/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CORE_HANDLE_OFFSET (0xA0) #define __err(f, ...) pr_err("MSM_DCVS: %s: " f, __func__, __VA_ARGS__) #define __info(f, ...) pr_info("MSM_DCVS: %s: " f, __func__, __VA_ARGS__) #define MAX_PENDING (5) #define CORE_FLAG_TEMP_UPDATE 0x1 struct core_attribs { struct kobj_attribute freq_change_us; struct kobj_attribute disable_pc_threshold; struct kobj_attribute em_win_size_min_us; struct kobj_attribute em_win_size_max_us; struct kobj_attribute em_max_util_pct; struct kobj_attribute group_id; struct kobj_attribute max_freq_chg_time_us; struct kobj_attribute slack_mode_dynamic; struct kobj_attribute slack_time_min_us; struct kobj_attribute slack_time_max_us; struct kobj_attribute slack_weight_thresh_pct; struct kobj_attribute ss_no_corr_below_freq; struct kobj_attribute ss_win_size_min_us; struct kobj_attribute ss_win_size_max_us; struct kobj_attribute ss_util_pct; struct kobj_attribute active_coeff_a; struct kobj_attribute active_coeff_b; struct kobj_attribute active_coeff_c; struct kobj_attribute leakage_coeff_a; struct kobj_attribute leakage_coeff_b; struct kobj_attribute leakage_coeff_c; struct kobj_attribute leakage_coeff_d; struct kobj_attribute thermal_poll_ms; struct kobj_attribute freq_tbl; struct kobj_attribute offset_tbl; struct attribute_group attrib_group; }; enum pending_freq_state { /* * used by the thread to check if pending_freq was updated while it was * setting previous frequency - this is written to and used by the * freq updating thread */ NO_OUTSTANDING_FREQ_CHANGE = 0, /* * This request is set to indicate that the governor is stopped and no * more frequency change requests are accepted untill it starts again. * This is checked/used by the threads that want to change the freq */ STOP_FREQ_CHANGE = -1, /* * Any other +ve value means that a freq change was requested and the * thread has not gotten around to update it * * Any other -ve value means that this is the last freq change i.e. a * freq change was requested but the thread has not run yet and * meanwhile the governor was stopped. */ }; struct dcvs_core { spinlock_t idle_state_change_lock; /* 0 when not idle (busy) 1 when idle and -1 when governor starts and * we dont know whether the next call is going to be idle enter or exit */ int idle_entered; enum msm_dcvs_core_type type; /* this is the number in each type for example cpu 0,1,2 and gpu 0,1 */ int type_core_num; char core_name[CORE_NAME_MAX]; uint32_t actual_freq; uint32_t freq_change_us; uint32_t max_time_us; /* core param */ struct msm_dcvs_algo_param algo_param; struct msm_dcvs_energy_curve_coeffs coeffs; /* private */ ktime_t time_start; struct task_struct *task; struct core_attribs attrib; uint32_t dcvs_core_id; struct msm_dcvs_core_info *info; int sensor; wait_queue_head_t wait_q; int (*set_frequency)(int type_core_num, unsigned int freq); unsigned int (*get_frequency)(int type_core_num); int (*idle_enable)(int type_core_num, enum msm_core_control_event event); int (*set_floor_frequency)(int type_core_num, unsigned int freq); spinlock_t pending_freq_lock; int pending_freq; struct hrtimer slack_timer; struct delayed_work temperature_work; int flags; }; static int msm_dcvs_enabled = 1; module_param_named(enable, msm_dcvs_enabled, int, S_IRUGO | S_IWUSR | S_IWGRP); static struct dentry *debugfs_base; static struct dcvs_core core_list[CORES_MAX]; static struct kobject *cores_kobj; #define DCVS_MAX_NUM_FREQS 15 static struct msm_dcvs_freq_entry cpu_freq_tbl[DCVS_MAX_NUM_FREQS]; static unsigned num_cpu_freqs; static struct msm_dcvs_platform_data *dcvs_pdata; static DEFINE_MUTEX(param_update_mutex); static DEFINE_MUTEX(gpu_floor_mutex); static void force_stop_slack_timer(struct dcvs_core *core) { unsigned long flags; spin_lock_irqsave(&core->idle_state_change_lock, flags); hrtimer_cancel(&core->slack_timer); spin_unlock_irqrestore(&core->idle_state_change_lock, flags); } static void force_start_slack_timer(struct dcvs_core *core, int slack_us) { unsigned long flags; int ret; spin_lock_irqsave(&core->idle_state_change_lock, flags); /* * only start the timer if governor is not stopped */ if (slack_us != 0) { ret = hrtimer_start(&core->slack_timer, ktime_set(0, slack_us * 1000), HRTIMER_MODE_REL_PINNED); if (ret) { pr_err("%s Failed to start timer ret = %d\n", core->core_name, ret); } } spin_unlock_irqrestore(&core->idle_state_change_lock, flags); } static void stop_slack_timer(struct dcvs_core *core) { unsigned long flags; spin_lock_irqsave(&core->idle_state_change_lock, flags); /* err only for cpu type's GPU's can do idle exit consecutively */ if (core->idle_entered == 1 && !(core->dcvs_core_id >= GPU_OFFSET)) __err("%s trying to reenter idle", core->core_name); core->idle_entered = 1; hrtimer_cancel(&core->slack_timer); core->idle_entered = 1; spin_unlock_irqrestore(&core->idle_state_change_lock, flags); } static void start_slack_timer(struct dcvs_core *core, int slack_us) { unsigned long flags1, flags2; int ret; spin_lock_irqsave(&core->idle_state_change_lock, flags2); spin_lock_irqsave(&core->pending_freq_lock, flags1); /* err only for cpu type's GPU's can do idle enter consecutively */ if (core->idle_entered == 0 && !(core->dcvs_core_id >= GPU_OFFSET)) __err("%s trying to reexit idle", core->core_name); core->idle_entered = 0; /* * only start the timer if governor is not stopped */ if (slack_us != 0 && !(core->pending_freq < NO_OUTSTANDING_FREQ_CHANGE)) { ret = hrtimer_start(&core->slack_timer, ktime_set(0, slack_us * 1000), HRTIMER_MODE_REL_PINNED); if (ret) { pr_err("%s Failed to start timer ret = %d\n", core->core_name, ret); } } spin_unlock_irqrestore(&core->pending_freq_lock, flags1); spin_unlock_irqrestore(&core->idle_state_change_lock, flags2); } static void restart_slack_timer(struct dcvs_core *core, int slack_us) { unsigned long flags1, flags2; int ret; spin_lock_irqsave(&core->idle_state_change_lock, flags2); hrtimer_cancel(&core->slack_timer); spin_lock_irqsave(&core->pending_freq_lock, flags1); /* * only start the timer if idle is not entered * and governor is not stopped */ if (slack_us != 0 && (core->idle_entered != 1) && !(core->pending_freq < NO_OUTSTANDING_FREQ_CHANGE)) { ret = hrtimer_start(&core->slack_timer, ktime_set(0, slack_us * 1000), HRTIMER_MODE_REL_PINNED); if (ret) { pr_err("%s Failed to start timer ret = %d\n", core->core_name, ret); } } spin_unlock_irqrestore(&core->pending_freq_lock, flags1); spin_unlock_irqrestore(&core->idle_state_change_lock, flags2); } void msm_dcvs_apply_gpu_floor(unsigned long cpu_freq) { static unsigned long curr_cpu0_freq; unsigned long gpu_floor_freq = 0; struct dcvs_core *gpu; int i; if (!dcvs_pdata) return; mutex_lock(&gpu_floor_mutex); if (cpu_freq) curr_cpu0_freq = cpu_freq; for (i = 0; i < dcvs_pdata->num_sync_rules; i++) if (curr_cpu0_freq > dcvs_pdata->sync_rules[i].cpu_khz) { gpu_floor_freq = dcvs_pdata->sync_rules[i].gpu_floor_khz; break; } if (num_online_cpus() > 1) gpu_floor_freq = max(gpu_floor_freq, dcvs_pdata->gpu_max_nom_khz); if (!gpu_floor_freq) { mutex_unlock(&gpu_floor_mutex); return; } for (i = GPU_OFFSET; i < CORES_MAX; i++) { gpu = &core_list[i]; if (gpu->dcvs_core_id == -1) continue; if (gpu->pending_freq != STOP_FREQ_CHANGE && gpu->set_floor_frequency) { gpu->set_floor_frequency(gpu->type_core_num, gpu_floor_freq); /* TZ will know about a freq change (if any) * at next idle exit. */ gpu->actual_freq = gpu->get_frequency(gpu->type_core_num); } } mutex_unlock(&gpu_floor_mutex); } static void check_power_collapse_modes(struct dcvs_core *core) { struct msm_dcvs_algo_param *params; params = &core_list[CPU_OFFSET + num_online_cpus() - 1].algo_param; if (core->actual_freq >= params->disable_pc_threshold) core->idle_enable(core->type_core_num, MSM_DCVS_DISABLE_HIGH_LATENCY_MODES); else core->idle_enable(core->type_core_num, MSM_DCVS_ENABLE_HIGH_LATENCY_MODES); } static int __msm_dcvs_change_freq(struct dcvs_core *core) { int ret = 0; unsigned long flags = 0; int requested_freq = 0; ktime_t time_start; uint32_t slack_us = 0; uint32_t ret1 = 0; spin_lock_irqsave(&core->pending_freq_lock, flags); if (core->pending_freq == STOP_FREQ_CHANGE) goto out; repeat: BUG_ON(!core->pending_freq); requested_freq = core->pending_freq; time_start = core->time_start; core->time_start = ns_to_ktime(0); core->pending_freq = NO_OUTSTANDING_FREQ_CHANGE; if (requested_freq == core->actual_freq) goto out; spin_unlock_irqrestore(&core->pending_freq_lock, flags); if (core->type == MSM_DCVS_CORE_TYPE_CPU && core->type_core_num == 0) msm_dcvs_apply_gpu_floor(requested_freq); /** * Call the frequency sink driver to change the frequency * We will need to get back the actual frequency in KHz and * the record the time taken to change it. */ ret = core->set_frequency(core->type_core_num, requested_freq); if (ret <= 0) __err("Core %s failed to set freq %u\n", core->core_name, requested_freq); /* continue to call TZ to get updated slack timer */ else core->actual_freq = ret; core->freq_change_us = (uint32_t)ktime_to_us( ktime_sub(ktime_get(), time_start)); if (core->type == MSM_DCVS_CORE_TYPE_CPU && core->type_core_num == 0) { mutex_lock(¶m_update_mutex); check_power_collapse_modes(core); mutex_unlock(¶m_update_mutex); } /** * Update algorithm with new freq and time taken to change * to this frequency and that will get us the new slack * timer */ ret = msm_dcvs_scm_event(core->dcvs_core_id, MSM_DCVS_SCM_CLOCK_FREQ_UPDATE, core->actual_freq, core->freq_change_us, &slack_us, &ret1); if (ret) { __err("Error sending core (%s) dcvs_core_id = %d freq change (%u) reqfreq = %d slack_us=%d ret = %d\n", core->core_name, core->dcvs_core_id, core->actual_freq, requested_freq, slack_us, ret); } /* TODO confirm that we get a valid freq from SM even when the above * FREQ_UPDATE fails */ restart_slack_timer(core, slack_us); spin_lock_irqsave(&core->pending_freq_lock, flags); /** * By the time we are done with freq changes, we could be asked to * change again. Check before exiting. */ if (core->pending_freq != NO_OUTSTANDING_FREQ_CHANGE && core->pending_freq != STOP_FREQ_CHANGE) { goto repeat; } out: /* should always be jumped to with the spin_lock held */ spin_unlock_irqrestore(&core->pending_freq_lock, flags); return ret; } static void msm_dcvs_report_temp_work(struct work_struct *work) { struct dcvs_core *core = container_of(work, struct dcvs_core, temperature_work.work); struct msm_dcvs_core_info *info = core->info; struct tsens_device tsens_dev; int ret; unsigned long temp = 0; int interval_ms; if (!(core->flags & CORE_FLAG_TEMP_UPDATE)) return; tsens_dev.sensor_num = core->sensor; ret = tsens_get_temp(&tsens_dev, &temp); if (!temp) { tsens_dev.sensor_num = 0; ret = tsens_get_temp(&tsens_dev, &temp); if (!temp) goto out; } if (temp == info->power_param.current_temp) goto out; info->power_param.current_temp = temp; ret = msm_dcvs_scm_set_power_params(core->dcvs_core_id, &info->power_param, &info->freq_tbl[0], &core->coeffs); out: if (info->thermal_poll_ms == 0) interval_ms = 60000; else if (info->thermal_poll_ms < 1000) interval_ms = 1000; else interval_ms = info->thermal_poll_ms; schedule_delayed_work(&core->temperature_work, msecs_to_jiffies(interval_ms)); } static int msm_dcvs_do_freq(void *data) { struct dcvs_core *core = (struct dcvs_core *)data; while (!kthread_should_stop()) { wait_event(core->wait_q, !(core->pending_freq == 0 || core->pending_freq == -1) || kthread_should_stop()); if (kthread_should_stop()) break; __msm_dcvs_change_freq(core); } return 0; } /* freq_pending_lock should be held */ static void request_freq_change(struct dcvs_core *core, int new_freq) { if (new_freq == NO_OUTSTANDING_FREQ_CHANGE) { if (core->pending_freq != STOP_FREQ_CHANGE) { __err("%s gov started with earlier pending freq %d\n", core->core_name, core->pending_freq); } core->pending_freq = NO_OUTSTANDING_FREQ_CHANGE; return; } if (new_freq == STOP_FREQ_CHANGE) { core->pending_freq = STOP_FREQ_CHANGE; return; } if (core->pending_freq < 0) { /* a value less than 0 means that the governor has stopped * and no more freq changes should be requested */ return; } if (core->actual_freq != new_freq && core->pending_freq != new_freq) { core->pending_freq = new_freq; core->time_start = ktime_get(); wake_up(&core->wait_q); } } static int msm_dcvs_update_freq(struct dcvs_core *core, enum msm_dcvs_scm_event event, uint32_t param0, uint32_t *ret1) { int ret = 0; unsigned long flags = 0; uint32_t new_freq = -EINVAL; spin_lock_irqsave(&core->pending_freq_lock, flags); ret = msm_dcvs_scm_event(core->dcvs_core_id, event, param0, core->actual_freq, &new_freq, ret1); if (ret) { if (ret == -13) ret = 0; else __err("Error (%d) sending SCM event %d for core %s\n", ret, event, core->core_name); goto out; } if (new_freq == 0) { /* * sometimes TZ gives us a 0 freq back, * do not queue up a request */ goto out; } request_freq_change(core, new_freq); out: spin_unlock_irqrestore(&core->pending_freq_lock, flags); return ret; } static enum hrtimer_restart msm_dcvs_core_slack_timer(struct hrtimer *timer) { int ret = 0; struct dcvs_core *core = container_of(timer, struct dcvs_core, slack_timer); uint32_t ret1; trace_printk("dcvs: Slack timer fired for core=%s\n", core->core_name); /** * Timer expired, notify TZ * Dont care about the third arg. */ ret = msm_dcvs_update_freq(core, MSM_DCVS_SCM_QOS_TIMER_EXPIRED, 0, &ret1); if (ret) __err("Timer expired for core %s but failed to notify.\n", core->core_name); return HRTIMER_NORESTART; } int msm_dcvs_update_algo_params(void) { static struct msm_dcvs_algo_param curr_params; struct msm_dcvs_algo_param *new_params; int cpu, ret = 0; mutex_lock(¶m_update_mutex); new_params = &core_list[CPU_OFFSET + num_online_cpus() - 1].algo_param; if (memcmp(&curr_params, new_params, sizeof(struct msm_dcvs_algo_param))) { for_each_possible_cpu(cpu) { struct dcvs_core *core = &core_list[CPU_OFFSET + cpu]; ret = msm_dcvs_scm_set_algo_params(CPU_OFFSET + cpu, new_params); if (ret) { pr_err("scm set algo params failed on cpu %d, ret %d\n", cpu, ret); mutex_unlock(¶m_update_mutex); return ret; } if (cpu == 0) check_power_collapse_modes(core); } memcpy(&curr_params, new_params, sizeof(struct msm_dcvs_algo_param)); } mutex_unlock(¶m_update_mutex); return ret; } /* Helper functions and macros for sysfs nodes for a core */ #define CORE_FROM_ATTRIBS(attr, name) \ container_of(container_of(attr, struct core_attribs, name), \ struct dcvs_core, attrib); #define DCVS_PARAM_SHOW(_name, v) \ static ssize_t msm_dcvs_attr_##_name##_show(struct kobject *kobj, \ struct kobj_attribute *attr, char *buf) \ { \ struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \ return snprintf(buf, PAGE_SIZE, "%d\n", v); \ } #define DCVS_PARAM_STORE(_name) \ static ssize_t msm_dcvs_attr_##_name##_show(struct kobject *kobj,\ struct kobj_attribute *attr, char *buf) \ { \ struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \ return snprintf(buf, PAGE_SIZE, "%d\n", core->info->_name); \ } \ static ssize_t msm_dcvs_attr_##_name##_store(struct kobject *kobj, \ struct kobj_attribute *attr, const char *buf, size_t count) \ { \ int ret = 0; \ uint32_t val = 0; \ struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \ ret = kstrtouint(buf, 10, &val); \ if (ret) { \ __err("Invalid input %s for %s\n", buf, __stringify(_name));\ } else { \ core->info->_name = val; \ } \ return count; \ } #define DCVS_ALGO_PARAM(_name) \ static ssize_t msm_dcvs_attr_##_name##_show(struct kobject *kobj,\ struct kobj_attribute *attr, char *buf) \ { \ struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \ return snprintf(buf, PAGE_SIZE, "%d\n", core->algo_param._name); \ } \ static ssize_t msm_dcvs_attr_##_name##_store(struct kobject *kobj, \ struct kobj_attribute *attr, const char *buf, size_t count) \ { \ int ret = 0; \ uint32_t val = 0; \ struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \ ret = kstrtouint(buf, 10, &val); \ if (ret) { \ __err("Invalid input %s for %s\n", buf, __stringify(_name));\ } else { \ uint32_t old_val = core->algo_param._name; \ core->algo_param._name = val; \ ret = msm_dcvs_update_algo_params(); \ if (ret) { \ core->algo_param._name = old_val; \ } \ } \ return count; \ } #define DCVS_ENERGY_PARAM(_name) \ static ssize_t msm_dcvs_attr_##_name##_show(struct kobject *kobj,\ struct kobj_attribute *attr, char *buf) \ { \ struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \ return snprintf(buf, PAGE_SIZE, "%d\n", core->coeffs._name); \ } \ static ssize_t msm_dcvs_attr_##_name##_store(struct kobject *kobj, \ struct kobj_attribute *attr, const char *buf, size_t count) \ { \ int ret = 0; \ int32_t val = 0; \ struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \ ret = kstrtoint(buf, 10, &val); \ if (ret) { \ __err("Invalid input %s for %s\n", buf, __stringify(_name));\ } else { \ int32_t old_val = core->coeffs._name; \ core->coeffs._name = val; \ ret = msm_dcvs_scm_set_power_params(core->dcvs_core_id, \ &core->info->power_param, &core->info->freq_tbl[0], \ &core->coeffs); \ if (ret) { \ core->coeffs._name = old_val; \ __err("Error(%d) in setting %d for coeffs param %s\n",\ ret, val, __stringify(_name)); \ } \ } \ return count; \ } #define DCVS_RO_ATTRIB(i, _name) \ core->attrib._name.attr.name = __stringify(_name); \ core->attrib._name.attr.mode = S_IRUGO; \ core->attrib._name.show = msm_dcvs_attr_##_name##_show; \ core->attrib._name.store = NULL; \ core->attrib.attrib_group.attrs[i] = &core->attrib._name.attr; #define DCVS_RW_ATTRIB(i, _name) \ core->attrib._name.attr.name = __stringify(_name); \ core->attrib._name.attr.mode = S_IRUGO | S_IWUSR; \ core->attrib._name.show = msm_dcvs_attr_##_name##_show; \ core->attrib._name.store = msm_dcvs_attr_##_name##_store; \ core->attrib.attrib_group.attrs[i] = &core->attrib._name.attr; /** * Function declarations for different attributes. * Gets used when setting the attribute show and store parameters. */ DCVS_PARAM_SHOW(freq_change_us, (core->freq_change_us)) DCVS_ALGO_PARAM(disable_pc_threshold) DCVS_ALGO_PARAM(em_win_size_min_us) DCVS_ALGO_PARAM(em_win_size_max_us) DCVS_ALGO_PARAM(em_max_util_pct) DCVS_ALGO_PARAM(group_id) DCVS_ALGO_PARAM(max_freq_chg_time_us) DCVS_ALGO_PARAM(slack_mode_dynamic) DCVS_ALGO_PARAM(slack_time_min_us) DCVS_ALGO_PARAM(slack_time_max_us) DCVS_ALGO_PARAM(slack_weight_thresh_pct) DCVS_ALGO_PARAM(ss_no_corr_below_freq) DCVS_ALGO_PARAM(ss_win_size_min_us) DCVS_ALGO_PARAM(ss_win_size_max_us) DCVS_ALGO_PARAM(ss_util_pct) DCVS_ENERGY_PARAM(active_coeff_a) DCVS_ENERGY_PARAM(active_coeff_b) DCVS_ENERGY_PARAM(active_coeff_c) DCVS_ENERGY_PARAM(leakage_coeff_a) DCVS_ENERGY_PARAM(leakage_coeff_b) DCVS_ENERGY_PARAM(leakage_coeff_c) DCVS_ENERGY_PARAM(leakage_coeff_d) DCVS_PARAM_STORE(thermal_poll_ms) static ssize_t msm_dcvs_attr_offset_tbl_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct msm_dcvs_freq_entry *freq_tbl; char *buf_idx = buf; int i, len; struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, offset_tbl); freq_tbl = core->info->freq_tbl; *buf_idx = '\0'; /* limit the number of frequencies we will print into * the PAGE_SIZE sysfs show buffer. */ if (core->info->power_param.num_freq > 64) return 0; for (i = 0; i < core->info->power_param.num_freq; i++) { len = snprintf(buf_idx, 30, "%7d %7d %7d\n", freq_tbl[i].freq, freq_tbl[i].active_energy_offset, freq_tbl[i].leakage_energy_offset); /* buf_idx always points at terminating null */ buf_idx += len; } return buf_idx - buf; } static ssize_t msm_dcvs_attr_offset_tbl_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct msm_dcvs_freq_entry *freq_tbl; uint32_t freq, active_energy_offset, leakage_energy_offset; int i, ret; struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, offset_tbl); freq_tbl = core->info->freq_tbl; ret = sscanf(buf, "%u %u %u", &freq, &active_energy_offset, &leakage_energy_offset); if (ret != 3) { __err("Invalid input %s for offset_tbl\n", buf); return count; } for (i = 0; i < core->info->power_param.num_freq; i++) if (freq_tbl[i].freq == freq) { freq_tbl[i].active_energy_offset = active_energy_offset; freq_tbl[i].leakage_energy_offset = leakage_energy_offset; break; } if (i >= core->info->power_param.num_freq) { __err("Invalid frequency for offset_tbl: %d\n", freq); return count; } ret = msm_dcvs_scm_set_power_params(core->dcvs_core_id, &core->info->power_param, &core->info->freq_tbl[0], &core->coeffs); if (ret) __err("Error %d in updating active/leakage energy\n", ret); return count; } static ssize_t msm_dcvs_attr_freq_tbl_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct msm_dcvs_freq_entry *freq_tbl; char *buf_idx = buf; int i, len; struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, freq_tbl); freq_tbl = core->info->freq_tbl; *buf_idx = '\0'; /* limit the number of frequencies we will print into * the PAGE_SIZE sysfs show buffer. */ if (core->info->power_param.num_freq > 64) return 0; for (i = 0; i < core->info->power_param.num_freq; i++) { if (freq_tbl[i].is_trans_level) { len = snprintf(buf_idx, 10, "%7d ", freq_tbl[i].freq); /* buf_idx always points at terminating null */ buf_idx += len; } } /* overwrite final trailing space with newline */ if (buf_idx > buf) *(buf_idx - 1) = '\n'; return buf_idx - buf; } static ssize_t msm_dcvs_attr_freq_tbl_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct msm_dcvs_freq_entry *freq_tbl; uint32_t freq; int i, ret; struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, freq_tbl); freq_tbl = core->info->freq_tbl; ret = kstrtouint(buf, 10, &freq); if (ret) { __err("Invalid input %s for freq_tbl\n", buf); return count; } for (i = 0; i < core->info->power_param.num_freq; i++) if (freq_tbl[i].freq == freq) { freq_tbl[i].is_trans_level ^= 1; break; } if (i >= core->info->power_param.num_freq) { __err("Invalid frequency for freq_tbl: %d\n", freq); return count; } ret = msm_dcvs_scm_set_power_params(core->dcvs_core_id, &core->info->power_param, &core->info->freq_tbl[0], &core->coeffs); if (ret) { freq_tbl[i].is_trans_level ^= 1; __err("Error %d in toggling freq %d (orig enable val %d)\n", ret, freq_tbl[i].freq, freq_tbl[i].is_trans_level); } return count; } static int msm_dcvs_setup_core_sysfs(struct dcvs_core *core) { int ret = 0; struct kobject *core_kobj = NULL; const int attr_count = 26; BUG_ON(!cores_kobj); core->attrib.attrib_group.attrs = kzalloc(attr_count * sizeof(struct attribute *), GFP_KERNEL); if (!core->attrib.attrib_group.attrs) { ret = -ENOMEM; goto done; } DCVS_RO_ATTRIB(0, freq_change_us); DCVS_RW_ATTRIB(1, disable_pc_threshold); DCVS_RW_ATTRIB(2, em_win_size_min_us); DCVS_RW_ATTRIB(3, em_win_size_max_us); DCVS_RW_ATTRIB(4, em_max_util_pct); DCVS_RW_ATTRIB(5, group_id); DCVS_RW_ATTRIB(6, max_freq_chg_time_us); DCVS_RW_ATTRIB(7, slack_mode_dynamic); DCVS_RW_ATTRIB(8, slack_weight_thresh_pct); DCVS_RW_ATTRIB(9, slack_time_min_us); DCVS_RW_ATTRIB(10, slack_time_max_us); DCVS_RW_ATTRIB(11, ss_no_corr_below_freq); DCVS_RW_ATTRIB(12, ss_win_size_min_us); DCVS_RW_ATTRIB(13, ss_win_size_max_us); DCVS_RW_ATTRIB(14, ss_util_pct); DCVS_RW_ATTRIB(15, active_coeff_a); DCVS_RW_ATTRIB(16, active_coeff_b); DCVS_RW_ATTRIB(17, active_coeff_c); DCVS_RW_ATTRIB(18, leakage_coeff_a); DCVS_RW_ATTRIB(19, leakage_coeff_b); DCVS_RW_ATTRIB(20, leakage_coeff_c); DCVS_RW_ATTRIB(21, leakage_coeff_d); DCVS_RW_ATTRIB(22, thermal_poll_ms); DCVS_RW_ATTRIB(23, freq_tbl); DCVS_RW_ATTRIB(24, offset_tbl); core->attrib.attrib_group.attrs[25] = NULL; core_kobj = kobject_create_and_add(core->core_name, cores_kobj); if (!core_kobj) { ret = -ENOMEM; goto done; } ret = sysfs_create_group(core_kobj, &core->attrib.attrib_group); if (ret) __err("Cannot create core %s attr group\n", core->core_name); done: if (ret) { kfree(core->attrib.attrib_group.attrs); kobject_del(core_kobj); } return ret; } static int get_core_offset(enum msm_dcvs_core_type type, int num) { int offset = -EINVAL; switch (type) { case MSM_DCVS_CORE_TYPE_CPU: offset = CPU_OFFSET + num; BUG_ON(offset >= GPU_OFFSET); break; case MSM_DCVS_CORE_TYPE_GPU: offset = GPU_OFFSET + num; BUG_ON(offset >= CORES_MAX); break; default: BUG(); } return offset; } /* Return the core and initialize non platform data specific numbers in it */ static struct dcvs_core *msm_dcvs_add_core(enum msm_dcvs_core_type type, int num) { struct dcvs_core *core = NULL; int i; char name[CORE_NAME_MAX]; i = get_core_offset(type, num); if (i < 0) return NULL; if (type == MSM_DCVS_CORE_TYPE_CPU) snprintf(name, CORE_NAME_MAX, "cpu%d", num); else snprintf(name, CORE_NAME_MAX, "gpu%d", num); core = &core_list[i]; core->dcvs_core_id = i; strlcpy(core->core_name, name, CORE_NAME_MAX); spin_lock_init(&core->pending_freq_lock); spin_lock_init(&core->idle_state_change_lock); hrtimer_init(&core->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); core->slack_timer.function = msm_dcvs_core_slack_timer; return core; } /* Return the core if found or add to list if @add_to_list is true */ static struct dcvs_core *msm_dcvs_get_core(int offset) { /* if the handle is still not set bug */ BUG_ON(core_list[offset].dcvs_core_id == -1); return &core_list[offset]; } void msm_dcvs_register_cpu_freq(uint32_t freq, uint32_t voltage) { BUG_ON(freq == 0 || voltage == 0 || num_cpu_freqs == DCVS_MAX_NUM_FREQS); cpu_freq_tbl[num_cpu_freqs].freq = freq; cpu_freq_tbl[num_cpu_freqs].voltage = voltage; num_cpu_freqs++; } int msm_dcvs_register_core( enum msm_dcvs_core_type type, int type_core_num, struct msm_dcvs_core_info *info, int (*set_frequency)(int type_core_num, unsigned int freq), unsigned int (*get_frequency)(int type_core_num), int (*idle_enable)(int type_core_num, enum msm_core_control_event event), int (*set_floor_frequency)(int type_core_num, unsigned int freq), int sensor) { int ret = -EINVAL; int offset; struct dcvs_core *core = NULL; uint32_t ret1; uint32_t ret2; if (!msm_dcvs_enabled) return ret; offset = get_core_offset(type, type_core_num); if (offset < 0) return ret; if (core_list[offset].dcvs_core_id != -1) return core_list[offset].dcvs_core_id; core = msm_dcvs_add_core(type, type_core_num); if (!core) return ret; core->type = type; core->type_core_num = type_core_num; core->set_frequency = set_frequency; core->get_frequency = get_frequency; core->idle_enable = idle_enable; core->set_floor_frequency = set_floor_frequency; core->info = info; if (type == MSM_DCVS_CORE_TYPE_CPU) { BUG_ON(num_cpu_freqs == 0); info->freq_tbl = cpu_freq_tbl; info->power_param.num_freq = num_cpu_freqs; } memcpy(&core->algo_param, &info->algo_param, sizeof(struct msm_dcvs_algo_param)); memcpy(&core->coeffs, &info->energy_coeffs, sizeof(struct msm_dcvs_energy_curve_coeffs)); /* * The tz expects cpu0 to represent bit 0 in the mask, however the * dcvs_core_id needs to start from 1, dcvs_core_id = 0 is used to * indicate that this request is not associated with any core. * mpdecision */ info->core_param.core_bitmask_id = 1 << (core->dcvs_core_id - CPU_OFFSET); core->sensor = sensor; ret = msm_dcvs_scm_register_core(core->dcvs_core_id, &info->core_param); if (ret) { __err("%s: scm register core fail handle = %d ret = %d\n", __func__, core->dcvs_core_id, ret); goto bail; } ret = msm_dcvs_scm_set_algo_params(core->dcvs_core_id, &info->algo_param); if (ret) { __err("%s: scm algo params failed ret = %d\n", __func__, ret); goto bail; } ret = msm_dcvs_scm_set_power_params(core->dcvs_core_id, &info->power_param, &info->freq_tbl[0], &core->coeffs); if (ret) { __err("%s: scm power params failed ret = %d\n", __func__, ret); goto bail; } ret = msm_dcvs_scm_event(core->dcvs_core_id, MSM_DCVS_SCM_CORE_ONLINE, core->actual_freq, 0, &ret1, &ret2); if (ret) goto bail; ret = msm_dcvs_setup_core_sysfs(core); if (ret) { __err("Unable to setup core %s sysfs\n", core->core_name); goto bail; } core->idle_entered = -1; init_waitqueue_head(&core->wait_q); core->task = kthread_run(msm_dcvs_do_freq, (void *)core, "msm_dcvs/%d", core->dcvs_core_id); ret = core->dcvs_core_id; return ret; bail: core->dcvs_core_id = -1; return -EINVAL; } EXPORT_SYMBOL(msm_dcvs_register_core); void msm_dcvs_update_limits(int dcvs_core_id) { struct dcvs_core *core; if (dcvs_core_id < CPU_OFFSET || dcvs_core_id > CORES_MAX) { __err("%s invalid dcvs_core_id = %d returning -EINVAL\n", __func__, dcvs_core_id); return; } core = msm_dcvs_get_core(dcvs_core_id); core->actual_freq = core->get_frequency(core->type_core_num); } int msm_dcvs_freq_sink_start(int dcvs_core_id) { int ret = -EINVAL; struct dcvs_core *core = NULL; uint32_t ret1; unsigned long flags; int new_freq; int timer_interval_us; if (dcvs_core_id < CPU_OFFSET || dcvs_core_id > CORES_MAX) { __err("%s invalid dcvs_core_id = %d returning -EINVAL\n", __func__, dcvs_core_id); return -EINVAL; } core = msm_dcvs_get_core(dcvs_core_id); if (!core) return ret; core->actual_freq = core->get_frequency(core->type_core_num); spin_lock_irqsave(&core->pending_freq_lock, flags); /* mark that we are ready to accept new frequencies */ request_freq_change(core, NO_OUTSTANDING_FREQ_CHANGE); spin_unlock_irqrestore(&core->pending_freq_lock, flags); spin_lock_irqsave(&core->idle_state_change_lock, flags); core->idle_entered = -1; spin_unlock_irqrestore(&core->idle_state_change_lock, flags); /* Notify TZ to start receiving idle info for the core */ ret = msm_dcvs_update_freq(core, MSM_DCVS_SCM_DCVS_ENABLE, 1, &ret1); ret = msm_dcvs_scm_event( core->dcvs_core_id, MSM_DCVS_SCM_CORE_ONLINE, core->actual_freq, 0, &new_freq, &timer_interval_us); if (ret) __err("Error (%d) DCVS sending online for %s\n", ret, core->core_name); if (new_freq != 0) { spin_lock_irqsave(&core->pending_freq_lock, flags); request_freq_change(core, new_freq); spin_unlock_irqrestore(&core->pending_freq_lock, flags); } force_start_slack_timer(core, timer_interval_us); core->flags |= CORE_FLAG_TEMP_UPDATE; INIT_DELAYED_WORK(&core->temperature_work, msm_dcvs_report_temp_work); schedule_delayed_work(&core->temperature_work, msecs_to_jiffies(core->info->thermal_poll_ms)); core->idle_enable(core->type_core_num, MSM_DCVS_ENABLE_IDLE_PULSE); return 0; } EXPORT_SYMBOL(msm_dcvs_freq_sink_start); int msm_dcvs_freq_sink_stop(int dcvs_core_id) { int ret = -EINVAL; struct dcvs_core *core = NULL; uint32_t ret1; uint32_t freq; unsigned long flags; if (dcvs_core_id < 0 || dcvs_core_id > CORES_MAX) { pr_err("%s invalid dcvs_core_id = %d returning -EINVAL\n", __func__, dcvs_core_id); return -EINVAL; } core = msm_dcvs_get_core(dcvs_core_id); if (!core) { __err("couldn't find core for coreid = %d\n", dcvs_core_id); return ret; } core->flags &= ~CORE_FLAG_TEMP_UPDATE; cancel_delayed_work(&core->temperature_work); core->idle_enable(core->type_core_num, MSM_DCVS_DISABLE_IDLE_PULSE); /* Notify TZ to stop receiving idle info for the core */ ret = msm_dcvs_scm_event(core->dcvs_core_id, MSM_DCVS_SCM_DCVS_ENABLE, 0, core->actual_freq, &freq, &ret1); core->idle_enable(core->type_core_num, MSM_DCVS_ENABLE_HIGH_LATENCY_MODES); if (core->type == MSM_DCVS_CORE_TYPE_GPU) mutex_lock(&gpu_floor_mutex); spin_lock_irqsave(&core->pending_freq_lock, flags); /* flush out all the pending freq changes */ request_freq_change(core, STOP_FREQ_CHANGE); spin_unlock_irqrestore(&core->pending_freq_lock, flags); if (core->type == MSM_DCVS_CORE_TYPE_GPU) mutex_unlock(&gpu_floor_mutex); force_stop_slack_timer(core); return 0; } EXPORT_SYMBOL(msm_dcvs_freq_sink_stop); int msm_dcvs_idle(int dcvs_core_id, enum msm_core_idle_state state, uint32_t iowaited) { int ret = 0; struct dcvs_core *core = NULL; uint32_t timer_interval_us = 0; uint32_t r0, r1; if (dcvs_core_id < CPU_OFFSET || dcvs_core_id > CORES_MAX) { pr_err("invalid dcvs_core_id = %d ret -EINVAL\n", dcvs_core_id); return -EINVAL; } core = msm_dcvs_get_core(dcvs_core_id); switch (state) { case MSM_DCVS_IDLE_ENTER: stop_slack_timer(core); ret = msm_dcvs_scm_event(core->dcvs_core_id, MSM_DCVS_SCM_IDLE_ENTER, 0, 0, &r0, &r1); if (ret < 0 && ret != -13) __err("Error (%d) sending idle enter for %s\n", ret, core->core_name); trace_msm_dcvs_idle("idle_enter_exit", core->core_name, 1); break; case MSM_DCVS_IDLE_EXIT: ret = msm_dcvs_update_freq(core, MSM_DCVS_SCM_IDLE_EXIT, iowaited, &timer_interval_us); if (ret) __err("Error (%d) sending idle exit for %s\n", ret, core->core_name); start_slack_timer(core, timer_interval_us); trace_msm_dcvs_idle("idle_enter_exit", core->core_name, 0); trace_msm_dcvs_iowait("iowait", core->core_name, iowaited); trace_msm_dcvs_slack_time("slack_timer_dcvs", core->core_name, timer_interval_us); break; } return ret; } EXPORT_SYMBOL(msm_dcvs_idle); static int __init msm_dcvs_late_init(void) { struct kobject *module_kobj = NULL; int ret = 0; if (!msm_dcvs_enabled) return ret; module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); if (!module_kobj) { pr_err("%s: cannot find kobject for module %s\n", __func__, KBUILD_MODNAME); ret = -ENOENT; goto err; } cores_kobj = kobject_create_and_add("cores", module_kobj); if (!cores_kobj) { __err("Cannot create %s kobject\n", "cores"); ret = -ENOMEM; goto err; } debugfs_base = debugfs_create_dir("msm_dcvs", NULL); if (!debugfs_base) { __err("Cannot create debugfs base %s\n", "msm_dcvs"); ret = -ENOENT; goto err; } err: if (ret) { kobject_del(cores_kobj); cores_kobj = NULL; debugfs_remove(debugfs_base); } return ret; } late_initcall(msm_dcvs_late_init); static int __devinit dcvs_probe(struct platform_device *pdev) { if (pdev->dev.platform_data) dcvs_pdata = pdev->dev.platform_data; return 0; } static struct platform_driver dcvs_driver = { .probe = dcvs_probe, .driver = { .name = "dcvs", .owner = THIS_MODULE, }, }; static int __init msm_dcvs_early_init(void) { int ret = 0; int i; platform_driver_register(&dcvs_driver); if (!msm_dcvs_enabled) { __info("Not enabled (%d)\n", msm_dcvs_enabled); return 0; } /* Only need about 32kBytes for normal operation */ ret = msm_dcvs_scm_init(SZ_32K); if (ret) { __err("Unable to initialize DCVS err=%d\n", ret); msm_dcvs_enabled = 0; goto done; } for (i = 0; i < CORES_MAX; i++) { core_list[i].dcvs_core_id = -1; core_list[i].pending_freq = STOP_FREQ_CHANGE; } done: return ret; } postcore_initcall(msm_dcvs_early_init);