/* Copyright (c) 2013, The Linux Foundation. All rights reserved. * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #define QPNP_MAX_ROWS 10 #define QPNP_MAX_COLS 8 #define QPNP_MIN_ROWS 2 #define QPNP_MIN_COLS 1 #define QPNP_ROW_SHIFT 3 #define QPNP_MATRIX_MAX_SIZE (QPNP_MAX_ROWS * QPNP_MAX_COLS) /* in ms */ #define MAX_SCAN_DELAY 128 #define MIN_SCAN_DELAY 1 #define KEYP_DEFAULT_SCAN_DELAY 32 /* in ns */ #define MAX_ROW_HOLD_DELAY 250000 #define MIN_ROW_HOLD_DELAY 31250 /* in ms */ #define MAX_DEBOUNCE_TIME 20 #define MIN_DEBOUNCE_TIME 5 #define KEYP_DEFAULT_DEBOUNCE 15 /* register offsets */ #define KEYP_STATUS(base) (base + 0x08) #define KEYP_SIZE_CTRL(base) (base + 0x40) #define KEYP_SCAN_CTRL(base) (base + 0x42) #define KEYP_FSM_CNTL(base) (base + 0x44) #define KEYP_EN_CTRL(base) (base + 0x46) #define KEYP_CTRL_KEYP_EN BIT(7) #define KEYP_CTRL_EVNTS BIT(0) #define KEYP_CTRL_EVNTS_MASK 0x3 #define KEYP_SIZE_COLS_SHIFT 4 #define KEYP_SIZE_COLS_MASK 0x70 #define KEYP_SIZE_ROWS_MASK 0x0F #define KEYP_SCAN_DBC_MASK 0x03 #define KEYP_SCAN_SCNP_MASK 0x38 #define KEYP_SCAN_ROWP_MASK 0xC0 #define KEYP_SCAN_SCNP_SHIFT 3 #define KEYP_SCAN_ROWP_SHIFT 6 #define KEYP_CTRL_SCAN_ROWS_BITS 0x7 #define KEYP_SCAN_DBOUNCE_SHIFT 1 #define KEYP_SCAN_PAUSE_SHIFT 3 #define KEYP_SCAN_ROW_HOLD_SHIFT 6 #define KEYP_FSM_READ_EN BIT(0) /* bits of these registers represent * '0' for key press * '1' for key release */ #define KEYP_RECENT_DATA(base) (base + 0x7C) #define KEYP_OLD_DATA(base) (base + 0x5C) #define KEYP_CLOCK_FREQ 32768 struct qpnp_kp { const struct matrix_keymap_data *keymap_data; struct input_dev *input; struct spmi_device *spmi; int key_sense_irq; int key_stuck_irq; u16 base; u32 num_rows; u32 num_cols; u32 debounce_ms; u32 row_hold_ns; u32 scan_delay_ms; bool wakeup; bool rep; unsigned short keycodes[QPNP_MATRIX_MAX_SIZE]; u16 keystate[QPNP_MAX_ROWS]; u16 stuckstate[QPNP_MAX_ROWS]; }; static int qpnp_kp_write_u8(struct qpnp_kp *kp, u8 data, u16 reg) { int rc; rc = spmi_ext_register_writel(kp->spmi->ctrl, kp->spmi->sid, reg, &data, 1); if (rc < 0) dev_err(&kp->spmi->dev, "Error writing to address: %X - ret %d\n", reg, rc); return rc; } static int qpnp_kp_read(struct qpnp_kp *kp, u8 *data, u16 reg, unsigned num_bytes) { int rc; rc = spmi_ext_register_readl(kp->spmi->ctrl, kp->spmi->sid, reg, data, num_bytes); if (rc < 0) dev_err(&kp->spmi->dev, "Error reading from address : %X - ret %d\n", reg, rc); return rc; } static int qpnp_kp_read_u8(struct qpnp_kp *kp, u8 *data, u16 reg) { int rc; rc = qpnp_kp_read(kp, data, reg, 1); if (rc < 0) dev_err(&kp->spmi->dev, "Error reading qpnp: %X - ret %d\n", reg, rc); return rc; } static u8 qpnp_col_state(struct qpnp_kp *kp, u8 col) { /* all keys pressed on that particular row? */ if (col == 0x00) return 1 << kp->num_cols; else return col & ((1 << kp->num_cols) - 1); } /* * Synchronous read protocol * * 1. Write '1' to ReadState bit in KEYP_FSM_CNTL register * 2. Wait 2*32KHz clocks, so that HW can successfully enter read mode * synchronously * 3. Read rows in old array first if events are more than one * 4. Read rows in recent array * 5. Wait 4*32KHz clocks * 6. Write '0' to ReadState bit of KEYP_FSM_CNTL register so that hw can * synchronously exit read mode. */ static int qpnp_sync_read(struct qpnp_kp *kp, bool enable) { int rc; u8 fsm_ctl; rc = qpnp_kp_read_u8(kp, &fsm_ctl, KEYP_FSM_CNTL(kp->base)); if (rc < 0) { dev_err(&kp->spmi->dev, "Error reading KEYP_FSM_CNTL reg, rc=%d\n", rc); return rc; } if (enable) fsm_ctl |= KEYP_FSM_READ_EN; else fsm_ctl &= ~KEYP_FSM_READ_EN; rc = qpnp_kp_write_u8(kp, fsm_ctl, KEYP_FSM_CNTL(kp->base)); if (rc < 0) { dev_err(&kp->spmi->dev, "Error writing KEYP_FSM_CNTL reg, rc=%d\n", rc); return rc; } /* 2 * 32KHz clocks */ udelay((2 * DIV_ROUND_UP(USEC_PER_SEC, KEYP_CLOCK_FREQ)) + 1); return rc; } static int qpnp_kp_read_data(struct qpnp_kp *kp, u16 *state, u16 data_reg, int read_rows) { int rc, row; u8 new_data[QPNP_MAX_ROWS]; /* * Check if last row will be scanned. If not, scan to clear key event * counter */ if (kp->num_rows < QPNP_MAX_ROWS) { rc = qpnp_kp_read_u8(kp, &new_data[QPNP_MAX_ROWS - 1], data_reg + (QPNP_MAX_ROWS - 1) * 2); if (rc) return rc; } for (row = 0; row < kp->num_rows; row++) { rc = qpnp_kp_read_u8(kp, &new_data[row], data_reg + row * 2); if (rc) return rc; dev_dbg(&kp->spmi->dev, "new_data[%d] = %d\n", row, new_data[row]); state[row] = qpnp_col_state(kp, new_data[row]); } return 0; } static int qpnp_kp_read_matrix(struct qpnp_kp *kp, u16 *new_state, u16 *old_state) { int rc, read_rows; read_rows = kp->num_rows; rc = qpnp_sync_read(kp, true); if (rc < 0) { dev_err(&kp->spmi->dev, "Error setting the FSM read enable bit rc=%d\n", rc); return rc; } if (old_state) { rc = qpnp_kp_read_data(kp, old_state, KEYP_OLD_DATA(kp->base), read_rows); if (rc < 0) { dev_err(&kp->spmi->dev, "Error reading KEYP_OLD_DATA, rc=%d\n", rc); return rc; } } rc = qpnp_kp_read_data(kp, new_state, KEYP_RECENT_DATA(kp->base), read_rows); if (rc < 0) { dev_err(&kp->spmi->dev, "Error reading KEYP_RECENT_DATA, rc=%d\n", rc); return rc; } /* 4 * 32KHz clocks */ udelay((4 * DIV_ROUND_UP(USEC_PER_SEC, KEYP_CLOCK_FREQ)) + 1); rc = qpnp_sync_read(kp, false); if (rc < 0) { dev_err(&kp->spmi->dev, "Error resetting the FSM read enable bit rc=%d\n", rc); return rc; } return rc; } static void __qpnp_kp_scan_matrix(struct qpnp_kp *kp, u16 *new_state, u16 *old_state) { int row, col, code; for (row = 0; row < kp->num_rows; row++) { int bits_changed = new_state[row] ^ old_state[row]; if (!bits_changed) continue; for (col = 0; col < kp->num_cols; col++) { if (!(bits_changed & (1 << col))) continue; dev_dbg(&kp->spmi->dev, "key [%d:%d] %s\n", row, col, !(new_state[row] & (1 << col)) ? "pressed" : "released"); code = MATRIX_SCAN_CODE(row, col, QPNP_ROW_SHIFT); input_event(kp->input, EV_MSC, MSC_SCAN, code); input_report_key(kp->input, kp->keycodes[code], !(new_state[row] & (1 << col))); input_sync(kp->input); } } } static bool qpnp_detect_ghost_keys(struct qpnp_kp *kp, u16 *new_state) { int row, found_first = -1; u16 check, row_state; check = 0; for (row = 0; row < kp->num_rows; row++) { row_state = (~new_state[row]) & ((1 << kp->num_cols) - 1); if (hweight16(row_state) > 1) { if (found_first == -1) found_first = row; if (check & row_state) { dev_dbg(&kp->spmi->dev, "detected ghost key row[%d],row[%d]\n", found_first, row); return true; } } check |= row_state; } return false; } static int qpnp_kp_scan_matrix(struct qpnp_kp *kp, unsigned int events) { u16 new_state[QPNP_MAX_ROWS]; u16 old_state[QPNP_MAX_ROWS]; int rc; switch (events) { case 0x1: rc = qpnp_kp_read_matrix(kp, new_state, NULL); if (rc < 0) return rc; /* detecting ghost key is not an error */ if (qpnp_detect_ghost_keys(kp, new_state)) return 0; __qpnp_kp_scan_matrix(kp, new_state, kp->keystate); memcpy(kp->keystate, new_state, sizeof(new_state)); break; case 0x3: /* two events - eventcounter is gray-coded */ rc = qpnp_kp_read_matrix(kp, new_state, old_state); if (rc < 0) return rc; __qpnp_kp_scan_matrix(kp, old_state, kp->keystate); __qpnp_kp_scan_matrix(kp, new_state, old_state); memcpy(kp->keystate, new_state, sizeof(new_state)); break; case 0x2: dev_dbg(&kp->spmi->dev, "Some key events were lost\n"); rc = qpnp_kp_read_matrix(kp, new_state, old_state); if (rc < 0) return rc; __qpnp_kp_scan_matrix(kp, old_state, kp->keystate); __qpnp_kp_scan_matrix(kp, new_state, old_state); memcpy(kp->keystate, new_state, sizeof(new_state)); break; default: rc = -EINVAL; } return rc; } /* * NOTE: We are reading recent and old data registers blindly * whenever key-stuck interrupt happens, because events counter doesn't * get updated when this interrupt happens due to key stuck doesn't get * considered as key state change. * * We are not using old data register contents after they are being read * because it might report the key which was pressed before the key being stuck * as stuck key because it's pressed status is stored in the old data * register. */ static irqreturn_t qpnp_kp_stuck_irq(int irq, void *data) { u16 new_state[QPNP_MAX_ROWS]; u16 old_state[QPNP_MAX_ROWS]; int rc; struct qpnp_kp *kp = data; rc = qpnp_kp_read_matrix(kp, new_state, old_state); if (rc < 0) { dev_err(&kp->spmi->dev, "failed to read keypad matrix\n"); return IRQ_HANDLED; } __qpnp_kp_scan_matrix(kp, new_state, kp->stuckstate); return IRQ_HANDLED; } static irqreturn_t qpnp_kp_irq(int irq, void *data) { struct qpnp_kp *kp = data; u8 ctrl_val, events; int rc; rc = qpnp_kp_read_u8(kp, &ctrl_val, KEYP_STATUS(kp->base)); if (rc < 0) { dev_err(&kp->spmi->dev, "Error reading KEYP_STATUS register\n"); return IRQ_HANDLED; } events = ctrl_val & KEYP_CTRL_EVNTS_MASK; rc = qpnp_kp_scan_matrix(kp, events); if (rc < 0) dev_err(&kp->spmi->dev, "failed to scan matrix\n"); return IRQ_HANDLED; } static int __devinit qpnp_kpd_init(struct qpnp_kp *kp) { int bits, rc, cycles; u8 kpd_scan_cntl, kpd_size_cntl; /* Configure the SIZE register, #rows and #columns */ rc = qpnp_kp_read_u8(kp, &kpd_size_cntl, KEYP_SIZE_CTRL(kp->base)); if (rc < 0) { dev_err(&kp->spmi->dev, "Error reading KEYP_SIZE_CTRL reg, rc=%d\n", rc); return rc; } kpd_size_cntl &= (~KEYP_SIZE_COLS_MASK | ~KEYP_SIZE_ROWS_MASK); kpd_size_cntl |= (((kp->num_cols - 1) << KEYP_SIZE_COLS_SHIFT) & KEYP_SIZE_COLS_MASK); kpd_size_cntl |= ((kp->num_rows - 1) & KEYP_SIZE_ROWS_MASK); rc = qpnp_kp_write_u8(kp, kpd_size_cntl, KEYP_SIZE_CTRL(kp->base)); if (rc < 0) { dev_err(&kp->spmi->dev, "Error writing to KEYP_SIZE_CTRL reg, rc=%d\n", rc); return rc; } /* Configure the SCAN CTL register, debounce, row pause, scan delay */ rc = qpnp_kp_read_u8(kp, &kpd_scan_cntl, KEYP_SCAN_CTRL(kp->base)); if (rc < 0) { dev_err(&kp->spmi->dev, "Error reading KEYP_SCAN_CTRL reg, rc=%d\n", rc); return rc; } kpd_scan_cntl &= (~KEYP_SCAN_DBC_MASK | ~KEYP_SCAN_SCNP_MASK | ~KEYP_SCAN_ROWP_MASK); kpd_scan_cntl |= (((kp->debounce_ms / 5) - 1) & KEYP_SCAN_DBC_MASK); bits = fls(kp->scan_delay_ms) - 1; kpd_scan_cntl |= ((bits << KEYP_SCAN_SCNP_SHIFT) & KEYP_SCAN_SCNP_MASK); /* Row hold time is a multiple of 32KHz cycles. */ cycles = (kp->row_hold_ns * KEYP_CLOCK_FREQ) / NSEC_PER_SEC; if (cycles) cycles = ilog2(cycles); kpd_scan_cntl |= ((cycles << KEYP_SCAN_ROW_HOLD_SHIFT) & KEYP_SCAN_ROWP_MASK); rc = qpnp_kp_write_u8(kp, kpd_scan_cntl, KEYP_SCAN_CTRL(kp->base)); if (rc) dev_err(&kp->spmi->dev, "Error writing KEYP_SCAN reg, rc=%d\n", rc); return rc; } static int qpnp_kp_enable(struct qpnp_kp *kp) { int rc; u8 kpd_cntl; rc = qpnp_kp_read_u8(kp, &kpd_cntl, KEYP_EN_CTRL(kp->base)); if (rc < 0) { dev_err(&kp->spmi->dev, "Error reading KEYP_EN_CTRL reg, rc=%d\n", rc); return rc; } kpd_cntl |= KEYP_CTRL_KEYP_EN; rc = qpnp_kp_write_u8(kp, kpd_cntl, KEYP_EN_CTRL(kp->base)); if (rc < 0) dev_err(&kp->spmi->dev, "Error writing KEYP_CTRL reg, rc=%d\n", rc); return rc; } static int qpnp_kp_disable(struct qpnp_kp *kp) { int rc; u8 kpd_cntl; rc = qpnp_kp_read_u8(kp, &kpd_cntl, KEYP_EN_CTRL(kp->base)); if (rc < 0) { dev_err(&kp->spmi->dev, "Error reading KEYP_EN_CTRL reg, rc=%d\n", rc); return rc; } kpd_cntl &= ~KEYP_CTRL_KEYP_EN; rc = qpnp_kp_write_u8(kp, kpd_cntl, KEYP_EN_CTRL(kp->base)); if (rc < 0) dev_err(&kp->spmi->dev, "Error writing KEYP_CTRL reg, rc=%d\n", rc); return rc; } static int qpnp_kp_open(struct input_dev *dev) { struct qpnp_kp *kp = input_get_drvdata(dev); return qpnp_kp_enable(kp); } static void qpnp_kp_close(struct input_dev *dev) { struct qpnp_kp *kp = input_get_drvdata(dev); qpnp_kp_disable(kp); } static int __devinit qpnp_keypad_parse_dt(struct qpnp_kp *kp) { struct matrix_keymap_data *keymap_data; int rc, keymap_len, i; u32 *keymap; const __be32 *map; rc = of_property_read_u32(kp->spmi->dev.of_node, "keypad,num-rows", &kp->num_rows); if (rc) { dev_err(&kp->spmi->dev, "Unable to parse 'num-rows'\n"); return rc; } rc = of_property_read_u32(kp->spmi->dev.of_node, "keypad,num-cols", &kp->num_cols); if (rc) { dev_err(&kp->spmi->dev, "Unable to parse 'num-cols'\n"); return rc; } rc = of_property_read_u32(kp->spmi->dev.of_node, "qcom,scan-delay-ms", &kp->scan_delay_ms); if (rc && rc != -EINVAL) { dev_err(&kp->spmi->dev, "Unable to parse 'scan-delay-ms'\n"); return rc; } rc = of_property_read_u32(kp->spmi->dev.of_node, "qcom,row-hold-ns", &kp->row_hold_ns); if (rc && rc != -EINVAL) { dev_err(&kp->spmi->dev, "Unable to parse 'row-hold-ns'\n"); return rc; } rc = of_property_read_u32(kp->spmi->dev.of_node, "qcom,debounce-ms", &kp->debounce_ms); if (rc && rc != -EINVAL) { dev_err(&kp->spmi->dev, "Unable to parse 'debounce-ms'\n"); return rc; } kp->wakeup = of_property_read_bool(kp->spmi->dev.of_node, "qcom,wakeup"); kp->rep = !of_property_read_bool(kp->spmi->dev.of_node, "linux,keypad-no-autorepeat"); map = of_get_property(kp->spmi->dev.of_node, "linux,keymap", &keymap_len); if (!map) { dev_err(&kp->spmi->dev, "Keymap not specified\n"); return -EINVAL; } keymap_data = devm_kzalloc(&kp->spmi->dev, sizeof(*keymap_data), GFP_KERNEL); if (!keymap_data) { dev_err(&kp->spmi->dev, "Unable to allocate memory\n"); return -ENOMEM; } keymap_data->keymap_size = keymap_len / sizeof(u32); keymap = devm_kzalloc(&kp->spmi->dev, sizeof(uint32_t) * keymap_data->keymap_size, GFP_KERNEL); if (!keymap) { dev_err(&kp->spmi->dev, "could not allocate memory for keymap\n"); return -ENOMEM; } for (i = 0; i < keymap_data->keymap_size; i++) { unsigned int key = be32_to_cpup(map + i); int keycode, row, col; row = (key >> 24) & 0xff; col = (key >> 16) & 0xff; keycode = key & 0xffff; keymap[i] = KEY(row, col, keycode); } keymap_data->keymap = keymap; kp->keymap_data = keymap_data; return 0; } static int __devinit qpnp_kp_probe(struct spmi_device *spmi) { struct qpnp_kp *kp; struct resource *keypad_base; int rc = 0; kp = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_kp), GFP_KERNEL); if (!kp) { dev_err(&spmi->dev, "%s: Can't allocate qpnp_kp\n", __func__); return -ENOMEM; } kp->spmi = spmi; rc = qpnp_keypad_parse_dt(kp); if (rc < 0) { dev_err(&spmi->dev, "Error parsing device tree\n"); return rc; } /* the #rows and #columns are compulsary */ if (!kp->num_cols || !kp->num_rows || kp->num_cols > QPNP_MAX_COLS || kp->num_rows > QPNP_MAX_ROWS || kp->num_cols < QPNP_MIN_COLS || kp->num_rows < QPNP_MIN_ROWS) { dev_err(&spmi->dev, "invalid rows/cols input data\n"); return -EINVAL; } if (!kp->keymap_data) { dev_err(&spmi->dev, "keymap not specified\n"); return -EINVAL; } /* the below parameters are optional*/ if (!kp->scan_delay_ms) { kp->scan_delay_ms = KEYP_DEFAULT_SCAN_DELAY; } else { if (kp->scan_delay_ms > MAX_SCAN_DELAY || kp->scan_delay_ms < MIN_SCAN_DELAY) { dev_err(&spmi->dev, "invalid keypad scan time supplied\n"); return -EINVAL; } } if (!kp->row_hold_ns) { kp->row_hold_ns = MIN_ROW_HOLD_DELAY; } else { if (kp->row_hold_ns > MAX_ROW_HOLD_DELAY || kp->row_hold_ns < MIN_ROW_HOLD_DELAY) { dev_err(&spmi->dev, "invalid keypad row hold time supplied\n"); return -EINVAL; } } if (!kp->debounce_ms) { kp->debounce_ms = KEYP_DEFAULT_DEBOUNCE; } else { if (kp->debounce_ms > MAX_DEBOUNCE_TIME || kp->debounce_ms < MIN_DEBOUNCE_TIME || (kp->debounce_ms % 5 != 0)) { dev_err(&spmi->dev, "invalid debounce time supplied\n"); return -EINVAL; } } kp->input = input_allocate_device(); if (!kp->input) { dev_err(&spmi->dev, "Can't allocate keypad input device\n"); return -ENOMEM; } kp->key_sense_irq = spmi_get_irq_byname(spmi, NULL, "kp-sense"); if (kp->key_sense_irq < 0) { dev_err(&spmi->dev, "Unable to get keypad sense irq\n"); return kp->key_sense_irq; } kp->key_stuck_irq = spmi_get_irq_byname(spmi, NULL, "kp-stuck"); if (kp->key_stuck_irq < 0) { dev_err(&spmi->dev, "Unable to get stuck irq\n"); return kp->key_stuck_irq; } keypad_base = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0); if (!keypad_base) { dev_err(&spmi->dev, "Unable to get keypad base address\n"); return -ENXIO; } kp->base = keypad_base->start; kp->input->name = "qpnp_keypad"; kp->input->phys = "qpnp_keypad/input0"; kp->input->id.version = 0x0001; kp->input->id.product = 0x0001; kp->input->id.vendor = 0x0001; kp->input->evbit[0] = BIT_MASK(EV_KEY); if (kp->rep) set_bit(EV_REP, kp->input->evbit); kp->input->keycode = kp->keycodes; kp->input->keycodemax = QPNP_MATRIX_MAX_SIZE; kp->input->keycodesize = sizeof(kp->keycodes); kp->input->open = qpnp_kp_open; kp->input->close = qpnp_kp_close; matrix_keypad_build_keymap(kp->keymap_data, QPNP_ROW_SHIFT, kp->keycodes, kp->input->keybit); input_set_capability(kp->input, EV_MSC, MSC_SCAN); input_set_drvdata(kp->input, kp); /* initialize keypad state */ memset(kp->keystate, 0xff, sizeof(kp->keystate)); memset(kp->stuckstate, 0xff, sizeof(kp->stuckstate)); rc = qpnp_kpd_init(kp); if (rc < 0) { dev_err(&spmi->dev, "unable to initialize keypad controller\n"); return rc; } rc = input_register_device(kp->input); if (rc < 0) { dev_err(&spmi->dev, "unable to register keypad input device\n"); return rc; } rc = devm_request_irq(&spmi->dev, kp->key_sense_irq, qpnp_kp_irq, IRQF_TRIGGER_RISING, "qpnp-keypad-sense", kp); if (rc < 0) { dev_err(&spmi->dev, "failed to request keypad sense irq\n"); return rc; } rc = devm_request_irq(&spmi->dev, kp->key_stuck_irq, qpnp_kp_stuck_irq, IRQF_TRIGGER_RISING, "qpnp-keypad-stuck", kp); if (rc < 0) { dev_err(&spmi->dev, "failed to request keypad stuck irq\n"); return rc; } device_init_wakeup(&spmi->dev, kp->wakeup); return rc; } static int qpnp_kp_remove(struct spmi_device *spmi) { struct qpnp_kp *kp = dev_get_drvdata(&spmi->dev); device_init_wakeup(&spmi->dev, 0); input_unregister_device(kp->input); return 0; } #ifdef CONFIG_PM_SLEEP static int qpnp_kp_suspend(struct device *dev) { struct qpnp_kp *kp = dev_get_drvdata(dev); struct input_dev *input_dev = kp->input; if (device_may_wakeup(dev)) { enable_irq_wake(kp->key_sense_irq); } else { mutex_lock(&input_dev->mutex); if (input_dev->users) qpnp_kp_disable(kp); mutex_unlock(&input_dev->mutex); } return 0; } static int qpnp_kp_resume(struct device *dev) { struct qpnp_kp *kp = dev_get_drvdata(dev); struct input_dev *input_dev = kp->input; if (device_may_wakeup(dev)) { disable_irq_wake(kp->key_sense_irq); } else { mutex_lock(&input_dev->mutex); if (input_dev->users) qpnp_kp_enable(kp); mutex_unlock(&input_dev->mutex); } return 0; } #endif static SIMPLE_DEV_PM_OPS(qpnp_kp_pm_ops, qpnp_kp_suspend, qpnp_kp_resume); static struct of_device_id spmi_match_table[] = { { .compatible = "qcom,qpnp-keypad", }, {} }; static struct spmi_driver qpnp_kp_driver = { .probe = qpnp_kp_probe, .remove = __devexit_p(qpnp_kp_remove), .driver = { .name = "qcom,qpnp-keypad", .of_match_table = spmi_match_table, .owner = THIS_MODULE, .pm = &qpnp_kp_pm_ops, }, }; static int __init qpnp_kp_init(void) { return spmi_driver_register(&qpnp_kp_driver); } module_init(qpnp_kp_init); static void __exit qpnp_kp_exit(void) { spmi_driver_unregister(&qpnp_kp_driver); } module_exit(qpnp_kp_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("QPNP keypad driver");