/* board-mahimahi-microp.c * Copyright (C) 2009 Google. * Copyright (C) 2009 HTC Corporation. * * The Microp on mahimahi is an i2c device that supports * the following functions * - LEDs (Green, Amber, Jogball backlight) * - Lightsensor * - Headset remotekeys * - G-sensor * - Interrupts * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "board-mahimahi.h" #define MICROP_I2C_NAME "mahimahi-microp" #define MICROP_LSENSOR_ADC_CHAN 6 #define MICROP_REMOTE_KEY_ADC_CHAN 7 #define MICROP_I2C_WCMD_MISC 0x20 #define MICROP_I2C_WCMD_SPI_EN 0x21 #define MICROP_I2C_WCMD_AUTO_BL_CTL 0x23 #define MICROP_I2C_RCMD_SPI_BL_STATUS 0x24 #define MICROP_I2C_WCMD_BUTTONS_LED_CTRL 0x25 #define MICROP_I2C_RCMD_VERSION 0x30 #define MICROP_I2C_WCMD_ADC_TABLE 0x42 #define MICROP_I2C_WCMD_LED_MODE 0x53 #define MICROP_I2C_RCMD_GREEN_LED_REMAIN_TIME 0x54 #define MICROP_I2C_RCMD_AMBER_RED_LED_REMAIN_TIME 0x55 #define MICROP_I2C_RCMD_BLUE_LED_REMAIN_TIME 0x57 #define MICROP_I2C_WCMD_JOGBALL_LED_MODE 0x5A #define MICROP_I2C_RCMD_JOGBALL_LED_REMAIN_TIME 0x5B #define MICROP_I2C_WCMD_JOGBALL_LED_PWM_SET 0x5C #define MICROP_I2C_WCMD_JOGBALL_LED_PERIOD_SET 0x5D #define MICROP_I2C_WCMD_READ_ADC_VALUE_REQ 0x60 #define MICROP_I2C_RCMD_ADC_VALUE 0x62 #define MICROP_I2C_WCMD_REMOTEKEY_TABLE 0x63 #define MICROP_I2C_WCMD_LCM_REGISTER 0x70 #define MICROP_I2C_WCMD_GSENSOR_REG 0x73 #define MICROP_I2C_WCMD_GSENSOR_REG_DATA_REQ 0x74 #define MICROP_I2C_RCMD_GSENSOR_REG_DATA 0x75 #define MICROP_I2C_WCMD_GSENSOR_DATA_REQ 0x76 #define MICROP_I2C_RCMD_GSENSOR_X_DATA 0x77 #define MICROP_I2C_RCMD_GSENSOR_Y_DATA 0x78 #define MICROP_I2C_RCMD_GSENSOR_Z_DATA 0x79 #define MICROP_I2C_RCMD_GSENSOR_DATA 0x7A #define MICROP_I2C_WCMD_OJ_REG 0x7B #define MICROP_I2C_WCMD_OJ_REG_DATA_REQ 0x7C #define MICROP_I2C_RCMD_OJ_REG_DATA 0x7D #define MICROP_I2C_WCMD_OJ_POS_DATA_REQ 0x7E #define MICROP_I2C_RCMD_OJ_POS_DATA 0x7F #define MICROP_I2C_WCMD_GPI_INT_CTL_EN 0x80 #define MICROP_I2C_WCMD_GPI_INT_CTL_DIS 0x81 #define MICROP_I2C_RCMD_GPI_INT_STATUS 0x82 #define MICROP_I2C_RCMD_GPI_STATUS 0x83 #define MICROP_I2C_WCMD_GPI_INT_STATUS_CLR 0x84 #define MICROP_I2C_RCMD_GPI_INT_SETTING 0x85 #define MICROP_I2C_RCMD_REMOTE_KEYCODE 0x87 #define MICROP_I2C_WCMD_REMOTE_KEY_DEBN_TIME 0x88 #define MICROP_I2C_WCMD_REMOTE_PLUG_DEBN_TIME 0x89 #define MICROP_I2C_WCMD_SIMCARD_DEBN_TIME 0x8A #define MICROP_I2C_WCMD_GPO_LED_STATUS_EN 0x90 #define MICROP_I2C_WCMD_GPO_LED_STATUS_DIS 0x91 #define IRQ_GSENSOR (1<<10) #define IRQ_LSENSOR (1<<9) #define IRQ_REMOTEKEY (1<<7) #define IRQ_HEADSETIN (1<<2) #define IRQ_SDCARD (1<<0) #define READ_GPI_STATE_HPIN (1<<2) #define READ_GPI_STATE_SDCARD (1<<0) #define ALS_CALIBRATE_MODE 147 /* Check pattern, to check if ALS has been calibrated */ #define ALS_CALIBRATED 0x6DA5 /* delay for deferred light sensor read */ #define LS_READ_DELAY (HZ/2) /*#define DEBUG_BMA150 */ #ifdef DEBUG_BMA150 /* Debug logging of accelleration data */ #define GSENSOR_LOG_MAX 2048 /* needs to be power of 2 */ #define GSENSOR_LOG_MASK (GSENSOR_LOG_MAX - 1) struct gsensor_log { ktime_t timestamp; short x; short y; short z; }; static DEFINE_MUTEX(gsensor_log_lock); static struct gsensor_log gsensor_log[GSENSOR_LOG_MAX]; static unsigned gsensor_log_head; static unsigned gsensor_log_tail; void gsensor_log_status(ktime_t time, short x, short y, short z) { unsigned n; mutex_lock(&gsensor_log_lock); n = gsensor_log_head; gsensor_log[n].timestamp = time; gsensor_log[n].x = x; gsensor_log[n].y = y; gsensor_log[n].z = z; n = (n + 1) & GSENSOR_LOG_MASK; if (n == gsensor_log_tail) gsensor_log_tail = (gsensor_log_tail + 1) & GSENSOR_LOG_MASK; gsensor_log_head = n; mutex_unlock(&gsensor_log_lock); } static int gsensor_log_print(struct seq_file *sf, void *private) { unsigned n; mutex_lock(&gsensor_log_lock); seq_printf(sf, "timestamp X Y Z\n"); for (n = gsensor_log_tail; n != gsensor_log_head; n = (n + 1) & GSENSOR_LOG_MASK) { seq_printf(sf, "%10d.%010d %6d %6d %6d\n", gsensor_log[n].timestamp.tv.sec, gsensor_log[n].timestamp.tv.nsec, gsensor_log[n].x, gsensor_log[n].y, gsensor_log[n].z); } mutex_unlock(&gsensor_log_lock); return 0; } static int gsensor_log_open(struct inode *inode, struct file *file) { return single_open(file, gsensor_log_print, NULL); } static struct file_operations gsensor_log_fops = { .open = gsensor_log_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; #endif /* def DEBUG_BMA150 */ static int microp_headset_has_mic(void); static int microp_enable_headset_plug_event(void); static int microp_enable_key_event(void); static int microp_disable_key_event(void); static struct h35mm_platform_data mahimahi_h35mm_data = { .plug_event_enable = microp_enable_headset_plug_event, .headset_has_mic = microp_headset_has_mic, .key_event_enable = microp_enable_key_event, .key_event_disable = microp_disable_key_event, }; static struct platform_device mahimahi_h35mm = { .name = "htc_headset", .id = -1, .dev = { .platform_data = &mahimahi_h35mm_data, }, }; enum led_type { GREEN_LED, AMBER_LED, RED_LED, BLUE_LED, JOGBALL_LED, BUTTONS_LED, NUM_LEDS, }; static uint16_t lsensor_adc_table[10] = { 0x000, 0x001, 0x00F, 0x01E, 0x03C, 0x121, 0x190, 0x2BA, 0x26E, 0x3FF }; static uint16_t remote_key_adc_table[6] = { 0, 33, 43, 110, 129, 220 }; static uint32_t golden_adc = 0xC0; static uint32_t als_kadc; static struct wake_lock microp_i2c_wakelock; static struct i2c_client *private_microp_client; struct microp_int_pin { uint16_t int_gsensor; uint16_t int_lsensor; uint16_t int_reset; uint16_t int_simcard; uint16_t int_hpin; uint16_t int_remotekey; }; struct microp_led_data { int type; struct led_classdev ldev; struct mutex led_data_mutex; struct work_struct brightness_work; spinlock_t brightness_lock; enum led_brightness brightness; uint8_t mode; uint8_t blink; }; struct microp_i2c_work { struct work_struct work; struct i2c_client *client; int (*intr_debounce)(uint8_t *pin_status); void (*intr_function)(uint8_t *pin_status); }; struct microp_i2c_client_data { struct microp_led_data leds[NUM_LEDS]; uint16_t version; struct microp_i2c_work work; struct delayed_work hpin_debounce_work; struct delayed_work ls_read_work; struct early_suspend early_suspend; uint8_t enable_early_suspend; uint8_t enable_reset_button; int microp_is_suspend; int auto_backlight_enabled; uint8_t light_sensor_enabled; uint8_t force_light_sensor_read; uint8_t button_led_value; int headset_is_in; int is_hpin_pin_stable; struct input_dev *ls_input_dev; uint32_t als_kadc; uint32_t als_gadc; uint8_t als_calibrating; }; static char *hex2string(uint8_t *data, int len) { static char buf[101]; int i; i = (sizeof(buf) - 1) / 4; if (len > i) len = i; for (i = 0; i < len; i++) sprintf(buf + i * 4, "[%02X]", data[i]); return buf; } #define I2C_READ_RETRY_TIMES 10 #define I2C_WRITE_RETRY_TIMES 10 static int i2c_read_block(struct i2c_client *client, uint8_t addr, uint8_t *data, int length) { int retry; int ret; struct i2c_msg msgs[] = { { .addr = client->addr, .flags = 0, .len = 1, .buf = &addr, }, { .addr = client->addr, .flags = I2C_M_RD, .len = length, .buf = data, } }; mdelay(1); for (retry = 0; retry <= I2C_READ_RETRY_TIMES; retry++) { ret = i2c_transfer(client->adapter, msgs, 2); if (ret == 2) { dev_dbg(&client->dev, "R [%02X] = %s\n", addr, hex2string(data, length)); return 0; } msleep(10); } dev_err(&client->dev, "i2c_read_block retry over %d\n", I2C_READ_RETRY_TIMES); return -EIO; } #define MICROP_I2C_WRITE_BLOCK_SIZE 21 static int i2c_write_block(struct i2c_client *client, uint8_t addr, uint8_t *data, int length) { int retry; uint8_t buf[MICROP_I2C_WRITE_BLOCK_SIZE]; int ret; struct i2c_msg msg[] = { { .addr = client->addr, .flags = 0, .len = length + 1, .buf = buf, } }; dev_dbg(&client->dev, "W [%02X] = %s\n", addr, hex2string(data, length)); if (length + 1 > MICROP_I2C_WRITE_BLOCK_SIZE) { dev_err(&client->dev, "i2c_write_block length too long\n"); return -E2BIG; } buf[0] = addr; memcpy((void *)&buf[1], (void *)data, length); mdelay(1); for (retry = 0; retry <= I2C_WRITE_RETRY_TIMES; retry++) { ret = i2c_transfer(client->adapter, msg, 1); if (ret == 1) return 0; msleep(10); } dev_err(&client->dev, "i2c_write_block retry over %d\n", I2C_WRITE_RETRY_TIMES); return -EIO; } static int microp_read_adc(uint8_t channel, uint16_t *value) { struct i2c_client *client; int ret; uint8_t cmd[2], data[2]; client = private_microp_client; cmd[0] = 0; cmd[1] = channel; ret = i2c_write_block(client, MICROP_I2C_WCMD_READ_ADC_VALUE_REQ, cmd, 2); if (ret < 0) { dev_err(&client->dev, "%s: request adc fail\n", __func__); return -EIO; } ret = i2c_read_block(client, MICROP_I2C_RCMD_ADC_VALUE, data, 2); if (ret < 0) { dev_err(&client->dev, "%s: read adc fail\n", __func__); return -EIO; } *value = data[0] << 8 | data[1]; return 0; } static int microp_read_gpi_status(struct i2c_client *client, uint16_t *status) { uint8_t data[2]; int ret; ret = i2c_read_block(client, MICROP_I2C_RCMD_GPI_STATUS, data, 2); if (ret < 0) { dev_err(&client->dev, "%s: read failed\n", __func__); return -EIO; } *status = (data[0] << 8) | data[1]; return 0; } static int microp_interrupt_enable(struct i2c_client *client, uint16_t interrupt_mask) { uint8_t data[2]; int ret = -1; data[0] = interrupt_mask >> 8; data[1] = interrupt_mask & 0xFF; ret = i2c_write_block(client, MICROP_I2C_WCMD_GPI_INT_CTL_EN, data, 2); if (ret < 0) dev_err(&client->dev, "%s: enable 0x%x interrupt failed\n", __func__, interrupt_mask); return ret; } static int microp_interrupt_disable(struct i2c_client *client, uint16_t interrupt_mask) { uint8_t data[2]; int ret = -1; data[0] = interrupt_mask >> 8; data[1] = interrupt_mask & 0xFF; ret = i2c_write_block(client, MICROP_I2C_WCMD_GPI_INT_CTL_DIS, data, 2); if (ret < 0) dev_err(&client->dev, "%s: disable 0x%x interrupt failed\n", __func__, interrupt_mask); return ret; } /* * SD slot card-detect support */ static unsigned int sdslot_cd = 0; static void (*sdslot_status_cb)(int card_present, void *dev_id); static void *sdslot_mmc_dev; int mahimahi_microp_sdslot_status_register( void (*cb)(int card_present, void *dev_id), void *dev_id) { if (sdslot_status_cb) return -EBUSY; sdslot_status_cb = cb; sdslot_mmc_dev = dev_id; return 0; } unsigned int mahimahi_microp_sdslot_status(struct device *dev) { return sdslot_cd; } static void mahimahi_microp_sdslot_update_status(int status) { sdslot_cd = !(status & READ_GPI_STATE_SDCARD); if (sdslot_status_cb) sdslot_status_cb(sdslot_cd, sdslot_mmc_dev); } /* *Headset Support */ static void hpin_debounce_do_work(struct work_struct *work) { uint16_t gpi_status = 0; struct microp_i2c_client_data *cdata; int insert = 0; struct i2c_client *client; client = private_microp_client; cdata = i2c_get_clientdata(client); microp_read_gpi_status(client, &gpi_status); insert = (gpi_status & READ_GPI_STATE_HPIN) ? 0 : 1; if (insert != cdata->headset_is_in) { cdata->headset_is_in = insert; pr_debug("headset %s\n", insert ? "inserted" : "removed"); htc_35mm_jack_plug_event(cdata->headset_is_in, &cdata->is_hpin_pin_stable); } } static int microp_enable_headset_plug_event(void) { int ret; struct i2c_client *client; struct microp_i2c_client_data *cdata; uint16_t stat; client = private_microp_client; cdata = i2c_get_clientdata(client); /* enable microp interrupt to detect changes */ ret = microp_interrupt_enable(client, IRQ_HEADSETIN); if (ret < 0) { dev_err(&client->dev, "%s: failed to enable irqs\n", __func__); return 0; } /* see if headset state has changed */ microp_read_gpi_status(client, &stat); stat = !(stat & READ_GPI_STATE_HPIN); if(cdata->headset_is_in != stat) { cdata->headset_is_in = stat; pr_debug("Headset state changed\n"); htc_35mm_jack_plug_event(stat, &cdata->is_hpin_pin_stable); } return 1; } static int microp_headset_detect_mic(void) { uint16_t data; microp_read_adc(MICROP_REMOTE_KEY_ADC_CHAN, &data); if (data >= 200) return 1; else return 0; } static int microp_headset_has_mic(void) { int mic1 = -1; int mic2 = -1; int count = 0; mic2 = microp_headset_detect_mic(); /* debounce the detection wait until 2 consecutive read are equal */ while ((mic1 != mic2) && (count < 10)) { mic1 = mic2; msleep(600); mic2 = microp_headset_detect_mic(); count++; } pr_info("%s: microphone (%d) %s\n", __func__, count, mic1 ? "present" : "not present"); return mic1; } static int microp_enable_key_event(void) { int ret; struct i2c_client *client; client = private_microp_client; if (!is_cdma_version(system_rev)) gpio_set_value(MAHIMAHI_GPIO_35MM_KEY_INT_SHUTDOWN, 1); /* turn on key interrupt */ /* enable microp interrupt to detect changes */ ret = microp_interrupt_enable(client, IRQ_REMOTEKEY); if (ret < 0) { dev_err(&client->dev, "%s: failed to enable irqs\n", __func__); return ret; } return 0; } static int microp_disable_key_event(void) { int ret; struct i2c_client *client; client = private_microp_client; /* shutdown key interrupt */ if (!is_cdma_version(system_rev)) gpio_set_value(MAHIMAHI_GPIO_35MM_KEY_INT_SHUTDOWN, 0); /* disable microp interrupt to detect changes */ ret = microp_interrupt_disable(client, IRQ_REMOTEKEY); if (ret < 0) { dev_err(&client->dev, "%s: failed to disable irqs\n", __func__); return ret; } return 0; } static int get_remote_keycode(int *keycode) { struct i2c_client *client = private_microp_client; int ret; uint8_t data[2]; ret = i2c_read_block(client, MICROP_I2C_RCMD_REMOTE_KEYCODE, data, 2); if (ret < 0) { dev_err(&client->dev, "%s: read remote keycode fail\n", __func__); return -EIO; } pr_debug("%s: key = 0x%x\n", __func__, data[1]); if (!data[1]) { *keycode = 0; return 1; /* no keycode */ } else { *keycode = data[1]; } return 0; } static ssize_t microp_i2c_remotekey_adc_show(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client; uint16_t value; int i, button = 0; int ret; client = to_i2c_client(dev); microp_read_adc(MICROP_REMOTE_KEY_ADC_CHAN, &value); for (i = 0; i < 3; i++) { if ((value >= remote_key_adc_table[2 * i]) && (value <= remote_key_adc_table[2 * i + 1])) { button = i + 1; } } ret = sprintf(buf, "Remote Key[0x%03X] => button %d\n", value, button); return ret; } static DEVICE_ATTR(key_adc, 0644, microp_i2c_remotekey_adc_show, NULL); /* * LED support */ static int microp_i2c_write_led_mode(struct i2c_client *client, struct led_classdev *led_cdev, uint8_t mode, uint16_t off_timer) { struct microp_i2c_client_data *cdata; struct microp_led_data *ldata; uint8_t data[7]; int ret; cdata = i2c_get_clientdata(client); ldata = container_of(led_cdev, struct microp_led_data, ldev); if (ldata->type == GREEN_LED) { data[0] = 0x01; data[1] = mode; data[2] = off_timer >> 8; data[3] = off_timer & 0xFF; data[4] = 0x00; data[5] = 0x00; data[6] = 0x00; } else if (ldata->type == AMBER_LED) { data[0] = 0x02; data[1] = 0x00; data[2] = 0x00; data[3] = 0x00; data[4] = mode; data[5] = off_timer >> 8; data[6] = off_timer & 0xFF; } else if (ldata->type == RED_LED) { data[0] = 0x02; data[1] = 0x00; data[2] = 0x00; data[3] = 0x00; data[4] = mode? 5: 0; data[5] = off_timer >> 8; data[6] = off_timer & 0xFF; } else if (ldata->type == BLUE_LED) { data[0] = 0x04; data[1] = mode; data[2] = off_timer >> 8; data[3] = off_timer & 0xFF; data[4] = 0x00; data[5] = 0x00; data[6] = 0x00; } ret = i2c_write_block(client, MICROP_I2C_WCMD_LED_MODE, data, 7); if (ret == 0) { mutex_lock(&ldata->led_data_mutex); if (mode > 1) ldata->blink = mode; else ldata->mode = mode; mutex_unlock(&ldata->led_data_mutex); } return ret; } static ssize_t microp_i2c_led_blink_show(struct device *dev, struct device_attribute *attr, char *buf) { struct led_classdev *led_cdev; struct microp_led_data *ldata; int ret; led_cdev = (struct led_classdev *)dev_get_drvdata(dev); ldata = container_of(led_cdev, struct microp_led_data, ldev); mutex_lock(&ldata->led_data_mutex); ret = sprintf(buf, "%d\n", ldata->blink ? ldata->blink - 1 : 0); mutex_unlock(&ldata->led_data_mutex); return ret; } static ssize_t microp_i2c_led_blink_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct led_classdev *led_cdev; struct microp_led_data *ldata; struct i2c_client *client; int val, ret; uint8_t mode; val = -1; sscanf(buf, "%u", &val); led_cdev = (struct led_classdev *)dev_get_drvdata(dev); ldata = container_of(led_cdev, struct microp_led_data, ldev); client = to_i2c_client(dev->parent); mutex_lock(&ldata->led_data_mutex); switch (val) { case 0: /* stop flashing */ mode = ldata->mode; ldata->blink = 0; break; case 1: case 2: case 3: mode = val + 1; break; default: mutex_unlock(&ldata->led_data_mutex); return -EINVAL; } mutex_unlock(&ldata->led_data_mutex); ret = microp_i2c_write_led_mode(client, led_cdev, mode, 0xffff); if (ret) dev_err(&client->dev, "%s set blink failed\n", led_cdev->name); return count; } static DEVICE_ATTR(blink, 0644, microp_i2c_led_blink_show, microp_i2c_led_blink_store); static ssize_t microp_i2c_led_off_timer_show(struct device *dev, struct device_attribute *attr, char *buf) { struct microp_i2c_client_data *cdata; struct led_classdev *led_cdev; struct microp_led_data *ldata; struct i2c_client *client; uint8_t data[2]; int ret, offtime; led_cdev = (struct led_classdev *)dev_get_drvdata(dev); ldata = container_of(led_cdev, struct microp_led_data, ldev); client = to_i2c_client(dev->parent); cdata = i2c_get_clientdata(client); dev_dbg(&client->dev, "Getting %s remaining time\n", led_cdev->name); if (ldata->type == GREEN_LED) { ret = i2c_read_block(client, MICROP_I2C_RCMD_GREEN_LED_REMAIN_TIME, data, 2); } else if (ldata->type == AMBER_LED) { ret = i2c_read_block(client, MICROP_I2C_RCMD_AMBER_RED_LED_REMAIN_TIME, data, 2); } else if (ldata->type == RED_LED) { ret = i2c_read_block(client, MICROP_I2C_RCMD_AMBER_RED_LED_REMAIN_TIME, data, 2); } else if (ldata->type == BLUE_LED) { ret = i2c_read_block(client, MICROP_I2C_RCMD_BLUE_LED_REMAIN_TIME, data, 2); } else { dev_err(&client->dev, "Unknown led %s\n", ldata->ldev.name); return -EINVAL; } if (ret) { dev_err(&client->dev, "%s get off_timer failed\n", led_cdev->name); } offtime = (int)((data[1] | data[0] << 8) * 2); ret = sprintf(buf, "Time remains %d:%d\n", offtime / 60, offtime % 60); return ret; } static ssize_t microp_i2c_led_off_timer_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct led_classdev *led_cdev; struct microp_led_data *ldata; struct i2c_client *client; int min, sec, ret; uint16_t off_timer; min = -1; sec = -1; sscanf(buf, "%d %d", &min, &sec); if (min < 0 || min > 255) return -EINVAL; if (sec < 0 || sec > 255) return -EINVAL; led_cdev = (struct led_classdev *)dev_get_drvdata(dev); ldata = container_of(led_cdev, struct microp_led_data, ldev); client = to_i2c_client(dev->parent); dev_dbg(&client->dev, "Setting %s off_timer to %d min %d sec\n", led_cdev->name, min, sec); if (!min && !sec) off_timer = 0xFFFF; else off_timer = (min * 60 + sec) / 2; ret = microp_i2c_write_led_mode(client, led_cdev, ldata->mode, off_timer); if (ret) { dev_err(&client->dev, "%s set off_timer %d min %d sec failed\n", led_cdev->name, min, sec); } return count; } static DEVICE_ATTR(off_timer, 0644, microp_i2c_led_off_timer_show, microp_i2c_led_off_timer_store); static ssize_t microp_i2c_jogball_color_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct led_classdev *led_cdev; struct microp_led_data *ldata; struct i2c_client *client; int rpwm, gpwm, bpwm, ret; uint8_t data[4]; rpwm = -1; gpwm = -1; bpwm = -1; sscanf(buf, "%d %d %d", &rpwm, &gpwm, &bpwm); if (rpwm < 0 || rpwm > 255) return -EINVAL; if (gpwm < 0 || gpwm > 255) return -EINVAL; if (bpwm < 0 || bpwm > 255) return -EINVAL; led_cdev = (struct led_classdev *)dev_get_drvdata(dev); ldata = container_of(led_cdev, struct microp_led_data, ldev); client = to_i2c_client(dev->parent); dev_dbg(&client->dev, "Setting %s color to R=%d, G=%d, B=%d\n", led_cdev->name, rpwm, gpwm, bpwm); data[0] = rpwm; data[1] = gpwm; data[2] = bpwm; data[3] = 0x00; ret = i2c_write_block(client, MICROP_I2C_WCMD_JOGBALL_LED_PWM_SET, data, 4); if (ret) { dev_err(&client->dev, "%s set color R=%d G=%d B=%d failed\n", led_cdev->name, rpwm, gpwm, bpwm); } return count; } static DEVICE_ATTR(color, 0644, NULL, microp_i2c_jogball_color_store); static ssize_t microp_i2c_jogball_period_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct led_classdev *led_cdev; struct microp_led_data *ldata; struct i2c_client *client; int period = -1; int ret; uint8_t data[4]; sscanf(buf, "%d", &period); if (period < 2 || period > 12) return -EINVAL; led_cdev = (struct led_classdev *)dev_get_drvdata(dev); ldata = container_of(led_cdev, struct microp_led_data, ldev); client = to_i2c_client(dev->parent); dev_info(&client->dev, "Setting Jogball flash period to %d\n", period); data[0] = 0x00; data[1] = period; ret = i2c_write_block(client, MICROP_I2C_WCMD_JOGBALL_LED_PERIOD_SET, data, 2); if (ret) { dev_err(&client->dev, "%s set period=%d failed\n", led_cdev->name, period); } return count; } static DEVICE_ATTR(period, 0644, NULL, microp_i2c_jogball_period_store); static void microp_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness) { unsigned long flags; struct i2c_client *client = to_i2c_client(led_cdev->dev->parent); struct microp_led_data *ldata = container_of(led_cdev, struct microp_led_data, ldev); dev_dbg(&client->dev, "Setting %s brightness current %d new %d\n", led_cdev->name, led_cdev->brightness, brightness); if (brightness > 255) brightness = 255; led_cdev->brightness = brightness; spin_lock_irqsave(&ldata->brightness_lock, flags); ldata->brightness = brightness; spin_unlock_irqrestore(&ldata->brightness_lock, flags); schedule_work(&ldata->brightness_work); } static void microp_led_brightness_set_work(struct work_struct *work) { unsigned long flags; struct microp_led_data *ldata = container_of(work, struct microp_led_data, brightness_work); struct led_classdev *led_cdev = &ldata->ldev; struct i2c_client *client = to_i2c_client(led_cdev->dev->parent); enum led_brightness brightness; int ret; uint8_t mode; spin_lock_irqsave(&ldata->brightness_lock, flags); brightness = ldata->brightness; spin_unlock_irqrestore(&ldata->brightness_lock, flags); if (brightness) mode = 1; else mode = 0; ret = microp_i2c_write_led_mode(client, led_cdev, mode, 0xffff); if (ret) { dev_err(&client->dev, "led_brightness_set failed to set mode\n"); } } struct device_attribute *green_amber_attrs[] = { &dev_attr_blink, &dev_attr_off_timer, }; struct device_attribute *jogball_attrs[] = { &dev_attr_color, &dev_attr_period, }; static void microp_led_buttons_brightness_set_work(struct work_struct *work) { unsigned long flags; struct microp_led_data *ldata = container_of(work, struct microp_led_data, brightness_work); struct led_classdev *led_cdev = &ldata->ldev; struct i2c_client *client = to_i2c_client(led_cdev->dev->parent); struct microp_i2c_client_data *cdata = i2c_get_clientdata(client); uint8_t data[4] = {0, 0, 0}; int ret = 0; enum led_brightness brightness; uint8_t value; spin_lock_irqsave(&ldata->brightness_lock, flags); brightness = ldata->brightness; spin_unlock_irqrestore(&ldata->brightness_lock, flags); value = brightness >= 255 ? 0x20 : 0; /* avoid a flicker that can occur when writing the same value */ if (cdata->button_led_value == value) return; cdata->button_led_value = value; /* in 40ms */ data[0] = 0x05; /* duty cycle 0-255 */ data[1] = value; /* bit2 == change brightness */ data[3] = 0x04; ret = i2c_write_block(client, MICROP_I2C_WCMD_BUTTONS_LED_CTRL, data, 4); if (ret < 0) dev_err(&client->dev, "%s failed on set buttons\n", __func__); } static void microp_led_jogball_brightness_set_work(struct work_struct *work) { unsigned long flags; struct microp_led_data *ldata = container_of(work, struct microp_led_data, brightness_work); struct led_classdev *led_cdev = &ldata->ldev; struct i2c_client *client = to_i2c_client(led_cdev->dev->parent); uint8_t data[3] = {0, 0, 0}; int ret = 0; enum led_brightness brightness; spin_lock_irqsave(&ldata->brightness_lock, flags); brightness = ldata->brightness; spin_unlock_irqrestore(&ldata->brightness_lock, flags); switch (brightness) { case 0: data[0] = 0; break; case 3: data[0] = 1; data[1] = data[2] = 0xFF; break; case 7: data[0] = 2; data[1] = 0; data[2] = 60; break; default: dev_warn(&client->dev, "%s: unknown value: %d\n", __func__, brightness); break; } ret = i2c_write_block(client, MICROP_I2C_WCMD_JOGBALL_LED_MODE, data, 3); if (ret < 0) dev_err(&client->dev, "%s failed on set jogball mode:0x%2.2X\n", __func__, data[0]); } /* * Light Sensor Support */ static int microp_i2c_auto_backlight_mode(struct i2c_client *client, uint8_t enabled) { uint8_t data[2]; int ret = 0; data[0] = 0; if (enabled) data[1] = 1; else data[1] = 0; ret = i2c_write_block(client, MICROP_I2C_WCMD_AUTO_BL_CTL, data, 2); if (ret != 0) pr_err("%s: set auto light sensor fail\n", __func__); return ret; } static int lightsensor_enable(void) { struct i2c_client *client; struct microp_i2c_client_data *cdata; int ret; client = private_microp_client; cdata = i2c_get_clientdata(client); if (cdata->microp_is_suspend) { pr_err("%s: abort, uP is going to suspend after #\n", __func__); return -EIO; } disable_irq(client->irq); ret = microp_i2c_auto_backlight_mode(client, 1); if (ret < 0) { pr_err("%s: set auto light sensor fail\n", __func__); enable_irq(client->irq); return ret; } cdata->auto_backlight_enabled = 1; /* TEMPORARY HACK: schedule a deferred light sensor read * to work around sensor manager race condition */ schedule_delayed_work(&cdata->ls_read_work, LS_READ_DELAY); schedule_work(&cdata->work.work); return 0; } static int lightsensor_disable(void) { /* update trigger data when done */ struct i2c_client *client; struct microp_i2c_client_data *cdata; int ret; client = private_microp_client; cdata = i2c_get_clientdata(client); if (cdata->microp_is_suspend) { pr_err("%s: abort, uP is going to suspend after #\n", __func__); return -EIO; } cancel_delayed_work(&cdata->ls_read_work); ret = microp_i2c_auto_backlight_mode(client, 0); if (ret < 0) pr_err("%s: disable auto light sensor fail\n", __func__); else cdata->auto_backlight_enabled = 0; return 0; } static int microp_lightsensor_read(uint16_t *adc_value, uint8_t *adc_level) { struct i2c_client *client; struct microp_i2c_client_data *cdata; uint8_t i; int ret; client = private_microp_client; cdata = i2c_get_clientdata(client); ret = microp_read_adc(MICROP_LSENSOR_ADC_CHAN, adc_value); if (ret != 0) return -1; if (*adc_value > 0x3FF) { pr_warning("%s: get wrong value: 0x%X\n", __func__, *adc_value); return -1; } else { if (!cdata->als_calibrating) { *adc_value = *adc_value * cdata->als_gadc / cdata->als_kadc; if (*adc_value > 0x3FF) *adc_value = 0x3FF; } *adc_level = ARRAY_SIZE(lsensor_adc_table) - 1; for (i = 0; i < ARRAY_SIZE(lsensor_adc_table); i++) { if (*adc_value <= lsensor_adc_table[i]) { *adc_level = i; break; } } pr_debug("%s: ADC value: 0x%X, level: %d #\n", __func__, *adc_value, *adc_level); } return 0; } static ssize_t microp_i2c_lightsensor_adc_show(struct device *dev, struct device_attribute *attr, char *buf) { uint8_t adc_level = 0; uint16_t adc_value = 0; int ret; ret = microp_lightsensor_read(&adc_value, &adc_level); ret = sprintf(buf, "ADC[0x%03X] => level %d\n", adc_value, adc_level); return ret; } static DEVICE_ATTR(ls_adc, 0644, microp_i2c_lightsensor_adc_show, NULL); static ssize_t microp_i2c_ls_auto_show(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client; uint8_t data[2] = {0, 0}; int ret; client = to_i2c_client(dev); i2c_read_block(client, MICROP_I2C_RCMD_SPI_BL_STATUS, data, 2); ret = sprintf(buf, "Light sensor Auto = %d, SPI enable = %d\n", data[0], data[1]); return ret; } static ssize_t microp_i2c_ls_auto_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client; struct microp_i2c_client_data *cdata; uint8_t enable = 0; int ls_auto; ls_auto = -1; sscanf(buf, "%d", &ls_auto); if (ls_auto != 0 && ls_auto != 1 && ls_auto != ALS_CALIBRATE_MODE) return -EINVAL; client = to_i2c_client(dev); cdata = i2c_get_clientdata(client); if (ls_auto) { enable = 1; cdata->als_calibrating = (ls_auto == ALS_CALIBRATE_MODE) ? 1 : 0; cdata->auto_backlight_enabled = 1; } else { enable = 0; cdata->als_calibrating = 0; cdata->auto_backlight_enabled = 0; } microp_i2c_auto_backlight_mode(client, enable); return count; } static DEVICE_ATTR(ls_auto, 0644, microp_i2c_ls_auto_show, microp_i2c_ls_auto_store); DEFINE_MUTEX(api_lock); static int lightsensor_opened; static int lightsensor_open(struct inode *inode, struct file *file) { int rc = 0; pr_debug("%s\n", __func__); mutex_lock(&api_lock); if (lightsensor_opened) { pr_err("%s: already opened\n", __func__); rc = -EBUSY; } lightsensor_opened = 1; mutex_unlock(&api_lock); return rc; } static int lightsensor_release(struct inode *inode, struct file *file) { pr_debug("%s\n", __func__); mutex_lock(&api_lock); lightsensor_opened = 0; mutex_unlock(&api_lock); return 0; } static long lightsensor_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int rc, val; struct i2c_client *client; struct microp_i2c_client_data *cdata; mutex_lock(&api_lock); client = private_microp_client; cdata = i2c_get_clientdata(client); pr_debug("%s cmd %d\n", __func__, _IOC_NR(cmd)); switch (cmd) { case LIGHTSENSOR_IOCTL_ENABLE: if (get_user(val, (unsigned long __user *)arg)) { rc = -EFAULT; break; } rc = val ? lightsensor_enable() : lightsensor_disable(); break; case LIGHTSENSOR_IOCTL_GET_ENABLED: val = cdata->auto_backlight_enabled; pr_debug("%s enabled %d\n", __func__, val); rc = put_user(val, (unsigned long __user *)arg); break; default: pr_err("%s: invalid cmd %d\n", __func__, _IOC_NR(cmd)); rc = -EINVAL; } mutex_unlock(&api_lock); return rc; } static struct file_operations lightsensor_fops = { .owner = THIS_MODULE, .open = lightsensor_open, .release = lightsensor_release, .unlocked_ioctl = lightsensor_ioctl }; struct miscdevice lightsensor_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "lightsensor", .fops = &lightsensor_fops }; /* * G-sensor */ static int microp_spi_enable(uint8_t on) { struct i2c_client *client; int ret; client = private_microp_client; ret = i2c_write_block(client, MICROP_I2C_WCMD_SPI_EN, &on, 1); if (ret < 0) { dev_err(&client->dev,"%s: i2c_write_block fail\n", __func__); return ret; } msleep(10); return ret; } static int gsensor_read_reg(uint8_t reg, uint8_t *data) { struct i2c_client *client; int ret; uint8_t tmp[2]; client = private_microp_client; ret = i2c_write_block(client, MICROP_I2C_WCMD_GSENSOR_REG_DATA_REQ, ®, 1); if (ret < 0) { dev_err(&client->dev,"%s: i2c_write_block fail\n", __func__); return ret; } msleep(10); ret = i2c_read_block(client, MICROP_I2C_RCMD_GSENSOR_REG_DATA, tmp, 2); if (ret < 0) { dev_err(&client->dev,"%s: i2c_read_block fail\n", __func__); return ret; } *data = tmp[1]; return ret; } static int gsensor_write_reg(uint8_t reg, uint8_t data) { struct i2c_client *client; int ret; uint8_t tmp[2]; client = private_microp_client; tmp[0] = reg; tmp[1] = data; ret = i2c_write_block(client, MICROP_I2C_WCMD_GSENSOR_REG, tmp, 2); if (ret < 0) { dev_err(&client->dev,"%s: i2c_write_block fail\n", __func__); return ret; } return ret; } static int gsensor_read_acceleration(short *buf) { struct i2c_client *client; int ret; uint8_t tmp[6]; struct microp_i2c_client_data *cdata; client = private_microp_client; cdata = i2c_get_clientdata(client); tmp[0] = 1; ret = i2c_write_block(client, MICROP_I2C_WCMD_GSENSOR_DATA_REQ, tmp, 1); if (ret < 0) { dev_err(&client->dev,"%s: i2c_write_block fail\n", __func__); return ret; } msleep(10); if (cdata->version <= 0x615) { /* * Note the data is a 10bit signed value from the chip. */ ret = i2c_read_block(client, MICROP_I2C_RCMD_GSENSOR_X_DATA, tmp, 2); if (ret < 0) { dev_err(&client->dev, "%s: i2c_read_block fail\n", __func__); return ret; } buf[0] = (short)(tmp[0] << 8 | tmp[1]); buf[0] >>= 6; ret = i2c_read_block(client, MICROP_I2C_RCMD_GSENSOR_Y_DATA, tmp, 2); if (ret < 0) { dev_err(&client->dev, "%s: i2c_read_block fail\n", __func__); return ret; } buf[1] = (short)(tmp[0] << 8 | tmp[1]); buf[1] >>= 6; ret = i2c_read_block(client, MICROP_I2C_RCMD_GSENSOR_Z_DATA, tmp, 2); if (ret < 0) { dev_err(&client->dev, "%s: i2c_read_block fail\n", __func__); return ret; } buf[2] = (short)(tmp[0] << 8 | tmp[1]); buf[2] >>= 6; } else { ret = i2c_read_block(client, MICROP_I2C_RCMD_GSENSOR_DATA, tmp, 6); if (ret < 0) { dev_err(&client->dev, "%s: i2c_read_block fail\n", __func__); return ret; } buf[0] = (short)(tmp[0] << 8 | tmp[1]); buf[0] >>= 6; buf[1] = (short)(tmp[2] << 8 | tmp[3]); buf[1] >>= 6; buf[2] = (short)(tmp[4] << 8 | tmp[5]); buf[2] >>= 6; } #ifdef DEBUG_BMA150 /* Log this to debugfs */ gsensor_log_status(ktime_get(), buf[0], buf[1], buf[2]); #endif return 1; } static int gsensor_init_hw(void) { uint8_t reg; int ret; pr_debug("%s\n", __func__); microp_spi_enable(1); ret = gsensor_read_reg(RANGE_BWIDTH_REG, ®); if (ret < 0 ) return -EIO; reg &= 0xe0; ret = gsensor_write_reg(RANGE_BWIDTH_REG, reg); if (ret < 0 ) return -EIO; ret = gsensor_read_reg(SMB150_CONF2_REG, ®); if (ret < 0 ) return -EIO; reg |= (1 << 3); ret = gsensor_write_reg(SMB150_CONF2_REG, reg); return ret; } static int bma150_set_mode(char mode) { uint8_t reg; int ret; pr_debug("%s mode = %d\n", __func__, mode); if (mode == BMA_MODE_NORMAL) microp_spi_enable(1); ret = gsensor_read_reg(SMB150_CTRL_REG, ®); if (ret < 0 ) return -EIO; reg = (reg & 0xfe) | mode; ret = gsensor_write_reg(SMB150_CTRL_REG, reg); if (mode == BMA_MODE_SLEEP) microp_spi_enable(0); return ret; } static int gsensor_read(uint8_t *data) { int ret; uint8_t reg = data[0]; ret = gsensor_read_reg(reg, &data[1]); pr_debug("%s reg = %x data = %x\n", __func__, reg, data[1]); return ret; } static int gsensor_write(uint8_t *data) { int ret; uint8_t reg = data[0]; pr_debug("%s reg = %x data = %x\n", __func__, reg, data[1]); ret = gsensor_write_reg(reg, data[1]); return ret; } static int bma150_open(struct inode *inode, struct file *file) { pr_debug("%s\n", __func__); return nonseekable_open(inode, file); } static int bma150_release(struct inode *inode, struct file *file) { return 0; } static int bma150_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; char rwbuf[8]; int ret = -1; short buf[8], temp; switch (cmd) { case BMA_IOCTL_READ: case BMA_IOCTL_WRITE: case BMA_IOCTL_SET_MODE: if (copy_from_user(&rwbuf, argp, sizeof(rwbuf))) return -EFAULT; break; case BMA_IOCTL_READ_ACCELERATION: if (copy_from_user(&buf, argp, sizeof(buf))) return -EFAULT; break; default: break; } switch (cmd) { case BMA_IOCTL_INIT: ret = gsensor_init_hw(); if (ret < 0) return ret; break; case BMA_IOCTL_READ: if (rwbuf[0] < 1) return -EINVAL; ret = gsensor_read(rwbuf); if (ret < 0) return ret; break; case BMA_IOCTL_WRITE: if (rwbuf[0] < 2) return -EINVAL; ret = gsensor_write(rwbuf); if (ret < 0) return ret; break; case BMA_IOCTL_READ_ACCELERATION: ret = gsensor_read_acceleration(&buf[0]); if (ret < 0) return ret; break; case BMA_IOCTL_SET_MODE: bma150_set_mode(rwbuf[0]); break; case BMA_IOCTL_GET_INT: temp = 0; break; default: return -ENOTTY; } switch (cmd) { case BMA_IOCTL_READ: if (copy_to_user(argp, &rwbuf, sizeof(rwbuf))) return -EFAULT; break; case BMA_IOCTL_READ_ACCELERATION: if (copy_to_user(argp, &buf, sizeof(buf))) return -EFAULT; break; case BMA_IOCTL_GET_INT: if (copy_to_user(argp, &temp, sizeof(temp))) return -EFAULT; break; default: break; } return 0; } static struct file_operations bma_fops = { .owner = THIS_MODULE, .open = bma150_open, .release = bma150_release, .ioctl = bma150_ioctl, }; static struct miscdevice spi_bma_device = { .minor = MISC_DYNAMIC_MINOR, .name = BMA150_G_SENSOR_NAME, .fops = &bma_fops, }; /* * Interrupt */ static irqreturn_t microp_i2c_intr_irq_handler(int irq, void *dev_id) { struct i2c_client *client; struct microp_i2c_client_data *cdata; client = to_i2c_client(dev_id); cdata = i2c_get_clientdata(client); dev_dbg(&client->dev, "intr_irq_handler\n"); disable_irq_nosync(client->irq); schedule_work(&cdata->work.work); return IRQ_HANDLED; } static void microp_i2c_intr_work_func(struct work_struct *work) { struct microp_i2c_work *up_work; struct i2c_client *client; struct microp_i2c_client_data *cdata; uint8_t data[3], adc_level; uint16_t intr_status = 0, adc_value, gpi_status = 0; int keycode = 0, ret = 0; up_work = container_of(work, struct microp_i2c_work, work); client = up_work->client; cdata = i2c_get_clientdata(client); ret = i2c_read_block(client, MICROP_I2C_RCMD_GPI_INT_STATUS, data, 2); if (ret < 0) { dev_err(&client->dev, "%s: read interrupt status fail\n", __func__); } intr_status = data[0]<<8 | data[1]; ret = i2c_write_block(client, MICROP_I2C_WCMD_GPI_INT_STATUS_CLR, data, 2); if (ret < 0) { dev_err(&client->dev, "%s: clear interrupt status fail\n", __func__); } pr_debug("intr_status=0x%02x\n", intr_status); if ((intr_status & IRQ_LSENSOR) || cdata->force_light_sensor_read) { ret = microp_lightsensor_read(&adc_value, &adc_level); if (cdata->force_light_sensor_read) { /* report an invalid value first to ensure we trigger an event * when adc_level is zero. */ input_report_abs(cdata->ls_input_dev, ABS_MISC, -1); input_sync(cdata->ls_input_dev); cdata->force_light_sensor_read = 0; } input_report_abs(cdata->ls_input_dev, ABS_MISC, (int)adc_level); input_sync(cdata->ls_input_dev); } if (intr_status & IRQ_SDCARD) { microp_read_gpi_status(client, &gpi_status); mahimahi_microp_sdslot_update_status(gpi_status); } if (intr_status & IRQ_HEADSETIN) { cdata->is_hpin_pin_stable = 0; wake_lock_timeout(µp_i2c_wakelock, 3*HZ); if (!cdata->headset_is_in) schedule_delayed_work(&cdata->hpin_debounce_work, msecs_to_jiffies(500)); else schedule_delayed_work(&cdata->hpin_debounce_work, msecs_to_jiffies(300)); } if (intr_status & IRQ_REMOTEKEY) { if ((get_remote_keycode(&keycode) == 0) && (cdata->is_hpin_pin_stable)) { htc_35mm_key_event(keycode, &cdata->is_hpin_pin_stable); } } enable_irq(client->irq); } static void ls_read_do_work(struct work_struct *work) { struct i2c_client *client = private_microp_client; struct microp_i2c_client_data *cdata = i2c_get_clientdata(client); /* force a light sensor reading */ disable_irq(client->irq); cdata->force_light_sensor_read = 1; schedule_work(&cdata->work.work); } static int microp_function_initialize(struct i2c_client *client) { struct microp_i2c_client_data *cdata; uint8_t data[20]; uint16_t stat, interrupts = 0; int i; int ret; struct led_classdev *led_cdev; cdata = i2c_get_clientdata(client); /* Light Sensor */ if (als_kadc >> 16 == ALS_CALIBRATED) cdata->als_kadc = als_kadc & 0xFFFF; else { cdata->als_kadc = 0; pr_info("%s: no ALS calibrated\n", __func__); } if (cdata->als_kadc && golden_adc) { cdata->als_kadc = (cdata->als_kadc > 0 && cdata->als_kadc < 0x400) ? cdata->als_kadc : golden_adc; cdata->als_gadc = (golden_adc > 0) ? golden_adc : cdata->als_kadc; } else { cdata->als_kadc = 1; cdata->als_gadc = 1; } pr_info("%s: als_kadc=0x%x, als_gadc=0x%x\n", __func__, cdata->als_kadc, cdata->als_gadc); for (i = 0; i < 10; i++) { data[i] = (uint8_t)(lsensor_adc_table[i] * cdata->als_kadc / cdata->als_gadc >> 8); data[i + 10] = (uint8_t)(lsensor_adc_table[i] * cdata->als_kadc / cdata->als_gadc); } ret = i2c_write_block(client, MICROP_I2C_WCMD_ADC_TABLE, data, 20); if (ret) goto exit; ret = gpio_request(MAHIMAHI_GPIO_LS_EN_N, "microp_i2c"); if (ret < 0) { dev_err(&client->dev, "failed on request gpio ls_on\n"); goto exit; } ret = gpio_direction_output(MAHIMAHI_GPIO_LS_EN_N, 0); if (ret < 0) { dev_err(&client->dev, "failed on gpio_direction_output" "ls_on\n"); goto err_gpio_ls; } cdata->light_sensor_enabled = 1; /* Headset */ for (i = 0; i < 6; i++) { data[i] = (uint8_t)(remote_key_adc_table[i] >> 8); data[i + 6] = (uint8_t)(remote_key_adc_table[i]); } ret = i2c_write_block(client, MICROP_I2C_WCMD_REMOTEKEY_TABLE, data, 12); if (ret) goto exit; INIT_DELAYED_WORK( &cdata->hpin_debounce_work, hpin_debounce_do_work); INIT_DELAYED_WORK( &cdata->ls_read_work, ls_read_do_work); /* SD Card */ interrupts |= IRQ_SDCARD; /* set LED initial state */ for (i = 0; i < BLUE_LED; i++) { led_cdev = &cdata->leds[i].ldev; microp_i2c_write_led_mode(client, led_cdev, 0, 0xffff); } /* enable the interrupts */ ret = microp_interrupt_enable(client, interrupts); if (ret < 0) { dev_err(&client->dev, "%s: failed to enable gpi irqs\n", __func__); goto err_irq_en; } microp_read_gpi_status(client, &stat); mahimahi_microp_sdslot_update_status(stat); return 0; err_irq_en: err_gpio_ls: gpio_free(MAHIMAHI_GPIO_LS_EN_N); exit: return ret; } #ifdef CONFIG_HAS_EARLYSUSPEND void microp_early_suspend(struct early_suspend *h) { struct microp_i2c_client_data *cdata; struct i2c_client *client = private_microp_client; int ret; if (!client) { pr_err("%s: dataset: client is empty\n", __func__); return; } cdata = i2c_get_clientdata(client); cdata->microp_is_suspend = 1; disable_irq(client->irq); ret = cancel_work_sync(&cdata->work.work); if (ret != 0) { enable_irq(client->irq); } if (cdata->auto_backlight_enabled) microp_i2c_auto_backlight_mode(client, 0); if (cdata->light_sensor_enabled == 1) { gpio_set_value(MAHIMAHI_GPIO_LS_EN_N, 1); cdata->light_sensor_enabled = 0; } } void microp_early_resume(struct early_suspend *h) { struct i2c_client *client = private_microp_client; struct microp_i2c_client_data *cdata; if (!client) { pr_err("%s: dataset: client is empty\n", __func__); return; } cdata = i2c_get_clientdata(client); gpio_set_value(MAHIMAHI_GPIO_LS_EN_N, 0); cdata->light_sensor_enabled = 1; if (cdata->auto_backlight_enabled) microp_i2c_auto_backlight_mode(client, 1); cdata->microp_is_suspend = 0; enable_irq(client->irq); } #endif static int microp_i2c_suspend(struct i2c_client *client, pm_message_t mesg) { return 0; } static int microp_i2c_resume(struct i2c_client *client) { return 0; } static struct { const char *name; void (*led_set_work)(struct work_struct *); struct device_attribute **attrs; int attr_cnt; } microp_leds[] = { [GREEN_LED] = { .name = "green", .led_set_work = microp_led_brightness_set_work, .attrs = green_amber_attrs, .attr_cnt = ARRAY_SIZE(green_amber_attrs) }, [AMBER_LED] = { .name = "amber", .led_set_work = microp_led_brightness_set_work, .attrs = green_amber_attrs, .attr_cnt = ARRAY_SIZE(green_amber_attrs) }, [RED_LED] = { .name = "red", .led_set_work = microp_led_brightness_set_work, .attrs = green_amber_attrs, .attr_cnt = ARRAY_SIZE(green_amber_attrs) }, [BLUE_LED] = { .name = "blue", .led_set_work = microp_led_brightness_set_work, .attrs = green_amber_attrs, .attr_cnt = ARRAY_SIZE(green_amber_attrs) }, [JOGBALL_LED] = { .name = "jogball-backlight", .led_set_work = microp_led_jogball_brightness_set_work, .attrs = jogball_attrs, .attr_cnt = ARRAY_SIZE(jogball_attrs) }, [BUTTONS_LED] = { .name = "button-backlight", .led_set_work = microp_led_buttons_brightness_set_work }, }; static int microp_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct microp_i2c_client_data *cdata; uint8_t data[6]; int ret; int i; int j; private_microp_client = client; ret = i2c_read_block(client, MICROP_I2C_RCMD_VERSION, data, 2); if (ret || !(data[0] && data[1])) { ret = -ENODEV; dev_err(&client->dev, "failed on get microp version\n"); goto err_exit; } dev_info(&client->dev, "microp version [%02X][%02X]\n", data[0], data[1]); ret = gpio_request(MAHIMAHI_GPIO_UP_RESET_N, "microp_i2c_wm"); if (ret < 0) { dev_err(&client->dev, "failed on request gpio reset\n"); goto err_exit; } ret = gpio_direction_output(MAHIMAHI_GPIO_UP_RESET_N, 1); if (ret < 0) { dev_err(&client->dev, "failed on gpio_direction_output reset\n"); goto err_gpio_reset; } cdata = kzalloc(sizeof(struct microp_i2c_client_data), GFP_KERNEL); if (!cdata) { ret = -ENOMEM; dev_err(&client->dev, "failed on allocat cdata\n"); goto err_cdata; } i2c_set_clientdata(client, cdata); cdata->version = data[0] << 8 | data[1]; cdata->microp_is_suspend = 0; cdata->auto_backlight_enabled = 0; cdata->light_sensor_enabled = 0; wake_lock_init(µp_i2c_wakelock, WAKE_LOCK_SUSPEND, "microp_i2c_present"); /* Light Sensor */ ret = device_create_file(&client->dev, &dev_attr_ls_adc); ret = device_create_file(&client->dev, &dev_attr_ls_auto); cdata->ls_input_dev = input_allocate_device(); if (!cdata->ls_input_dev) { pr_err("%s: could not allocate input device\n", __func__); ret = -ENOMEM; goto err_request_input_dev; } cdata->ls_input_dev->name = "lightsensor-level"; set_bit(EV_ABS, cdata->ls_input_dev->evbit); input_set_abs_params(cdata->ls_input_dev, ABS_MISC, 0, 9, 0, 0); ret = input_register_device(cdata->ls_input_dev); if (ret < 0) { dev_err(&client->dev, "%s: can not register input device\n", __func__); goto err_register_input_dev; } ret = misc_register(&lightsensor_misc); if (ret < 0) { dev_err(&client->dev, "%s: can not register misc device\n", __func__); goto err_register_misc_register; } /* LEDs */ ret = 0; for (i = 0; i < ARRAY_SIZE(microp_leds) && !ret; ++i) { struct microp_led_data *ldata = &cdata->leds[i]; ldata->type = i; ldata->ldev.name = microp_leds[i].name; ldata->ldev.brightness_set = microp_brightness_set; mutex_init(&ldata->led_data_mutex); INIT_WORK(&ldata->brightness_work, microp_leds[i].led_set_work); spin_lock_init(&ldata->brightness_lock); ret = led_classdev_register(&client->dev, &ldata->ldev); if (ret) { ldata->ldev.name = NULL; break; } for (j = 0; j < microp_leds[i].attr_cnt && !ret; ++j) ret = device_create_file(ldata->ldev.dev, microp_leds[i].attrs[j]); } if (ret) { dev_err(&client->dev, "failed to add leds\n"); goto err_add_leds; } /* Headset */ cdata->headset_is_in = 0; cdata->is_hpin_pin_stable = 1; platform_device_register(&mahimahi_h35mm); ret = device_create_file(&client->dev, &dev_attr_key_adc); /* G-sensor */ ret = misc_register(&spi_bma_device); if (ret < 0) { pr_err("%s: init bma150 misc_register fail\n", __func__); goto err_register_bma150; } #ifdef DEBUG_BMA150 debugfs_create_file("gsensor_log", 0444, NULL, NULL, &gsensor_log_fops); #endif /* Setup IRQ handler */ INIT_WORK(&cdata->work.work, microp_i2c_intr_work_func); cdata->work.client = client; ret = request_irq(client->irq, microp_i2c_intr_irq_handler, IRQF_TRIGGER_LOW, "microp_interrupt", &client->dev); if (ret) { dev_err(&client->dev, "request_irq failed\n"); goto err_intr; } ret = set_irq_wake(client->irq, 1); if (ret) { dev_err(&client->dev, "set_irq_wake failed\n"); goto err_intr; } #ifdef CONFIG_HAS_EARLYSUSPEND if (cdata->enable_early_suspend) { cdata->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1; cdata->early_suspend.suspend = microp_early_suspend; cdata->early_suspend.resume = microp_early_resume; register_early_suspend(&cdata->early_suspend); } #endif ret = microp_function_initialize(client); if (ret) { dev_err(&client->dev, "failed on microp function initialize\n"); goto err_fun_init; } return 0; err_fun_init: err_intr: misc_deregister(&spi_bma_device); err_register_bma150: platform_device_unregister(&mahimahi_h35mm); device_remove_file(&client->dev, &dev_attr_key_adc); err_add_leds: for (i = 0; i < ARRAY_SIZE(microp_leds); ++i) { if (!cdata->leds[i].ldev.name) continue; led_classdev_unregister(&cdata->leds[i].ldev); for (j = 0; j < microp_leds[i].attr_cnt; ++j) device_remove_file(cdata->leds[i].ldev.dev, microp_leds[i].attrs[j]); } misc_deregister(&lightsensor_misc); err_register_misc_register: input_unregister_device(cdata->ls_input_dev); err_register_input_dev: input_free_device(cdata->ls_input_dev); err_request_input_dev: wake_lock_destroy(µp_i2c_wakelock); device_remove_file(&client->dev, &dev_attr_ls_adc); device_remove_file(&client->dev, &dev_attr_ls_auto); kfree(cdata); i2c_set_clientdata(client, NULL); err_cdata: err_gpio_reset: gpio_free(MAHIMAHI_GPIO_UP_RESET_N); err_exit: return ret; } static int __devexit microp_i2c_remove(struct i2c_client *client) { struct microp_i2c_client_data *cdata; int i; int j; cdata = i2c_get_clientdata(client); for (i = 0; i < ARRAY_SIZE(microp_leds); ++i) { struct microp_led_data *ldata = &cdata->leds[i]; cancel_work_sync(&ldata->brightness_work); } #ifdef CONFIG_HAS_EARLYSUSPEND if (cdata->enable_early_suspend) { unregister_early_suspend(&cdata->early_suspend); } #endif for (i = 0; i < ARRAY_SIZE(microp_leds); ++i) { if (!cdata->leds[i].ldev.name) continue; led_classdev_unregister(&cdata->leds[i].ldev); for (j = 0; j < microp_leds[i].attr_cnt; ++j) device_remove_file(cdata->leds[i].ldev.dev, microp_leds[i].attrs[j]); } free_irq(client->irq, &client->dev); gpio_free(MAHIMAHI_GPIO_UP_RESET_N); misc_deregister(&lightsensor_misc); input_unregister_device(cdata->ls_input_dev); input_free_device(cdata->ls_input_dev); device_remove_file(&client->dev, &dev_attr_ls_adc); device_remove_file(&client->dev, &dev_attr_key_adc); device_remove_file(&client->dev, &dev_attr_ls_auto); platform_device_unregister(&mahimahi_h35mm); /* G-sensor */ misc_deregister(&spi_bma_device); kfree(cdata); return 0; } #define ATAG_ALS 0x5441001b static int __init parse_tag_als_kadc(const struct tag *tags) { int found = 0; struct tag *t = (struct tag *)tags; for (; t->hdr.size; t = tag_next(t)) { if (t->hdr.tag == ATAG_ALS) { found = 1; break; } } if (found) als_kadc = t->u.revision.rev; pr_debug("%s: als_kadc = 0x%x\n", __func__, als_kadc); return 0; } __tagtable(ATAG_ALS, parse_tag_als_kadc); static const struct i2c_device_id microp_i2c_id[] = { { MICROP_I2C_NAME, 0 }, { } }; static struct i2c_driver microp_i2c_driver = { .driver = { .name = MICROP_I2C_NAME, }, .id_table = microp_i2c_id, .probe = microp_i2c_probe, .suspend = microp_i2c_suspend, .resume = microp_i2c_resume, .remove = __devexit_p(microp_i2c_remove), }; static int __init microp_i2c_init(void) { return i2c_add_driver(µp_i2c_driver); } static void __exit microp_i2c_exit(void) { i2c_del_driver(µp_i2c_driver); } module_init(microp_i2c_init); module_exit(microp_i2c_exit); MODULE_AUTHOR("Eric Olsen "); MODULE_DESCRIPTION("MicroP I2C driver"); MODULE_LICENSE("GPL");