfg - (void *) fw->data); if (fw->size < (cfg_offset + TABLA_MBHC_CAL_IMPED_MIN_SZ)) return false; if (fw->size < (cfg_offset + TABLA_MBHC_CAL_IMPED_SZ(imped_cfg))) return false; return true; } /* called under codec_resource_lock acquisition */ static int tabla_determine_button(const struct tabla_priv *priv, const s32 micmv) { s16 *v_btn_low, *v_btn_high; struct tabla_mbhc_btn_detect_cfg *btn_det; int i, btn = -1; btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(priv->mbhc_cfg.calibration); v_btn_low = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_V_BTN_LOW); v_btn_high = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_V_BTN_HIGH); for (i = 0; i < btn_det->num_btn; i++) { if ((v_btn_low[i] <= micmv) && (v_btn_high[i] >= micmv)) { btn = i; break; } } if (btn == -1) pr_debug("%s: couldn't find button number for mic mv %d\n", __func__, micmv); return btn; } static int tabla_get_button_mask(const int btn) { int mask = 0; switch (btn) { case 0: mask = SND_JACK_BTN_0; break; case 1: mask = SND_JACK_BTN_1; break; case 2: mask = SND_JACK_BTN_2; break; case 3: mask = SND_JACK_BTN_3; break; case 4: mask = SND_JACK_BTN_4; break; case 5: mask = SND_JACK_BTN_5; break; case 6: mask = SND_JACK_BTN_6; break; case 7: mask = SND_JACK_BTN_7; break; } return mask; } static irqreturn_t tabla_dce_handler(int irq, void *data) { int i, mask; short dce, sta; s32 mv, mv_s, stamv, stamv_s; bool vddio; u16 *btn_high; int btn = -1, meas = 0; struct tabla_priv *priv = data; const struct tabla_mbhc_btn_detect_cfg *d = TABLA_MBHC_CAL_BTN_DET_PTR(priv->mbhc_cfg.calibration); short btnmeas[d->n_btn_meas + 1]; struct snd_soc_codec *codec = priv->codec; struct wcd9xxx *core = dev_get_drvdata(priv->codec->dev->parent); int n_btn_meas = d->n_btn_meas; u8 mbhc_status = snd_soc_read(codec, TABLA_A_CDC_MBHC_B1_STATUS) & 0x3E; pr_debug("%s: enter\n", __func__); btn_high = tabla_mbhc_cal_btn_det_mp(d, TABLA_BTN_DET_V_BTN_HIGH); TABLA_ACQUIRE_LOCK(priv->codec_resource_lock); if (priv->mbhc_state == MBHC_STATE_POTENTIAL_RECOVERY) { pr_debug("%s: mbhc is being recovered, skip button press\n", __func__); goto done; } priv->mbhc_state = MBHC_STATE_POTENTIAL; if (!priv->mbhc_polling_active) { pr_warn("%s: mbhc polling is not active, skip button press\n", __func__); goto done; } dce = tabla_codec_read_dce_result(codec); mv = tabla_codec_sta_dce_v(codec, 1, dce); /* If GPIO interrupt already kicked in, ignore button press */ if (priv->in_gpio_handler) { pr_debug("%s: GPIO State Changed, ignore button press\n", __func__); btn = -1; goto done; } vddio = !priv->mbhc_cfg.micbias_always_on && (priv->mbhc_data.micb_mv != VDDIO_MICBIAS_MV && priv->mbhc_micbias_switched); mv_s = vddio ? tabla_scale_v_micb_vddio(priv, mv, false) : mv; if (mbhc_status != TABLA_MBHC_STATUS_REL_DETECTION) { if (priv->mbhc_last_resume && !time_after(jiffies, priv->mbhc_last_resume + HZ)) { pr_debug("%s: Button is already released shortly after " "resume\n", __func__); n_btn_meas = 0; } } /* save hw dce */ btnmeas[meas++] = tabla_determine_button(priv, mv_s); pr_debug("%s: meas HW - DCE %x,%d,%d button %d\n", __func__, dce, mv, mv_s, btnmeas[0]); if (n_btn_meas == 0) { sta = tabla_codec_read_sta_result(codec); stamv_s = stamv = tabla_codec_sta_dce_v(codec, 0, sta); if (vddio) stamv_s = tabla_scale_v_micb_vddio(priv, stamv, false); btn = tabla_determine_button(priv, stamv_s); pr_debug("%s: meas HW - STA %x,%d,%d button %d\n", __func__, sta, stamv, stamv_s, btn); BUG_ON(meas != 1); if (btnmeas[0] != btn) btn = -1; } /* determine pressed button */ for (; ((d->n_btn_meas) && (meas < (d->n_btn_meas + 1))); meas++) { dce = tabla_codec_sta_dce(codec, 1, false); mv = tabla_codec_sta_dce_v(codec, 1, dce); mv_s = vddio ? tabla_scale_v_micb_vddio(priv, mv, false) : mv; btnmeas[meas] = tabla_determine_button(priv, mv_s); pr_debug("%s: meas %d - DCE %x,%d,%d button %d\n", __func__, meas, dce, mv, mv_s, btnmeas[meas]); /* if large enough measurements are collected, * start to check if last all n_btn_con measurements were * in same button low/high range */ if (meas + 1 >= d->n_btn_con) { for (i = 0; i < d->n_btn_con; i++) if ((btnmeas[meas] < 0) || (btnmeas[meas] != btnmeas[meas - i])) break; if (i == d->n_btn_con) { /* button pressed */ btn = btnmeas[meas]; break; } else if ((n_btn_meas - meas) < (d->n_btn_con - 1)) { /* if left measurements are less than n_btn_con, * it's impossible to find button number */ break; } } } if (btn >= 0) { if (priv->in_gpio_handler) { pr_debug("%s: GPIO already triggered, ignore button " "press\n", __func__); goto done; } /* narrow down release threshold */ tabla_mbhc_set_rel_thres(codec, btn_high[btn]); mask = tabla_get_button_mask(btn); priv->buttons_pressed |= mask; wcd9xxx_lock_sleep(core); if (schedule_delayed_work(&priv->mbhc_btn_dwork, msecs_to_jiffies(400)) == 0) { WARN(1, "Button pressed twice without release" "event\n"); wcd9xxx_unlock_sleep(core); } } else { pr_debug("%s: bogus button press, too short press?\n", __func__); } done: pr_debug("%s: leave\n", __func__); TABLA_RELEASE_LOCK(priv->codec_resource_lock); return IRQ_HANDLED; } static int tabla_is_fake_press(struct tabla_priv *priv) { int i; int r = 0; struct snd_soc_codec *codec = priv->codec; const int dces = MBHC_NUM_DCE_PLUG_DETECT; s16 mb_v, v_ins_hu, v_ins_h; v_ins_hu = tabla_get_current_v_ins(priv, true); v_ins_h = tabla_get_current_v_ins(priv, false); for (i = 0; i < dces; i++) { usleep_range(10000, 10000); if (i == 0) { mb_v = tabla_codec_sta_dce(codec, 0, true); pr_debug("%s: STA[0]: %d,%d\n", __func__, mb_v, tabla_codec_sta_dce_v(codec, 0, mb_v)); if (mb_v < (s16)priv->mbhc_data.v_b1_hu || mb_v > v_ins_hu) { r = 1; break; } } else { mb_v = tabla_codec_sta_dce(codec, 1, true); pr_debug("%s: DCE[%d]: %d,%d\n", __func__, i, mb_v, tabla_codec_sta_dce_v(codec, 1, mb_v)); if (mb_v < (s16)priv->mbhc_data.v_b1_h || mb_v > v_ins_h) { r = 1; break; } } } return r; } static irqreturn_t tabla_release_handler(int irq, void *data) { int ret; struct tabla_priv *priv = data; struct snd_soc_codec *codec = priv->codec; pr_debug("%s: enter\n", __func__); TABLA_ACQUIRE_LOCK(priv->codec_resource_lock); priv->mbhc_state = MBHC_STATE_RELEASE; tabla_codec_drive_v_to_micbias(codec, 10000); if (priv->buttons_pressed & TABLA_JACK_BUTTON_MASK) { ret = tabla_cancel_btn_work(priv); if (ret == 0) { pr_debug("%s: Reporting long button release event\n", __func__); if (priv->mbhc_cfg.button_jack) tabla_snd_soc_jack_report(priv, priv->mbhc_cfg.button_jack, 0, priv->buttons_pressed); } else { if (tabla_is_fake_press(priv)) { pr_debug("%s: Fake button press interrupt\n", __func__); } else if (priv->mbhc_cfg.button_jack) { if (priv->in_gpio_handler) { pr_debug("%s: GPIO kicked in, ignore\n", __func__); } else { pr_debug("%s: Reporting short button " "press and release\n", __func__); tabla_snd_soc_jack_report(priv, priv->mbhc_cfg.button_jack, priv->buttons_pressed, priv->buttons_pressed); tabla_snd_soc_jack_report(priv, priv->mbhc_cfg.button_jack, 0, priv->buttons_pressed); } } } priv->buttons_pressed &= ~TABLA_JACK_BUTTON_MASK; } /* revert narrowed release threshold */ tabla_mbhc_calc_rel_thres(codec, tabla_mbhc_highest_btn_mv(codec)); tabla_codec_calibrate_hs_polling(codec); if (priv->mbhc_cfg.gpio) msleep(TABLA_MBHC_GPIO_REL_DEBOUNCE_TIME_MS); tabla_codec_start_hs_polling(codec); pr_debug("%s: leave\n", __func__); TABLA_RELEASE_LOCK(priv->codec_resource_lock); return IRQ_HANDLED; } static void tabla_codec_shutdown_hs_removal_detect(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); const struct tabla_mbhc_general_cfg *generic = TABLA_MBHC_CAL_GENERAL_PTR(tabla->mbhc_cfg.calibration); if (!tabla->mclk_enabled && !tabla->mbhc_polling_active) tabla_codec_enable_config_mode(codec, 1); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x2, 0x2); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x6, 0x0); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x00); usleep_range(generic->t_shutdown_plug_rem, generic->t_shutdown_plug_rem); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0xA, 0x8); if (!tabla->mclk_enabled && !tabla->mbhc_polling_active) tabla_codec_enable_config_mode(codec, 0); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x00); } static void tabla_codec_cleanup_hs_polling(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); tabla_codec_shutdown_hs_removal_detect(codec); if (!tabla->mclk_enabled) { tabla_codec_disable_clock_block(codec); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_OFF); } tabla->mbhc_polling_active = false; tabla->mbhc_state = MBHC_STATE_NONE; } static irqreturn_t tabla_hphl_ocp_irq(int irq, void *data) { struct tabla_priv *tabla = data; struct snd_soc_codec *codec; pr_info("%s: received HPHL OCP irq\n", __func__); if (tabla) { codec = tabla->codec; if ((tabla->hphlocp_cnt < TABLA_OCP_ATTEMPT) && (!tabla->hphrocp_cnt)) { pr_info("%s: retry\n", __func__); tabla->hphlocp_cnt++; snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x00); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x10); } else { wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); tabla->hph_status |= SND_JACK_OC_HPHL; if (tabla->mbhc_cfg.headset_jack) tabla_snd_soc_jack_report(tabla, tabla->mbhc_cfg.headset_jack, tabla->hph_status, TABLA_JACK_MASK); } } else { pr_err("%s: Bad tabla private data\n", __func__); } return IRQ_HANDLED; } static irqreturn_t tabla_hphr_ocp_irq(int irq, void *data) { struct tabla_priv *tabla = data; struct snd_soc_codec *codec; pr_info("%s: received HPHR OCP irq\n", __func__); if (tabla) { codec = tabla->codec; if ((tabla->hphrocp_cnt < TABLA_OCP_ATTEMPT) && (!tabla->hphlocp_cnt)) { pr_info("%s: retry\n", __func__); tabla->hphrocp_cnt++; snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x00); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x10); } else { wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); tabla->hph_status |= SND_JACK_OC_HPHR; if (tabla->mbhc_cfg.headset_jack) tabla_snd_soc_jack_report(tabla, tabla->mbhc_cfg.headset_jack, tabla->hph_status, TABLA_JACK_MASK); } } else { pr_err("%s: Bad tabla private data\n", __func__); } return IRQ_HANDLED; } static bool tabla_is_inval_ins_range(struct snd_soc_codec *codec, s32 mic_volt, bool highhph, bool *highv) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); bool invalid = false; s16 v_hs_max; /* Perform this check only when the high voltage headphone * needs to be considered as invalid */ v_hs_max = tabla_get_current_v_hs_max(tabla); *highv = mic_volt > v_hs_max; if (!highhph && *highv) invalid = true; else if (mic_volt < tabla->mbhc_data.v_inval_ins_high && (mic_volt > tabla->mbhc_data.v_inval_ins_low)) invalid = true; return invalid; } static bool tabla_is_inval_ins_delta(struct snd_soc_codec *codec, int mic_volt, int mic_volt_prev, int threshold) { return abs(mic_volt - mic_volt_prev) > threshold; } /* called under codec_resource_lock acquisition */ void tabla_find_plug_and_report(struct snd_soc_codec *codec, enum tabla_mbhc_plug_type plug_type) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: enter current_plug(%d) new_plug(%d)\n", __func__, tabla->current_plug, plug_type); if (plug_type == PLUG_TYPE_HEADPHONE && tabla->current_plug == PLUG_TYPE_NONE) { /* Nothing was reported previously * report a headphone or unsupported */ tabla_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); tabla_codec_cleanup_hs_polling(codec); } else if (plug_type == PLUG_TYPE_GND_MIC_SWAP) { if (!tabla->mbhc_cfg.detect_extn_cable) { if (tabla->current_plug == PLUG_TYPE_HEADSET) tabla_codec_report_plug(codec, 0, SND_JACK_HEADSET); else if (tabla->current_plug == PLUG_TYPE_HEADPHONE) tabla_codec_report_plug(codec, 0, SND_JACK_HEADPHONE); } tabla_codec_report_plug(codec, 1, SND_JACK_UNSUPPORTED); tabla_codec_cleanup_hs_polling(codec); } else if (plug_type == PLUG_TYPE_HEADSET) { /* If Headphone was reported previously, this will * only report the mic line */ tabla_codec_report_plug(codec, 1, SND_JACK_HEADSET); if (!tabla->mbhc_micbias_switched && tabla_is_hph_pa_on(codec)) { /*If the headphone path is on, switch the micbias to VDDIO to avoid noise due to button polling */ tabla_codec_switch_micbias(codec, 1); pr_debug("%s: HPH path is still up\n", __func__); } msleep(100); tabla_codec_start_hs_polling(codec); } else if (plug_type == PLUG_TYPE_HIGH_HPH) { if (tabla->mbhc_cfg.detect_extn_cable) { /* High impedance device found. Report as LINEOUT*/ tabla_codec_report_plug(codec, 1, SND_JACK_LINEOUT); tabla_codec_cleanup_hs_polling(codec); pr_debug("%s: setup mic trigger for further detection\n", __func__); tabla->lpi_enabled = true; /* * Do not enable HPHL trigger. If playback is active, * it might lead to continuous false HPHL triggers */ tabla_codec_enable_hs_detect(codec, 1, MBHC_USE_MB_TRIGGER, false); } else { if (tabla->current_plug == PLUG_TYPE_NONE) tabla_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); tabla_codec_cleanup_hs_polling(codec); pr_debug("setup mic trigger for further detection\n"); tabla->lpi_enabled = true; tabla_codec_enable_hs_detect(codec, 1, MBHC_USE_MB_TRIGGER | MBHC_USE_HPHL_TRIGGER, false); } } else { WARN(1, "Unexpected current plug_type %d, plug_type %d\n", tabla->current_plug, plug_type); } pr_debug("%s: leave\n", __func__); } /* should be called under interrupt context that hold suspend */ static void tabla_schedule_hs_detect_plug(struct tabla_priv *tabla, struct work_struct *correct_plug_work) { pr_debug("%s: scheduling tabla_hs_correct_gpio_plug\n", __func__); tabla->hs_detect_work_stop = false; wcd9xxx_lock_sleep(tabla->codec->control_data); schedule_work(correct_plug_work); } /* called under codec_resource_lock acquisition */ static void tabla_cancel_hs_detect_plug(struct tabla_priv *tabla, struct work_struct *correct_plug_work) { pr_debug("%s: canceling hs_correct_plug_work\n", __func__); tabla->hs_detect_work_stop = true; wmb(); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); if (cancel_work_sync(correct_plug_work)) { pr_debug("%s: hs_correct_plug_work is canceled\n", __func__); wcd9xxx_unlock_sleep(tabla->codec->control_data); } TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); } static bool tabla_hs_gpio_level_remove(struct tabla_priv *tabla) { return (gpio_get_value_cansleep(tabla->mbhc_cfg.gpio) != tabla->mbhc_cfg.gpio_level_insert); } /* called under codec_resource_lock acquisition */ static void tabla_codec_hphr_gnd_switch(struct snd_soc_codec *codec, bool on) { snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x01, on); if (on) usleep_range(5000, 5000); } static void tabla_codec_onoff_vddio_switch(struct snd_soc_codec *codec, bool on) { bool override; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: enter\n", __func__); if (on) { override = snd_soc_read(codec, TABLA_A_CDC_MBHC_B1_CTL) & 0x04; if (!override) tabla_turn_onoff_override(codec, true); /* enable the vddio switch */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x91, 0x81); /* deroute the override from MicBias2 to MicBias4 */ snd_soc_update_bits(codec, TABLA_A_MICB_1_MBHC, 0x03, 0x03); usleep_range(MBHC_VDDIO_SWITCH_WAIT_MS * 1000, MBHC_VDDIO_SWITCH_WAIT_MS * 1000); if (!override) tabla_turn_onoff_override(codec, false); tabla->mbhc_micbias_switched = true; pr_debug("%s: VDDIO switch enabled\n", __func__); } else { snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x91, 0x00); /* reroute the override to MicBias2 */ snd_soc_update_bits(codec, TABLA_A_MICB_1_MBHC, 0x03, 0x01); tabla->mbhc_micbias_switched = false; pr_debug("%s: VDDIO switch disabled\n", __func__); } } /* called under codec_resource_lock acquisition and mbhc override = 1 */ static enum tabla_mbhc_plug_type tabla_codec_get_plug_type(struct snd_soc_codec *codec, bool highhph) { int i; bool gndswitch, vddioswitch; int scaled; struct tabla_mbhc_plug_type_cfg *plug_type_ptr; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); const bool vddio = !tabla->mbhc_cfg.micbias_always_on && (tabla->mbhc_data.micb_mv != VDDIO_MICBIAS_MV); int num_det = (MBHC_NUM_DCE_PLUG_DETECT + vddio); enum tabla_mbhc_plug_type plug_type[num_det]; s16 mb_v[num_det]; s32 mic_mv[num_det]; bool inval; bool highdelta = false; bool ahighv = false, highv; bool gndmicswapped = false; pr_debug("%s: enter\n", __func__); /* make sure override is on */ WARN_ON(!(snd_soc_read(codec, TABLA_A_CDC_MBHC_B1_CTL) & 0x04)); /* GND and MIC swap detection requires at least 2 rounds of DCE */ BUG_ON(num_det < 2); plug_type_ptr = TABLA_MBHC_CAL_PLUG_TYPE_PTR(tabla->mbhc_cfg.calibration); plug_type[0] = PLUG_TYPE_INVALID; /* performs DCEs for N times * 1st: check if voltage is in invalid range * 2nd - N-2nd: check voltage range and delta * N-1st: check voltage range, delta with HPHR GND switch * Nth: check voltage range with VDDIO switch */ for (i = 0; i < num_det; i++) { gndswitch = (i == (num_det - 2)); vddioswitch = (i == (num_det - 1)); if (i == 0) { mb_v[i] = tabla_codec_setup_hs_polling(codec); mic_mv[i] = tabla_codec_sta_dce_v(codec, 1 , mb_v[i]); inval = tabla_is_inval_ins_range(codec, mic_mv[i], highhph, &highv); ahighv |= highv; scaled = mic_mv[i]; } else { if (vddioswitch) tabla_codec_onoff_vddio_switch(codec, true); if (gndswitch) tabla_codec_hphr_gnd_switch(codec, true); mb_v[i] = __tabla_codec_sta_dce(codec, 1, true, true); mic_mv[i] = tabla_codec_sta_dce_v(codec, 1 , mb_v[i]); if (vddioswitch) scaled = tabla_scale_v_micb_vddio(tabla, mic_mv[i], false); else scaled = mic_mv[i]; /* !gndswitch & vddioswitch means the previous DCE * was done with gndswitch, don't compare with DCE * with gndswitch */ highdelta = tabla_is_inval_ins_delta(codec, scaled, mic_mv[i - 1], TABLA_MBHC_FAKE_INS_DELTA_SCALED_MV); inval = (tabla_is_inval_ins_range(codec, mic_mv[i], highhph, &highv) || highdelta); ahighv |= highv; if (gndswitch) tabla_codec_hphr_gnd_switch(codec, false); if (vddioswitch) tabla_codec_onoff_vddio_switch(codec, false); } pr_debug("%s: DCE #%d, %04x, V %d, scaled V %d, GND %d, " "VDDIO %d, inval %d\n", __func__, i + 1, mb_v[i] & 0xffff, mic_mv[i], scaled, gndswitch, vddioswitch, inval); /* don't need to run further DCEs */ if ((ahighv || !vddioswitch) && inval) break; mic_mv[i] = scaled; /* * claim UNSUPPORTED plug insertion when * good headset is detected but HPHR GND switch makes * delta difference */ if (i == (num_det - 2) && highdelta && !ahighv) gndmicswapped = true; else if (i == (num_det - 1) && inval) { if (gndmicswapped) plug_type[0] = PLUG_TYPE_GND_MIC_SWAP; else plug_type[0] = PLUG_TYPE_INVALID; } } for (i = 0; (plug_type[0] != PLUG_TYPE_GND_MIC_SWAP && !inval) && i < num_det; i++) { /* * If we are here, means none of the all * measurements are fake, continue plug type detection. * If all three measurements do not produce same * plug type, restart insertion detection */ if (mic_mv[i] < plug_type_ptr->v_no_mic) { plug_type[i] = PLUG_TYPE_HEADPHONE; pr_debug("%s: Detect attempt %d, detected Headphone\n", __func__, i); } else if (highhph && (mic_mv[i] > plug_type_ptr->v_hs_max)) { plug_type[i] = PLUG_TYPE_HIGH_HPH; pr_debug("%s: Detect attempt %d, detected High " "Headphone\n", __func__, i); } else { plug_type[i] = PLUG_TYPE_HEADSET; pr_debug("%s: Detect attempt %d, detected Headset\n", __func__, i); } if (i > 0 && (plug_type[i - 1] != plug_type[i])) { pr_err("%s: Detect attempt %d and %d are not same", __func__, i - 1, i); plug_type[0] = PLUG_TYPE_INVALID; inval = true; break; } } pr_debug("%s: Detected plug type %d\n", __func__, plug_type[0]); pr_debug("%s: leave\n", __func__); return plug_type[0]; } static void tabla_hs_correct_gpio_plug(struct work_struct *work) { struct tabla_priv *tabla; struct snd_soc_codec *codec; int retry = 0, pt_gnd_mic_swap_cnt = 0; bool correction = false; enum tabla_mbhc_plug_type plug_type = PLUG_TYPE_INVALID; unsigned long timeout; tabla = container_of(work, struct tabla_priv, hs_correct_plug_work); codec = tabla->codec; pr_debug("%s: enter\n", __func__); tabla->mbhc_cfg.mclk_cb_fn(codec, 1, false); /* Keep override on during entire plug type correction work. * * This is okay under the assumption that any GPIO irqs which use * MBHC block cancel and sync this work so override is off again * prior to GPIO interrupt handler's MBHC block usage. * Also while this correction work is running, we can guarantee * DAPM doesn't use any MBHC block as this work only runs with * headphone detection. */ tabla_turn_onoff_override(codec, true); timeout = jiffies + msecs_to_jiffies(TABLA_HS_DETECT_PLUG_TIME_MS); while (!time_after(jiffies, timeout)) { ++retry; rmb(); if (tabla->hs_detect_work_stop) { pr_debug("%s: stop requested\n", __func__); break; } msleep(TABLA_HS_DETECT_PLUG_INERVAL_MS); if (tabla_hs_gpio_level_remove(tabla)) { pr_debug("%s: GPIO value is low\n", __func__); break; } /* can race with removal interrupt */ TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); plug_type = tabla_codec_get_plug_type(codec, true); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); pr_debug("%s: attempt(%d) current_plug(%d) new_plug(%d)\n", __func__, retry, tabla->current_plug, plug_type); if (plug_type == PLUG_TYPE_INVALID) { pr_debug("Invalid plug in attempt # %d\n", retry); if (!tabla->mbhc_cfg.detect_extn_cable && retry == NUM_ATTEMPTS_TO_REPORT && tabla->current_plug == PLUG_TYPE_NONE) { tabla_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); } } else if (plug_type == PLUG_TYPE_HEADPHONE) { pr_debug("Good headphone detected, continue polling mic\n"); if (tabla->mbhc_cfg.detect_extn_cable) { if (tabla->current_plug != plug_type) tabla_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); } else if (tabla->current_plug == PLUG_TYPE_NONE) tabla_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); } else { if (plug_type == PLUG_TYPE_GND_MIC_SWAP) { pt_gnd_mic_swap_cnt++; if (pt_gnd_mic_swap_cnt < TABLA_MBHC_GND_MIC_SWAP_THRESHOLD) continue; else if (pt_gnd_mic_swap_cnt > TABLA_MBHC_GND_MIC_SWAP_THRESHOLD) { /* This is due to GND/MIC switch didn't * work, Report unsupported plug */ } else if (tabla->mbhc_cfg.swap_gnd_mic) { /* if switch is toggled, check again, * otherwise report unsupported plug */ if (tabla->mbhc_cfg.swap_gnd_mic(codec)) continue; } } else pt_gnd_mic_swap_cnt = 0; TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); /* Turn off override */ tabla_turn_onoff_override(codec, false); /* The valid plug also includes PLUG_TYPE_GND_MIC_SWAP */ tabla_find_plug_and_report(codec, plug_type); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); pr_debug("Attempt %d found correct plug %d\n", retry, plug_type); correction = true; break; } } /* Turn off override */ if (!correction) tabla_turn_onoff_override(codec, false); tabla->mbhc_cfg.mclk_cb_fn(codec, 0, false); if (tabla->mbhc_cfg.detect_extn_cable) { TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); if (tabla->current_plug == PLUG_TYPE_HEADPHONE || tabla->current_plug == PLUG_TYPE_GND_MIC_SWAP || tabla->current_plug == PLUG_TYPE_INVALID || plug_type == PLUG_TYPE_INVALID) { /* Enable removal detection */ tabla_codec_cleanup_hs_polling(codec); tabla_codec_enable_hs_detect(codec, 0, 0, false); } TABLA_RELEASE_LOCK(tabla->codec_resource_lock); } pr_debug("%s: leave current_plug(%d)\n", __func__, tabla->current_plug); /* unlock sleep */ wcd9xxx_unlock_sleep(tabla->codec->control_data); } /* called under codec_resource_lock acquisition */ static void tabla_codec_decide_gpio_plug(struct snd_soc_codec *codec) { enum tabla_mbhc_plug_type plug_type; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: enter\n", __func__); tabla_turn_onoff_override(codec, true); plug_type = tabla_codec_get_plug_type(codec, true); tabla_turn_onoff_override(codec, false); if (tabla_hs_gpio_level_remove(tabla)) { pr_debug("%s: GPIO value is low when determining plug\n", __func__); return; } if (plug_type == PLUG_TYPE_INVALID || plug_type == PLUG_TYPE_GND_MIC_SWAP) { tabla_schedule_hs_detect_plug(tabla, &tabla->hs_correct_plug_work); } else if (plug_type == PLUG_TYPE_HEADPHONE) { tabla_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); tabla_schedule_hs_detect_plug(tabla, &tabla->hs_correct_plug_work); } else { pr_debug("%s: Valid plug found, determine plug type %d\n", __func__, plug_type); tabla_find_plug_and_report(codec, plug_type); } pr_debug("%s: leave\n", __func__); } /* called under codec_resource_lock acquisition */ static void tabla_codec_detect_plug_type(struct snd_soc_codec *codec) { enum tabla_mbhc_plug_type plug_type; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); const struct tabla_mbhc_plug_detect_cfg *plug_det = TABLA_MBHC_CAL_PLUG_DET_PTR(tabla->mbhc_cfg.calibration); pr_debug("%s: enter\n", __func__); /* Turn on the override, * tabla_codec_setup_hs_polling requires override on */ tabla_turn_onoff_override(codec, true); if (plug_det->t_ins_complete > 20) msleep(plug_det->t_ins_complete); else usleep_range(plug_det->t_ins_complete * 1000, plug_det->t_ins_complete * 1000); if (tabla->mbhc_cfg.gpio) { /* Turn off the override */ tabla_turn_onoff_override(codec, false); if (tabla_hs_gpio_level_remove(tabla)) pr_debug("%s: GPIO value is low when determining " "plug\n", __func__); else tabla_codec_decide_gpio_plug(codec); pr_debug("%s: leave\n", __func__); return; } plug_type = tabla_codec_get_plug_type(codec, false); tabla_turn_onoff_override(codec, false); if (plug_type == PLUG_TYPE_INVALID) { pr_debug("%s: Invalid plug type detected\n", __func__); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x02, 0x02); tabla_codec_cleanup_hs_polling(codec); tabla_codec_enable_hs_detect(codec, 1, MBHC_USE_MB_TRIGGER | MBHC_USE_HPHL_TRIGGER, false); } else if (plug_type == PLUG_TYPE_GND_MIC_SWAP) { pr_debug("%s: GND-MIC swapped plug type detected\n", __func__); tabla_codec_report_plug(codec, 1, SND_JACK_UNSUPPORTED); tabla_codec_cleanup_hs_polling(codec); tabla_codec_enable_hs_detect(codec, 0, 0, false); } else if (plug_type == PLUG_TYPE_HEADPHONE) { pr_debug("%s: Headphone Detected\n", __func__); tabla_codec_report_plug(codec, 1, SND_JACK_HEADPHONE); tabla_codec_cleanup_hs_polling(codec); tabla_schedule_hs_detect_plug(tabla, &tabla->hs_correct_plug_work_nogpio); } else if (plug_type == PLUG_TYPE_HEADSET) { pr_debug("%s: Headset detected\n", __func__); tabla_codec_report_plug(codec, 1, SND_JACK_HEADSET); /* avoid false button press detect */ msleep(50); tabla_codec_start_hs_polling(codec); } else if (tabla->mbhc_cfg.detect_extn_cable && plug_type == PLUG_TYPE_HIGH_HPH) { pr_debug("%s: High impedance plug type detected\n", __func__); tabla_codec_report_plug(codec, 1, SND_JACK_LINEOUT); /* Enable insertion detection on the other end of cable */ tabla_codec_cleanup_hs_polling(codec); tabla_codec_enable_hs_detect(codec, 1, MBHC_USE_MB_TRIGGER, false); } pr_debug("%s: leave\n", __func__); } /* called only from interrupt which is under codec_resource_lock acquisition */ static void tabla_hs_insert_irq_gpio(struct tabla_priv *priv, bool is_removal) { struct snd_soc_codec *codec = priv->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); if (!is_removal) { pr_debug("%s: MIC trigger insertion interrupt\n", __func__); rmb(); if (priv->lpi_enabled) msleep(100); rmb(); if (!priv->lpi_enabled) { pr_debug("%s: lpi is disabled\n", __func__); } else if (gpio_get_value_cansleep(priv->mbhc_cfg.gpio) == priv->mbhc_cfg.gpio_level_insert) { pr_debug("%s: Valid insertion, " "detect plug type\n", __func__); tabla_codec_decide_gpio_plug(codec); } else { pr_debug("%s: Invalid insertion, " "stop plug detection\n", __func__); } } else if (tabla->mbhc_cfg.detect_extn_cable) { pr_debug("%s: Removal\n", __func__); if (!tabla_hs_gpio_level_remove(tabla)) { /* * gpio says, something is still inserted, could be * extension cable i.e. headset is removed from * extension cable */ /* cancel detect plug */ tabla_cancel_hs_detect_plug(tabla, &tabla->hs_correct_plug_work); tabla_codec_decide_gpio_plug(codec); } } else { pr_err("%s: GPIO used, invalid MBHC Removal\n", __func__); } } /* called only from interrupt which is under codec_resource_lock acquisition */ static void tabla_hs_insert_irq_nogpio(struct tabla_priv *priv, bool is_removal, bool is_mb_trigger) { int ret; struct snd_soc_codec *codec = priv->codec; struct wcd9xxx *core = dev_get_drvdata(priv->codec->dev->parent); struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); /* Cancel possibly running hs_detect_work */ tabla_cancel_hs_detect_plug(tabla, &tabla->hs_correct_plug_work_nogpio); if (is_removal) { /* * If headphone is removed while playback is in progress, * it is possible that micbias will be switched to VDDIO. */ tabla_codec_switch_micbias(codec, 0); if (priv->current_plug == PLUG_TYPE_HEADPHONE) tabla_codec_report_plug(codec, 0, SND_JACK_HEADPHONE); else if (priv->current_plug == PLUG_TYPE_GND_MIC_SWAP) tabla_codec_report_plug(codec, 0, SND_JACK_UNSUPPORTED); else WARN(1, "%s: Unexpected current plug type %d\n", __func__, priv->current_plug); tabla_codec_shutdown_hs_removal_detect(codec); tabla_codec_enable_hs_detect(codec, 1, MBHC_USE_MB_TRIGGER | MBHC_USE_HPHL_TRIGGER, true); } else if (is_mb_trigger && !is_removal) { pr_debug("%s: Waiting for Headphone left trigger\n", __func__); wcd9xxx_lock_sleep(core); if (schedule_delayed_work(&priv->mbhc_insert_dwork, usecs_to_jiffies(1000000)) == 0) { pr_err("%s: mbhc_insert_dwork is already scheduled\n", __func__); wcd9xxx_unlock_sleep(core); } tabla_codec_enable_hs_detect(codec, 1, MBHC_USE_HPHL_TRIGGER, false); } else { ret = cancel_delayed_work(&priv->mbhc_insert_dwork); if (ret != 0) { pr_debug("%s: Complete plug insertion, Detecting plug " "type\n", __func__); tabla_codec_detect_plug_type(codec); wcd9xxx_unlock_sleep(core); } else { wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION); pr_err("%s: Error detecting plug insertion\n", __func__); } } } /* called only from interrupt which is under codec_resource_lock acquisition */ static void tabla_hs_insert_irq_extn(struct tabla_priv *priv, bool is_mb_trigger) { struct snd_soc_codec *codec = priv->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); /* Cancel possibly running hs_detect_work */ tabla_cancel_hs_detect_plug(tabla, &tabla->hs_correct_plug_work); if (is_mb_trigger) { pr_debug("%s: Waiting for Headphone left trigger\n", __func__); tabla_codec_enable_hs_detect(codec, 1, MBHC_USE_HPHL_TRIGGER, false); } else { pr_debug("%s: HPHL trigger received, detecting plug type\n", __func__); tabla_codec_detect_plug_type(codec); } } static irqreturn_t tabla_hs_insert_irq(int irq, void *data) { bool is_mb_trigger, is_removal; struct tabla_priv *priv = data; struct snd_soc_codec *codec = priv->codec; pr_debug("%s: enter\n", __func__); TABLA_ACQUIRE_LOCK(priv->codec_resource_lock); wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION); is_mb_trigger = !!(snd_soc_read(codec, priv->mbhc_bias_regs.mbhc_reg) & 0x10); is_removal = !!(snd_soc_read(codec, TABLA_A_CDC_MBHC_INT_CTL) & 0x02); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x03, 0x00); /* Turn off both HPH and MIC line schmitt triggers */ snd_soc_update_bits(codec, priv->mbhc_bias_regs.mbhc_reg, 0x90, 0x00); snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x13, 0x00); snd_soc_update_bits(codec, priv->mbhc_bias_regs.ctl_reg, 0x01, 0x00); if (priv->mbhc_cfg.detect_extn_cable && priv->current_plug == PLUG_TYPE_HIGH_HPH) tabla_hs_insert_irq_extn(priv, is_mb_trigger); else if (priv->mbhc_cfg.gpio) tabla_hs_insert_irq_gpio(priv, is_removal); else tabla_hs_insert_irq_nogpio(priv, is_removal, is_mb_trigger); TABLA_RELEASE_LOCK(priv->codec_resource_lock); return IRQ_HANDLED; } static bool is_valid_mic_voltage(struct snd_soc_codec *codec, s32 mic_mv) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); const struct tabla_mbhc_plug_type_cfg *plug_type = TABLA_MBHC_CAL_PLUG_TYPE_PTR(tabla->mbhc_cfg.calibration); const s16 v_hs_max = tabla_get_current_v_hs_max(tabla); return (!(mic_mv > 10 && mic_mv < 80) && (mic_mv > plug_type->v_no_mic) && (mic_mv < v_hs_max)) ? true : false; } /* called under codec_resource_lock acquisition * returns true if mic voltage range is back to normal insertion * returns false either if timedout or removed */ static bool tabla_hs_remove_settle(struct snd_soc_codec *codec) { int i; bool timedout, settled = false; s32 mic_mv[MBHC_NUM_DCE_PLUG_DETECT]; short mb_v[MBHC_NUM_DCE_PLUG_DETECT]; unsigned long retry = 0, timeout; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); const s16 v_hs_max = tabla_get_current_v_hs_max(tabla); timeout = jiffies + msecs_to_jiffies(TABLA_HS_DETECT_PLUG_TIME_MS); while (!(timedout = time_after(jiffies, timeout))) { retry++; if (tabla->mbhc_cfg.gpio && tabla_hs_gpio_level_remove(tabla)) { pr_debug("%s: GPIO indicates removal\n", __func__); break; } if (tabla->mbhc_cfg.gpio) { if (retry > 1) msleep(250); else msleep(50); } if (tabla->mbhc_cfg.gpio && tabla_hs_gpio_level_remove(tabla)) { pr_debug("%s: GPIO indicates removal\n", __func__); break; } for (i = 0; i < MBHC_NUM_DCE_PLUG_DETECT; i++) { mb_v[i] = tabla_codec_sta_dce(codec, 1, true); mic_mv[i] = tabla_codec_sta_dce_v(codec, 1 , mb_v[i]); pr_debug("%s : DCE run %lu, mic_mv = %d(%x)\n", __func__, retry, mic_mv[i], mb_v[i]); } if (tabla->mbhc_cfg.gpio && tabla_hs_gpio_level_remove(tabla)) { pr_debug("%s: GPIO indicates removal\n", __func__); break; } if (tabla->current_plug == PLUG_TYPE_NONE) { pr_debug("%s : headset/headphone is removed\n", __func__); break; } for (i = 0; i < MBHC_NUM_DCE_PLUG_DETECT; i++) if (!is_valid_mic_voltage(codec, mic_mv[i])) break; if (i == MBHC_NUM_DCE_PLUG_DETECT) { pr_debug("%s: MIC voltage settled\n", __func__); settled = true; msleep(200); break; } /* only for non-GPIO remove irq */ if (!tabla->mbhc_cfg.gpio) { for (i = 0; i < MBHC_NUM_DCE_PLUG_DETECT; i++) if (mic_mv[i] < v_hs_max) break; if (i == MBHC_NUM_DCE_PLUG_DETECT) { pr_debug("%s: Headset is removed\n", __func__); break; } } } if (timedout) pr_debug("%s: Microphone did not settle in %d seconds\n", __func__, TABLA_HS_DETECT_PLUG_TIME_MS); return settled; } /* called only from interrupt which is under codec_resource_lock acquisition */ static void tabla_hs_remove_irq_gpio(struct tabla_priv *priv) { struct snd_soc_codec *codec = priv->codec; pr_debug("%s: enter\n", __func__); if (tabla_hs_remove_settle(codec)) tabla_codec_start_hs_polling(codec); pr_debug("%s: leave\n", __func__); } /* called only from interrupt which is under codec_resource_lock acquisition */ static void tabla_hs_remove_irq_nogpio(struct tabla_priv *priv) { short bias_value; bool removed = true; struct snd_soc_codec *codec = priv->codec; const struct tabla_mbhc_general_cfg *generic = TABLA_MBHC_CAL_GENERAL_PTR(priv->mbhc_cfg.calibration); int min_us = TABLA_FAKE_REMOVAL_MIN_PERIOD_MS * 1000; pr_debug("%s: enter\n", __func__); if (priv->current_plug != PLUG_TYPE_HEADSET) { pr_debug("%s(): Headset is not inserted, ignore removal\n", __func__); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x08, 0x08); return; } usleep_range(generic->t_shutdown_plug_rem, generic->t_shutdown_plug_rem); do { bias_value = tabla_codec_sta_dce(codec, 1, true); pr_debug("%s: DCE %d,%d, %d us left\n", __func__, bias_value, tabla_codec_sta_dce_v(codec, 1, bias_value), min_us); if (bias_value < tabla_get_current_v_ins(priv, false)) { pr_debug("%s: checking false removal\n", __func__); msleep(500); removed = !tabla_hs_remove_settle(codec); pr_debug("%s: headset %sactually removed\n", __func__, removed ? "" : "not "); break; } min_us -= priv->mbhc_data.t_dce; } while (min_us > 0); if (removed) { if (priv->mbhc_cfg.detect_extn_cable) { if (!tabla_hs_gpio_level_remove(priv)) { /* * extension cable is still plugged in * report it as LINEOUT device */ tabla_codec_report_plug(codec, 1, SND_JACK_LINEOUT); tabla_codec_cleanup_hs_polling(codec); tabla_codec_enable_hs_detect(codec, 1, MBHC_USE_MB_TRIGGER, false); } } else { /* Cancel possibly running hs_detect_work */ tabla_cancel_hs_detect_plug(priv, &priv->hs_correct_plug_work_nogpio); /* * If this removal is not false, first check the micbias * switch status and switch it to LDOH if it is already * switched to VDDIO. */ tabla_codec_switch_micbias(codec, 0); tabla_codec_report_plug(codec, 0, SND_JACK_HEADSET); tabla_codec_cleanup_hs_polling(codec); tabla_codec_enable_hs_detect(codec, 1, MBHC_USE_MB_TRIGGER | MBHC_USE_HPHL_TRIGGER, true); } } else { tabla_codec_start_hs_polling(codec); } pr_debug("%s: leave\n", __func__); } static irqreturn_t tabla_hs_remove_irq(int irq, void *data) { struct tabla_priv *priv = data; bool vddio; pr_debug("%s: enter, removal interrupt\n", __func__); TABLA_ACQUIRE_LOCK(priv->codec_resource_lock); vddio = !priv->mbhc_cfg.micbias_always_on && (priv->mbhc_data.micb_mv != VDDIO_MICBIAS_MV && priv->mbhc_micbias_switched); if (vddio) __tabla_codec_switch_micbias(priv->codec, 0, false, true); if ((priv->mbhc_cfg.detect_extn_cable && !tabla_hs_gpio_level_remove(priv)) || !priv->mbhc_cfg.gpio) { tabla_hs_remove_irq_nogpio(priv); } else tabla_hs_remove_irq_gpio(priv); /* if driver turned off vddio switch and headset is not removed, * turn on the vddio switch back, if headset is removed then vddio * switch is off by time now and shouldn't be turn on again from here */ if (vddio && priv->current_plug == PLUG_TYPE_HEADSET) __tabla_codec_switch_micbias(priv->codec, 1, true, true); TABLA_RELEASE_LOCK(priv->codec_resource_lock); return IRQ_HANDLED; } void mbhc_insert_work(struct work_struct *work) { struct delayed_work *dwork; struct tabla_priv *tabla; struct snd_soc_codec *codec; struct wcd9xxx *tabla_core; dwork = to_delayed_work(work); tabla = container_of(dwork, struct tabla_priv, mbhc_insert_dwork); codec = tabla->codec; tabla_core = dev_get_drvdata(codec->dev->parent); pr_debug("%s:\n", __func__); /* Turn off both HPH and MIC line schmitt triggers */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x90, 0x00); snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x13, 0x00); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x00); wcd9xxx_disable_irq_sync(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION); tabla_codec_detect_plug_type(codec); wcd9xxx_unlock_sleep(tabla_core); } static void tabla_hs_gpio_handler(struct snd_soc_codec *codec) { bool insert; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); struct wcd9xxx *core = dev_get_drvdata(codec->dev->parent); bool is_removed = false; pr_debug("%s: enter\n", __func__); tabla->in_gpio_handler = true; /* Wait here for debounce time */ usleep_range(TABLA_GPIO_IRQ_DEBOUNCE_TIME_US, TABLA_GPIO_IRQ_DEBOUNCE_TIME_US); wcd9xxx_nested_irq_lock(core); TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); /* cancel pending button press */ if (tabla_cancel_btn_work(tabla)) pr_debug("%s: button press is canceled\n", __func__); insert = (gpio_get_value_cansleep(tabla->mbhc_cfg.gpio) == tabla->mbhc_cfg.gpio_level_insert); if ((tabla->current_plug == PLUG_TYPE_NONE) && insert) { tabla->lpi_enabled = false; wmb(); /* cancel detect plug */ tabla_cancel_hs_detect_plug(tabla, &tabla->hs_correct_plug_work); /* Disable Mic Bias pull down and HPH Switch to GND */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x00); snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x01, 0x00); tabla_codec_detect_plug_type(codec); } else if ((tabla->current_plug != PLUG_TYPE_NONE) && !insert) { tabla->lpi_enabled = false; wmb(); /* cancel detect plug */ tabla_cancel_hs_detect_plug(tabla, &tabla->hs_correct_plug_work); if (tabla->current_plug == PLUG_TYPE_HEADPHONE) { tabla_codec_report_plug(codec, 0, SND_JACK_HEADPHONE); is_removed = true; } else if (tabla->current_plug == PLUG_TYPE_GND_MIC_SWAP) { tabla_codec_report_plug(codec, 0, SND_JACK_UNSUPPORTED); is_removed = true; } else if (tabla->current_plug == PLUG_TYPE_HEADSET) { tabla_codec_pause_hs_polling(codec); tabla_codec_cleanup_hs_polling(codec); tabla_codec_report_plug(codec, 0, SND_JACK_HEADSET); is_removed = true; } else if (tabla->current_plug == PLUG_TYPE_HIGH_HPH) { tabla_codec_report_plug(codec, 0, SND_JACK_LINEOUT); is_removed = true; } if (is_removed) { /* Enable Mic Bias pull down and HPH Switch to GND */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x01); snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x01, 0x01); /* Make sure mic trigger is turned off */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x01); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x90, 0x00); /* Reset MBHC State Machine */ snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x08, 0x08); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x08, 0x00); /* Turn off override */ tabla_turn_onoff_override(codec, false); tabla_codec_switch_micbias(codec, 0); } } tabla->in_gpio_handler = false; TABLA_RELEASE_LOCK(tabla->codec_resource_lock); wcd9xxx_nested_irq_unlock(core); pr_debug("%s: leave\n", __func__); } static irqreturn_t tabla_mechanical_plug_detect_irq(int irq, void *data) { int r = IRQ_HANDLED; struct snd_soc_codec *codec = data; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); if (unlikely(wcd9xxx_lock_sleep(codec->control_data) == false)) { pr_warn("%s: failed to hold suspend\n", __func__); /* * Give up this IRQ for now and resend this IRQ so IRQ can be * handled after system resume */ TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla->gpio_irq_resend = true; TABLA_RELEASE_LOCK(tabla->codec_resource_lock); wake_lock_timeout(&tabla->irq_resend_wlock, HZ); r = IRQ_NONE; } else { tabla_hs_gpio_handler(codec); wcd9xxx_unlock_sleep(codec->control_data); } return r; } static void tabla_hs_correct_plug_nogpio(struct work_struct *work) { struct tabla_priv *tabla; struct snd_soc_codec *codec; unsigned long timeout; int retry = 0; enum tabla_mbhc_plug_type plug_type; bool is_headset = false; pr_debug("%s(): Poll Microphone voltage for %d seconds\n", __func__, TABLA_HS_DETECT_PLUG_TIME_MS / 1000); tabla = container_of(work, struct tabla_priv, hs_correct_plug_work_nogpio); codec = tabla->codec; /* Make sure the MBHC mux is connected to MIC Path */ snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x84); /* setup for microphone polling */ tabla_turn_onoff_override(codec, true); tabla->mbhc_cfg.mclk_cb_fn(codec, 1, false); timeout = jiffies + msecs_to_jiffies(TABLA_HS_DETECT_PLUG_TIME_MS); while (!time_after(jiffies, timeout)) { ++retry; msleep(TABLA_HS_DETECT_PLUG_INERVAL_MS); TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); plug_type = tabla_codec_get_plug_type(codec, false); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); if (plug_type == PLUG_TYPE_HIGH_HPH || plug_type == PLUG_TYPE_INVALID) { /* this means the plug is removed * End microphone polling and setup * for low power removal detection. */ pr_debug("%s(): Plug may be removed, setup removal\n", __func__); break; } else if (plug_type == PLUG_TYPE_HEADSET) { /* Plug is corrected from headphone to headset, * report headset and end the polling */ is_headset = true; TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla_turn_onoff_override(codec, false); tabla_codec_report_plug(codec, 1, SND_JACK_HEADSET); tabla_codec_start_hs_polling(codec); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); pr_debug("%s(): corrected from headphone to headset\n", __func__); break; } } /* Undo setup for microphone polling depending * result from polling */ tabla->mbhc_cfg.mclk_cb_fn(codec, 0, false); if (!is_headset) { pr_debug("%s: Inserted headphone is not a headset\n", __func__); tabla_turn_onoff_override(codec, false); tabla_codec_cleanup_hs_polling(codec); tabla_codec_enable_hs_detect(codec, 0, 0, false); } wcd9xxx_unlock_sleep(codec->control_data); } static int tabla_mbhc_init_and_calibrate(struct tabla_priv *tabla) { int ret = 0; struct snd_soc_codec *codec = tabla->codec; tabla->mbhc_cfg.mclk_cb_fn(codec, 1, false); tabla_mbhc_init(codec); tabla_mbhc_cal(codec); tabla_mbhc_calc_thres(codec); tabla->mbhc_cfg.mclk_cb_fn(codec, 0, false); tabla_codec_calibrate_hs_polling(codec); if (!tabla->mbhc_cfg.gpio) { INIT_WORK(&tabla->hs_correct_plug_work_nogpio, tabla_hs_correct_plug_nogpio); ret = tabla_codec_enable_hs_detect(codec, 1, MBHC_USE_MB_TRIGGER | MBHC_USE_HPHL_TRIGGER, false); if (IS_ERR_VALUE(ret)) pr_err("%s: Failed to setup MBHC detection\n", __func__); } else { /* Enable Mic Bias pull down and HPH Switch to GND */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x01); snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x01, 0x01); INIT_WORK(&tabla->hs_correct_plug_work, tabla_hs_correct_gpio_plug); } if (!IS_ERR_VALUE(ret)) { snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x10); wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); if (tabla->mbhc_cfg.gpio) { ret = request_threaded_irq(tabla->mbhc_cfg.gpio_irq, NULL, tabla_mechanical_plug_detect_irq, (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING), "tabla-gpio", codec); if (!IS_ERR_VALUE(ret)) { ret = enable_irq_wake(tabla->mbhc_cfg.gpio_irq); /* Bootup time detection */ tabla_hs_gpio_handler(codec); } } } return ret; } static void mbhc_fw_read(struct work_struct *work) { struct delayed_work *dwork; struct tabla_priv *tabla; struct snd_soc_codec *codec; const struct firmware *fw; int ret = -1, retry = 0; dwork = to_delayed_work(work); tabla = container_of(dwork, struct tabla_priv, mbhc_firmware_dwork); codec = tabla->codec; while (retry < MBHC_FW_READ_ATTEMPTS) { retry++; pr_info("%s:Attempt %d to request MBHC firmware\n", __func__, retry); ret = request_firmware(&fw, "wcd9310/wcd9310_mbhc.bin", codec->dev); if (ret != 0) { usleep_range(MBHC_FW_READ_TIMEOUT, MBHC_FW_READ_TIMEOUT); } else { pr_info("%s: MBHC Firmware read succesful\n", __func__); break; } } if (ret != 0) { pr_err("%s: Cannot load MBHC firmware use default cal\n", __func__); } else if (tabla_mbhc_fw_validate(fw) == false) { pr_err("%s: Invalid MBHC cal data size use default cal\n", __func__); release_firmware(fw); } else { tabla->mbhc_cfg.calibration = (void *)fw->data; tabla->mbhc_fw = fw; } (void) tabla_mbhc_init_and_calibrate(tabla); } int tabla_hs_detect(struct snd_soc_codec *codec, const struct tabla_mbhc_config *cfg) { struct tabla_priv *tabla; int rc = 0; if (!codec || !cfg->calibration) { pr_err("Error: no codec or calibration\n"); return -EINVAL; } if (cfg->mclk_rate != TABLA_MCLK_RATE_12288KHZ) { if (cfg->mclk_rate == TABLA_MCLK_RATE_9600KHZ) pr_err("Error: clock rate %dHz is not yet supported\n", cfg->mclk_rate); else pr_err("Error: unsupported clock rate %d\n", cfg->mclk_rate); return -EINVAL; } tabla = snd_soc_codec_get_drvdata(codec); tabla->mbhc_cfg = *cfg; tabla->in_gpio_handler = false; tabla->current_plug = PLUG_TYPE_NONE; tabla->lpi_enabled = false; tabla_get_mbhc_micbias_regs(codec, &tabla->mbhc_bias_regs); /* Put CFILT in fast mode by default */ if (!tabla->mbhc_cfg.micbias_always_on) snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40, TABLA_CFILT_FAST_MODE); INIT_DELAYED_WORK(&tabla->mbhc_firmware_dwork, mbhc_fw_read); INIT_DELAYED_WORK(&tabla->mbhc_btn_dwork, btn_lpress_fn); INIT_WORK(&tabla->hphlocp_work, hphlocp_off_report); INIT_WORK(&tabla->hphrocp_work, hphrocp_off_report); INIT_DELAYED_WORK(&tabla->mbhc_insert_dwork, mbhc_insert_work); if (!tabla->mbhc_cfg.read_fw_bin) rc = tabla_mbhc_init_and_calibrate(tabla); else schedule_delayed_work(&tabla->mbhc_firmware_dwork, usecs_to_jiffies(MBHC_FW_READ_TIMEOUT)); return rc; } EXPORT_SYMBOL_GPL(tabla_hs_detect); static irqreturn_t tabla_slimbus_irq(int irq, void *data) { struct tabla_priv *priv = data; struct snd_soc_codec *codec = priv->codec; struct tabla_priv *tabla_p = snd_soc_codec_get_drvdata(codec); int i, j, port_id, k, ch_mask_temp; unsigned long slimbus_value; u8 val; for (i = 0; i < WCD9XXX_SLIM_NUM_PORT_REG; i++) { slimbus_value = wcd9xxx_interface_reg_read(codec->control_data, TABLA_SLIM_PGD_PORT_INT_STATUS0 + i); for_each_set_bit(j, &slimbus_value, BITS_PER_BYTE) { val = wcd9xxx_interface_reg_read(codec->control_data, TABLA_SLIM_PGD_PORT_INT_SOURCE0 + i*8 + j); if (val & 0x1) pr_err_ratelimited("overflow error on port %x," " value %x\n", i*8 + j, val); if (val & 0x2) pr_err_ratelimited("underflow error on port %x," " value %x\n", i*8 + j, val); if (val & 0x4) { port_id = i*8 + j; for (k = 0; k < ARRAY_SIZE(tabla_dai); k++) { ch_mask_temp = 1 << port_id; pr_debug("%s: tabla_p->dai[%d].ch_mask = 0x%lx\n", __func__, k, tabla_p->dai[k].ch_mask); if (ch_mask_temp & tabla_p->dai[k].ch_mask) { tabla_p->dai[k].ch_mask &= ~ch_mask_temp; if (!tabla_p->dai[k].ch_mask) wake_up( &tabla_p->dai[k].dai_wait); } } } } wcd9xxx_interface_reg_write(codec->control_data, TABLA_SLIM_PGD_PORT_INT_CLR0 + i, slimbus_value); val = 0x0; } return IRQ_HANDLED; } static int tabla_handle_pdata(struct tabla_priv *tabla) { struct snd_soc_codec *codec = tabla->codec; struct wcd9xxx_pdata *pdata = tabla->pdata; int k1, k2, k3, rc = 0; u8 leg_mode = pdata->amic_settings.legacy_mode; u8 txfe_bypass = pdata->amic_settings.txfe_enable; u8 txfe_buff = pdata->amic_settings.txfe_buff; u8 flag = pdata->amic_settings.use_pdata; u8 i = 0, j = 0; u8 val_txfe = 0, value = 0; if (!pdata) { rc = -ENODEV; goto done; } /* Make sure settings are correct */ if ((pdata->micbias.ldoh_v > TABLA_LDOH_2P85_V) || (pdata->micbias.bias1_cfilt_sel > TABLA_CFILT3_SEL) || (pdata->micbias.bias2_cfilt_sel > TABLA_CFILT3_SEL) || (pdata->micbias.bias3_cfilt_sel > TABLA_CFILT3_SEL) || (pdata->micbias.bias4_cfilt_sel > TABLA_CFILT3_SEL)) { rc = -EINVAL; goto done; } /* figure out k value */ k1 = tabla_find_k_value(pdata->micbias.ldoh_v, pdata->micbias.cfilt1_mv); k2 = tabla_find_k_value(pdata->micbias.ldoh_v, pdata->micbias.cfilt2_mv); k3 = tabla_find_k_value(pdata->micbias.ldoh_v, pdata->micbias.cfilt3_mv); if (IS_ERR_VALUE(k1) || IS_ERR_VALUE(k2) || IS_ERR_VALUE(k3)) { rc = -EINVAL; goto done; } /* Set voltage level and always use LDO */ snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x0C, (pdata->micbias.ldoh_v << 2)); snd_soc_update_bits(codec, TABLA_A_MICB_CFILT_1_VAL, 0xFC, (k1 << 2)); snd_soc_update_bits(codec, TABLA_A_MICB_CFILT_2_VAL, 0xFC, (k2 << 2)); snd_soc_update_bits(codec, TABLA_A_MICB_CFILT_3_VAL, 0xFC, (k3 << 2)); snd_soc_update_bits(codec, TABLA_A_MICB_1_CTL, 0x60, (pdata->micbias.bias1_cfilt_sel << 5)); snd_soc_update_bits(codec, TABLA_A_MICB_2_CTL, 0x60, (pdata->micbias.bias2_cfilt_sel << 5)); snd_soc_update_bits(codec, TABLA_A_MICB_3_CTL, 0x60, (pdata->micbias.bias3_cfilt_sel << 5)); snd_soc_update_bits(codec, tabla->reg_addr.micb_4_ctl, 0x60, (pdata->micbias.bias4_cfilt_sel << 5)); for (i = 0; i < 6; j++, i += 2) { if (flag & (0x01 << i)) { value = (leg_mode & (0x01 << i)) ? 0x10 : 0x00; val_txfe = (txfe_bypass & (0x01 << i)) ? 0x20 : 0x00; val_txfe = val_txfe | ((txfe_buff & (0x01 << i)) ? 0x10 : 0x00); snd_soc_update_bits(codec, TABLA_A_TX_1_2_EN + j * 10, 0x10, value); snd_soc_update_bits(codec, TABLA_A_TX_1_2_TEST_EN + j * 10, 0x30, val_txfe); } if (flag & (0x01 << (i + 1))) { value = (leg_mode & (0x01 << (i + 1))) ? 0x01 : 0x00; val_txfe = (txfe_bypass & (0x01 << (i + 1))) ? 0x02 : 0x00; val_txfe |= (txfe_buff & (0x01 << (i + 1))) ? 0x01 : 0x00; snd_soc_update_bits(codec, TABLA_A_TX_1_2_EN + j * 10, 0x01, value); snd_soc_update_bits(codec, TABLA_A_TX_1_2_TEST_EN + j * 10, 0x03, val_txfe); } } if (flag & 0x40) { value = (leg_mode & 0x40) ? 0x10 : 0x00; value = value | ((txfe_bypass & 0x40) ? 0x02 : 0x00); value = value | ((txfe_buff & 0x40) ? 0x01 : 0x00); snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x13, value); } if (pdata->ocp.use_pdata) { /* not defined in CODEC specification */ if (pdata->ocp.hph_ocp_limit == 1 || pdata->ocp.hph_ocp_limit == 5) { rc = -EINVAL; goto done; } snd_soc_update_bits(codec, TABLA_A_RX_COM_OCP_CTL, 0x0F, pdata->ocp.num_attempts); snd_soc_write(codec, TABLA_A_RX_COM_OCP_COUNT, ((pdata->ocp.run_time << 4) | pdata->ocp.wait_time)); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0xE0, (pdata->ocp.hph_ocp_limit << 5)); } for (i = 0; i < ARRAY_SIZE(pdata->regulator); i++) { if (!strncmp(pdata->regulator[i].name, "CDC_VDDA_RX", 11)) { if (pdata->regulator[i].min_uV == 1800000 && pdata->regulator[i].max_uV == 1800000) { snd_soc_write(codec, TABLA_A_BIAS_REF_CTL, 0x1C); } else if (pdata->regulator[i].min_uV == 2200000 && pdata->regulator[i].max_uV == 2200000) { snd_soc_write(codec, TABLA_A_BIAS_REF_CTL, 0x1E); } else { pr_err("%s: unsupported CDC_VDDA_RX voltage " "min %d, max %d\n", __func__, pdata->regulator[i].min_uV, pdata->regulator[i].max_uV); rc = -EINVAL; } break; } } done: return rc; } static const struct tabla_reg_mask_val tabla_1_1_reg_defaults[] = { /* Tabla 1.1 MICBIAS changes */ TABLA_REG_VAL(TABLA_A_MICB_1_INT_RBIAS, 0x24), TABLA_REG_VAL(TABLA_A_MICB_2_INT_RBIAS, 0x24), TABLA_REG_VAL(TABLA_A_MICB_3_INT_RBIAS, 0x24), /* Tabla 1.1 HPH changes */ TABLA_REG_VAL(TABLA_A_RX_HPH_BIAS_PA, 0x57), TABLA_REG_VAL(TABLA_A_RX_HPH_BIAS_LDO, 0x56), /* Tabla 1.1 EAR PA changes */ TABLA_REG_VAL(TABLA_A_RX_EAR_BIAS_PA, 0xA6), TABLA_REG_VAL(TABLA_A_RX_EAR_GAIN, 0x02), TABLA_REG_VAL(TABLA_A_RX_EAR_VCM, 0x03), /* Tabla 1.1 Lineout_5 Changes */ TABLA_REG_VAL(TABLA_A_RX_LINE_5_GAIN, 0x10), /* Tabla 1.1 RX Changes */ TABLA_REG_VAL(TABLA_A_CDC_RX1_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX2_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX3_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX4_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX5_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX6_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX7_B5_CTL, 0x78), /* Tabla 1.1 RX1 and RX2 Changes */ TABLA_REG_VAL(TABLA_A_CDC_RX1_B6_CTL, 0xA0), TABLA_REG_VAL(TABLA_A_CDC_RX2_B6_CTL, 0xA0), /* Tabla 1.1 RX3 to RX7 Changes */ TABLA_REG_VAL(TABLA_A_CDC_RX3_B6_CTL, 0x80), TABLA_REG_VAL(TABLA_A_CDC_RX4_B6_CTL, 0x80), TABLA_REG_VAL(TABLA_A_CDC_RX5_B6_CTL, 0x80), TABLA_REG_VAL(TABLA_A_CDC_RX6_B6_CTL, 0x80), TABLA_REG_VAL(TABLA_A_CDC_RX7_B6_CTL, 0x80), /* Tabla 1.1 CLASSG Changes */ TABLA_REG_VAL(TABLA_A_CDC_CLSG_FREQ_THRESH_B3_CTL, 0x1B), }; static const struct tabla_reg_mask_val tabla_2_0_reg_defaults[] = { /* Tabla 2.0 MICBIAS changes */ TABLA_REG_VAL(TABLA_A_MICB_2_MBHC, 0x02), }; static const struct tabla_reg_mask_val tabla_1_x_only_reg_2_0_defaults[] = { TABLA_REG_VAL(TABLA_1_A_MICB_4_INT_RBIAS, 0x24), }; static const struct tabla_reg_mask_val tabla_2_only_reg_2_0_defaults[] = { TABLA_REG_VAL(TABLA_2_A_MICB_4_INT_RBIAS, 0x24), }; static void tabla_update_reg_defaults(struct snd_soc_codec *codec) { u32 i; struct wcd9xxx *tabla_core = dev_get_drvdata(codec->dev->parent); for (i = 0; i < ARRAY_SIZE(tabla_1_1_reg_defaults); i++) snd_soc_write(codec, tabla_1_1_reg_defaults[i].reg, tabla_1_1_reg_defaults[i].val); for (i = 0; i < ARRAY_SIZE(tabla_2_0_reg_defaults); i++) snd_soc_write(codec, tabla_2_0_reg_defaults[i].reg, tabla_2_0_reg_defaults[i].val); if (TABLA_IS_1_X(tabla_core->version)) { for (i = 0; i < ARRAY_SIZE(tabla_1_x_only_reg_2_0_defaults); i++) snd_soc_write(codec, tabla_1_x_only_reg_2_0_defaults[i].reg, tabla_1_x_only_reg_2_0_defaults[i].val); } else { for (i = 0; i < ARRAY_SIZE(tabla_2_only_reg_2_0_defaults); i++) snd_soc_write(codec, tabla_2_only_reg_2_0_defaults[i].reg, tabla_2_only_reg_2_0_defaults[i].val); } } static const struct tabla_reg_mask_val tabla_codec_reg_init_val[] = { /* Initialize current threshold to 350MA * number of wait and run cycles to 4096 */ {TABLA_A_RX_HPH_OCP_CTL, 0xE0, 0x60}, {TABLA_A_RX_COM_OCP_COUNT, 0xFF, 0xFF}, {TABLA_A_QFUSE_CTL, 0xFF, 0x03}, /* Initialize gain registers to use register gain */ {TABLA_A_RX_HPH_L_GAIN, 0x10, 0x10}, {TABLA_A_RX_HPH_R_GAIN, 0x10, 0x10}, {TABLA_A_RX_LINE_1_GAIN, 0x10, 0x10}, {TABLA_A_RX_LINE_2_GAIN, 0x10, 0x10}, {TABLA_A_RX_LINE_3_GAIN, 0x10, 0x10}, {TABLA_A_RX_LINE_4_GAIN, 0x10, 0x10}, /* Set the MICBIAS default output as pull down*/ {TABLA_A_MICB_1_CTL, 0x01, 0x01}, {TABLA_A_MICB_2_CTL, 0x01, 0x01}, {TABLA_A_MICB_3_CTL, 0x01, 0x01}, /* Initialize mic biases to differential mode */ {TABLA_A_MICB_1_INT_RBIAS, 0x24, 0x24}, {TABLA_A_MICB_2_INT_RBIAS, 0x24, 0x24}, {TABLA_A_MICB_3_INT_RBIAS, 0x24, 0x24}, {TABLA_A_CDC_CONN_CLSG_CTL, 0x3C, 0x14}, /* Use 16 bit sample size for TX1 to TX6 */ {TABLA_A_CDC_CONN_TX_SB_B1_CTL, 0x30, 0x20}, {TABLA_A_CDC_CONN_TX_SB_B2_CTL, 0x30, 0x20}, {TABLA_A_CDC_CONN_TX_SB_B3_CTL, 0x30, 0x20}, {TABLA_A_CDC_CONN_TX_SB_B4_CTL, 0x30, 0x20}, {TABLA_A_CDC_CONN_TX_SB_B5_CTL, 0x30, 0x20}, {TABLA_A_CDC_CONN_TX_SB_B6_CTL, 0x30, 0x20}, /* Use 16 bit sample size for TX7 to TX10 */ {TABLA_A_CDC_CONN_TX_SB_B7_CTL, 0x60, 0x40}, {TABLA_A_CDC_CONN_TX_SB_B8_CTL, 0x60, 0x40}, {TABLA_A_CDC_CONN_TX_SB_B9_CTL, 0x60, 0x40}, {TABLA_A_CDC_CONN_TX_SB_B10_CTL, 0x60, 0x40}, /* Use 16 bit sample size for RX */ {TABLA_A_CDC_CONN_RX_SB_B1_CTL, 0xFF, 0xAA}, {TABLA_A_CDC_CONN_RX_SB_B2_CTL, 0xFF, 0xAA}, /*enable HPF filter for TX paths */ {TABLA_A_CDC_TX1_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX2_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX3_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX4_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX5_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX6_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX7_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX8_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX9_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX10_MUX_CTL, 0x8, 0x0}, /* config Decimator for DMIC CLK_MODE_1(3.072Mhz@12.88Mhz mclk) */ {TABLA_A_CDC_TX1_DMIC_CTL, 0x1, 0x1}, {TABLA_A_CDC_TX2_DMIC_CTL, 0x1, 0x1}, {TABLA_A_CDC_TX3_DMIC_CTL, 0x1, 0x1}, {TABLA_A_CDC_TX4_DMIC_CTL, 0x1, 0x1}, {TABLA_A_CDC_TX5_DMIC_CTL, 0x1, 0x1}, {TABLA_A_CDC_TX6_DMIC_CTL, 0x1, 0x1}, {TABLA_A_CDC_TX7_DMIC_CTL, 0x1, 0x1}, {TABLA_A_CDC_TX8_DMIC_CTL, 0x1, 0x1}, {TABLA_A_CDC_TX9_DMIC_CTL, 0x1, 0x1}, {TABLA_A_CDC_TX10_DMIC_CTL, 0x1, 0x1}, /* config DMIC clk to CLK_MODE_1 (3.072Mhz@12.88Mhz mclk) */ {TABLA_A_CDC_CLK_DMIC_CTL, 0x2A, 0x2A}, }; static const struct tabla_reg_mask_val tabla_1_x_codec_reg_init_val[] = { /* Set the MICBIAS default output as pull down*/ {TABLA_1_A_MICB_4_CTL, 0x01, 0x01}, /* Initialize mic biases to differential mode */ {TABLA_1_A_MICB_4_INT_RBIAS, 0x24, 0x24}, }; static const struct tabla_reg_mask_val tabla_2_higher_codec_reg_init_val[] = { /* Set the MICBIAS default output as pull down*/ {TABLA_2_A_MICB_4_CTL, 0x01, 0x01}, /* Initialize mic biases to differential mode */ {TABLA_2_A_MICB_4_INT_RBIAS, 0x24, 0x24}, }; static void tabla_codec_init_reg(struct snd_soc_codec *codec) { u32 i; struct wcd9xxx *tabla_core = dev_get_drvdata(codec->dev->parent); for (i = 0; i < ARRAY_SIZE(tabla_codec_reg_init_val); i++) snd_soc_update_bits(codec, tabla_codec_reg_init_val[i].reg, tabla_codec_reg_init_val[i].mask, tabla_codec_reg_init_val[i].val); if (TABLA_IS_1_X(tabla_core->version)) { for (i = 0; i < ARRAY_SIZE(tabla_1_x_codec_reg_init_val); i++) snd_soc_update_bits(codec, tabla_1_x_codec_reg_init_val[i].reg, tabla_1_x_codec_reg_init_val[i].mask, tabla_1_x_codec_reg_init_val[i].val); } else { for (i = 0; i < ARRAY_SIZE(tabla_2_higher_codec_reg_init_val); i++) snd_soc_update_bits(codec, tabla_2_higher_codec_reg_init_val[i].reg, tabla_2_higher_codec_reg_init_val[i].mask, tabla_2_higher_codec_reg_init_val[i].val); } } static void tabla_update_reg_address(struct tabla_priv *priv) { struct wcd9xxx *tabla_core = dev_get_drvdata(priv->codec->dev->parent); struct tabla_reg_address *reg_addr = &priv->reg_addr; if (TABLA_IS_1_X(tabla_core->version)) { reg_addr->micb_4_mbhc = TABLA_1_A_MICB_4_MBHC; reg_addr->micb_4_int_rbias = TABLA_1_A_MICB_4_INT_RBIAS; reg_addr->micb_4_ctl = TABLA_1_A_MICB_4_CTL; } else if (TABLA_IS_2_0(tabla_core->version)) { reg_addr->micb_4_mbhc = TABLA_2_A_MICB_4_MBHC; reg_addr->micb_4_int_rbias = TABLA_2_A_MICB_4_INT_RBIAS; reg_addr->micb_4_ctl = TABLA_2_A_MICB_4_CTL; } } #ifdef CONFIG_DEBUG_FS static int codec_debug_open(struct inode *inode, struct file *file) { file->private_data = inode->i_private; return 0; } static ssize_t codec_debug_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char lbuf[32]; char *buf; int rc; struct tabla_priv *tabla = filp->private_data; if (cnt > sizeof(lbuf) - 1) return -EINVAL; rc = copy_from_user(lbuf, ubuf, cnt); if (rc) return -EFAULT; lbuf[cnt] = '\0'; buf = (char *)lbuf; TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla->no_mic_headset_override = (*strsep(&buf, " ") == '0') ? false : true; if (tabla->no_mic_headset_override && tabla->mbhc_polling_active) { tabla_codec_pause_hs_polling(tabla->codec); tabla_codec_start_hs_polling(tabla->codec); } TABLA_RELEASE_LOCK(tabla->codec_resource_lock); return cnt; } static ssize_t codec_mbhc_debug_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { const int size = 768; char buffer[size]; int n = 0; struct tabla_priv *tabla = file->private_data; struct snd_soc_codec *codec = tabla->codec; const struct mbhc_internal_cal_data *p = &tabla->mbhc_data; const s16 v_ins_hu_cur = tabla_get_current_v_ins(tabla, true); const s16 v_ins_h_cur = tabla_get_current_v_ins(tabla, false); n = scnprintf(buffer, size - n, "dce_z = %x(%dmv)\n", p->dce_z, tabla_codec_sta_dce_v(codec, 1, p->dce_z)); n += scnprintf(buffer + n, size - n, "dce_mb = %x(%dmv)\n", p->dce_mb, tabla_codec_sta_dce_v(codec, 1, p->dce_mb)); n += scnprintf(buffer + n, size - n, "sta_z = %x(%dmv)\n", p->sta_z, tabla_codec_sta_dce_v(codec, 0, p->sta_z)); n += scnprintf(buffer + n, size - n, "sta_mb = %x(%dmv)\n", p->sta_mb, tabla_codec_sta_dce_v(codec, 0, p->sta_mb)); n += scnprintf(buffer + n, size - n, "t_dce = %x\n", p->t_dce); n += scnprintf(buffer + n, size - n, "t_sta = %x\n", p->t_sta); n += scnprintf(buffer + n, size - n, "micb_mv = %dmv\n", p->micb_mv); n += scnprintf(buffer + n, size - n, "v_ins_hu = %x(%dmv)%s\n", p->v_ins_hu, tabla_codec_sta_dce_v(codec, 0, p->v_ins_hu), p->v_ins_hu == v_ins_hu_cur ? "*" : ""); n += scnprintf(buffer + n, size - n, "v_ins_h = %x(%dmv)%s\n", p->v_ins_h, tabla_codec_sta_dce_v(codec, 1, p->v_ins_h), p->v_ins_h == v_ins_h_cur ? "*" : ""); n += scnprintf(buffer + n, size - n, "adj_v_ins_hu = %x(%dmv)%s\n", p->adj_v_ins_hu, tabla_codec_sta_dce_v(codec, 0, p->adj_v_ins_hu), p->adj_v_ins_hu == v_ins_hu_cur ? "*" : ""); n += scnprintf(buffer + n, size - n, "adj_v_ins_h = %x(%dmv)%s\n", p->adj_v_ins_h, tabla_codec_sta_dce_v(codec, 1, p->adj_v_ins_h), p->adj_v_ins_h == v_ins_h_cur ? "*" : ""); n += scnprintf(buffer + n, size - n, "v_b1_hu = %x(%dmv)\n", p->v_b1_hu, tabla_codec_sta_dce_v(codec, 0, p->v_b1_hu)); n += scnprintf(buffer + n, size - n, "v_b1_h = %x(%dmv)\n", p->v_b1_h, tabla_codec_sta_dce_v(codec, 1, p->v_b1_h)); n += scnprintf(buffer + n, size - n, "v_b1_huc = %x(%dmv)\n", p->v_b1_huc, tabla_codec_sta_dce_v(codec, 1, p->v_b1_huc)); n += scnprintf(buffer + n, size - n, "v_brh = %x(%dmv)\n", p->v_brh, tabla_codec_sta_dce_v(codec, 1, p->v_brh)); n += scnprintf(buffer + n, size - n, "v_brl = %x(%dmv)\n", p->v_brl, tabla_codec_sta_dce_v(codec, 0, p->v_brl)); n += scnprintf(buffer + n, size - n, "v_no_mic = %x(%dmv)\n", p->v_no_mic, tabla_codec_sta_dce_v(codec, 0, p->v_no_mic)); n += scnprintf(buffer + n, size - n, "npoll = %d\n", p->npoll); n += scnprintf(buffer + n, size - n, "nbounce_wait = %d\n", p->nbounce_wait); n += scnprintf(buffer + n, size - n, "v_inval_ins_low = %d\n", p->v_inval_ins_low); n += scnprintf(buffer + n, size - n, "v_inval_ins_high = %d\n", p->v_inval_ins_high); if (tabla->mbhc_cfg.gpio) n += scnprintf(buffer + n, size - n, "GPIO insert = %d\n", tabla_hs_gpio_level_remove(tabla)); buffer[n] = 0; return simple_read_from_buffer(buf, count, pos, buffer, n); } static const struct file_operations codec_debug_ops = { .open = codec_debug_open, .write = codec_debug_write, }; static const struct file_operations codec_mbhc_debug_ops = { .open = codec_debug_open, .read = codec_mbhc_debug_read, }; #endif static int tabla_codec_probe(struct snd_soc_codec *codec) { struct wcd9xxx *control; struct tabla_priv *tabla; struct snd_soc_dapm_context *dapm = &codec->dapm; int ret = 0; int i; void *ptr = NULL; codec->control_data = dev_get_drvdata(codec->dev->parent); control = codec->control_data; tabla = kzalloc(sizeof(struct tabla_priv), GFP_KERNEL); if (!tabla) { dev_err(codec->dev, "Failed to allocate private data\n"); return -ENOMEM; } for (i = 0 ; i < NUM_DECIMATORS; i++) { tx_hpf_work[i].tabla = tabla; tx_hpf_work[i].decimator = i + 1; INIT_DELAYED_WORK(&tx_hpf_work[i].dwork, tx_hpf_corner_freq_callback); } /* Make sure mbhc micbias register addresses are zeroed out */ memset(&tabla->mbhc_bias_regs, 0, sizeof(struct mbhc_micbias_regs)); tabla->mbhc_micbias_switched = false; /* Make sure mbhc intenal calibration data is zeroed out */ memset(&tabla->mbhc_data, 0, sizeof(struct mbhc_internal_cal_data)); tabla->mbhc_data.t_sta_dce = DEFAULT_DCE_STA_WAIT; tabla->mbhc_data.t_dce = DEFAULT_DCE_WAIT; tabla->mbhc_data.t_sta = DEFAULT_STA_WAIT; snd_soc_codec_set_drvdata(codec, tabla); tabla->mclk_enabled = false; tabla->bandgap_type = TABLA_BANDGAP_OFF; tabla->clock_active = false; tabla->config_mode_active = false; tabla->mbhc_polling_active = false; tabla->mbhc_fake_ins_start = 0; tabla->no_mic_headset_override = false; tabla->hs_polling_irq_prepared = false; mutex_init(&tabla->codec_resource_lock); tabla->codec = codec; tabla->mbhc_state = MBHC_STATE_NONE; tabla->mbhc_last_resume = 0; for (i = 0; i < COMPANDER_MAX; i++) { tabla->comp_enabled[i] = 0; tabla->comp_fs[i] = COMPANDER_FS_48KHZ; } tabla->pdata = dev_get_platdata(codec->dev->parent); tabla->intf_type = wcd9xxx_get_intf_type(); tabla->aux_pga_cnt = 0; tabla->aux_l_gain = 0x1F; tabla->aux_r_gain = 0x1F; tabla_update_reg_address(tabla); tabla_update_reg_defaults(codec); tabla_codec_init_reg(codec); ret = tabla_handle_pdata(tabla); if (IS_ERR_VALUE(ret)) { pr_err("%s: bad pdata\n", __func__); goto err_pdata; } if (TABLA_IS_1_X(control->version)) snd_soc_add_codec_controls(codec, tabla_1_x_snd_controls, ARRAY_SIZE(tabla_1_x_snd_controls)); else snd_soc_add_codec_controls(codec, tabla_2_higher_snd_controls, ARRAY_SIZE(tabla_2_higher_snd_controls)); if (TABLA_IS_1_X(control->version)) snd_soc_dapm_new_controls(dapm, tabla_1_x_dapm_widgets, ARRAY_SIZE(tabla_1_x_dapm_widgets)); else snd_soc_dapm_new_controls(dapm, tabla_2_higher_dapm_widgets, ARRAY_SIZE(tabla_2_higher_dapm_widgets)); ptr = kmalloc((sizeof(tabla_rx_chs) + sizeof(tabla_tx_chs)), GFP_KERNEL); if (!ptr) { pr_err("%s: no mem for slim chan ctl data\n", __func__); ret = -ENOMEM; goto err_nomem_slimch; } if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) { snd_soc_dapm_new_controls(dapm, tabla_dapm_i2s_widgets, ARRAY_SIZE(tabla_dapm_i2s_widgets)); snd_soc_dapm_add_routes(dapm, audio_i2s_map, ARRAY_SIZE(audio_i2s_map)); for (i = 0; i < ARRAY_SIZE(tabla_i2s_dai); i++) INIT_LIST_HEAD(&tabla->dai[i].wcd9xxx_ch_list); } else if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_SLIMBUS) { for (i = 0; i < NUM_CODEC_DAIS; i++) { INIT_LIST_HEAD(&tabla->dai[i].wcd9xxx_ch_list); init_waitqueue_head(&tabla->dai[i].dai_wait); } } control->num_rx_port = TABLA_RX_MAX; control->rx_chs = ptr; memcpy(control->rx_chs, tabla_rx_chs, sizeof(tabla_rx_chs)); control->num_tx_port = TABLA_TX_MAX; control->tx_chs = ptr + sizeof(tabla_rx_chs); memcpy(control->tx_chs, tabla_tx_chs, sizeof(tabla_tx_chs)); if (TABLA_IS_1_X(control->version)) { snd_soc_dapm_add_routes(dapm, tabla_1_x_lineout_2_to_4_map, ARRAY_SIZE(tabla_1_x_lineout_2_to_4_map)); } else if (TABLA_IS_2_0(control->version)) { snd_soc_dapm_add_routes(dapm, tabla_2_x_lineout_2_to_4_map, ARRAY_SIZE(tabla_2_x_lineout_2_to_4_map)); } else { pr_err("%s : ERROR. Unsupported Tabla version 0x%2x\n", __func__, control->version); goto err_pdata; } snd_soc_dapm_sync(dapm); ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION, tabla_hs_insert_irq, "Headset insert detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_MBHC_INSERTION); goto err_insert_irq; } wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION); ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_MBHC_REMOVAL, tabla_hs_remove_irq, "Headset remove detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_MBHC_REMOVAL); goto err_remove_irq; } ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL, tabla_dce_handler, "DC Estimation detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_MBHC_POTENTIAL); goto err_potential_irq; } ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_MBHC_RELEASE, tabla_release_handler, "Button Release detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_MBHC_RELEASE); goto err_release_irq; } ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_SLIMBUS, tabla_slimbus_irq, "SLIMBUS Slave", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_SLIMBUS); goto err_slimbus_irq; } for (i = 0; i < WCD9XXX_SLIM_NUM_PORT_REG; i++) wcd9xxx_interface_reg_write(codec->control_data, TABLA_SLIM_PGD_PORT_INT_EN0 + i, 0xFF); ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT, tabla_hphl_ocp_irq, "HPH_L OCP detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); goto err_hphl_ocp_irq; } wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT); ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT, tabla_hphr_ocp_irq, "HPH_R OCP detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); goto err_hphr_ocp_irq; } wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT); /* * Register suspend lock and notifier to resend edge triggered * gpio IRQs */ wake_lock_init(&tabla->irq_resend_wlock, WAKE_LOCK_SUSPEND, "tabla_gpio_irq_resend"); tabla->gpio_irq_resend = false; mutex_lock(&dapm->codec->mutex); snd_soc_dapm_disable_pin(dapm, "ANC HPHL"); snd_soc_dapm_disable_pin(dapm, "ANC HPHR"); snd_soc_dapm_disable_pin(dapm, "ANC HEADPHONE"); snd_soc_dapm_sync(dapm); mutex_unlock(&dapm->codec->mutex); #ifdef CONFIG_DEBUG_FS if (ret == 0) { tabla->debugfs_poke = debugfs_create_file("TRRS", S_IFREG | S_IRUGO, NULL, tabla, &codec_debug_ops); tabla->debugfs_mbhc = debugfs_create_file("tabla_mbhc", S_IFREG | S_IRUGO, NULL, tabla, &codec_mbhc_debug_ops); } #endif codec->ignore_pmdown_time = 1; return ret; err_hphr_ocp_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT, tabla); err_hphl_ocp_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_SLIMBUS, tabla); err_slimbus_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_RELEASE, tabla); err_release_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL, tabla); err_potential_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_REMOVAL, tabla); err_remove_irq: wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION, tabla); err_insert_irq: err_pdata: kfree(ptr); err_nomem_slimch: mutex_destroy(&tabla->codec_resource_lock); kfree(tabla); return ret; } static int tabla_codec_remove(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); wake_lock_destroy(&tabla->irq_resend_wlock); wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_SLIMBUS, tabla); wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_RELEASE, tabla); wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL, tabla); wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_REMOVAL, tabla); wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION, tabla); TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla_codec_disable_clock_block(codec); TABLA_RELEASE_LOCK(tabla->codec_resource_lock); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_OFF); if (tabla->mbhc_fw) release_firmware(tabla->mbhc_fw); mutex_destroy(&tabla->codec_resource_lock); #ifdef CONFIG_DEBUG_FS debugfs_remove(tabla->debugfs_poke); debugfs_remove(tabla->debugfs_mbhc); #endif kfree(tabla); return 0; } static struct snd_soc_codec_driver soc_codec_dev_tabla = { .probe = tabla_codec_probe, .remove = tabla_codec_remove, .read = tabla_read, .write = tabla_write, .readable_register = tabla_readable, .volatile_register = tabla_volatile, .reg_cache_size = TABLA_CACHE_SIZE, .reg_cache_default = tabla_reg_defaults, .reg_word_size = 1, .controls = tabla_snd_controls, .num_controls = ARRAY_SIZE(tabla_snd_controls), .dapm_widgets = tabla_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(tabla_dapm_widgets), .dapm_routes = audio_map, .num_dapm_routes = ARRAY_SIZE(audio_map), }; #ifdef CONFIG_PM static int tabla_suspend(struct device *dev) { dev_dbg(dev, "%s: system suspend\n", __func__); return 0; } static int tabla_resume(struct device *dev) { int irq; struct platform_device *pdev = to_platform_device(dev); struct tabla_priv *tabla = platform_get_drvdata(pdev); dev_dbg(dev, "%s: system resume tabla %p\n", __func__, tabla); if (tabla) { TABLA_ACQUIRE_LOCK(tabla->codec_resource_lock); tabla->mbhc_last_resume = jiffies; if (tabla->gpio_irq_resend) { WARN_ON(!tabla->mbhc_cfg.gpio_irq); tabla->gpio_irq_resend = false; irq = tabla->mbhc_cfg.gpio_irq; pr_debug("%s: Resending GPIO IRQ %d\n", __func__, irq); irq_set_pending(irq); check_irq_resend(irq_to_desc(irq), irq); /* release suspend lock */ wake_unlock(&tabla->irq_resend_wlock); } TABLA_RELEASE_LOCK(tabla->codec_resource_lock); } return 0; } static const struct dev_pm_ops tabla_pm_ops = { .suspend = tabla_suspend, .resume = tabla_resume, }; #endif static int __devinit tabla_probe(struct platform_device *pdev) { int ret = 0; pr_err("tabla_probe\n"); if (wcd9xxx_get_intf_type() == WCD9XXX_INTERFACE_TYPE_SLIMBUS) ret = snd_soc_register_codec(&pdev->dev, &soc_codec_dev_tabla, tabla_dai, ARRAY_SIZE(tabla_dai)); else if (wcd9xxx_get_intf_type() == WCD9XXX_INTERFACE_TYPE_I2C) ret = snd_soc_register_codec(&pdev->dev, &soc_codec_dev_tabla, tabla_i2s_dai, ARRAY_SIZE(tabla_i2s_dai)); return ret; } static int __devexit tabla_remove(struct platform_device *pdev) { snd_soc_unregister_codec(&pdev->dev); return 0; } static struct platform_driver tabla_codec_driver = { .probe = tabla_probe, .remove = tabla_remove, .driver = { .name = "tabla_codec", .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &tabla_pm_ops, #endif }, }; static struct platform_driver tabla1x_codec_driver = { .probe = tabla_probe, .remove = tabla_remove, .driver = { .name = "tabla1x_codec", .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &tabla_pm_ops, #endif }, }; static int __init tabla_codec_init(void) { int rtn = platform_driver_register(&tabla_codec_driver); if (rtn == 0) { rtn = platform_driver_register(&tabla1x_codec_driver); if (rtn != 0) platform_driver_unregister(&tabla_codec_driver); } return rtn; } static void __exit tabla_codec_exit(void) { platform_driver_unregister(&tabla1x_codec_driver); platform_driver_unregister(&tabla_codec_driver); } module_init(tabla_codec_init); module_exit(tabla_codec_exit); MODULE_DESCRIPTION("Tabla codec driver"); MODULE_VERSION("1.0"); MODULE_LICENSE("GPL v2");