/* * Copyright (C) 2007 Google, Inc. * Copyright (c) 2009-2013, The Linux Foundation. All rights reserved. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_MSM_SMD) #include #include #endif #include "timer.h" enum { MSM_TIMER_DEBUG_SYNC = 1U << 0, }; static int msm_timer_debug_mask; module_param_named(debug_mask, msm_timer_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP); #ifdef CONFIG_MSM7X00A_USE_GP_TIMER #define DG_TIMER_RATING 100 #else #define DG_TIMER_RATING 300 #endif #ifndef MSM_TMR0_BASE #define MSM_TMR0_BASE MSM_TMR_BASE #endif #define MSM_DGT_SHIFT (5) #define TIMER_MATCH_VAL 0x0000 #define TIMER_COUNT_VAL 0x0004 #define TIMER_ENABLE 0x0008 #define TIMER_CLEAR 0x000C #define DGT_CLK_CTL 0x0034 enum { DGT_CLK_CTL_DIV_1 = 0, DGT_CLK_CTL_DIV_2 = 1, DGT_CLK_CTL_DIV_3 = 2, DGT_CLK_CTL_DIV_4 = 3, }; #define TIMER_STATUS 0x0088 #define TIMER_ENABLE_EN 1 #define TIMER_ENABLE_CLR_ON_MATCH_EN 2 #define LOCAL_TIMER 0 #define GLOBAL_TIMER 1 /* * global_timer_offset is added to the regbase of a timer to force the memory * access to come from the CPU0 region. */ static int global_timer_offset; static int msm_global_timer; #define NR_TIMERS ARRAY_SIZE(msm_clocks) unsigned int gpt_hz = 32768; unsigned int sclk_hz = 32768; static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt); static irqreturn_t msm_timer_interrupt(int irq, void *dev_id); static cycle_t msm_gpt_read(struct clocksource *cs); static cycle_t msm_dgt_read(struct clocksource *cs); static void msm_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt); static int msm_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt); enum { MSM_CLOCK_FLAGS_UNSTABLE_COUNT = 1U << 0, MSM_CLOCK_FLAGS_ODD_MATCH_WRITE = 1U << 1, MSM_CLOCK_FLAGS_DELAYED_WRITE_POST = 1U << 2, }; struct msm_clock { struct clock_event_device clockevent; struct clocksource clocksource; unsigned int irq; void __iomem *regbase; uint32_t freq; uint32_t shift; uint32_t flags; uint32_t write_delay; uint32_t rollover_offset; uint32_t index; void __iomem *global_counter; void __iomem *local_counter; uint32_t status_mask; union { struct clock_event_device *evt; struct clock_event_device __percpu **percpu_evt; }; }; enum { MSM_CLOCK_GPT, MSM_CLOCK_DGT, }; struct msm_clock_percpu_data { uint32_t last_set; uint32_t sleep_offset; uint32_t alarm_vtime; uint32_t alarm; uint32_t non_sleep_offset; uint32_t in_sync; cycle_t stopped_tick; int stopped; uint32_t last_sync_gpt; u64 last_sync_jiffies; }; struct msm_timer_sync_data_t { struct msm_clock *clock; uint32_t timeout; int exit_sleep; }; static struct msm_clock msm_clocks[] = { [MSM_CLOCK_GPT] = { .clockevent = { .name = "gp_timer", .features = CLOCK_EVT_FEAT_ONESHOT, .shift = 32, .rating = 200, .set_next_event = msm_timer_set_next_event, .set_mode = msm_timer_set_mode, }, .clocksource = { .name = "gp_timer", .rating = 200, .read = msm_gpt_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }, .irq = INT_GP_TIMER_EXP, .regbase = MSM_TMR_BASE + 0x4, .freq = 32768, .index = MSM_CLOCK_GPT, .write_delay = 9, }, [MSM_CLOCK_DGT] = { .clockevent = { .name = "dg_timer", .features = CLOCK_EVT_FEAT_ONESHOT, .shift = 32, .rating = DG_TIMER_RATING, .set_next_event = msm_timer_set_next_event, .set_mode = msm_timer_set_mode, }, .clocksource = { .name = "dg_timer", .rating = DG_TIMER_RATING, .read = msm_dgt_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }, .irq = INT_DEBUG_TIMER_EXP, .regbase = MSM_TMR_BASE + 0x24, .index = MSM_CLOCK_DGT, .write_delay = 9, } }; static DEFINE_PER_CPU(struct msm_clock_percpu_data[NR_TIMERS], msm_clocks_percpu); static DEFINE_PER_CPU(struct msm_clock *, msm_active_clock); static irqreturn_t msm_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = *(struct clock_event_device **)dev_id; if (evt->event_handler == NULL) return IRQ_HANDLED; evt->event_handler(evt); return IRQ_HANDLED; } static uint32_t msm_read_timer_count(struct msm_clock *clock, int global) { uint32_t t1, t2, t3; int loop_count = 0; void __iomem *addr = clock->regbase + TIMER_COUNT_VAL + global*global_timer_offset; if (!(clock->flags & MSM_CLOCK_FLAGS_UNSTABLE_COUNT)) return __raw_readl_no_log(addr); t1 = __raw_readl_no_log(addr); t2 = __raw_readl_no_log(addr); if ((t2-t1) <= 1) return t2; while (1) { t1 = __raw_readl_no_log(addr); t2 = __raw_readl_no_log(addr); t3 = __raw_readl_no_log(addr); cpu_relax(); if ((t3-t2) <= 1) return t3; if ((t2-t1) <= 1) return t2; if ((t2 >= t1) && (t3 >= t2)) return t2; if (++loop_count == 5) { pr_err("msm_read_timer_count timer %s did not " "stabilize: %u -> %u -> %u\n", clock->clockevent.name, t1, t2, t3); return t3; } } } static cycle_t msm_gpt_read(struct clocksource *cs) { struct msm_clock *clock = &msm_clocks[MSM_CLOCK_GPT]; struct msm_clock_percpu_data *clock_state = &per_cpu(msm_clocks_percpu, 0)[MSM_CLOCK_GPT]; if (clock_state->stopped) return clock_state->stopped_tick; return msm_read_timer_count(clock, GLOBAL_TIMER) + clock_state->sleep_offset; } static cycle_t msm_dgt_read(struct clocksource *cs) { struct msm_clock *clock = &msm_clocks[MSM_CLOCK_DGT]; struct msm_clock_percpu_data *clock_state = &per_cpu(msm_clocks_percpu, 0)[MSM_CLOCK_DGT]; if (clock_state->stopped) return clock_state->stopped_tick >> clock->shift; return (msm_read_timer_count(clock, GLOBAL_TIMER) + clock_state->sleep_offset) >> clock->shift; } static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt) { int i; if (!is_smp()) return container_of(evt, struct msm_clock, clockevent); for (i = 0; i < NR_TIMERS; i++) if (evt == &(msm_clocks[i].clockevent)) return &msm_clocks[i]; return &msm_clocks[msm_global_timer]; } static int msm_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { int i; struct msm_clock *clock; struct msm_clock_percpu_data *clock_state; uint32_t now; uint32_t alarm; int late; clock = clockevent_to_clock(evt); clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; now = msm_read_timer_count(clock, LOCAL_TIMER); alarm = now + (cycles << clock->shift); if (clock->flags & MSM_CLOCK_FLAGS_ODD_MATCH_WRITE) while (now == clock_state->last_set) now = msm_read_timer_count(clock, LOCAL_TIMER); clock_state->alarm = alarm; __raw_writel(alarm, clock->regbase + TIMER_MATCH_VAL); if (clock->flags & MSM_CLOCK_FLAGS_DELAYED_WRITE_POST) { /* read the counter four extra times to make sure write posts before reading the time */ for (i = 0; i < 4; i++) __raw_readl_no_log(clock->regbase + TIMER_COUNT_VAL); } now = msm_read_timer_count(clock, LOCAL_TIMER); clock_state->last_set = now; clock_state->alarm_vtime = alarm + clock_state->sleep_offset; late = now - alarm; if (late >= (int)(-clock->write_delay << clock->shift) && late < clock->freq*5) return -ETIME; return 0; } static void msm_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { struct msm_clock *clock; struct msm_clock **cur_clock; struct msm_clock_percpu_data *clock_state, *gpt_state; unsigned long irq_flags; struct irq_chip *chip; clock = clockevent_to_clock(evt); clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; gpt_state = &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT]; local_irq_save(irq_flags); switch (mode) { case CLOCK_EVT_MODE_RESUME: case CLOCK_EVT_MODE_PERIODIC: break; case CLOCK_EVT_MODE_ONESHOT: clock_state->stopped = 0; clock_state->sleep_offset = -msm_read_timer_count(clock, LOCAL_TIMER) + clock_state->stopped_tick; get_cpu_var(msm_active_clock) = clock; put_cpu_var(msm_active_clock); __raw_writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE); chip = irq_get_chip(clock->irq); if (chip && chip->irq_unmask) chip->irq_unmask(irq_get_irq_data(clock->irq)); if (clock != &msm_clocks[MSM_CLOCK_GPT]) __raw_writel(TIMER_ENABLE_EN, msm_clocks[MSM_CLOCK_GPT].regbase + TIMER_ENABLE); break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: cur_clock = &get_cpu_var(msm_active_clock); if (*cur_clock == clock) *cur_clock = NULL; put_cpu_var(msm_active_clock); clock_state->in_sync = 0; clock_state->stopped = 1; clock_state->stopped_tick = msm_read_timer_count(clock, LOCAL_TIMER) + clock_state->sleep_offset; __raw_writel(0, clock->regbase + TIMER_MATCH_VAL); chip = irq_get_chip(clock->irq); if (chip && chip->irq_mask) chip->irq_mask(irq_get_irq_data(clock->irq)); if (!is_smp() || clock != &msm_clocks[MSM_CLOCK_DGT] || smp_processor_id()) __raw_writel(0, clock->regbase + TIMER_ENABLE); if (msm_global_timer == MSM_CLOCK_DGT && clock != &msm_clocks[MSM_CLOCK_GPT]) { gpt_state->in_sync = 0; __raw_writel(0, msm_clocks[MSM_CLOCK_GPT].regbase + TIMER_ENABLE); } break; } wmb(); local_irq_restore(irq_flags); } void __iomem *msm_timer_get_timer0_base(void) { return MSM_TMR_BASE + global_timer_offset; } #define MPM_SCLK_COUNT_VAL 0x0024 #ifdef CONFIG_PM /* * Retrieve the cycle count from sclk and optionally synchronize local clock * with the sclk value. * * time_start and time_expired are callbacks that must be specified. The * protocol uses them to detect timeout. The update callback is optional. * If not NULL, update will be called so that it can update local clock. * * The function does not use the argument data directly; it passes data to * the callbacks. * * Return value: * 0: the operation failed * >0: the slow clock value after time-sync */ static void (*msm_timer_sync_timeout)(void); #if defined(CONFIG_MSM_DIRECT_SCLK_ACCESS) uint32_t msm_timer_get_sclk_ticks(void) { uint32_t t1, t2; int loop_count = 10; int loop_zero_count = 3; int tmp = USEC_PER_SEC; do_div(tmp, sclk_hz); tmp /= (loop_zero_count-1); while (loop_zero_count--) { t1 = __raw_readl_no_log(MSM_RPM_MPM_BASE + MPM_SCLK_COUNT_VAL); do { udelay(1); t2 = t1; t1 = __raw_readl_no_log( MSM_RPM_MPM_BASE + MPM_SCLK_COUNT_VAL); } while ((t2 != t1) && --loop_count); if (!loop_count) { printk(KERN_EMERG "SCLK did not stabilize\n"); return 0; } if (t1) break; udelay(tmp); } if (!loop_zero_count) { printk(KERN_EMERG "SCLK reads zero\n"); return 0; } return t1; } static uint32_t msm_timer_do_sync_to_sclk( void (*time_start)(struct msm_timer_sync_data_t *data), bool (*time_expired)(struct msm_timer_sync_data_t *data), void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t), struct msm_timer_sync_data_t *data) { unsigned t1 = msm_timer_get_sclk_ticks(); if (t1 && update != NULL) update(data, t1, sclk_hz); return t1; } #elif defined(CONFIG_MSM_N_WAY_SMSM) /* Time Master State Bits */ #define MASTER_BITS_PER_CPU 1 #define MASTER_TIME_PENDING \ (0x01UL << (MASTER_BITS_PER_CPU * SMSM_APPS_STATE)) /* Time Slave State Bits */ #define SLAVE_TIME_REQUEST 0x0400 #define SLAVE_TIME_POLL 0x0800 #define SLAVE_TIME_INIT 0x1000 static uint32_t msm_timer_do_sync_to_sclk( void (*time_start)(struct msm_timer_sync_data_t *data), bool (*time_expired)(struct msm_timer_sync_data_t *data), void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t), struct msm_timer_sync_data_t *data) { uint32_t *smem_clock; uint32_t smem_clock_val; uint32_t state; smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE, sizeof(uint32_t)); if (smem_clock == NULL) { printk(KERN_ERR "no smem clock\n"); return 0; } state = smsm_get_state(SMSM_MODEM_STATE); if ((state & SMSM_INIT) == 0) { printk(KERN_ERR "smsm not initialized\n"); return 0; } time_start(data); while ((state = smsm_get_state(SMSM_TIME_MASTER_DEM)) & MASTER_TIME_PENDING) { if (time_expired(data)) { printk(KERN_EMERG "get_smem_clock: timeout 1 still " "invalid state %x\n", state); msm_timer_sync_timeout(); } } smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_POLL | SLAVE_TIME_INIT, SLAVE_TIME_REQUEST); time_start(data); while (!((state = smsm_get_state(SMSM_TIME_MASTER_DEM)) & MASTER_TIME_PENDING)) { if (time_expired(data)) { printk(KERN_EMERG "get_smem_clock: timeout 2 still " "invalid state %x\n", state); msm_timer_sync_timeout(); } } smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST, SLAVE_TIME_POLL); time_start(data); do { smem_clock_val = *smem_clock; } while (smem_clock_val == 0 && !time_expired(data)); state = smsm_get_state(SMSM_TIME_MASTER_DEM); if (smem_clock_val) { if (update != NULL) update(data, smem_clock_val, sclk_hz); if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC) printk(KERN_INFO "get_smem_clock: state %x clock %u\n", state, smem_clock_val); } else { printk(KERN_EMERG "get_smem_clock: timeout state %x clock %u\n", state, smem_clock_val); msm_timer_sync_timeout(); } smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST | SLAVE_TIME_POLL, SLAVE_TIME_INIT); return smem_clock_val; } #else /* CONFIG_MSM_N_WAY_SMSM */ static uint32_t msm_timer_do_sync_to_sclk( void (*time_start)(struct msm_timer_sync_data_t *data), bool (*time_expired)(struct msm_timer_sync_data_t *data), void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t), struct msm_timer_sync_data_t *data) { uint32_t *smem_clock; uint32_t smem_clock_val; uint32_t last_state; uint32_t state; smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE, sizeof(uint32_t)); if (smem_clock == NULL) { printk(KERN_ERR "no smem clock\n"); return 0; } last_state = state = smsm_get_state(SMSM_MODEM_STATE); smem_clock_val = *smem_clock; if (smem_clock_val) { printk(KERN_INFO "get_smem_clock: invalid start state %x " "clock %u\n", state, smem_clock_val); smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEWAIT, SMSM_TIMEINIT); time_start(data); while (*smem_clock != 0 && !time_expired(data)) ; smem_clock_val = *smem_clock; if (smem_clock_val) { printk(KERN_EMERG "get_smem_clock: timeout still " "invalid state %x clock %u\n", state, smem_clock_val); msm_timer_sync_timeout(); } } time_start(data); smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEINIT, SMSM_TIMEWAIT); do { smem_clock_val = *smem_clock; state = smsm_get_state(SMSM_MODEM_STATE); if (state != last_state) { last_state = state; if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC) printk(KERN_INFO "get_smem_clock: state %x clock %u\n", state, smem_clock_val); } } while (smem_clock_val == 0 && !time_expired(data)); if (smem_clock_val) { if (update != NULL) update(data, smem_clock_val, sclk_hz); } else { printk(KERN_EMERG "get_smem_clock: timeout state %x clock %u\n", state, smem_clock_val); msm_timer_sync_timeout(); } smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEWAIT, SMSM_TIMEINIT); return smem_clock_val; } #endif /* CONFIG_MSM_N_WAY_SMSM */ /* * Callback function that initializes the timeout value. */ static void msm_timer_sync_to_sclk_time_start( struct msm_timer_sync_data_t *data) { /* approx 2 seconds */ uint32_t delta = data->clock->freq << data->clock->shift << 1; data->timeout = msm_read_timer_count(data->clock, LOCAL_TIMER) + delta; } /* * Callback function that checks the timeout. */ static bool msm_timer_sync_to_sclk_time_expired( struct msm_timer_sync_data_t *data) { uint32_t delta = msm_read_timer_count(data->clock, LOCAL_TIMER) - data->timeout; return ((int32_t) delta) > 0; } /* * Callback function that updates local clock from the specified source clock * value and frequency. */ static void msm_timer_sync_update(struct msm_timer_sync_data_t *data, uint32_t src_clk_val, uint32_t src_clk_freq) { struct msm_clock *dst_clk = data->clock; struct msm_clock_percpu_data *dst_clk_state = &__get_cpu_var(msm_clocks_percpu)[dst_clk->index]; uint32_t dst_clk_val = msm_read_timer_count(dst_clk, LOCAL_TIMER); uint32_t new_offset; if ((dst_clk->freq << dst_clk->shift) == src_clk_freq) { new_offset = src_clk_val - dst_clk_val; } else { uint64_t temp; /* separate multiplication and division steps to reduce rounding error */ temp = src_clk_val; temp *= dst_clk->freq << dst_clk->shift; do_div(temp, src_clk_freq); new_offset = (uint32_t)(temp) - dst_clk_val; } if (dst_clk_state->sleep_offset + dst_clk_state->non_sleep_offset != new_offset) { if (data->exit_sleep) dst_clk_state->sleep_offset = new_offset - dst_clk_state->non_sleep_offset; else dst_clk_state->non_sleep_offset = new_offset - dst_clk_state->sleep_offset; if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC) printk(KERN_INFO "sync clock %s: " "src %u, new offset %u + %u\n", dst_clk->clocksource.name, src_clk_val, dst_clk_state->sleep_offset, dst_clk_state->non_sleep_offset); } } /* * Synchronize GPT clock with sclk. */ static void msm_timer_sync_gpt_to_sclk(int exit_sleep) { struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT]; struct msm_clock_percpu_data *gpt_clk_state = &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT]; struct msm_timer_sync_data_t data; uint32_t ret; if (gpt_clk_state->in_sync) return; data.clock = gpt_clk; data.timeout = 0; data.exit_sleep = exit_sleep; ret = msm_timer_do_sync_to_sclk( msm_timer_sync_to_sclk_time_start, msm_timer_sync_to_sclk_time_expired, msm_timer_sync_update, &data); if (ret) gpt_clk_state->in_sync = 1; } /* * Synchronize clock with GPT clock. */ static void msm_timer_sync_to_gpt(struct msm_clock *clock, int exit_sleep) { struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT]; struct msm_clock_percpu_data *gpt_clk_state = &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT]; struct msm_clock_percpu_data *clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; struct msm_timer_sync_data_t data; uint32_t gpt_clk_val; u64 gpt_period = (1ULL << 32) * HZ; u64 now = get_jiffies_64(); do_div(gpt_period, gpt_hz); BUG_ON(clock == gpt_clk); if (clock_state->in_sync && (now - clock_state->last_sync_jiffies < (gpt_period >> 1))) return; gpt_clk_val = msm_read_timer_count(gpt_clk, LOCAL_TIMER) + gpt_clk_state->sleep_offset + gpt_clk_state->non_sleep_offset; if (exit_sleep && gpt_clk_val < clock_state->last_sync_gpt) clock_state->non_sleep_offset -= clock->rollover_offset; data.clock = clock; data.timeout = 0; data.exit_sleep = exit_sleep; msm_timer_sync_update(&data, gpt_clk_val, gpt_hz); clock_state->in_sync = 1; clock_state->last_sync_gpt = gpt_clk_val; clock_state->last_sync_jiffies = now; } static void msm_timer_reactivate_alarm(struct msm_clock *clock) { struct msm_clock_percpu_data *clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; long alarm_delta = clock_state->alarm_vtime - clock_state->sleep_offset - msm_read_timer_count(clock, LOCAL_TIMER); alarm_delta >>= clock->shift; if (alarm_delta < (long)clock->write_delay + 4) alarm_delta = clock->write_delay + 4; while (msm_timer_set_next_event(alarm_delta, &clock->clockevent)) ; } int64_t msm_timer_enter_idle(void) { struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT]; struct msm_clock *clock = __get_cpu_var(msm_active_clock); struct msm_clock_percpu_data *clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; uint32_t alarm; uint32_t count; int32_t delta; BUG_ON(clock != &msm_clocks[MSM_CLOCK_GPT] && clock != &msm_clocks[MSM_CLOCK_DGT]); msm_timer_sync_gpt_to_sclk(0); if (clock != gpt_clk) msm_timer_sync_to_gpt(clock, 0); count = msm_read_timer_count(clock, LOCAL_TIMER); if (clock_state->stopped++ == 0) clock_state->stopped_tick = count + clock_state->sleep_offset; alarm = clock_state->alarm; delta = alarm - count; if (delta <= -(int32_t)((clock->freq << clock->shift) >> 10)) { /* timer should have triggered 1ms ago */ printk(KERN_ERR "msm_timer_enter_idle: timer late %d, " "reprogram it\n", delta); msm_timer_reactivate_alarm(clock); } if (delta <= 0) return 0; return clocksource_cyc2ns((alarm - count) >> clock->shift, clock->clocksource.mult, clock->clocksource.shift); } void msm_timer_exit_idle(int low_power) { struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT]; struct msm_clock *clock = __get_cpu_var(msm_active_clock); struct msm_clock_percpu_data *gpt_clk_state = &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT]; struct msm_clock_percpu_data *clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; uint32_t enabled; BUG_ON(clock != &msm_clocks[MSM_CLOCK_GPT] && clock != &msm_clocks[MSM_CLOCK_DGT]); if (!low_power) goto exit_idle_exit; enabled = __raw_readl(gpt_clk->regbase + TIMER_ENABLE) & TIMER_ENABLE_EN; if (!enabled) __raw_writel(TIMER_ENABLE_EN, gpt_clk->regbase + TIMER_ENABLE); #if defined(CONFIG_ARCH_MSM_SCORPION) || defined(CONFIG_ARCH_MSM_KRAIT) gpt_clk_state->in_sync = 0; #else gpt_clk_state->in_sync = gpt_clk_state->in_sync && enabled; #endif /* Make sure timer is actually enabled before we sync it */ wmb(); msm_timer_sync_gpt_to_sclk(1); if (clock == gpt_clk) goto exit_idle_alarm; enabled = __raw_readl(clock->regbase + TIMER_ENABLE) & TIMER_ENABLE_EN; if (!enabled) __raw_writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE); #if defined(CONFIG_ARCH_MSM_SCORPION) || defined(CONFIG_ARCH_MSM_KRAIT) clock_state->in_sync = 0; #else clock_state->in_sync = clock_state->in_sync && enabled; #endif /* Make sure timer is actually enabled before we sync it */ wmb(); msm_timer_sync_to_gpt(clock, 1); exit_idle_alarm: msm_timer_reactivate_alarm(clock); exit_idle_exit: clock_state->stopped--; } /* * Callback function that initializes the timeout value. */ static void msm_timer_get_sclk_time_start( struct msm_timer_sync_data_t *data) { data->timeout = 200000; } /* * Callback function that checks the timeout. */ static bool msm_timer_get_sclk_time_expired( struct msm_timer_sync_data_t *data) { udelay(10); return --data->timeout <= 0; } /* * Retrieve the cycle count from the sclk and convert it into * nanoseconds. * * On exit, if period is not NULL, it contains the period of the * sclk in nanoseconds, i.e. how long the cycle count wraps around. * * Return value: * 0: the operation failed; period is not set either * >0: time in nanoseconds */ int64_t msm_timer_get_sclk_time(int64_t *period) { struct msm_timer_sync_data_t data; uint32_t clock_value; int64_t tmp; memset(&data, 0, sizeof(data)); clock_value = msm_timer_do_sync_to_sclk( msm_timer_get_sclk_time_start, msm_timer_get_sclk_time_expired, NULL, &data); if (!clock_value) return 0; if (period) { tmp = 1LL << 32; tmp *= NSEC_PER_SEC; do_div(tmp, sclk_hz); *period = tmp; } tmp = (int64_t)clock_value; tmp *= NSEC_PER_SEC; do_div(tmp, sclk_hz); return tmp; } int __init msm_timer_init_time_sync(void (*timeout)(void)) { #if defined(CONFIG_MSM_N_WAY_SMSM) && !defined(CONFIG_MSM_DIRECT_SCLK_ACCESS) int ret = smsm_change_intr_mask(SMSM_TIME_MASTER_DEM, 0xFFFFFFFF, 0); if (ret) { printk(KERN_ERR "%s: failed to clear interrupt mask, %d\n", __func__, ret); return ret; } smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST | SLAVE_TIME_POLL, SLAVE_TIME_INIT); #endif BUG_ON(timeout == NULL); msm_timer_sync_timeout = timeout; return 0; } #endif static u32 notrace msm_read_sched_clock(void) { struct msm_clock *clock = &msm_clocks[msm_global_timer]; struct clocksource *cs = &clock->clocksource; return cs->read(NULL); } static struct delay_timer msm_delay_timer; static unsigned long msm_read_current_timer(void) { struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT]; return msm_read_timer_count(dgt, GLOBAL_TIMER); } static void __init msm_sched_clock_init(void) { struct msm_clock *clock = &msm_clocks[msm_global_timer]; setup_sched_clock(msm_read_sched_clock, 32 - clock->shift, clock->freq); } #ifdef CONFIG_LOCAL_TIMERS int __cpuinit local_timer_setup(struct clock_event_device *evt) { static DEFINE_PER_CPU(bool, first_boot) = true; struct msm_clock *clock = &msm_clocks[msm_global_timer]; /* Use existing clock_event for cpu 0 */ if (!smp_processor_id()) return 0; if (cpu_is_msm8x60() || soc_class_is_msm8960() || soc_class_is_apq8064() || soc_class_is_msm8930()) __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL); if (__get_cpu_var(first_boot)) { __raw_writel(0, clock->regbase + TIMER_ENABLE); __raw_writel(0, clock->regbase + TIMER_CLEAR); __raw_writel(~0, clock->regbase + TIMER_MATCH_VAL); __get_cpu_var(first_boot) = false; if (clock->status_mask) while (__raw_readl(MSM_TMR_BASE + TIMER_STATUS) & clock->status_mask) ; } evt->irq = clock->irq; evt->name = "local_timer"; evt->features = CLOCK_EVT_FEAT_ONESHOT; evt->rating = clock->clockevent.rating; evt->set_mode = msm_timer_set_mode; evt->set_next_event = msm_timer_set_next_event; evt->shift = clock->clockevent.shift; evt->mult = div_sc(clock->freq, NSEC_PER_SEC, evt->shift); evt->max_delta_ns = clockevent_delta2ns(0xf0000000 >> clock->shift, evt); evt->min_delta_ns = clockevent_delta2ns(4, evt); *__this_cpu_ptr(clock->percpu_evt) = evt; clockevents_register_device(evt); enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING); return 0; } void local_timer_stop(struct clock_event_device *evt) { evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt); disable_percpu_irq(evt->irq); } static struct local_timer_ops msm_lt_ops = { local_timer_setup, local_timer_stop, }; #endif /* CONFIG_LOCAL_TIMERS */ #ifdef CONFIG_ARCH_MSM8625 static void fixup_msm8625_timer(void) { struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT]; struct msm_clock *gpt = &msm_clocks[MSM_CLOCK_GPT]; dgt->irq = MSM8625_INT_DEBUG_TIMER_EXP; gpt->irq = MSM8625_INT_GP_TIMER_EXP; global_timer_offset = MSM_TMR0_BASE - MSM_TMR_BASE; } #else static inline void fixup_msm8625_timer(void) { }; #endif static void __init msm_timer_init(void) { int i; int res; struct irq_chip *chip; struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT]; struct msm_clock *gpt = &msm_clocks[MSM_CLOCK_GPT]; if (cpu_is_msm7x01() || cpu_is_msm7x25() || cpu_is_msm7x27() || cpu_is_msm7x25a() || cpu_is_msm7x27a() || cpu_is_msm7x25aa() || cpu_is_msm7x27aa() || cpu_is_msm8625() || cpu_is_msm7x25ab() || cpu_is_msm8625q()) { dgt->shift = MSM_DGT_SHIFT; dgt->freq = 19200000 >> MSM_DGT_SHIFT; dgt->clockevent.shift = 32 + MSM_DGT_SHIFT; dgt->clocksource.mask = CLOCKSOURCE_MASK(32 - MSM_DGT_SHIFT); gpt->regbase = MSM_TMR_BASE; dgt->regbase = MSM_TMR_BASE + 0x10; gpt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT | MSM_CLOCK_FLAGS_ODD_MATCH_WRITE | MSM_CLOCK_FLAGS_DELAYED_WRITE_POST; if (cpu_is_msm8625() || cpu_is_msm8625q()) fixup_msm8625_timer(); } else if (cpu_is_qsd8x50()) { dgt->freq = 4800000; gpt->regbase = MSM_TMR_BASE; dgt->regbase = MSM_TMR_BASE + 0x10; } else if (cpu_is_fsm9xxx()) dgt->freq = 4800000; else if (cpu_is_msm7x30() || cpu_is_msm8x55()) { gpt->status_mask = BIT(10); dgt->status_mask = BIT(2); dgt->freq = 6144000; } else if (cpu_is_msm8x60()) { global_timer_offset = MSM_TMR0_BASE - MSM_TMR_BASE; gpt->status_mask = BIT(10); dgt->status_mask = BIT(2); dgt->freq = 6750000; __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL); } else if (cpu_is_msm9615()) { dgt->freq = 6750000; __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL); gpt->status_mask = BIT(10); dgt->status_mask = BIT(2); gpt->freq = 32765; gpt_hz = 32765; sclk_hz = 32765; gpt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT; dgt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT; } else if (soc_class_is_msm8960() || soc_class_is_apq8064() || soc_class_is_msm8930()) { global_timer_offset = MSM_TMR0_BASE - MSM_TMR_BASE; dgt->freq = 6750000; __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL); gpt->status_mask = BIT(10); dgt->status_mask = BIT(2); if (!soc_class_is_apq8064()) { gpt->freq = 32765; gpt_hz = 32765; sclk_hz = 32765; } if (!soc_class_is_msm8930() && !cpu_is_msm8960ab()) { gpt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT; dgt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT; } } else { WARN(1, "Timer running on unknown hardware. Configure this! " "Assuming default configuration.\n"); dgt->freq = 6750000; } if (msm_clocks[MSM_CLOCK_GPT].clocksource.rating > DG_TIMER_RATING) msm_global_timer = MSM_CLOCK_GPT; else msm_global_timer = MSM_CLOCK_DGT; for (i = 0; i < ARRAY_SIZE(msm_clocks); i++) { struct msm_clock *clock = &msm_clocks[i]; struct clock_event_device *ce = &clock->clockevent; struct clocksource *cs = &clock->clocksource; __raw_writel(0, clock->regbase + TIMER_ENABLE); __raw_writel(0, clock->regbase + TIMER_CLEAR); __raw_writel(~0, clock->regbase + TIMER_MATCH_VAL); if ((clock->freq << clock->shift) == gpt_hz) { clock->rollover_offset = 0; } else { uint64_t temp; temp = clock->freq << clock->shift; temp <<= 32; do_div(temp, gpt_hz); clock->rollover_offset = (uint32_t) temp; } ce->mult = div_sc(clock->freq, NSEC_PER_SEC, ce->shift); /* allow at least 10 seconds to notice that the timer wrapped */ ce->max_delta_ns = clockevent_delta2ns(0xf0000000 >> clock->shift, ce); /* ticks gets rounded down by one */ ce->min_delta_ns = clockevent_delta2ns(clock->write_delay + 4, ce); ce->cpumask = cpumask_of(0); res = clocksource_register_hz(cs, clock->freq); if (res) printk(KERN_ERR "msm_timer_init: clocksource_register " "failed for %s\n", cs->name); ce->irq = clock->irq; if (cpu_is_msm8x60() || cpu_is_msm9615() || cpu_is_msm8625() || cpu_is_msm8625q() || soc_class_is_msm8960() || soc_class_is_apq8064() || soc_class_is_msm8930()) { clock->percpu_evt = alloc_percpu(struct clock_event_device *); if (!clock->percpu_evt) { pr_err("msm_timer_init: memory allocation " "failed for %s\n", ce->name); continue; } *__this_cpu_ptr(clock->percpu_evt) = ce; res = request_percpu_irq(ce->irq, msm_timer_interrupt, ce->name, clock->percpu_evt); if (!res) enable_percpu_irq(ce->irq, IRQ_TYPE_EDGE_RISING); } else { clock->evt = ce; res = request_irq(ce->irq, msm_timer_interrupt, IRQF_TIMER | IRQF_NOBALANCING | IRQF_TRIGGER_RISING, ce->name, &clock->evt); } if (res) pr_err("msm_timer_init: request_irq failed for %s\n", ce->name); chip = irq_get_chip(clock->irq); if (chip && chip->irq_mask) chip->irq_mask(irq_get_irq_data(clock->irq)); if (clock->status_mask) while (__raw_readl(MSM_TMR_BASE + TIMER_STATUS) & clock->status_mask) ; clockevents_register_device(ce); } msm_sched_clock_init(); if (use_user_accessible_timers()) { if (cpu_is_msm8960() || cpu_is_msm8930() || cpu_is_apq8064()) { struct msm_clock *gtclock = &msm_clocks[MSM_CLOCK_GPT]; void __iomem *addr = gtclock->regbase + TIMER_COUNT_VAL + global_timer_offset; setup_user_timer_offset(virt_to_phys(addr)&0xfff); set_user_accessible_timer_flag(true); } } if (is_smp()) { __raw_writel(1, msm_clocks[MSM_CLOCK_DGT].regbase + TIMER_ENABLE); msm_delay_timer.freq = dgt->freq; msm_delay_timer.read_current_timer = &msm_read_current_timer; register_current_timer_delay(&msm_delay_timer); } #ifdef CONFIG_LOCAL_TIMERS local_timer_register(&msm_lt_ops); #endif } struct sys_timer msm_timer = { .init = msm_timer_init };