/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #define TSENS_DRIVER_NAME "msm-tsens" /* TSENS register info */ #define TSENS_UPPER_LOWER_INTERRUPT_CTRL(n) ((n) + 0x1000) #define TSENS_INTERRUPT_EN BIT(0) #define TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR(n) ((n) + 0x1004) #define TSENS_UPPER_STATUS_CLR BIT(21) #define TSENS_LOWER_STATUS_CLR BIT(20) #define TSENS_UPPER_THRESHOLD_MASK 0xffc00 #define TSENS_LOWER_THRESHOLD_MASK 0x3ff #define TSENS_UPPER_THRESHOLD_SHIFT 10 #define TSENS_S0_STATUS_ADDR(n) ((n) + 0x1030) #define TSENS_SN_ADDR_OFFSET 0x4 #define TSENS_SN_STATUS_TEMP_MASK 0x3ff #define TSENS_SN_STATUS_LOWER_STATUS BIT(11) #define TSENS_SN_STATUS_UPPER_STATUS BIT(12) #define TSENS_STATUS_ADDR_OFFSET 2 #define TSENS_TRDY_ADDR(n) ((n) + 0x105c) #define TSENS_TRDY_MASK BIT(0) #define TSENS_CTRL_ADDR(n) (n) #define TSENS_EN BIT(0) #define TSENS_SW_RST BIT(1) #define TSENS_ADC_CLK_SEL BIT(2) #define TSENS_SENSOR0_SHIFT 3 #define TSENS_62_5_MS_MEAS_PERIOD 1 #define TSENS_312_5_MS_MEAS_PERIOD 2 #define TSENS_MEAS_PERIOD_SHIFT 18 #define TSENS_SN_MIN_MAX_STATUS_CTRL(n) ((n) + 4) #define TSENS_GLOBAL_CONFIG(n) ((n) + 0x34) #define TSENS_S0_MAIN_CONFIG(n) ((n) + 0x38) #define TSENS_SN_REMOTE_CONFIG(n) ((n) + 0x3c) #define TSENS_EEPROM(n) ((n) + 0xd0) #define TSENS_EEPROM_REDUNDANCY_SEL(n) ((n) + 0x444) #define TSENS_EEPROM_BACKUP_REGION(n) ((n) + 0x440) #define TSENS_MAIN_CALIB_ADDR_RANGE 6 #define TSENS_BACKUP_CALIB_ADDR_RANGE 4 #define TSENS_EEPROM_8X26_1(n) ((n) + 0x1c0) #define TSENS_EEPROM_8X26_2(n) ((n) + 0x444) #define TSENS_8X26_MAIN_CALIB_ADDR_RANGE 4 #define TSENS_EEPROM_8X10_1(n) ((n) + 0x1a4) #define TSENS_EEPROM_8X10_1_OFFSET 8 /* TSENS calibration Mask data */ #define TSENS_BASE1_MASK 0xff #define TSENS0_POINT1_MASK 0x3f00 #define TSENS1_POINT1_MASK 0xfc000 #define TSENS2_POINT1_MASK 0x3f00000 #define TSENS3_POINT1_MASK 0xfc000000 #define TSENS4_POINT1_MASK 0x3f #define TSENS5_POINT1_MASK 0xfc0 #define TSENS6_POINT1_MASK 0x3f000 #define TSENS7_POINT1_MASK 0xfc0000 #define TSENS8_POINT1_MASK 0x3f000000 #define TSENS8_POINT1_MASK_BACKUP 0x3f #define TSENS9_POINT1_MASK 0x3f #define TSENS9_POINT1_MASK_BACKUP 0xfc0 #define TSENS10_POINT1_MASK 0xfc0 #define TSENS10_POINT1_MASK_BACKUP 0x3f000 #define TSENS_CAL_SEL_0_1 0xc0000000 #define TSENS_CAL_SEL_2 0x40000000 #define TSENS_CAL_SEL_SHIFT 30 #define TSENS_CAL_SEL_SHIFT_2 28 #define TSENS_ONE_POINT_CALIB 0x1 #define TSENS_ONE_POINT_CALIB_OPTION_2 0x2 #define TSENS_TWO_POINT_CALIB 0x3 #define TSENS0_POINT1_SHIFT 8 #define TSENS1_POINT1_SHIFT 14 #define TSENS2_POINT1_SHIFT 20 #define TSENS3_POINT1_SHIFT 26 #define TSENS5_POINT1_SHIFT 6 #define TSENS6_POINT1_SHIFT 12 #define TSENS7_POINT1_SHIFT 18 #define TSENS8_POINT1_SHIFT 24 #define TSENS9_POINT1_BACKUP_SHIFT 6 #define TSENS10_POINT1_SHIFT 6 #define TSENS10_POINT1_BACKUP_SHIFT 12 #define TSENS_POINT2_BASE_SHIFT 12 #define TSENS_POINT2_BASE_BACKUP_SHIFT 18 #define TSENS0_POINT2_SHIFT 20 #define TSENS0_POINT2_BACKUP_SHIFT 26 #define TSENS1_POINT2_SHIFT 26 #define TSENS2_POINT2_BACKUP_SHIFT 6 #define TSENS3_POINT2_SHIFT 6 #define TSENS3_POINT2_BACKUP_SHIFT 12 #define TSENS4_POINT2_SHIFT 12 #define TSENS4_POINT2_BACKUP_SHIFT 18 #define TSENS5_POINT2_SHIFT 18 #define TSENS5_POINT2_BACKUP_SHIFT 24 #define TSENS6_POINT2_SHIFT 24 #define TSENS7_POINT2_BACKUP_SHIFT 6 #define TSENS8_POINT2_SHIFT 6 #define TSENS8_POINT2_BACKUP_SHIFT 12 #define TSENS9_POINT2_SHIFT 12 #define TSENS9_POINT2_BACKUP_SHIFT 18 #define TSENS10_POINT2_SHIFT 18 #define TSENS10_POINT2_BACKUP_SHIFT 24 #define TSENS_BASE2_MASK 0xff000 #define TSENS_BASE2_BACKUP_MASK 0xfc0000 #define TSENS0_POINT2_MASK 0x3f00000 #define TSENS0_POINT2_BACKUP_MASK 0xfc000000 #define TSENS1_POINT2_MASK 0xfc000000 #define TSENS1_POINT2_BACKUP_MASK 0x3f #define TSENS2_POINT2_MASK 0x3f #define TSENS2_POINT2_BACKUP_MASK 0xfc0 #define TSENS3_POINT2_MASK 0xfc0 #define TSENS3_POINT2_BACKUP_MASK 0x3f000 #define TSENS4_POINT2_MASK 0x3f000 #define TSENS4_POINT2_BACKUP_MASK 0xfc0000 #define TSENS5_POINT2_MASK 0xfc0000 #define TSENS5_POINT2_BACKUP_MASK 0x3f000000 #define TSENS6_POINT2_MASK 0x3f000000 #define TSENS6_POINT2_BACKUP_MASK 0x3f #define TSENS7_POINT2_MASK 0x3f #define TSENS7_POINT2_BACKUP_MASK 0xfc0 #define TSENS8_POINT2_MASK 0xfc0 #define TSENS8_POINT2_BACKUP_MASK 0x3f000 #define TSENS9_POINT2_MASK 0x3f000 #define TSENS9_POINT2_BACKUP_MASK 0xfc0000 #define TSENS10_POINT2_MASK 0xfc0000 #define TSENS10_POINT2_BACKUP_MASK 0x3f000000 #define TSENS_8X26_BASE0_MASK 0x1fe000 #define TSENS0_8X26_POINT1_MASK 0x7f00000 #define TSENS1_8X26_POINT1_MASK 0x3f #define TSENS2_8X26_POINT1_MASK 0xfc0 #define TSENS3_8X26_POINT1_MASK 0x3f000 #define TSENS4_8X26_POINT1_MASK 0xfc0000 #define TSENS5_8X26_POINT1_MASK 0x3f000000 #define TSENS6_8X26_POINT1_MASK 0x3f00000 #define TSENS_8X26_TSENS_CAL_SEL 0xe0000000 #define TSENS_8X26_BASE1_MASK 0xff #define TSENS0_8X26_POINT2_MASK 0x3f00 #define TSENS1_8X26_POINT2_MASK 0xfc00 #define TSENS2_8X26_POINT2_MASK 0x3f00000 #define TSENS3_8X26_POINT2_MASK 0xfc000000 #define TSENS4_8X26_POINT2_MASK 0xfc000000 #define TSENS5_8X26_POINT2_MASK 0x3f00000 #define TSENS6_8X26_POINT2_MASK 0x7e0000 #define TSENS_8X26_CAL_SEL_SHIFT 29 #define TSENS_8X26_BASE0_SHIFT 13 #define TSENS0_8X26_POINT1_SHIFT 21 #define TSENS2_8X26_POINT1_SHIFT 6 #define TSENS3_8X26_POINT1_SHIFT 12 #define TSENS4_8X26_POINT1_SHIFT 18 #define TSENS5_8X26_POINT1_SHIFT 24 #define TSENS6_8X26_POINT1_SHIFT 20 #define TSENS0_8X26_POINT2_SHIFT 8 #define TSENS1_8X26_POINT2_SHIFT 14 #define TSENS2_8X26_POINT2_SHIFT 20 #define TSENS3_8X26_POINT2_SHIFT 26 #define TSENS4_8X26_POINT2_SHIFT 20 #define TSENS5_8X26_POINT2_SHIFT 26 #define TSENS6_8X26_POINT2_SHIFT 17 #define TSENS_8X10_CAL_SEL_SHIFT 28 #define TSENS_8X10_BASE1_SHIFT 8 #define TSENS0_8X10_POINT1_SHIFT 16 #define TSENS0_8X10_POINT2_SHIFT 22 #define TSENS1_8X10_POINT2_SHIFT 6 #define TSENS_8X10_BASE0_MASK 0xff #define TSENS_8X10_BASE1_MASK 0xff00 #define TSENS0_8X10_POINT1_MASK 0x3f0000 #define TSENS0_8X10_POINT2_MASK 0xfc00000 #define TSENS_8X10_TSENS_CAL_SEL 0x70000000 #define TSENS1_8X10_POINT1_MASK 0x3f #define TSENS1_8X10_POINT2_MASK 0xfc0 #define TSENS_BIT_APPEND 0x3 #define TSENS_CAL_DEGC_POINT1 30 #define TSENS_CAL_DEGC_POINT2 120 #define TSENS_SLOPE_FACTOR 1000 /* TSENS register data */ #define TSENS_TRDY_RDY_MIN_TIME 2000 #define TSENS_TRDY_RDY_MAX_TIME 2100 #define TSENS_THRESHOLD_MAX_CODE 0x3ff #define TSENS_THRESHOLD_MIN_CODE 0x0 #define TSENS_GLOBAL_INIT_DATA 0x302f16c #define TSENS_S0_MAIN_CFG_INIT_DATA 0x1c3 #define TSENS_SN_MIN_MAX_STATUS_CTRL_DATA 0x3ffc00 #define TSENS_SN_REMOTE_CFG_DATA 0x11c3 #define TSENS_QFPROM_BACKUP_SEL 0x3 #define TSENS_QFPROM_BACKUP_REDUN_SEL 0xe0000000 #define TSENS_QFPROM_BACKUP_REDUN_SHIFT 29 enum tsens_calib_fuse_map_type { TSENS_CALIB_FUSE_MAP_8974 = 0, TSENS_CALIB_FUSE_MAP_8X26, TSENS_CALIB_FUSE_MAP_8X10, TSENS_CALIB_FUSE_MAP_NUM, }; /* Trips: warm and cool */ enum tsens_trip_type { TSENS_TRIP_WARM = 0, TSENS_TRIP_COOL, TSENS_TRIP_NUM, }; struct tsens_tm_device_sensor { struct thermal_zone_device *tz_dev; enum thermal_device_mode mode; /* Physical HW sensor number */ unsigned int sensor_hw_num; /* Software index. This is keep track of the HW/SW * sensor_ID mapping */ unsigned int sensor_sw_id; struct work_struct work; int offset; int calib_data_point1; int calib_data_point2; uint32_t slope_mul_tsens_factor; }; struct tsens_tm_device { struct platform_device *pdev; struct workqueue_struct *tsens_wq; bool prev_reading_avail; bool calibration_less_mode; bool tsens_local_init; int tsens_factor; uint32_t tsens_num_sensor; int tsens_irq; void *tsens_addr; void *tsens_calib_addr; int tsens_len; int calib_len; struct resource *res_tsens_mem; struct resource *res_calib_mem; struct work_struct tsens_work; uint32_t calib_mode; struct tsens_tm_device_sensor sensor[0]; }; struct tsens_tm_device *tmdev; int tsens_get_sw_id_mapping(int sensor_hw_num, int *sensor_sw_idx) { int i = 0; bool id_found = false; while (i < tmdev->tsens_num_sensor && !id_found) { if (sensor_hw_num == tmdev->sensor[i].sensor_hw_num) { *sensor_sw_idx = tmdev->sensor[i].sensor_sw_id; id_found = true; } i++; } if (!id_found) return -EINVAL; return 0; } EXPORT_SYMBOL(tsens_get_sw_id_mapping); int tsens_get_hw_id_mapping(int sensor_sw_id, int *sensor_hw_num) { int i = 0; bool id_found = false; while (i < tmdev->tsens_num_sensor && !id_found) { if (sensor_sw_id == tmdev->sensor[i].sensor_sw_id) { *sensor_hw_num = tmdev->sensor[i].sensor_hw_num; id_found = true; } i++; } if (!id_found) return -EINVAL; return 0; } EXPORT_SYMBOL(tsens_get_hw_id_mapping); static int tsens_tz_code_to_degc(int adc_code, int sensor_sw_id) { int degc, num, den, idx; idx = sensor_sw_id; num = ((adc_code * tmdev->tsens_factor) - tmdev->sensor[idx].offset); den = (int) tmdev->sensor[idx].slope_mul_tsens_factor; if (num > 0) degc = ((num + (den/2))/den); else if (num < 0) degc = ((num - (den/2))/den); else degc = num/den; pr_debug("raw_code:0x%x, sensor_num:%d, degc:%d\n", adc_code, idx, degc); return degc; } static int tsens_tz_degc_to_code(int degc, int idx) { int code = ((degc * tmdev->sensor[idx].slope_mul_tsens_factor) + tmdev->sensor[idx].offset)/tmdev->tsens_factor; if (code > TSENS_THRESHOLD_MAX_CODE) code = TSENS_THRESHOLD_MAX_CODE; else if (code < TSENS_THRESHOLD_MIN_CODE) code = TSENS_THRESHOLD_MIN_CODE; pr_debug("raw_code:0x%x, sensor_num:%d, degc:%d\n", code, idx, degc); return code; } static void msm_tsens_get_temp(int sensor_hw_num, unsigned long *temp) { unsigned int code, sensor_addr; int sensor_sw_id = -EINVAL, rc = 0; if (!tmdev->prev_reading_avail) { while (!(readl_relaxed(TSENS_TRDY_ADDR(tmdev->tsens_addr)) & TSENS_TRDY_MASK)) usleep_range(TSENS_TRDY_RDY_MIN_TIME, TSENS_TRDY_RDY_MAX_TIME); tmdev->prev_reading_avail = true; } sensor_addr = (unsigned int)TSENS_S0_STATUS_ADDR(tmdev->tsens_addr); code = readl_relaxed(sensor_addr + (sensor_hw_num << TSENS_STATUS_ADDR_OFFSET)); /* Obtain SW index to map the corresponding thermal zone's * offset and slope for code to degc conversion. */ rc = tsens_get_sw_id_mapping(sensor_hw_num, &sensor_sw_id); if (rc < 0) { pr_err("tsens mapping index not found\n"); return; } *temp = tsens_tz_code_to_degc((code & TSENS_SN_STATUS_TEMP_MASK), sensor_sw_id); } static int tsens_tz_get_temp(struct thermal_zone_device *thermal, unsigned long *temp) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; if (!tm_sensor || tm_sensor->mode != THERMAL_DEVICE_ENABLED || !temp) return -EINVAL; msm_tsens_get_temp(tm_sensor->sensor_hw_num, temp); return 0; } int tsens_get_temp(struct tsens_device *device, unsigned long *temp) { if (!tmdev) return -ENODEV; msm_tsens_get_temp(device->sensor_num, temp); return 0; } EXPORT_SYMBOL(tsens_get_temp); int tsens_get_max_sensor_num(uint32_t *tsens_num_sensors) { if (!tmdev) return -ENODEV; *tsens_num_sensors = tmdev->tsens_num_sensor; return 0; } EXPORT_SYMBOL(tsens_get_max_sensor_num); static int tsens_tz_get_mode(struct thermal_zone_device *thermal, enum thermal_device_mode *mode) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; if (!tm_sensor || !mode) return -EINVAL; *mode = tm_sensor->mode; return 0; } static int tsens_tz_get_trip_type(struct thermal_zone_device *thermal, int trip, enum thermal_trip_type *type) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; if (!tm_sensor || trip < 0 || !type) return -EINVAL; switch (trip) { case TSENS_TRIP_WARM: *type = THERMAL_TRIP_CONFIGURABLE_HI; break; case TSENS_TRIP_COOL: *type = THERMAL_TRIP_CONFIGURABLE_LOW; break; default: return -EINVAL; } return 0; } static int tsens_tz_activate_trip_type(struct thermal_zone_device *thermal, int trip, enum thermal_trip_activation_mode mode) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; unsigned int reg_cntl, code, hi_code, lo_code, mask; if (!tm_sensor || trip < 0) return -EINVAL; lo_code = TSENS_THRESHOLD_MIN_CODE; hi_code = TSENS_THRESHOLD_MAX_CODE; reg_cntl = readl_relaxed((TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR (tmdev->tsens_addr) + (tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET))); switch (trip) { case TSENS_TRIP_WARM: code = (reg_cntl & TSENS_UPPER_THRESHOLD_MASK) >> TSENS_UPPER_THRESHOLD_SHIFT; mask = TSENS_UPPER_STATUS_CLR; if (!(reg_cntl & TSENS_LOWER_STATUS_CLR)) lo_code = (reg_cntl & TSENS_LOWER_THRESHOLD_MASK); break; case TSENS_TRIP_COOL: code = (reg_cntl & TSENS_LOWER_THRESHOLD_MASK); mask = TSENS_LOWER_STATUS_CLR; if (!(reg_cntl & TSENS_UPPER_STATUS_CLR)) hi_code = (reg_cntl & TSENS_UPPER_THRESHOLD_MASK) >> TSENS_UPPER_THRESHOLD_SHIFT; break; default: return -EINVAL; } if (mode == THERMAL_TRIP_ACTIVATION_DISABLED) writel_relaxed(reg_cntl | mask, (TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR (tmdev->tsens_addr) + (tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET))); else { if (code < lo_code || code > hi_code) { pr_err("%s with invalid code %x\n", __func__, code); return -EINVAL; } writel_relaxed(reg_cntl & ~mask, (TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR(tmdev->tsens_addr) + (tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET))); } mb(); return 0; } static int tsens_tz_get_trip_temp(struct thermal_zone_device *thermal, int trip, unsigned long *temp) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; unsigned int reg; int sensor_sw_id = -EINVAL, rc = 0; if (!tm_sensor || trip < 0 || !temp) return -EINVAL; reg = readl_relaxed(TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR (tmdev->tsens_addr) + (tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET)); switch (trip) { case TSENS_TRIP_WARM: reg = (reg & TSENS_UPPER_THRESHOLD_MASK) >> TSENS_UPPER_THRESHOLD_SHIFT; break; case TSENS_TRIP_COOL: reg = (reg & TSENS_LOWER_THRESHOLD_MASK); break; default: return -EINVAL; } rc = tsens_get_sw_id_mapping(tm_sensor->sensor_hw_num, &sensor_sw_id); if (rc < 0) { pr_err("tsens mapping index not found\n"); return rc; } *temp = tsens_tz_code_to_degc(reg, sensor_sw_id); return 0; } static int tsens_tz_notify(struct thermal_zone_device *thermal, int count, enum thermal_trip_type type) { /* Critical temperature threshold are enabled and will * shutdown the device once critical thresholds are crossed. */ pr_debug("%s debug\n", __func__); return 1; } static int tsens_tz_set_trip_temp(struct thermal_zone_device *thermal, int trip, long temp) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; unsigned int reg_cntl; int code, hi_code, lo_code, code_err_chk, sensor_sw_id = 0, rc = 0; if (!tm_sensor || trip < 0 || !temp) return -EINVAL; rc = tsens_get_sw_id_mapping(tm_sensor->sensor_hw_num, &sensor_sw_id); if (rc < 0) { pr_err("tsens mapping index not found\n"); return rc; } code_err_chk = code = tsens_tz_degc_to_code(temp, sensor_sw_id); if (!tm_sensor || trip < 0) return -EINVAL; lo_code = TSENS_THRESHOLD_MIN_CODE; hi_code = TSENS_THRESHOLD_MAX_CODE; reg_cntl = readl_relaxed(TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR (tmdev->tsens_addr) + (tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET)); switch (trip) { case TSENS_TRIP_WARM: code <<= TSENS_UPPER_THRESHOLD_SHIFT; reg_cntl &= ~TSENS_UPPER_THRESHOLD_MASK; if (!(reg_cntl & TSENS_LOWER_STATUS_CLR)) lo_code = (reg_cntl & TSENS_LOWER_THRESHOLD_MASK); break; case TSENS_TRIP_COOL: reg_cntl &= ~TSENS_LOWER_THRESHOLD_MASK; if (!(reg_cntl & TSENS_UPPER_STATUS_CLR)) hi_code = (reg_cntl & TSENS_UPPER_THRESHOLD_MASK) >> TSENS_UPPER_THRESHOLD_SHIFT; break; default: return -EINVAL; } if (code_err_chk < lo_code || code_err_chk > hi_code) return -EINVAL; writel_relaxed(reg_cntl | code, (TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR (tmdev->tsens_addr) + (tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET))); mb(); return 0; } static struct thermal_zone_device_ops tsens_thermal_zone_ops = { .get_temp = tsens_tz_get_temp, .get_mode = tsens_tz_get_mode, .get_trip_type = tsens_tz_get_trip_type, .activate_trip_type = tsens_tz_activate_trip_type, .get_trip_temp = tsens_tz_get_trip_temp, .set_trip_temp = tsens_tz_set_trip_temp, .notify = tsens_tz_notify, }; static void notify_uspace_tsens_fn(struct work_struct *work) { struct tsens_tm_device_sensor *tm = container_of(work, struct tsens_tm_device_sensor, work); sysfs_notify(&tm->tz_dev->device.kobj, NULL, "type"); } static void tsens_scheduler_fn(struct work_struct *work) { struct tsens_tm_device *tm = container_of(work, struct tsens_tm_device, tsens_work); unsigned int i, status, threshold; unsigned int sensor_status_addr, sensor_status_ctrl_addr; int sensor_sw_id = -EINVAL, rc = 0; sensor_status_addr = (unsigned int)TSENS_S0_STATUS_ADDR(tmdev->tsens_addr); sensor_status_ctrl_addr = (unsigned int)TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR (tmdev->tsens_addr); for (i = 0; i < tm->tsens_num_sensor; i++) { bool upper_thr = false, lower_thr = false; uint32_t addr_offset; addr_offset = tm->sensor[i].sensor_hw_num * TSENS_SN_ADDR_OFFSET; status = readl_relaxed(sensor_status_addr + addr_offset); threshold = readl_relaxed(sensor_status_ctrl_addr + addr_offset); if (status & TSENS_SN_STATUS_UPPER_STATUS) { writel_relaxed(threshold | TSENS_UPPER_STATUS_CLR, TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR( tmdev->tsens_addr + addr_offset)); upper_thr = true; } if (status & TSENS_SN_STATUS_LOWER_STATUS) { writel_relaxed(threshold | TSENS_LOWER_STATUS_CLR, TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR( tmdev->tsens_addr + addr_offset)); lower_thr = true; } if (upper_thr || lower_thr) { /* Notify user space */ queue_work(tm->tsens_wq, &tm->sensor[i].work); rc = tsens_get_sw_id_mapping( tm->sensor[i].sensor_hw_num, &sensor_sw_id); if (rc < 0) pr_err("tsens mapping index not found\n"); pr_debug("sensor:%d trigger temp (%d degC)\n", tm->sensor[i].sensor_hw_num, tsens_tz_code_to_degc((status & TSENS_SN_STATUS_TEMP_MASK), sensor_sw_id)); } } mb(); } static irqreturn_t tsens_isr(int irq, void *data) { queue_work(tmdev->tsens_wq, &tmdev->tsens_work); return IRQ_HANDLED; } static void tsens_hw_init(void) { unsigned int reg_cntl = 0, sensor_en = 0; unsigned int i; if (tmdev->tsens_local_init) { writel_relaxed(reg_cntl, TSENS_CTRL_ADDR(tmdev->tsens_addr)); writel_relaxed(reg_cntl | TSENS_SW_RST, TSENS_CTRL_ADDR(tmdev->tsens_addr)); reg_cntl |= (TSENS_62_5_MS_MEAS_PERIOD << TSENS_MEAS_PERIOD_SHIFT); for (i = 0; i < tmdev->tsens_num_sensor; i++) sensor_en |= (1 << tmdev->sensor[i].sensor_hw_num); sensor_en <<= TSENS_SENSOR0_SHIFT; reg_cntl |= (sensor_en | TSENS_EN); writel_relaxed(reg_cntl, TSENS_CTRL_ADDR(tmdev->tsens_addr)); writel_relaxed(TSENS_GLOBAL_INIT_DATA, TSENS_GLOBAL_CONFIG(tmdev->tsens_addr)); writel_relaxed(TSENS_S0_MAIN_CFG_INIT_DATA, TSENS_S0_MAIN_CONFIG(tmdev->tsens_addr)); for (i = 0; i < tmdev->tsens_num_sensor; i++) { writel_relaxed(TSENS_SN_MIN_MAX_STATUS_CTRL_DATA, TSENS_SN_MIN_MAX_STATUS_CTRL(tmdev->tsens_addr) + (tmdev->sensor[i].sensor_hw_num * TSENS_SN_ADDR_OFFSET)); writel_relaxed(TSENS_SN_REMOTE_CFG_DATA, TSENS_SN_REMOTE_CONFIG(tmdev->tsens_addr) + (tmdev->sensor[i].sensor_hw_num * TSENS_SN_ADDR_OFFSET)); } pr_debug("Local TSENS control initialization\n"); } writel_relaxed(TSENS_INTERRUPT_EN, TSENS_UPPER_LOWER_INTERRUPT_CTRL(tmdev->tsens_addr)); } static int tsens_calib_8x10_sensors(void) { int i, tsens_base0_data = 0, tsens0_point1 = 0, tsens1_point1 = 0; int tsens0_point2 = 0, tsens1_point2 = 0; int tsens_base1_data = 0, tsens_calibration_mode = 0; uint32_t calib_data[2]; uint32_t calib_tsens_point1_data[2], calib_tsens_point2_data[2]; if (tmdev->calibration_less_mode) goto calibration_less_mode; calib_data[0] = readl_relaxed( TSENS_EEPROM_8X10_1(tmdev->tsens_calib_addr)); calib_data[1] = readl_relaxed( (TSENS_EEPROM_8X10_1(tmdev->tsens_calib_addr) + TSENS_EEPROM_8X10_1_OFFSET)); tsens_calibration_mode = (calib_data[0] & TSENS_8X10_TSENS_CAL_SEL) >> TSENS_8X10_CAL_SEL_SHIFT; pr_debug("calib mode scheme:%x\n", tsens_calibration_mode); if ((tsens_calibration_mode == TSENS_TWO_POINT_CALIB) || (tsens_calibration_mode == TSENS_ONE_POINT_CALIB_OPTION_2)) { tsens_base0_data = (calib_data[0] & TSENS_8X10_BASE0_MASK); tsens0_point1 = (calib_data[0] & TSENS0_8X10_POINT1_MASK) >> TSENS0_8X10_POINT1_SHIFT; tsens1_point1 = calib_data[1] & TSENS1_8X10_POINT1_MASK; } else goto calibration_less_mode; if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) { tsens_base1_data = (calib_data[0] & TSENS_8X10_BASE1_MASK) >> TSENS_8X10_BASE1_SHIFT; tsens0_point2 = (calib_data[0] & TSENS0_8X10_POINT2_MASK) >> TSENS0_8X10_POINT2_SHIFT; tsens1_point2 = (calib_data[1] & TSENS1_8X10_POINT2_MASK) >> TSENS1_8X10_POINT2_SHIFT; } if (tsens_calibration_mode == 0) { calibration_less_mode: pr_debug("TSENS is calibrationless mode\n"); for (i = 0; i < tmdev->tsens_num_sensor; i++) calib_tsens_point2_data[i] = 780; calib_tsens_point1_data[0] = 595; calib_tsens_point1_data[1] = 629; goto compute_intercept_slope; } if ((tsens_calibration_mode == TSENS_ONE_POINT_CALIB_OPTION_2) || (tsens_calibration_mode == TSENS_TWO_POINT_CALIB)) { calib_tsens_point1_data[0] = ((((tsens_base0_data) + tsens0_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[1] = ((((tsens_base0_data) + tsens1_point1) << 2) | TSENS_BIT_APPEND); } if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) { pr_debug("two point calibration calculation\n"); calib_tsens_point2_data[0] = (((tsens_base1_data + tsens0_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[1] = (((tsens_base1_data + tsens1_point2) << 2) | TSENS_BIT_APPEND); } compute_intercept_slope: for (i = 0; i < tmdev->tsens_num_sensor; i++) { int32_t num = 0, den = 0; tmdev->sensor[i].calib_data_point2 = calib_tsens_point2_data[i]; tmdev->sensor[i].calib_data_point1 = calib_tsens_point1_data[i]; pr_debug("sensor:%d - calib_data_point1:0x%x, calib_data_point2:0x%x\n", i, tmdev->sensor[i].calib_data_point1, tmdev->sensor[i].calib_data_point2); if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) { /* slope (m) = adc_code2 - adc_code1 (y2 - y1)/ temp_120_degc - temp_30_degc (x2 - x1) */ num = tmdev->sensor[i].calib_data_point2 - tmdev->sensor[i].calib_data_point1; num *= tmdev->tsens_factor; den = TSENS_CAL_DEGC_POINT2 - TSENS_CAL_DEGC_POINT1; tmdev->sensor[i].slope_mul_tsens_factor = num/den; } tmdev->sensor[i].offset = (tmdev->sensor[i].calib_data_point1 * tmdev->tsens_factor) - (TSENS_CAL_DEGC_POINT1 * tmdev->sensor[i].slope_mul_tsens_factor); INIT_WORK(&tmdev->sensor[i].work, notify_uspace_tsens_fn); tmdev->prev_reading_avail = false; } return 0; } static int tsens_calib_8x26_sensors(void) { int i, tsens_base0_data = 0, tsens0_point1 = 0, tsens1_point1 = 0; int tsens2_point1 = 0, tsens3_point1 = 0, tsens4_point1 = 0; int tsens5_point1 = 0, tsens6_point1 = 0, tsens6_point2 = 0; int tsens0_point2 = 0, tsens1_point2 = 0, tsens2_point2 = 0; int tsens3_point2 = 0, tsens4_point2 = 0, tsens5_point2 = 0; int tsens_base1_data = 0, tsens_calibration_mode = 0; uint32_t calib_data[6]; uint32_t calib_tsens_point1_data[7], calib_tsens_point2_data[7]; if (tmdev->calibration_less_mode) goto calibration_less_mode; for (i = 0; i < TSENS_8X26_MAIN_CALIB_ADDR_RANGE; i++) calib_data[i] = readl_relaxed( (TSENS_EEPROM_8X26_1(tmdev->tsens_calib_addr)) + (i * TSENS_SN_ADDR_OFFSET)); calib_data[4] = readl_relaxed( (TSENS_EEPROM_8X26_2(tmdev->tsens_calib_addr))); calib_data[5] = readl_relaxed( (TSENS_EEPROM_8X26_2(tmdev->tsens_calib_addr)) + 0x8); tsens_calibration_mode = (calib_data[5] & TSENS_8X26_TSENS_CAL_SEL) >> TSENS_8X26_CAL_SEL_SHIFT; pr_debug("calib mode scheme:%x\n", tsens_calibration_mode); if ((tsens_calibration_mode == TSENS_TWO_POINT_CALIB) || (tsens_calibration_mode == TSENS_ONE_POINT_CALIB_OPTION_2)) { tsens_base0_data = (calib_data[0] & TSENS_8X26_BASE0_MASK) >> TSENS_8X26_BASE0_SHIFT; tsens0_point1 = (calib_data[0] & TSENS0_8X26_POINT1_MASK) >> TSENS0_8X26_POINT1_SHIFT; tsens1_point1 = calib_data[1] & TSENS1_8X26_POINT1_MASK; tsens2_point1 = (calib_data[1] & TSENS2_8X26_POINT1_MASK) >> TSENS2_8X26_POINT1_SHIFT; tsens3_point1 = (calib_data[1] & TSENS3_8X26_POINT1_MASK) >> TSENS3_8X26_POINT1_SHIFT; tsens4_point1 = (calib_data[1] & TSENS4_8X26_POINT1_MASK) >> TSENS4_8X26_POINT1_SHIFT; tsens5_point1 = (calib_data[1] & TSENS5_8X26_POINT1_MASK) >> TSENS5_8X26_POINT1_SHIFT; tsens6_point1 = (calib_data[2] & TSENS6_8X26_POINT1_MASK) >> TSENS6_8X26_POINT1_SHIFT; } else goto calibration_less_mode; if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) { tsens_base1_data = (calib_data[3] & TSENS_8X26_BASE1_MASK); tsens0_point2 = (calib_data[3] & TSENS0_8X26_POINT2_MASK) >> TSENS0_8X26_POINT2_SHIFT; tsens1_point2 = (calib_data[3] & TSENS1_8X26_POINT2_MASK) >> TSENS1_8X26_POINT2_SHIFT; tsens2_point2 = (calib_data[3] & TSENS2_8X26_POINT2_MASK) >> TSENS2_8X26_POINT2_SHIFT; tsens3_point2 = (calib_data[3] & TSENS3_8X26_POINT2_MASK) >> TSENS3_8X26_POINT2_SHIFT; tsens4_point2 = (calib_data[4] & TSENS4_8X26_POINT2_MASK) >> TSENS4_8X26_POINT2_SHIFT; tsens5_point2 = (calib_data[4] & TSENS5_8X26_POINT2_MASK) >> TSENS5_8X26_POINT2_SHIFT; tsens6_point2 = (calib_data[5] & TSENS6_8X26_POINT2_MASK) >> TSENS6_8X26_POINT2_SHIFT; } if (tsens_calibration_mode == 0) { calibration_less_mode: pr_debug("TSENS is calibrationless mode\n"); for (i = 0; i < tmdev->tsens_num_sensor; i++) calib_tsens_point2_data[i] = 780; calib_tsens_point1_data[0] = 595; calib_tsens_point1_data[1] = 625; calib_tsens_point1_data[2] = 553; calib_tsens_point1_data[3] = 578; calib_tsens_point1_data[4] = 505; calib_tsens_point1_data[5] = 509; calib_tsens_point1_data[6] = 507; goto compute_intercept_slope; } if ((tsens_calibration_mode == TSENS_ONE_POINT_CALIB_OPTION_2) || (tsens_calibration_mode == TSENS_TWO_POINT_CALIB)) { calib_tsens_point1_data[0] = ((((tsens_base0_data) + tsens0_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[1] = ((((tsens_base0_data) + tsens1_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[2] = ((((tsens_base0_data) + tsens2_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[3] = ((((tsens_base0_data) + tsens3_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[4] = ((((tsens_base0_data) + tsens4_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[5] = ((((tsens_base0_data) + tsens5_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[6] = ((((tsens_base0_data) + tsens6_point1) << 2) | TSENS_BIT_APPEND); } if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) { pr_debug("two point calibration calculation\n"); calib_tsens_point2_data[0] = (((tsens_base1_data + tsens0_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[1] = (((tsens_base1_data + tsens1_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[2] = (((tsens_base1_data + tsens2_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[3] = (((tsens_base1_data + tsens3_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[4] = (((tsens_base1_data + tsens4_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[5] = (((tsens_base1_data + tsens5_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[6] = (((tsens_base1_data + tsens6_point2) << 2) | TSENS_BIT_APPEND); } compute_intercept_slope: for (i = 0; i < tmdev->tsens_num_sensor; i++) { int32_t num = 0, den = 0; tmdev->sensor[i].calib_data_point2 = calib_tsens_point2_data[i]; tmdev->sensor[i].calib_data_point1 = calib_tsens_point1_data[i]; pr_debug("sensor:%d - calib_data_point1:0x%x, calib_data_point2:0x%x\n", i, tmdev->sensor[i].calib_data_point1, tmdev->sensor[i].calib_data_point2); if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) { /* slope (m) = adc_code2 - adc_code1 (y2 - y1)/ temp_120_degc - temp_30_degc (x2 - x1) */ num = tmdev->sensor[i].calib_data_point2 - tmdev->sensor[i].calib_data_point1; num *= tmdev->tsens_factor; den = TSENS_CAL_DEGC_POINT2 - TSENS_CAL_DEGC_POINT1; tmdev->sensor[i].slope_mul_tsens_factor = num/den; } tmdev->sensor[i].offset = (tmdev->sensor[i].calib_data_point1 * tmdev->tsens_factor) - (TSENS_CAL_DEGC_POINT1 * tmdev->sensor[i].slope_mul_tsens_factor); INIT_WORK(&tmdev->sensor[i].work, notify_uspace_tsens_fn); tmdev->prev_reading_avail = false; } return 0; } static int tsens_calib_8974_sensors(void) { int i, tsens_base1_data = 0, tsens0_point1 = 0, tsens1_point1 = 0; int tsens2_point1 = 0, tsens3_point1 = 0, tsens4_point1 = 0; int tsens5_point1 = 0, tsens6_point1 = 0, tsens7_point1 = 0; int tsens8_point1 = 0, tsens9_point1 = 0, tsens10_point1 = 0; int tsens0_point2 = 0, tsens1_point2 = 0, tsens2_point2 = 0; int tsens3_point2 = 0, tsens4_point2 = 0, tsens5_point2 = 0; int tsens6_point2 = 0, tsens7_point2 = 0, tsens8_point2 = 0; int tsens9_point2 = 0, tsens10_point2 = 0; int tsens_base2_data = 0, tsens_calibration_mode = 0, temp = 0; uint32_t calib_data[6], calib_redun_sel, calib_data_backup[4]; uint32_t calib_tsens_point1_data[11], calib_tsens_point2_data[11]; if (tmdev->calibration_less_mode) goto calibration_less_mode; calib_redun_sel = readl_relaxed( TSENS_EEPROM_REDUNDANCY_SEL(tmdev->tsens_calib_addr)); calib_redun_sel = calib_redun_sel & TSENS_QFPROM_BACKUP_REDUN_SEL; calib_redun_sel >>= TSENS_QFPROM_BACKUP_REDUN_SHIFT; pr_debug("calib_redun_sel:%x\n", calib_redun_sel); for (i = 0; i < TSENS_MAIN_CALIB_ADDR_RANGE; i++) { calib_data[i] = readl_relaxed( (TSENS_EEPROM(tmdev->tsens_calib_addr)) + (i * TSENS_SN_ADDR_OFFSET)); pr_debug("calib raw data row%d:0x%x\n", i, calib_data[i]); } if (calib_redun_sel == TSENS_QFPROM_BACKUP_SEL) { tsens_calibration_mode = (calib_data[4] & TSENS_CAL_SEL_0_1) >> TSENS_CAL_SEL_SHIFT; temp = (calib_data[5] & TSENS_CAL_SEL_2) >> TSENS_CAL_SEL_SHIFT_2; tsens_calibration_mode |= temp; pr_debug("backup calib mode:%x\n", calib_redun_sel); for (i = 0; i < TSENS_BACKUP_CALIB_ADDR_RANGE; i++) calib_data_backup[i] = readl_relaxed( (TSENS_EEPROM_BACKUP_REGION( tmdev->tsens_calib_addr)) + (i * TSENS_SN_ADDR_OFFSET)); if ((tsens_calibration_mode == TSENS_ONE_POINT_CALIB) || (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) || (tsens_calibration_mode == TSENS_ONE_POINT_CALIB_OPTION_2)) { tsens_base1_data = (calib_data_backup[0] & TSENS_BASE1_MASK); tsens0_point1 = (calib_data_backup[0] & TSENS0_POINT1_MASK) >> TSENS0_POINT1_SHIFT; tsens1_point1 = (calib_data_backup[0] & TSENS1_POINT1_MASK) >> TSENS1_POINT1_SHIFT; tsens2_point1 = (calib_data_backup[0] & TSENS2_POINT1_MASK) >> TSENS2_POINT1_SHIFT; tsens3_point1 = (calib_data_backup[0] & TSENS3_POINT1_MASK) >> TSENS3_POINT1_SHIFT; tsens4_point1 = (calib_data_backup[1] & TSENS4_POINT1_MASK); tsens5_point1 = (calib_data_backup[1] & TSENS5_POINT1_MASK) >> TSENS5_POINT1_SHIFT; tsens6_point1 = (calib_data_backup[1] & TSENS6_POINT1_MASK) >> TSENS6_POINT1_SHIFT; tsens7_point1 = (calib_data_backup[1] & TSENS7_POINT1_MASK) >> TSENS7_POINT1_SHIFT; tsens8_point1 = (calib_data_backup[2] & TSENS8_POINT1_MASK_BACKUP) >> TSENS8_POINT1_SHIFT; tsens9_point1 = (calib_data_backup[2] & TSENS9_POINT1_MASK_BACKUP) >> TSENS9_POINT1_BACKUP_SHIFT; tsens10_point1 = (calib_data_backup[2] & TSENS10_POINT1_MASK_BACKUP) >> TSENS10_POINT1_BACKUP_SHIFT; } else goto calibration_less_mode; if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) { tsens_base2_data = (calib_data_backup[2] & TSENS_BASE2_BACKUP_MASK) >> TSENS_POINT2_BASE_BACKUP_SHIFT; tsens0_point2 = (calib_data_backup[2] & TSENS0_POINT2_BACKUP_MASK) >> TSENS0_POINT2_BACKUP_SHIFT; tsens1_point2 = (calib_data_backup[3] & TSENS1_POINT2_BACKUP_MASK); tsens2_point2 = (calib_data_backup[3] & TSENS2_POINT2_BACKUP_MASK) >> TSENS2_POINT2_BACKUP_SHIFT; tsens3_point2 = (calib_data_backup[3] & TSENS3_POINT2_BACKUP_MASK) >> TSENS3_POINT2_BACKUP_SHIFT; tsens4_point2 = (calib_data_backup[3] & TSENS4_POINT2_BACKUP_MASK) >> TSENS4_POINT2_BACKUP_SHIFT; tsens5_point2 = (calib_data[4] & TSENS5_POINT2_BACKUP_MASK) >> TSENS5_POINT2_BACKUP_SHIFT; tsens6_point2 = (calib_data[5] & TSENS6_POINT2_BACKUP_MASK); tsens7_point2 = (calib_data[5] & TSENS7_POINT2_BACKUP_MASK) >> TSENS7_POINT2_BACKUP_SHIFT; tsens8_point2 = (calib_data[5] & TSENS8_POINT2_BACKUP_MASK) >> TSENS8_POINT2_BACKUP_SHIFT; tsens9_point2 = (calib_data[5] & TSENS9_POINT2_BACKUP_MASK) >> TSENS9_POINT2_BACKUP_SHIFT; tsens10_point2 = (calib_data[5] & TSENS10_POINT2_BACKUP_MASK) >> TSENS10_POINT2_BACKUP_SHIFT; } } else { tsens_calibration_mode = (calib_data[1] & TSENS_CAL_SEL_0_1) >> TSENS_CAL_SEL_SHIFT; temp = (calib_data[3] & TSENS_CAL_SEL_2) >> TSENS_CAL_SEL_SHIFT_2; tsens_calibration_mode |= temp; pr_debug("calib mode scheme:%x\n", tsens_calibration_mode); if ((tsens_calibration_mode == TSENS_ONE_POINT_CALIB) || (tsens_calibration_mode == TSENS_ONE_POINT_CALIB_OPTION_2) || (tsens_calibration_mode == TSENS_TWO_POINT_CALIB)) { tsens_base1_data = (calib_data[0] & TSENS_BASE1_MASK); tsens0_point1 = (calib_data[0] & TSENS0_POINT1_MASK) >> TSENS0_POINT1_SHIFT; tsens1_point1 = (calib_data[0] & TSENS1_POINT1_MASK) >> TSENS1_POINT1_SHIFT; tsens2_point1 = (calib_data[0] & TSENS2_POINT1_MASK) >> TSENS2_POINT1_SHIFT; tsens3_point1 = (calib_data[0] & TSENS3_POINT1_MASK) >> TSENS3_POINT1_SHIFT; tsens4_point1 = (calib_data[1] & TSENS4_POINT1_MASK); tsens5_point1 = (calib_data[1] & TSENS5_POINT1_MASK) >> TSENS5_POINT1_SHIFT; tsens6_point1 = (calib_data[1] & TSENS6_POINT1_MASK) >> TSENS6_POINT1_SHIFT; tsens7_point1 = (calib_data[1] & TSENS7_POINT1_MASK) >> TSENS7_POINT1_SHIFT; tsens8_point1 = (calib_data[1] & TSENS8_POINT1_MASK) >> TSENS8_POINT1_SHIFT; tsens9_point1 = (calib_data[2] & TSENS9_POINT1_MASK); tsens10_point1 = (calib_data[2] & TSENS10_POINT1_MASK) >> TSENS10_POINT1_SHIFT; } else goto calibration_less_mode; if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) { tsens_base2_data = (calib_data[2] & TSENS_BASE2_MASK) >> TSENS_POINT2_BASE_SHIFT; tsens0_point2 = (calib_data[2] & TSENS0_POINT2_MASK) >> TSENS0_POINT2_SHIFT; tsens1_point2 = (calib_data[2] & TSENS1_POINT2_MASK) >> TSENS1_POINT2_SHIFT; tsens2_point2 = (calib_data[3] & TSENS2_POINT2_MASK); tsens3_point2 = (calib_data[3] & TSENS3_POINT2_MASK) >> TSENS3_POINT2_SHIFT; tsens4_point2 = (calib_data[3] & TSENS4_POINT2_MASK) >> TSENS4_POINT2_SHIFT; tsens5_point2 = (calib_data[3] & TSENS5_POINT2_MASK) >> TSENS5_POINT2_SHIFT; tsens6_point2 = (calib_data[3] & TSENS6_POINT2_MASK) >> TSENS6_POINT2_SHIFT; tsens7_point2 = (calib_data[4] & TSENS7_POINT2_MASK); tsens8_point2 = (calib_data[4] & TSENS8_POINT2_MASK) >> TSENS8_POINT2_SHIFT; tsens9_point2 = (calib_data[4] & TSENS9_POINT2_MASK) >> TSENS9_POINT2_SHIFT; tsens10_point2 = (calib_data[4] & TSENS10_POINT2_MASK) >> TSENS10_POINT2_SHIFT; } if (tsens_calibration_mode == 0) { calibration_less_mode: pr_debug("TSENS is calibrationless mode\n"); for (i = 0; i < tmdev->tsens_num_sensor; i++) calib_tsens_point2_data[i] = 780; calib_tsens_point1_data[0] = 502; calib_tsens_point1_data[1] = 509; calib_tsens_point1_data[2] = 503; calib_tsens_point1_data[3] = 509; calib_tsens_point1_data[4] = 505; calib_tsens_point1_data[5] = 509; calib_tsens_point1_data[6] = 507; calib_tsens_point1_data[7] = 510; calib_tsens_point1_data[8] = 508; calib_tsens_point1_data[9] = 509; calib_tsens_point1_data[10] = 508; goto compute_intercept_slope; } } if (tsens_calibration_mode == TSENS_ONE_POINT_CALIB) { calib_tsens_point1_data[0] = (((tsens_base1_data) << 2) | TSENS_BIT_APPEND) + tsens0_point1; calib_tsens_point1_data[1] = (((tsens_base1_data) << 2) | TSENS_BIT_APPEND) + tsens1_point1; calib_tsens_point1_data[2] = (((tsens_base1_data) << 2) | TSENS_BIT_APPEND) + tsens2_point1; calib_tsens_point1_data[3] = (((tsens_base1_data) << 2) | TSENS_BIT_APPEND) + tsens3_point1; calib_tsens_point1_data[4] = (((tsens_base1_data) << 2) | TSENS_BIT_APPEND) + tsens4_point1; calib_tsens_point1_data[5] = (((tsens_base1_data) << 2) | TSENS_BIT_APPEND) + tsens5_point1; calib_tsens_point1_data[6] = (((tsens_base1_data) << 2) | TSENS_BIT_APPEND) + tsens6_point1; calib_tsens_point1_data[7] = (((tsens_base1_data) << 2) | TSENS_BIT_APPEND) + tsens7_point1; calib_tsens_point1_data[8] = (((tsens_base1_data) << 2) | TSENS_BIT_APPEND) + tsens8_point1; calib_tsens_point1_data[9] = (((tsens_base1_data) << 2) | TSENS_BIT_APPEND) + tsens9_point1; calib_tsens_point1_data[10] = (((tsens_base1_data) << 2) | TSENS_BIT_APPEND) + tsens10_point1; } if ((tsens_calibration_mode == TSENS_ONE_POINT_CALIB_OPTION_2) || (tsens_calibration_mode == TSENS_TWO_POINT_CALIB)) { pr_debug("one point calibration calculation\n"); calib_tsens_point1_data[0] = ((((tsens_base1_data) + tsens0_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[1] = ((((tsens_base1_data) + tsens1_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[2] = ((((tsens_base1_data) + tsens2_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[3] = ((((tsens_base1_data) + tsens3_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[4] = ((((tsens_base1_data) + tsens4_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[5] = ((((tsens_base1_data) + tsens5_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[6] = ((((tsens_base1_data) + tsens6_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[7] = ((((tsens_base1_data) + tsens7_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[8] = ((((tsens_base1_data) + tsens8_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[9] = ((((tsens_base1_data) + tsens9_point1) << 2) | TSENS_BIT_APPEND); calib_tsens_point1_data[10] = ((((tsens_base1_data) + tsens10_point1) << 2) | TSENS_BIT_APPEND); } if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) { pr_debug("two point calibration calculation\n"); calib_tsens_point2_data[0] = (((tsens_base2_data + tsens0_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[1] = (((tsens_base2_data + tsens1_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[2] = (((tsens_base2_data + tsens2_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[3] = (((tsens_base2_data + tsens3_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[4] = (((tsens_base2_data + tsens4_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[5] = (((tsens_base2_data + tsens5_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[6] = (((tsens_base2_data + tsens6_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[7] = (((tsens_base2_data + tsens7_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[8] = (((tsens_base2_data + tsens8_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[9] = (((tsens_base2_data + tsens9_point2) << 2) | TSENS_BIT_APPEND); calib_tsens_point2_data[10] = (((tsens_base2_data + tsens10_point2) << 2) | TSENS_BIT_APPEND); } compute_intercept_slope: for (i = 0; i < tmdev->tsens_num_sensor; i++) { int32_t num = 0, den = 0; tmdev->sensor[i].calib_data_point2 = calib_tsens_point2_data[i]; tmdev->sensor[i].calib_data_point1 = calib_tsens_point1_data[i]; pr_debug("sensor:%d - calib_data_point1:0x%x, calib_data_point2:0x%x\n", i, tmdev->sensor[i].calib_data_point1, tmdev->sensor[i].calib_data_point2); if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) { /* slope (m) = adc_code2 - adc_code1 (y2 - y1)/ temp_120_degc - temp_30_degc (x2 - x1) */ num = tmdev->sensor[i].calib_data_point2 - tmdev->sensor[i].calib_data_point1; num *= tmdev->tsens_factor; den = TSENS_CAL_DEGC_POINT2 - TSENS_CAL_DEGC_POINT1; tmdev->sensor[i].slope_mul_tsens_factor = num/den; } tmdev->sensor[i].offset = (tmdev->sensor[i].calib_data_point1 * tmdev->tsens_factor) - (TSENS_CAL_DEGC_POINT1 * tmdev->sensor[i].slope_mul_tsens_factor); pr_debug("offset:%d\n", tmdev->sensor[i].offset); INIT_WORK(&tmdev->sensor[i].work, notify_uspace_tsens_fn); tmdev->prev_reading_avail = false; } return 0; } static int tsens_calib_sensors(void) { int rc = 0; if (!tmdev) return -ENODEV; if (tmdev->calib_mode == TSENS_CALIB_FUSE_MAP_8974) rc = tsens_calib_8974_sensors(); else if (tmdev->calib_mode == TSENS_CALIB_FUSE_MAP_8X26) rc = tsens_calib_8x26_sensors(); else if (tmdev->calib_mode == TSENS_CALIB_FUSE_MAP_8X10) rc = tsens_calib_8x10_sensors(); else rc = -ENODEV; return rc; } static int get_device_tree_data(struct platform_device *pdev) { struct device_node *of_node = pdev->dev.of_node; struct resource *res_mem = NULL; u32 *tsens_slope_data; u32 *sensor_id; u32 rc = 0, i, tsens_num_sensors, calib_type; const char *tsens_calib_mode; rc = of_property_read_u32(of_node, "qcom,sensors", &tsens_num_sensors); if (rc) { dev_err(&pdev->dev, "missing sensor number\n"); return -ENODEV; } tsens_slope_data = devm_kzalloc(&pdev->dev, tsens_num_sensors * sizeof(u32), GFP_KERNEL); if (!tsens_slope_data) { dev_err(&pdev->dev, "can not allocate slope data\n"); return -ENOMEM; } rc = of_property_read_u32_array(of_node, "qcom,slope", tsens_slope_data, tsens_num_sensors); if (rc) { dev_err(&pdev->dev, "invalid or missing property: tsens-slope\n"); return rc; }; rc = of_property_read_string(of_node, "qcom,calib-mode", &tsens_calib_mode); if (rc) { dev_err(&pdev->dev, "missing calib-mode\n"); return -ENODEV; } if (!strncmp(tsens_calib_mode, "fuse_map1", 9)) calib_type = TSENS_CALIB_FUSE_MAP_8974; else if (!strncmp(tsens_calib_mode, "fuse_map2", 9)) calib_type = TSENS_CALIB_FUSE_MAP_8X26; else if (!strncmp(tsens_calib_mode, "fuse_map3", 9)) calib_type = TSENS_CALIB_FUSE_MAP_8X10; else { pr_err("%s: Invalid calibration property\n", __func__); return -EINVAL; } tmdev = devm_kzalloc(&pdev->dev, sizeof(struct tsens_tm_device) + tsens_num_sensors * sizeof(struct tsens_tm_device_sensor), GFP_KERNEL); if (tmdev == NULL) { pr_err("%s: kzalloc() failed.\n", __func__); return -ENOMEM; } for (i = 0; i < tsens_num_sensors; i++) tmdev->sensor[i].slope_mul_tsens_factor = tsens_slope_data[i]; tmdev->tsens_factor = TSENS_SLOPE_FACTOR; tmdev->tsens_num_sensor = tsens_num_sensors; tmdev->calibration_less_mode = of_property_read_bool(of_node, "qcom,calibration-less-mode"); tmdev->calib_mode = calib_type; tmdev->tsens_local_init = of_property_read_bool(of_node, "qcom,tsens-local-init"); sensor_id = devm_kzalloc(&pdev->dev, tsens_num_sensors * sizeof(u32), GFP_KERNEL); if (!sensor_id) { dev_err(&pdev->dev, "can not allocate sensor id\n"); return -ENOMEM; } rc = of_property_read_u32_array(of_node, "qcom,sensor-id", sensor_id, tsens_num_sensors); if (rc) { pr_debug("Default sensor id mapping\n"); for (i = 0; i < tsens_num_sensors; i++) { tmdev->sensor[i].sensor_hw_num = i; tmdev->sensor[i].sensor_sw_id = i; } } else { pr_debug("Use specified sensor id mapping\n"); for (i = 0; i < tsens_num_sensors; i++) { tmdev->sensor[i].sensor_hw_num = sensor_id[i]; tmdev->sensor[i].sensor_sw_id = i; } } tmdev->tsens_irq = platform_get_irq(pdev, 0); if (tmdev->tsens_irq < 0) { pr_err("Invalid get irq\n"); rc = tmdev->tsens_irq; goto fail_tmdev; } /* TSENS register region */ tmdev->res_tsens_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tsens_physical"); if (!tmdev->res_tsens_mem) { pr_err("Could not get tsens physical address resource\n"); rc = -EINVAL; goto fail_tmdev; } tmdev->tsens_len = tmdev->res_tsens_mem->end - tmdev->res_tsens_mem->start + 1; res_mem = request_mem_region(tmdev->res_tsens_mem->start, tmdev->tsens_len, tmdev->res_tsens_mem->name); if (!res_mem) { pr_err("Request tsens physical memory region failed\n"); rc = -EINVAL; goto fail_tmdev; } tmdev->tsens_addr = ioremap(res_mem->start, tmdev->tsens_len); if (!tmdev->tsens_addr) { pr_err("Failed to IO map TSENS registers.\n"); rc = -EINVAL; goto fail_unmap_tsens_region; } /* TSENS calibration region */ tmdev->res_calib_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tsens_eeprom_physical"); if (!tmdev->res_calib_mem) { pr_err("Could not get qfprom physical address resource\n"); rc = -EINVAL; goto fail_unmap_tsens; } tmdev->calib_len = tmdev->res_calib_mem->end - tmdev->res_calib_mem->start + 1; res_mem = request_mem_region(tmdev->res_calib_mem->start, tmdev->calib_len, tmdev->res_calib_mem->name); if (!res_mem) { pr_err("Request calibration memory region failed\n"); rc = -EINVAL; goto fail_unmap_tsens; } tmdev->tsens_calib_addr = ioremap(res_mem->start, tmdev->calib_len); if (!tmdev->tsens_calib_addr) { pr_err("Failed to IO map EEPROM registers.\n"); rc = -EINVAL; goto fail_unmap_calib_region; } return 0; fail_unmap_calib_region: if (tmdev->res_calib_mem) release_mem_region(tmdev->res_calib_mem->start, tmdev->calib_len); fail_unmap_tsens: if (tmdev->tsens_addr) iounmap(tmdev->tsens_addr); fail_unmap_tsens_region: if (tmdev->res_tsens_mem) release_mem_region(tmdev->res_tsens_mem->start, tmdev->tsens_len); fail_tmdev: tmdev = NULL; return rc; } static int __devinit tsens_tm_probe(struct platform_device *pdev) { int rc; if (tmdev) { pr_err("TSENS device already in use\n"); return -EBUSY; } if (pdev->dev.of_node) { rc = get_device_tree_data(pdev); if (rc) { pr_err("Error reading TSENS DT\n"); return rc; } } else return -ENODEV; tmdev->pdev = pdev; tmdev->tsens_wq = alloc_workqueue("tsens_wq", WQ_HIGHPRI, 0); if (!tmdev->tsens_wq) { rc = -ENOMEM; goto fail; } rc = tsens_calib_sensors(); if (rc < 0) { pr_err("Calibration failed\n"); goto fail; } tsens_hw_init(); tmdev->prev_reading_avail = true; platform_set_drvdata(pdev, tmdev); return 0; fail: if (tmdev->tsens_wq) destroy_workqueue(tmdev->tsens_wq); if (tmdev->tsens_calib_addr) iounmap(tmdev->tsens_calib_addr); if (tmdev->res_calib_mem) release_mem_region(tmdev->res_calib_mem->start, tmdev->calib_len); if (tmdev->tsens_addr) iounmap(tmdev->tsens_addr); if (tmdev->res_tsens_mem) release_mem_region(tmdev->res_tsens_mem->start, tmdev->tsens_len); tmdev = NULL; return rc; } static int __devinit _tsens_register_thermal(void) { struct platform_device *pdev; int rc, i; if (!tmdev) { pr_err("%s: TSENS early init not done\n", __func__); return -ENODEV; } pdev = tmdev->pdev; for (i = 0; i < tmdev->tsens_num_sensor; i++) { char name[18]; snprintf(name, sizeof(name), "tsens_tz_sensor%d", tmdev->sensor[i].sensor_hw_num); tmdev->sensor[i].mode = THERMAL_DEVICE_ENABLED; tmdev->sensor[i].tz_dev = thermal_zone_device_register(name, TSENS_TRIP_NUM, &tmdev->sensor[i], &tsens_thermal_zone_ops, 0, 0, 0, 0); if (IS_ERR(tmdev->sensor[i].tz_dev)) { pr_err("%s: thermal_zone_device_register() failed.\n", __func__); rc = -ENODEV; goto fail; } } rc = request_irq(tmdev->tsens_irq, tsens_isr, IRQF_TRIGGER_RISING, "tsens_interrupt", tmdev); if (rc < 0) { pr_err("%s: request_irq FAIL: %d\n", __func__, rc); for (i = 0; i < tmdev->tsens_num_sensor; i++) thermal_zone_device_unregister(tmdev->sensor[i].tz_dev); goto fail; } else { enable_irq_wake(tmdev->tsens_irq); } platform_set_drvdata(pdev, tmdev); INIT_WORK(&tmdev->tsens_work, tsens_scheduler_fn); return 0; fail: if (tmdev->tsens_calib_addr) iounmap(tmdev->tsens_calib_addr); if (tmdev->res_calib_mem) release_mem_region(tmdev->res_calib_mem->start, tmdev->calib_len); if (tmdev->tsens_addr) iounmap(tmdev->tsens_addr); if (tmdev->res_tsens_mem) release_mem_region(tmdev->res_tsens_mem->start, tmdev->tsens_len); return rc; } static int __devexit tsens_tm_remove(struct platform_device *pdev) { struct tsens_tm_device *tmdev = platform_get_drvdata(pdev); int i; for (i = 0; i < tmdev->tsens_num_sensor; i++) thermal_zone_device_unregister(tmdev->sensor[i].tz_dev); if (tmdev->tsens_calib_addr) iounmap(tmdev->tsens_calib_addr); if (tmdev->res_calib_mem) release_mem_region(tmdev->res_calib_mem->start, tmdev->calib_len); if (tmdev->tsens_addr) iounmap(tmdev->tsens_addr); if (tmdev->res_tsens_mem) release_mem_region(tmdev->res_tsens_mem->start, tmdev->tsens_len); free_irq(tmdev->tsens_irq, tmdev); destroy_workqueue(tmdev->tsens_wq); platform_set_drvdata(pdev, NULL); return 0; } static struct of_device_id tsens_match[] = { { .compatible = "qcom,msm-tsens", }, {} }; static struct platform_driver tsens_tm_driver = { .probe = tsens_tm_probe, .remove = tsens_tm_remove, .driver = { .name = "msm-tsens", .owner = THIS_MODULE, .of_match_table = tsens_match, }, }; int __init tsens_tm_init_driver(void) { return platform_driver_register(&tsens_tm_driver); } static int __init tsens_thermal_register(void) { return _tsens_register_thermal(); } module_init(tsens_thermal_register); static void __exit _tsens_tm_remove(void) { platform_driver_unregister(&tsens_tm_driver); } module_exit(_tsens_tm_remove); MODULE_ALIAS("platform:" TSENS_DRIVER_NAME); MODULE_LICENSE("GPL v2");