/* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "coresight-priv.h" #define etm_writel_mm(drvdata, val, off) \ __raw_writel((val), drvdata->base + off) #define etm_readl_mm(drvdata, off) \ __raw_readl(drvdata->base + off) #define etm_writel(drvdata, val, off) \ ({ \ if (cpu_is_krait_v3()) \ etm_writel_cp14(val, off); \ else \ etm_writel_mm(drvdata, val, off); \ }) #define etm_readl(drvdata, off) \ ({ \ uint32_t val; \ if (cpu_is_krait_v3()) \ val = etm_readl_cp14(off); \ else \ val = etm_readl_mm(drvdata, off); \ val; \ }) #define ETM_LOCK(drvdata) \ do { \ /* recommended by spec to ensure ETM writes are committed prior * to resuming execution */ \ mb(); \ isb(); \ etm_writel_mm(drvdata, 0x0, CORESIGHT_LAR); \ } while (0) #define ETM_UNLOCK(drvdata) \ do { \ etm_writel_mm(drvdata, CORESIGHT_UNLOCK, CORESIGHT_LAR); \ /* ensure unlock and any pending writes are committed prior to * programming ETM registers */ \ mb(); \ isb(); \ } while (0) /* * Device registers: * 0x000 - 0x2FC: Trace registers * 0x300 - 0x314: Management registers * 0x318 - 0xEFC: Trace registers * * Coresight registers * 0xF00 - 0xF9C: Management registers * 0xFA0 - 0xFA4: Management registers in PFTv1.0 * Trace registers in PFTv1.1 * 0xFA8 - 0xFFC: Management registers */ /* Trace registers (0x000-0x2FC) */ #define ETMCR (0x000) #define ETMCCR (0x004) #define ETMTRIGGER (0x008) #define ETMASSICCTLR (0x00C) #define ETMSR (0x010) #define ETMSCR (0x014) #define ETMTSSCR (0x018) #define ETMTECR2 (0x01C) #define ETMTEEVR (0x020) #define ETMTECR1 (0x024) #define ETMFFLR (0x02C) #define ETMVDEVR (0x030) #define ETMVDCR1 (0x034) #define ETMVDCR3 (0x03C) #define ETMACVRn(n) (0x040 + (n * 4)) #define ETMACTRn(n) (0x080 + (n * 4)) #define ETMDCVRn(n) (0x0C0 + (n * 8)) #define ETMDCMRn(n) (0x100 + (n * 8)) #define ETMCNTRLDVRn(n) (0x140 + (n * 4)) #define ETMCNTENRn(n) (0x150 + (n * 4)) #define ETMCNTRLDEVRn(n) (0x160 + (n * 4)) #define ETMCNTVRn(n) (0x170 + (n * 4)) #define ETMSQ12EVR (0x180) #define ETMSQ21EVR (0x184) #define ETMSQ23EVR (0x188) #define ETMSQ31EVR (0x18C) #define ETMSQ32EVR (0x190) #define ETMSQ13EVR (0x194) #define ETMSQR (0x19C) #define ETMEXTOUTEVRn(n) (0x1A0 + (n * 4)) #define ETMCIDCVRn(n) (0x1B0 + (n * 4)) #define ETMCIDCMR (0x1BC) #define ETMIMPSPEC0 (0x1C0) #define ETMIMPSPEC1 (0x1C4) #define ETMIMPSPEC2 (0x1C8) #define ETMIMPSPEC3 (0x1CC) #define ETMIMPSPEC4 (0x1D0) #define ETMIMPSPEC5 (0x1D4) #define ETMIMPSPEC6 (0x1D8) #define ETMIMPSPEC7 (0x1DC) #define ETMSYNCFR (0x1E0) #define ETMIDR (0x1E4) #define ETMCCER (0x1E8) #define ETMEXTINSELR (0x1EC) #define ETMTESSEICR (0x1F0) #define ETMEIBCR (0x1F4) #define ETMTSEVR (0x1F8) #define ETMAUXCR (0x1FC) #define ETMTRACEIDR (0x200) #define ETMIDR2 (0x208) #define ETMVMIDCVR (0x240) /* Management registers (0x300-0x314) */ #define ETMOSLAR (0x300) #define ETMOSLSR (0x304) #define ETMOSSRR (0x308) #define ETMPDCR (0x310) #define ETMPDSR (0x314) #define ETM_MAX_ADDR_CMP (16) #define ETM_MAX_CNTR (4) #define ETM_MAX_CTXID_CMP (3) #define ETM_MODE_EXCLUDE BIT(0) #define ETM_MODE_CYCACC BIT(1) #define ETM_MODE_STALL BIT(2) #define ETM_MODE_TIMESTAMP BIT(3) #define ETM_MODE_CTXID BIT(4) #define ETM_MODE_DATA_TRACE_VAL BIT(5) #define ETM_MODE_DATA_TRACE_ADDR BIT(6) #define ETM_MODE_ALL (0x7F) #define ETM_DATACMP_ENABLE (0x2) #define ETM_EVENT_MASK (0x1FFFF) #define ETM_SYNC_MASK (0xFFF) #define ETM_ALL_MASK (0xFFFFFFFF) #define ETM_SEQ_STATE_MAX_VAL (0x2) #define ETM_REG_DUMP_VER_OFF (4) #define ETM_REG_DUMP_VER (1) #define CPMR_ETMCLKEN (8) enum etm_addr_type { ETM_ADDR_TYPE_NONE, ETM_ADDR_TYPE_SINGLE, ETM_ADDR_TYPE_RANGE, ETM_ADDR_TYPE_START, ETM_ADDR_TYPE_STOP, }; #ifdef CONFIG_CORESIGHT_ETM_DEFAULT_ENABLE static int boot_enable = 1; #else static int boot_enable; #endif module_param_named( boot_enable, boot_enable, int, S_IRUGO ); #ifdef CONFIG_CORESIGHT_ETM_PCSAVE_DEFAULT_ENABLE static int boot_pcsave_enable = 1; #else static int boot_pcsave_enable; #endif module_param_named( boot_pcsave_enable, boot_pcsave_enable, int, S_IRUGO ); struct etm_drvdata { void __iomem *base; struct device *dev; struct coresight_device *csdev; struct clk *clk; spinlock_t spinlock; struct wake_lock wake_lock; int cpu; uint8_t arch; bool enable; bool sticky_enable; bool boot_enable; bool os_unlock; uint8_t nr_addr_cmp; uint8_t nr_cntr; uint8_t nr_ext_inp; uint8_t nr_ext_out; uint8_t nr_ctxid_cmp; uint8_t nr_data_cmp; uint8_t reset; uint32_t mode; uint32_t ctrl; uint32_t trigger_event; uint32_t startstop_ctrl; uint32_t enable_event; uint32_t enable_ctrl1; uint32_t enable_ctrl2; uint32_t fifofull_level; uint8_t addr_idx; uint32_t addr_val[ETM_MAX_ADDR_CMP]; uint32_t addr_acctype[ETM_MAX_ADDR_CMP]; uint32_t addr_type[ETM_MAX_ADDR_CMP]; bool data_trace_support; uint32_t data_val[ETM_MAX_ADDR_CMP]; uint32_t data_mask[ETM_MAX_ADDR_CMP]; uint32_t viewdata_event; uint32_t viewdata_ctrl1; uint32_t viewdata_ctrl3; uint8_t cntr_idx; uint32_t cntr_rld_val[ETM_MAX_CNTR]; uint32_t cntr_event[ETM_MAX_CNTR]; uint32_t cntr_rld_event[ETM_MAX_CNTR]; uint32_t cntr_val[ETM_MAX_CNTR]; uint32_t seq_12_event; uint32_t seq_21_event; uint32_t seq_23_event; uint32_t seq_31_event; uint32_t seq_32_event; uint32_t seq_13_event; uint32_t seq_curr_state; uint8_t ctxid_idx; uint32_t ctxid_val[ETM_MAX_CTXID_CMP]; uint32_t ctxid_mask; uint32_t sync_freq; uint32_t timestamp_event; bool pcsave_impl; bool pcsave_enable; bool pcsave_sticky_enable; bool pcsave_boot_enable; bool round_robin; }; static struct etm_drvdata *etmdrvdata[NR_CPUS]; static bool etm_os_lock_present(struct etm_drvdata *drvdata) { uint32_t etmoslsr; etmoslsr = etm_readl(drvdata, ETMOSLSR); if (!BVAL(etmoslsr, 0) && !BVAL(etmoslsr, 3)) return false; return true; } /* * Unlock OS lock to allow memory mapped access on Krait and in general * so that ETMSR[1] can be polled while clearing the ETMCR[10] prog bit * since ETMSR[1] is set when prog bit is set or OS lock is set. */ static void etm_os_unlock(void *info) { struct etm_drvdata *drvdata = (struct etm_drvdata *) info; /* * Memory mapped writes to clear os lock are not supported on Krait v1, * v2 and OS lock must be unlocked before any memory mapped access, * otherwise memory mapped reads/writes will be invalid. */ if (cpu_is_krait()) { etm_writel_cp14(0x0, ETMOSLAR); /* ensure os lock is unlocked before we return */ isb(); } else { ETM_UNLOCK(drvdata); if (etm_os_lock_present(drvdata)) { etm_writel(drvdata, 0x0, ETMOSLAR); /* ensure os lock is unlocked before we return */ mb(); } ETM_LOCK(drvdata); } } /* * ETM clock is derived from the processor clock and gets enabled on a * logical OR of below items on Krait (v2 onwards): * 1.CPMR[ETMCLKEN] is 1 * 2.ETMCR[PD] is 0 * 3.ETMPDCR[PU] is 1 * 4.Reset is asserted (core or debug) * 5.APB memory mapped requests (eg. EDAP access) * * 1., 2. and 3. above are permanent enables whereas 4. and 5. are temporary * enables * * We rely on 5. to be able to access ETMCR/ETMPDCR and then use 2./3. above * for ETM clock vote in the driver and the save-restore code uses 1. above * for its vote */ static void etm_set_pwrdwn(struct etm_drvdata *drvdata) { uint32_t etmcr; /* ensure pending cp14 accesses complete before setting pwrdwn */ mb(); isb(); etmcr = etm_readl(drvdata, ETMCR); etmcr |= BIT(0); etm_writel(drvdata, etmcr, ETMCR); } static void etm_clr_pwrdwn(struct etm_drvdata *drvdata) { uint32_t etmcr; etmcr = etm_readl(drvdata, ETMCR); etmcr &= ~BIT(0); etm_writel(drvdata, etmcr, ETMCR); /* ensure pwrup completes before subsequent cp14 accesses */ mb(); isb(); } static void etm_set_pwrup(struct etm_drvdata *drvdata) { uint32_t cpmr; uint32_t etmpdcr; /* For Krait, use cp15 CPMR_ETMCLKEN instead of ETMPDCR since ETMPDCR * is not supported for this purpose on Krait v4. */ if (cpu_is_krait()) { asm volatile("mrc p15, 7, %0, c15, c0, 5" : "=r" (cpmr)); cpmr |= CPMR_ETMCLKEN; asm volatile("mcr p15, 7, %0, c15, c0, 5" : : "r" (cpmr)); } else { etmpdcr = etm_readl_mm(drvdata, ETMPDCR); etmpdcr |= BIT(3); etm_writel_mm(drvdata, etmpdcr, ETMPDCR); } /* ensure pwrup completes before subsequent cp14 accesses */ mb(); isb(); } static void etm_clr_pwrup(struct etm_drvdata *drvdata) { uint32_t cpmr; uint32_t etmpdcr; /* ensure pending cp14 accesses complete before clearing pwrup */ mb(); isb(); /* For Krait, use cp15 CPMR_ETMCLKEN instead of ETMPDCR since ETMPDCR * is not supported for this purpose on Krait v4. */ if (cpu_is_krait()) { asm volatile("mrc p15, 7, %0, c15, c0, 5" : "=r" (cpmr)); cpmr &= ~CPMR_ETMCLKEN; asm volatile("mcr p15, 7, %0, c15, c0, 5" : : "r" (cpmr)); } else { etmpdcr = etm_readl_mm(drvdata, ETMPDCR); etmpdcr &= ~BIT(3); etm_writel_mm(drvdata, etmpdcr, ETMPDCR); } } static void etm_set_prog(struct etm_drvdata *drvdata) { uint32_t etmcr; int count; etmcr = etm_readl(drvdata, ETMCR); etmcr |= BIT(10); etm_writel(drvdata, etmcr, ETMCR); /* recommended by spec for cp14 accesses to ensure etmcr write is * complete before polling etmsr */ isb(); for (count = TIMEOUT_US; BVAL(etm_readl(drvdata, ETMSR), 1) != 1 && count > 0; count--) udelay(1); WARN(count == 0, "timeout while setting prog bit, ETMSR: %#x\n", etm_readl(drvdata, ETMSR)); } static void etm_clr_prog(struct etm_drvdata *drvdata) { uint32_t etmcr; int count; etmcr = etm_readl(drvdata, ETMCR); etmcr &= ~BIT(10); etm_writel(drvdata, etmcr, ETMCR); /* recommended by spec for cp14 accesses to ensure etmcr write is * complete before polling etmsr */ isb(); for (count = TIMEOUT_US; BVAL(etm_readl(drvdata, ETMSR), 1) != 0 && count > 0; count--) udelay(1); WARN(count == 0, "timeout while clearing prog bit, ETMSR: %#x\n", etm_readl(drvdata, ETMSR)); } static void etm_enable_pcsave(void *info) { struct etm_drvdata *drvdata = info; ETM_UNLOCK(drvdata); /* * ETMPDCR is only accessible via memory mapped interface and so use * it first to enable power/clock to allow subsequent cp14 accesses. */ etm_set_pwrup(drvdata); etm_clr_pwrdwn(drvdata); etm_clr_pwrup(drvdata); ETM_LOCK(drvdata); } static void etm_disable_pcsave(void *info) { struct etm_drvdata *drvdata = info; ETM_UNLOCK(drvdata); if (!drvdata->enable) etm_set_pwrdwn(drvdata); ETM_LOCK(drvdata); } static bool etm_version_gte(uint8_t arch, uint8_t base_arch) { if (arch >= base_arch && ((arch & PFT_ARCH_MAJOR) != PFT_ARCH_MAJOR)) return true; else return false; } static void __etm_enable(void *info) { int i; uint32_t etmcr; struct etm_drvdata *drvdata = info; ETM_UNLOCK(drvdata); /* * Vote for ETM power/clock enable. ETMPDCR is only accessible via * memory mapped interface and so use it first to enable power/clock * to allow subsequent cp14 accesses. */ etm_set_pwrup(drvdata); /* * Clear power down bit since when this bit is set writes to * certain registers might be ignored. This is also a pre-requisite * for trace enable. */ etm_clr_pwrdwn(drvdata); etm_clr_pwrup(drvdata); etm_set_prog(drvdata); etmcr = etm_readl(drvdata, ETMCR); etmcr &= (BIT(10) | BIT(0)); etm_writel(drvdata, drvdata->ctrl | etmcr, ETMCR); etm_writel(drvdata, drvdata->trigger_event, ETMTRIGGER); etm_writel(drvdata, drvdata->startstop_ctrl, ETMTSSCR); if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2)) etm_writel(drvdata, drvdata->enable_ctrl2, ETMTECR2); etm_writel(drvdata, drvdata->enable_event, ETMTEEVR); etm_writel(drvdata, drvdata->enable_ctrl1, ETMTECR1); etm_writel(drvdata, drvdata->fifofull_level, ETMFFLR); if (drvdata->data_trace_support == true) { etm_writel(drvdata, drvdata->viewdata_event, ETMVDEVR); etm_writel(drvdata, drvdata->viewdata_ctrl1, ETMVDCR1); etm_writel(drvdata, drvdata->viewdata_ctrl3, ETMVDCR3); } for (i = 0; i < drvdata->nr_addr_cmp; i++) { etm_writel(drvdata, drvdata->addr_val[i], ETMACVRn(i)); etm_writel(drvdata, drvdata->addr_acctype[i], ETMACTRn(i)); } for (i = 0; i < drvdata->nr_data_cmp; i++) { etm_writel(drvdata, drvdata->data_val[i], ETMDCVRn(i)); etm_writel(drvdata, drvdata->data_mask[i], ETMDCMRn(i)); } for (i = 0; i < drvdata->nr_cntr; i++) { etm_writel(drvdata, drvdata->cntr_rld_val[i], ETMCNTRLDVRn(i)); etm_writel(drvdata, drvdata->cntr_event[i], ETMCNTENRn(i)); etm_writel(drvdata, drvdata->cntr_rld_event[i], ETMCNTRLDEVRn(i)); etm_writel(drvdata, drvdata->cntr_val[i], ETMCNTVRn(i)); } etm_writel(drvdata, drvdata->seq_12_event, ETMSQ12EVR); etm_writel(drvdata, drvdata->seq_21_event, ETMSQ21EVR); etm_writel(drvdata, drvdata->seq_23_event, ETMSQ23EVR); etm_writel(drvdata, drvdata->seq_31_event, ETMSQ31EVR); etm_writel(drvdata, drvdata->seq_32_event, ETMSQ32EVR); etm_writel(drvdata, drvdata->seq_13_event, ETMSQ13EVR); etm_writel(drvdata, drvdata->seq_curr_state, ETMSQR); for (i = 0; i < drvdata->nr_ext_out; i++) etm_writel(drvdata, 0x0000406F, ETMEXTOUTEVRn(i)); for (i = 0; i < drvdata->nr_ctxid_cmp; i++) etm_writel(drvdata, drvdata->ctxid_val[i], ETMCIDCVRn(i)); etm_writel(drvdata, drvdata->ctxid_mask, ETMCIDCMR); etm_writel(drvdata, drvdata->sync_freq, ETMSYNCFR); etm_writel(drvdata, 0x00000000, ETMEXTINSELR); etm_writel(drvdata, drvdata->timestamp_event, ETMTSEVR); etm_writel(drvdata, 0x00000000, ETMAUXCR); etm_writel(drvdata, drvdata->cpu + 1, ETMTRACEIDR); etm_writel(drvdata, 0x00000000, ETMVMIDCVR); etm_clr_prog(drvdata); ETM_LOCK(drvdata); dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu); } static int etm_enable(struct coresight_device *csdev) { struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); int ret; wake_lock(&drvdata->wake_lock); ret = clk_prepare_enable(drvdata->clk); if (ret) goto err_clk; spin_lock(&drvdata->spinlock); /* * Executing __etm_enable on the cpu whose ETM is being enabled * ensures that register writes occur when cpu is powered. */ ret = smp_call_function_single(drvdata->cpu, __etm_enable, drvdata, 1); if (ret) goto err; drvdata->enable = true; drvdata->sticky_enable = true; spin_unlock(&drvdata->spinlock); wake_unlock(&drvdata->wake_lock); dev_info(drvdata->dev, "ETM tracing enabled\n"); return 0; err: spin_unlock(&drvdata->spinlock); clk_disable_unprepare(drvdata->clk); err_clk: wake_unlock(&drvdata->wake_lock); return ret; } static void __etm_disable(void *info) { struct etm_drvdata *drvdata = info; ETM_UNLOCK(drvdata); etm_set_prog(drvdata); /* program trace enable to low by using always false event */ etm_writel(drvdata, 0x6F | BIT(14), ETMTEEVR); if (!drvdata->pcsave_enable) etm_set_pwrdwn(drvdata); ETM_LOCK(drvdata); dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu); } static void etm_disable(struct coresight_device *csdev) { struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); wake_lock(&drvdata->wake_lock); /* * Taking hotplug lock here protects from clocks getting disabled * with tracing being left on (crash scenario) if user disable occurs * after cpu online mask indicates the cpu is offline but before the * DYING hotplug callback is serviced by the ETM driver. */ get_online_cpus(); spin_lock(&drvdata->spinlock); /* * Executing __etm_disable on the cpu whose ETM is being disabled * ensures that register writes occur when cpu is powered. */ smp_call_function_single(drvdata->cpu, __etm_disable, drvdata, 1); drvdata->enable = false; spin_unlock(&drvdata->spinlock); put_online_cpus(); clk_disable_unprepare(drvdata->clk); wake_unlock(&drvdata->wake_lock); dev_info(drvdata->dev, "ETM tracing disabled\n"); } static const struct coresight_ops_source etm_source_ops = { .enable = etm_enable, .disable = etm_disable, }; static const struct coresight_ops etm_cs_ops = { .source_ops = &etm_source_ops, }; static ssize_t etm_show_nr_addr_cmp(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->nr_addr_cmp; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR(nr_addr_cmp, S_IRUGO, etm_show_nr_addr_cmp, NULL); static ssize_t etm_show_nr_cntr(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->nr_cntr; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR(nr_cntr, S_IRUGO, etm_show_nr_cntr, NULL); static ssize_t etm_show_nr_ctxid_cmp(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->nr_ctxid_cmp; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR(nr_ctxid_cmp, S_IRUGO, etm_show_nr_ctxid_cmp, NULL); static ssize_t etm_show_reset(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->reset; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } /* Reset to trace everything i.e. exclude nothing. */ static ssize_t etm_store_reset(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); int i; unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); if (val) { drvdata->mode = ETM_MODE_EXCLUDE; drvdata->ctrl = 0x0; if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0)) drvdata->ctrl |= BIT(11); if (cpu_is_krait_v1()) { drvdata->mode |= ETM_MODE_CYCACC; drvdata->ctrl |= BIT(12); } drvdata->trigger_event = 0x406F; drvdata->startstop_ctrl = 0x0; if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2)) drvdata->enable_ctrl2 = 0x0; drvdata->enable_event = 0x6F; drvdata->enable_ctrl1 = 0x1000000; drvdata->fifofull_level = 0x28; if (drvdata->data_trace_support == true) { drvdata->mode |= (ETM_MODE_DATA_TRACE_VAL | ETM_MODE_DATA_TRACE_ADDR); drvdata->ctrl |= BIT(2) | BIT(3); drvdata->viewdata_event = 0x6F; drvdata->viewdata_ctrl1 = 0x0; drvdata->viewdata_ctrl3 = 0x10000; } drvdata->addr_idx = 0x0; for (i = 0; i < drvdata->nr_addr_cmp; i++) { drvdata->addr_val[i] = 0x0; drvdata->addr_acctype[i] = 0x0; drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE; } for (i = 0; i < drvdata->nr_data_cmp; i++) { drvdata->data_val[i] = 0; drvdata->data_mask[i] = ~(0); } drvdata->cntr_idx = 0x0; for (i = 0; i < drvdata->nr_cntr; i++) { drvdata->cntr_rld_val[i] = 0x0; drvdata->cntr_event[i] = 0x406F; drvdata->cntr_rld_event[i] = 0x406F; drvdata->cntr_val[i] = 0x0; } drvdata->seq_12_event = 0x406F; drvdata->seq_21_event = 0x406F; drvdata->seq_23_event = 0x406F; drvdata->seq_31_event = 0x406F; drvdata->seq_32_event = 0x406F; drvdata->seq_13_event = 0x406F; drvdata->seq_curr_state = 0x0; drvdata->ctxid_idx = 0x0; for (i = 0; i < drvdata->nr_ctxid_cmp; i++) drvdata->ctxid_val[i] = 0x0; drvdata->ctxid_mask = 0x0; /* Bits[7:0] of ETMSYNCFR are reserved on Krait pass3 onwards */ if (cpu_is_krait() && !cpu_is_krait_v1() && !cpu_is_krait_v2()) drvdata->sync_freq = 0x100; else drvdata->sync_freq = 0x80; drvdata->timestamp_event = 0x406F; } spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(reset, S_IRUGO | S_IWUSR, etm_show_reset, etm_store_reset); static ssize_t etm_show_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->mode; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); drvdata->mode = val & ETM_MODE_ALL; if (drvdata->mode & ETM_MODE_EXCLUDE) drvdata->enable_ctrl1 |= BIT(24); else drvdata->enable_ctrl1 &= ~BIT(24); if (drvdata->mode & ETM_MODE_CYCACC) drvdata->ctrl |= BIT(12); else drvdata->ctrl &= ~BIT(12); if (drvdata->mode & ETM_MODE_STALL) drvdata->ctrl |= BIT(7); else drvdata->ctrl &= ~BIT(7); if (drvdata->mode & ETM_MODE_TIMESTAMP) drvdata->ctrl |= BIT(28); else drvdata->ctrl &= ~BIT(28); if (drvdata->mode & ETM_MODE_CTXID) drvdata->ctrl |= (BIT(14) | BIT(15)); else drvdata->ctrl &= ~(BIT(14) | BIT(15)); if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0)) { if (drvdata->mode & ETM_MODE_DATA_TRACE_VAL) drvdata->ctrl |= BIT(2); else drvdata->ctrl &= ~(BIT(2)); if (drvdata->mode & ETM_MODE_DATA_TRACE_ADDR) drvdata->ctrl |= (BIT(3)); else drvdata->ctrl &= ~(BIT(3)); } spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(mode, S_IRUGO | S_IWUSR, etm_show_mode, etm_store_mode); static ssize_t etm_show_trigger_event(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->trigger_event; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_trigger_event(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->trigger_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR(trigger_event, S_IRUGO | S_IWUSR, etm_show_trigger_event, etm_store_trigger_event); static ssize_t etm_show_enable_event(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->enable_event; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_enable_event(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->enable_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR(enable_event, S_IRUGO | S_IWUSR, etm_show_enable_event, etm_store_enable_event); static ssize_t etm_show_fifofull_level(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->fifofull_level; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_fifofull_level(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->fifofull_level = val; return size; } static DEVICE_ATTR(fifofull_level, S_IRUGO | S_IWUSR, etm_show_fifofull_level, etm_store_fifofull_level); static ssize_t etm_show_addr_idx(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->addr_idx; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_addr_idx(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; if (val >= drvdata->nr_addr_cmp) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->addr_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(addr_idx, S_IRUGO | S_IWUSR, etm_show_addr_idx, etm_store_addr_idx); static ssize_t etm_show_addr_single(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; uint8_t idx; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) { spin_unlock(&drvdata->spinlock); return -EPERM; } val = drvdata->addr_val[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_addr_single(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; uint8_t idx; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) { spin_unlock(&drvdata->spinlock); return -EPERM; } drvdata->addr_val[idx] = val; drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE; if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2)) drvdata->enable_ctrl2 |= (1 << idx); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(addr_single, S_IRUGO | S_IWUSR, etm_show_addr_single, etm_store_addr_single); static ssize_t etm_show_addr_range(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val1, val2; uint8_t idx; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (idx % 2 != 0) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) || (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) { spin_unlock(&drvdata->spinlock); return -EPERM; } val1 = drvdata->addr_val[idx]; val2 = drvdata->addr_val[idx + 1]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2); } static ssize_t etm_store_addr_range(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val1, val2; uint8_t idx; if (sscanf(buf, "%lx %lx", &val1, &val2) != 2) return -EINVAL; /* lower address comparator cannot have a higher address value */ if (val1 > val2) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (idx % 2 != 0) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) || (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) { spin_unlock(&drvdata->spinlock); return -EPERM; } drvdata->addr_val[idx] = val1; drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE; drvdata->addr_val[idx + 1] = val2; drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE; drvdata->enable_ctrl1 |= (1 << (idx/2)); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(addr_range, S_IRUGO | S_IWUSR, etm_show_addr_range, etm_store_addr_range); static ssize_t etm_show_addr_start(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; uint8_t idx; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) { spin_unlock(&drvdata->spinlock); return -EPERM; } val = drvdata->addr_val[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_addr_start(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; uint8_t idx; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) { spin_unlock(&drvdata->spinlock); return -EPERM; } drvdata->addr_val[idx] = val; drvdata->addr_type[idx] = ETM_ADDR_TYPE_START; drvdata->startstop_ctrl |= (1 << idx); drvdata->enable_ctrl1 |= BIT(25); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(addr_start, S_IRUGO | S_IWUSR, etm_show_addr_start, etm_store_addr_start); static ssize_t etm_show_addr_stop(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; uint8_t idx; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) { spin_unlock(&drvdata->spinlock); return -EPERM; } val = drvdata->addr_val[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_addr_stop(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; uint8_t idx; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) { spin_unlock(&drvdata->spinlock); return -EPERM; } drvdata->addr_val[idx] = val; drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP; drvdata->startstop_ctrl |= (1 << (idx + 16)); drvdata->enable_ctrl1 |= BIT(25); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(addr_stop, S_IRUGO | S_IWUSR, etm_show_addr_stop, etm_store_addr_stop); static ssize_t etm_show_addr_acctype(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; spin_lock(&drvdata->spinlock); val = drvdata->addr_acctype[drvdata->addr_idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_addr_acctype(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); drvdata->addr_acctype[drvdata->addr_idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(addr_acctype, S_IRUGO | S_IWUSR, etm_show_addr_acctype, etm_store_addr_acctype); static ssize_t etm_show_data_val(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; uint8_t idx; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (idx % 2 != 0) { spin_unlock(&drvdata->spinlock); return -EPERM; } idx = idx >> 1; if (idx >= drvdata->nr_data_cmp) { spin_unlock(&drvdata->spinlock); return -EPERM; } val = drvdata->data_val[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_data_val(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; uint8_t idx, data_idx; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; /* Adjust index to use the correct data comparator */ data_idx = idx >> 1; /* Only idx = 0, 2, 4, 6... are valid */ if (idx % 2 != 0) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (data_idx >= drvdata->nr_data_cmp) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (!BVAL(drvdata->addr_acctype[idx], ETM_DATACMP_ENABLE)) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE) { if (!BVAL(drvdata->addr_acctype[idx + 1], ETM_DATACMP_ENABLE)) { spin_unlock(&drvdata->spinlock); return -EPERM; } } drvdata->data_val[data_idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(data_val, S_IRUGO | S_IWUSR, etm_show_data_val, etm_store_data_val); static ssize_t etm_show_data_mask(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long mask; uint8_t idx; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (idx % 2 != 0) { spin_unlock(&drvdata->spinlock); return -EPERM; } idx = idx >> 1; if (idx >= drvdata->nr_data_cmp) { spin_unlock(&drvdata->spinlock); return -EPERM; } mask = drvdata->data_mask[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", mask); } static ssize_t etm_store_data_mask(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long mask; uint8_t idx, data_idx; if (sscanf(buf, "%lx", &mask) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; /* Adjust index to use the correct data comparator */ data_idx = idx >> 1; /* Only idx = 0, 2, 4, 6... are valid */ if (idx % 2 != 0) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (data_idx >= drvdata->nr_data_cmp) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (!BVAL(drvdata->addr_acctype[idx], ETM_DATACMP_ENABLE)) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE) { if (!BVAL(drvdata->addr_acctype[idx + 1], ETM_DATACMP_ENABLE)) { spin_unlock(&drvdata->spinlock); return -EPERM; } } drvdata->data_mask[data_idx] = mask; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(data_mask, S_IRUGO | S_IWUSR, etm_show_data_mask, etm_store_data_mask); static ssize_t etm_show_cntr_idx(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->addr_idx; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_cntr_idx(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; if (val >= drvdata->nr_cntr) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->cntr_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(cntr_idx, S_IRUGO | S_IWUSR, etm_show_cntr_idx, etm_store_cntr_idx); static ssize_t etm_show_cntr_rld_val(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; spin_lock(&drvdata->spinlock); val = drvdata->cntr_rld_val[drvdata->cntr_idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_cntr_rld_val(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); drvdata->cntr_rld_val[drvdata->cntr_idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(cntr_rld_val, S_IRUGO | S_IWUSR, etm_show_cntr_rld_val, etm_store_cntr_rld_val); static ssize_t etm_show_cntr_event(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; spin_lock(&drvdata->spinlock); val = drvdata->cntr_event[drvdata->cntr_idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_cntr_event(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); drvdata->cntr_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(cntr_event, S_IRUGO | S_IWUSR, etm_show_cntr_event, etm_store_cntr_event); static ssize_t etm_show_cntr_rld_event(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; spin_lock(&drvdata->spinlock); val = drvdata->cntr_rld_event[drvdata->cntr_idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_cntr_rld_event(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); drvdata->cntr_rld_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(cntr_rld_event, S_IRUGO | S_IWUSR, etm_show_cntr_rld_event, etm_store_cntr_rld_event); static ssize_t etm_show_cntr_val(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; spin_lock(&drvdata->spinlock); val = drvdata->cntr_val[drvdata->cntr_idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_cntr_val(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); drvdata->cntr_val[drvdata->cntr_idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(cntr_val, S_IRUGO | S_IWUSR, etm_show_cntr_val, etm_store_cntr_val); static ssize_t etm_show_seq_12_event(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->seq_12_event; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_seq_12_event(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->seq_12_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR(seq_12_event, S_IRUGO | S_IWUSR, etm_show_seq_12_event, etm_store_seq_12_event); static ssize_t etm_show_seq_21_event(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->seq_21_event; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_seq_21_event(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->seq_21_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR(seq_21_event, S_IRUGO | S_IWUSR, etm_show_seq_21_event, etm_store_seq_21_event); static ssize_t etm_show_seq_23_event(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->seq_23_event; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_seq_23_event(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->seq_23_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR(seq_23_event, S_IRUGO | S_IWUSR, etm_show_seq_23_event, etm_store_seq_23_event); static ssize_t etm_show_seq_31_event(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->seq_31_event; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_seq_31_event(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->seq_31_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR(seq_31_event, S_IRUGO | S_IWUSR, etm_show_seq_31_event, etm_store_seq_31_event); static ssize_t etm_show_seq_32_event(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->seq_32_event; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_seq_32_event(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->seq_32_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR(seq_32_event, S_IRUGO | S_IWUSR, etm_show_seq_32_event, etm_store_seq_32_event); static ssize_t etm_show_seq_13_event(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->seq_13_event; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_seq_13_event(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->seq_13_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR(seq_13_event, S_IRUGO | S_IWUSR, etm_show_seq_13_event, etm_store_seq_13_event); static ssize_t etm_show_seq_curr_state(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->seq_curr_state; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_seq_curr_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; if (val > ETM_SEQ_STATE_MAX_VAL) return -EINVAL; drvdata->seq_curr_state = val; return size; } static DEVICE_ATTR(seq_curr_state, S_IRUGO | S_IWUSR, etm_show_seq_curr_state, etm_store_seq_curr_state); static ssize_t etm_show_ctxid_idx(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->ctxid_idx; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_ctxid_idx(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; if (val >= drvdata->nr_ctxid_cmp) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->ctxid_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(ctxid_idx, S_IRUGO | S_IWUSR, etm_show_ctxid_idx, etm_store_ctxid_idx); static ssize_t etm_show_ctxid_val(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; spin_lock(&drvdata->spinlock); val = drvdata->ctxid_val[drvdata->ctxid_idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_ctxid_val(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); drvdata->ctxid_val[drvdata->ctxid_idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR(ctxid_val, S_IRUGO | S_IWUSR, etm_show_ctxid_val, etm_store_ctxid_val); static ssize_t etm_show_ctxid_mask(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->ctxid_mask; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_ctxid_mask(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->ctxid_mask = val; return size; } static DEVICE_ATTR(ctxid_mask, S_IRUGO | S_IWUSR, etm_show_ctxid_mask, etm_store_ctxid_mask); static ssize_t etm_show_sync_freq(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->sync_freq; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_sync_freq(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->sync_freq = val & ETM_SYNC_MASK; return size; } static DEVICE_ATTR(sync_freq, S_IRUGO | S_IWUSR, etm_show_sync_freq, etm_store_sync_freq); static ssize_t etm_show_timestamp_event(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val = drvdata->timestamp_event; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t etm_store_timestamp_event(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; drvdata->timestamp_event = val & ETM_EVENT_MASK; return size; } static DEVICE_ATTR(timestamp_event, S_IRUGO | S_IWUSR, etm_show_timestamp_event, etm_store_timestamp_event); static ssize_t etm_show_pcsave(struct device *dev, struct device_attribute *attr, char *buf) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; val = drvdata->pcsave_enable; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static int __etm_store_pcsave(struct etm_drvdata *drvdata, unsigned long val) { int ret = 0; ret = clk_prepare_enable(drvdata->clk); if (ret) return ret; spin_lock(&drvdata->spinlock); if (val) { if (drvdata->pcsave_enable) goto out; ret = smp_call_function_single(drvdata->cpu, etm_enable_pcsave, drvdata, 1); if (ret) goto out; drvdata->pcsave_enable = true; drvdata->pcsave_sticky_enable = true; dev_info(drvdata->dev, "PC save enabled\n"); } else { if (!drvdata->pcsave_enable) goto out; ret = smp_call_function_single(drvdata->cpu, etm_disable_pcsave, drvdata, 1); if (ret) goto out; drvdata->pcsave_enable = false; dev_info(drvdata->dev, "PC save disabled\n"); } out: spin_unlock(&drvdata->spinlock); clk_disable_unprepare(drvdata->clk); return ret; } static ssize_t etm_store_pcsave(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent); unsigned long val; int ret; if (sscanf(buf, "%lx", &val) != 1) return -EINVAL; ret = __etm_store_pcsave(drvdata, val); if (ret) return ret; return size; } static DEVICE_ATTR(pcsave, S_IRUGO | S_IWUSR, etm_show_pcsave, etm_store_pcsave); static struct attribute *etm_attrs[] = { &dev_attr_nr_addr_cmp.attr, &dev_attr_nr_cntr.attr, &dev_attr_nr_ctxid_cmp.attr, &dev_attr_reset.attr, &dev_attr_mode.attr, &dev_attr_trigger_event.attr, &dev_attr_enable_event.attr, &dev_attr_fifofull_level.attr, &dev_attr_addr_idx.attr, &dev_attr_addr_single.attr, &dev_attr_addr_range.attr, &dev_attr_addr_start.attr, &dev_attr_addr_stop.attr, &dev_attr_addr_acctype.attr, &dev_attr_data_val.attr, &dev_attr_data_mask.attr, &dev_attr_cntr_idx.attr, &dev_attr_cntr_rld_val.attr, &dev_attr_cntr_event.attr, &dev_attr_cntr_rld_event.attr, &dev_attr_cntr_val.attr, &dev_attr_seq_12_event.attr, &dev_attr_seq_21_event.attr, &dev_attr_seq_23_event.attr, &dev_attr_seq_31_event.attr, &dev_attr_seq_32_event.attr, &dev_attr_seq_13_event.attr, &dev_attr_seq_curr_state.attr, &dev_attr_ctxid_idx.attr, &dev_attr_ctxid_val.attr, &dev_attr_ctxid_mask.attr, &dev_attr_sync_freq.attr, &dev_attr_timestamp_event.attr, NULL, }; static struct attribute_group etm_attr_grp = { .attrs = etm_attrs, }; static const struct attribute_group *etm_attr_grps[] = { &etm_attr_grp, NULL, }; static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; static bool clk_disable[NR_CPUS]; int ret; if (!etmdrvdata[cpu]) goto out; switch (action & (~CPU_TASKS_FROZEN)) { case CPU_UP_PREPARE: if (!etmdrvdata[cpu]->os_unlock) { ret = clk_prepare_enable(etmdrvdata[cpu]->clk); if (ret) { dev_err(etmdrvdata[cpu]->dev, "ETM clk enable during hotplug failed" "for cpu: %d, ret: %d\n", cpu, ret); return notifier_from_errno(ret); } clk_disable[cpu] = true; } break; case CPU_STARTING: spin_lock(&etmdrvdata[cpu]->spinlock); if (!etmdrvdata[cpu]->os_unlock) { etm_os_unlock(etmdrvdata[cpu]); etmdrvdata[cpu]->os_unlock = true; } if (etmdrvdata[cpu]->enable && etmdrvdata[cpu]->round_robin) __etm_enable(etmdrvdata[cpu]); spin_unlock(&etmdrvdata[cpu]->spinlock); break; case CPU_ONLINE: if (clk_disable[cpu]) { clk_disable_unprepare(etmdrvdata[cpu]->clk); clk_disable[cpu] = false; } if (etmdrvdata[cpu]->boot_enable && !etmdrvdata[cpu]->sticky_enable) coresight_enable(etmdrvdata[cpu]->csdev); if (etmdrvdata[cpu]->pcsave_boot_enable && !etmdrvdata[cpu]->pcsave_sticky_enable) __etm_store_pcsave(etmdrvdata[cpu], 1); break; case CPU_UP_CANCELED: if (clk_disable[cpu]) { clk_disable_unprepare(etmdrvdata[cpu]->clk); clk_disable[cpu] = false; } break; case CPU_DYING: spin_lock(&etmdrvdata[cpu]->spinlock); if (etmdrvdata[cpu]->enable && etmdrvdata[cpu]->round_robin) __etm_disable(etmdrvdata[cpu]); spin_unlock(&etmdrvdata[cpu]->spinlock); break; } out: return NOTIFY_OK; } static struct notifier_block etm_cpu_notifier = { .notifier_call = etm_cpu_callback, }; static bool __devinit etm_arch_supported(uint8_t arch) { switch (arch) { case PFT_ARCH_V1_1: break; case ETM_ARCH_V3_5: break; default: return false; } return true; } static void __devinit etm_init_arch_data(void *info) { uint32_t etmidr; uint32_t etmccr; uint32_t etmcr; struct etm_drvdata *drvdata = info; ETM_UNLOCK(drvdata); /* * Vote for ETM power/clock enable. ETMPDCR is only accessible via * memory mapped interface and so use it first to enable power/clock * to allow subsequent cp14 accesses. */ etm_set_pwrup(drvdata); /* * Clear power down bit since when this bit is set writes to * certain registers might be ignored. */ etm_clr_pwrdwn(drvdata); etm_clr_pwrup(drvdata); /* Set prog bit. It will be set from reset but this is included to * ensure it is set */ etm_set_prog(drvdata); /* find all capabilities */ etmidr = etm_readl(drvdata, ETMIDR); drvdata->arch = BMVAL(etmidr, 4, 11); etmccr = etm_readl(drvdata, ETMCCR); drvdata->nr_addr_cmp = BMVAL(etmccr, 0, 3) * 2; drvdata->nr_cntr = BMVAL(etmccr, 13, 15); drvdata->nr_ext_inp = BMVAL(etmccr, 17, 19); drvdata->nr_ext_out = BMVAL(etmccr, 20, 22); drvdata->nr_ctxid_cmp = BMVAL(etmccr, 24, 25); drvdata->nr_data_cmp = BMVAL(etmccr, 4, 7); if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0)) { etmcr = etm_readl(drvdata, ETMCR); etmcr |= (BIT(2) | BIT(3)); etm_writel(drvdata, etmcr, ETMCR); etmcr = etm_readl(drvdata, ETMCR); if (BVAL(etmcr, 2) || BVAL(etmcr, 3)) drvdata->data_trace_support = true; else drvdata->data_trace_support = false; } else drvdata->data_trace_support = false; etm_set_pwrdwn(drvdata); ETM_LOCK(drvdata); } static void __devinit etm_copy_arch_data(struct etm_drvdata *drvdata) { drvdata->arch = etmdrvdata[0]->arch; drvdata->nr_addr_cmp = etmdrvdata[0]->nr_addr_cmp; drvdata->nr_cntr = etmdrvdata[0]->nr_cntr; drvdata->nr_ext_inp = etmdrvdata[0]->nr_ext_inp; drvdata->nr_ext_out = etmdrvdata[0]->nr_ext_out; drvdata->nr_ctxid_cmp = etmdrvdata[0]->nr_ctxid_cmp; drvdata->nr_data_cmp = etmdrvdata[0]->nr_data_cmp; drvdata->data_trace_support = etmdrvdata[0]->data_trace_support; } static void __devinit etm_init_default_data(struct etm_drvdata *drvdata) { int i; drvdata->trigger_event = 0x406F; drvdata->enable_event = 0x6F; drvdata->enable_ctrl1 = 0x1; drvdata->fifofull_level = 0x28; if (drvdata->nr_addr_cmp >= 2) { drvdata->addr_val[0] = (uint32_t) _stext; drvdata->addr_val[1] = (uint32_t) _etext; drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE; drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE; if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0)) { drvdata->addr_acctype[0] = 0x19; drvdata->addr_acctype[1] = 0x19; } } for (i = 0; i < drvdata->nr_cntr; i++) { drvdata->cntr_event[i] = 0x406F; drvdata->cntr_rld_event[i] = 0x406F; } drvdata->seq_12_event = 0x406F; drvdata->seq_21_event = 0x406F; drvdata->seq_23_event = 0x406F; drvdata->seq_31_event = 0x406F; drvdata->seq_32_event = 0x406F; drvdata->seq_13_event = 0x406F; /* Bits[7:0] of ETMSYNCFR are reserved on Krait pass3 onwards */ if (cpu_is_krait() && !cpu_is_krait_v1() && !cpu_is_krait_v2()) drvdata->sync_freq = 0x100; else drvdata->sync_freq = 0x80; drvdata->timestamp_event = 0x406F; /* Overrides for Krait pass1 */ if (cpu_is_krait_v1()) { /* Krait pass1 doesn't support include filtering and non-cycle * accurate tracing */ drvdata->mode = (ETM_MODE_EXCLUDE | ETM_MODE_CYCACC); drvdata->ctrl = 0x1000; drvdata->enable_ctrl1 = 0x1000000; for (i = 0; i < drvdata->nr_addr_cmp; i++) { drvdata->addr_val[i] = 0x0; drvdata->addr_acctype[i] = 0x0; drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE; } } if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0)) drvdata->ctrl |= BIT(11); if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2)) drvdata->enable_ctrl2 = 0x0; if (drvdata->data_trace_support == true) { drvdata->mode |= (ETM_MODE_DATA_TRACE_VAL | ETM_MODE_DATA_TRACE_ADDR); drvdata->ctrl |= BIT(2) | BIT(3); drvdata->viewdata_ctrl1 = 0x0; drvdata->viewdata_ctrl3 = 0x10000; drvdata->viewdata_event = 0x6F; } for (i = 0; i < drvdata->nr_data_cmp; i++) { drvdata->data_val[i] = 0; drvdata->data_mask[i] = ~(0); } } static int __devinit etm_probe(struct platform_device *pdev) { int ret; struct device *dev = &pdev->dev; struct coresight_platform_data *pdata; struct etm_drvdata *drvdata; struct resource *res; uint32_t reg_size; static int count; void *baddr; struct msm_client_dump dump; struct coresight_desc *desc; if (pdev->dev.of_node) { pdata = of_get_coresight_platform_data(dev, pdev->dev.of_node); if (IS_ERR(pdata)) return PTR_ERR(pdata); pdev->dev.platform_data = pdata; } drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL); if (!drvdata) return -ENOMEM; drvdata->dev = &pdev->dev; platform_set_drvdata(pdev, drvdata); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "etm-base"); if (!res) return -ENODEV; reg_size = resource_size(res); drvdata->base = devm_ioremap(dev, res->start, resource_size(res)); if (!drvdata->base) return -ENOMEM; spin_lock_init(&drvdata->spinlock); wake_lock_init(&drvdata->wake_lock, WAKE_LOCK_SUSPEND, "coresight-etm"); drvdata->clk = devm_clk_get(dev, "core_clk"); if (IS_ERR(drvdata->clk)) { ret = PTR_ERR(drvdata->clk); goto err0; } ret = clk_set_rate(drvdata->clk, CORESIGHT_CLK_RATE_TRACE); if (ret) goto err0; ret = clk_prepare_enable(drvdata->clk); if (ret) goto err0; drvdata->cpu = count++; get_online_cpus(); etmdrvdata[drvdata->cpu] = drvdata; if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata, 1)) drvdata->os_unlock = true; /* * Use CPU0 to populate read-only configuration data for ETM0. For * other ETMs copy it over from ETM0. */ if (drvdata->cpu == 0) { register_hotcpu_notifier(&etm_cpu_notifier); if (smp_call_function_single(drvdata->cpu, etm_init_arch_data, drvdata, 1)) dev_err(dev, "ETM arch init failed\n"); } else { etm_copy_arch_data(drvdata); } put_online_cpus(); if (etm_arch_supported(drvdata->arch) == false) { ret = -EINVAL; goto err1; } etm_init_default_data(drvdata); clk_disable_unprepare(drvdata->clk); if (pdev->dev.of_node) drvdata->round_robin = of_property_read_bool(pdev->dev.of_node, "qcom,round-robin"); baddr = devm_kzalloc(dev, PAGE_SIZE + reg_size, GFP_KERNEL); if (baddr) { *(uint32_t *)(baddr + ETM_REG_DUMP_VER_OFF) = ETM_REG_DUMP_VER; dump.id = MSM_ETM0_REG + drvdata->cpu; dump.start_addr = virt_to_phys(baddr); dump.end_addr = dump.start_addr + PAGE_SIZE + reg_size; ret = msm_dump_table_register(&dump); if (ret) { devm_kfree(dev, baddr); dev_err(dev, "ETM REG dump setup failed/unsupported\n"); } } else { dev_err(dev, "ETM REG dump space allocation failed\n"); } desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL); if (!desc) { ret = -ENOMEM; goto err2; } desc->type = CORESIGHT_DEV_TYPE_SOURCE; desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC; desc->ops = &etm_cs_ops; desc->pdata = pdev->dev.platform_data; desc->dev = &pdev->dev; desc->groups = etm_attr_grps; desc->owner = THIS_MODULE; drvdata->csdev = coresight_register(desc); if (IS_ERR(drvdata->csdev)) { ret = PTR_ERR(drvdata->csdev); goto err2; } if (pdev->dev.of_node) drvdata->pcsave_impl = of_property_read_bool(pdev->dev.of_node, "qcom,pc-save"); if (drvdata->pcsave_impl) { ret = device_create_file(&drvdata->csdev->dev, &dev_attr_pcsave); if (ret) dev_err(dev, "ETM pcsave dev node creation failed\n"); } dev_info(dev, "ETM initialized\n"); if (boot_enable) { coresight_enable(drvdata->csdev); drvdata->boot_enable = true; } if (drvdata->pcsave_impl && boot_pcsave_enable) { __etm_store_pcsave(drvdata, 1); drvdata->pcsave_boot_enable = true; } return 0; err2: if (drvdata->cpu == 0) unregister_hotcpu_notifier(&etm_cpu_notifier); wake_lock_destroy(&drvdata->wake_lock); return ret; err1: if (drvdata->cpu == 0) unregister_hotcpu_notifier(&etm_cpu_notifier); clk_disable_unprepare(drvdata->clk); err0: wake_lock_destroy(&drvdata->wake_lock); return ret; } static int __devexit etm_remove(struct platform_device *pdev) { struct etm_drvdata *drvdata = platform_get_drvdata(pdev); device_remove_file(&drvdata->csdev->dev, &dev_attr_pcsave); coresight_unregister(drvdata->csdev); if (drvdata->cpu == 0) unregister_hotcpu_notifier(&etm_cpu_notifier); wake_lock_destroy(&drvdata->wake_lock); return 0; } static struct of_device_id etm_match[] = { {.compatible = "arm,coresight-etm"}, {} }; static struct platform_driver etm_driver = { .probe = etm_probe, .remove = __devexit_p(etm_remove), .driver = { .name = "coresight-etm", .owner = THIS_MODULE, .of_match_table = etm_match, }, }; int __init etm_init(void) { return platform_driver_register(&etm_driver); } module_init(etm_init); void __exit etm_exit(void) { platform_driver_unregister(&etm_driver); } module_exit(etm_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("CoreSight Program Flow Trace driver");