/* * Copyright (c) 2004-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #undef pr_fmt #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include "core.h" #include "debug.h" #include "htc-ops.h" #include "epping.h" /* * tid - tid_mux0..tid_mux3 * aid - tid_mux4..tid_mux7 */ #define ATH6KL_TID_MASK 0xf #define ATH6KL_AID_SHIFT 4 extern unsigned int debug_quirks; static void ath6kl_mcc_event_ctrl_timer_handler(unsigned long ptr); /* Dont define if IPA conf. Manager is not present */ #ifdef CONFIG_ATH6KL_BAM2BAM #define ATH6KL_IPA_HOLB_TIMER_VAL 0x7f #define ATH6KL_BAM2BAM_IPV4_NAME_EXT "-ipv4" #define ATH6KL_BAM2BAM_IPV6_NAME_EXT "-ipv6" u32 un_ordered = 0; u32 ordered = 0; u32 flt_hdl_ipv6=0; u32 flt_hdl_ipv4=0; extern int ath6kl_usb_data_send_to_bam_pipe(int pipe_no, struct sk_buff *skb); /* Strurue decl for SYSBAM pipes */ static struct usb_sysbam_pipe { u32 clnt_hdl; struct ipa_sys_connect_params ipa_params; } sysbam_pipe[MAX_SYSBAM_PIPE]; /* SYS BAM Pipe, no connection index for this, this pipe is created between the wlan driver and ipa driver for sending the AMPDU re-ordered packets to IPA driver. */ static struct sysbam_inf { u8 idx; /* not used in sysbam pipe */ enum ipa_client_type client; }sysbam_info[MAX_SYSBAM_PIPE] = { {0, IPA_CLIENT_A5_WLAN_AMPDU_PROD} }; /* Enable / Disable SW_ROUTING based on MCC flag */ int ath6kl_ipa_enable_host_route_config (struct ath6kl_vif *vif, bool enable) { /* * Invoke appropriate IPA-API to enable or disable sw routing between * IPA System BAM to Host */ int status = 0; struct ath6kl *ar = vif->ar; struct ath6kl_vif *vif1; spin_lock_bh(&ar->list_lock); list_for_each_entry(vif1, &ar->vif_list, list) { spin_unlock_bh(&ar->list_lock); if (enable == true) { /* Enable software routing in IPA */ ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "MCC: IPA_EN SW ROUTING\n"); status = ath6kl_send_msg_ipa(vif1, SW_ROUTING_ENABLE, vif1->ndev->dev_addr); if (status) ath6kl_err("Failed to send MCC enable msg to" " IPA, status: %d\n", status); } else { /* Disable software routing in IPA */ ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "MCC: IPA_DIS SW ROUTING\n"); status = ath6kl_send_msg_ipa(vif1, SW_ROUTING_DISABLE, vif1->ndev->dev_addr); if (status) ath6kl_err("Failed to send MCC disable msg to" " IPA, status: %d\n", status); } spin_lock_bh(&ar->list_lock); } spin_unlock_bh(&ar->list_lock); return status; } /* Add the filter rule, after creating the BAM pipe, it is called by the bamcm file , whilte creating the bam pipe*/ int ath6kl_ipa_add_flt_rule(struct ath6kl *ar, enum ipa_client_type client) { struct ipa_ioc_get_rt_tbl rt_lookup; struct ipa_ioc_add_flt_rule *flt = NULL; int ret = 0; if (client != IPA_CLIENT_HSIC1_PROD) return -EINVAL; flt_hdl_ipv4 = 0; flt_hdl_ipv6 = 0; ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: Creating flr rule for(HSIC1_PROD) client %d\n", client); flt = (struct ipa_ioc_add_flt_rule *) kzalloc(sizeof(struct ipa_ioc_add_flt_rule) + sizeof(struct ipa_flt_rule_add), GFP_KERNEL); if (flt == NULL) { ath6kl_err("IPA-CM: Failed to create filter " "rule for(HSIC1_PROD) client %d\n", client); return -ENOMEM; } flt->commit = 1; flt->ip = IPA_IP_v4; flt->ep = client; flt->global = 0; flt->num_rules = 1; /* Setting the Filter rule for Exception Packet */ flt->rules[0].rule.action = IPA_PASS_TO_EXCEPTION; flt->rules[0].at_rear = 0; memset(&rt_lookup, 0, sizeof(rt_lookup)); rt_lookup.ip = IPA_IP_v4; strlcpy(rt_lookup.name, IPA_DFLT_RT_TBL_NAME, sizeof(rt_lookup.name)); ret = ipa_get_rt_tbl(&rt_lookup); if (ret) { ath6kl_err("IPA-CM: Geting RT table failed for IPV4 :" "client : %d, ret: %d\n", client, ret); goto end; } flt->rules[0].rule.rt_tbl_hdl = rt_lookup.hdl; /* 12th Byte, d0 bit is set for exception , * meta data offset is 11 */ flt->rules[0].rule.attrib.meta_data = 0x01000000; flt->rules[0].rule.attrib.meta_data_mask = 0x01000000; flt->rules[0].rule.attrib.attrib_mask = IPA_FLT_META_DATA; ret = ipa_add_flt_rule(flt); if (ret || flt->rules[0].status != 0) { ath6kl_err("IPA-CM: Error in adding Flt for IPV4: %d " "ret: %d, status: %d\n", client, ret, flt->rules[0].status); goto end; } /* Remember the handle, needed while clean up */ flt_hdl_ipv4 = flt->rules[0].flt_rule_hdl; ret = ipa_commit_flt(IPA_IP_v4); if (ret) goto end; if (ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPV6)) { flt->ip = IPA_IP_v6; memset(&rt_lookup, 0, sizeof(rt_lookup)); rt_lookup.ip = IPA_IP_v6; strlcpy(rt_lookup.name, IPA_DFLT_RT_TBL_NAME, sizeof(rt_lookup.name)); ret = ipa_get_rt_tbl(&rt_lookup); if (ret) { ath6kl_err("IPA-CM: Get RT table failed for " "IPV6: client : %d, %d\n", client, ret); goto end; } flt->rules[0].rule.rt_tbl_hdl = rt_lookup.hdl; ret = ipa_add_flt_rule(flt); if (ret || flt->rules[0].status < 0) { ath6kl_err("IPA-CM: Error in adding Flt for IPV6" " client: %d ret: %d, status: %d\n", client, ret, flt->rules[0].status); goto end; } /* Remember the handle, needed while clean up */ flt_hdl_ipv6 = flt->rules[0].flt_rule_hdl; ret = ipa_commit_flt(IPA_IP_v6); if (ret) goto end; } end: kfree(flt); return ret; } EXPORT_SYMBOL(ath6kl_ipa_add_flt_rule); #define ATH6KL_IPA_IP_MAX_TX_PROP 8 #define ATH6KL_IPA_TOS_MASK 0xE0 static struct { uint8_t tos_value; enum ipa_client_type dst_pipe; } tx_prop_map [] = { /* BK */ {1, IPA_CLIENT_HSIC2_CONS}, {2, IPA_CLIENT_HSIC2_CONS}, /* BE */ {0, IPA_CLIENT_HSIC1_CONS}, {3, IPA_CLIENT_HSIC1_CONS}, /* VI */ {4, IPA_CLIENT_HSIC3_CONS}, {5, IPA_CLIENT_HSIC3_CONS}, /* VO */ {6, IPA_CLIENT_HSIC4_CONS}, {7, IPA_CLIENT_HSIC4_CONS}, }; int ath6kl_ipa_register_interface(struct ath6kl *ar, u8 sta_ap, const char *name, char* hdr_name_ip) { struct ipa_tx_intf tx_intf; struct ipa_rx_intf rx_intf; struct ipa_ioc_tx_intf_prop *tx_prop = NULL; struct ipa_ioc_rx_intf_prop *rx_prop = NULL; char ipv4_hdr_name[IPA_RESOURCE_NAME_MAX]; char ipv6_hdr_name[IPA_RESOURCE_NAME_MAX]; int i, j; int ret = 0; /* Allocate TX properties, 1 each for IPv4 & IPv6 */ tx_prop = kzalloc(sizeof(struct ipa_ioc_tx_intf_prop) * ATH6KL_IPA_IP_MAX_TX_PROP * 2, GFP_KERNEL); if (tx_prop == NULL) { ath6kl_err("Failed to allocate memory for TX properties\n"); goto end; } /* Allocate RX properties, 1 each for IPv4 & IPv6 */ rx_prop = kzalloc(sizeof(struct ipa_ioc_rx_intf_prop) * 2, GFP_KERNEL); if (rx_prop == NULL) { ath6kl_err("Failed to allocate memory for RX properties\n"); goto end; } strlcpy(ipv4_hdr_name, hdr_name_ip, sizeof(ipv4_hdr_name)); strlcat(ipv4_hdr_name, ATH6KL_BAM2BAM_IPV4_NAME_EXT, sizeof(ipv4_hdr_name)); strlcpy(ipv6_hdr_name, hdr_name_ip, sizeof(ipv6_hdr_name)); strlcat(ipv6_hdr_name, ATH6KL_BAM2BAM_IPV6_NAME_EXT, sizeof(ipv6_hdr_name)); memset(&tx_intf, 0, sizeof(tx_intf)); memset(&rx_intf, 0, sizeof(rx_intf)); /* TOS value: 1, 2 - > Maps to BK pipe [HSIC2_CONS] TOS value: 0, 3 - > Maps to BE pipe [HSIC1_CONS] TOS value: 4, 5 - > Maps to VI pipe [HSIC3_CONS] TOS Value: 6, 7 - > Maps to VO pipe [HSIC4_CONS] */ /* IP-TOS - 8bits : DSCP(6-bits) ECN(2-bits) : DSCP - P2 P1 P0 X X X where (P2 P1 P0) form 802.1D So shifting tos_value by 5 bits before passing to IPA. Also IPA required mask to be set for 3 MSB bits. */ for (i = 0; i < ATH6KL_IPA_IP_MAX_TX_PROP; i++) { tx_prop[i].ip = IPA_IP_v4; tx_prop[i].attrib.attrib_mask = IPA_FLT_TOS_MASKED; tx_prop[i].attrib.tos_value = tx_prop_map[i].tos_value << 5; tx_prop[i].attrib.tos_mask = ATH6KL_IPA_TOS_MASK; tx_prop[i].dst_pipe = tx_prop_map[i].dst_pipe; strlcpy(tx_prop[i].hdr_name, ipv4_hdr_name, IPA_RESOURCE_NAME_MAX); tx_intf.num_props++; /* Dont update if IPV6 is not enabled */ if (!ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPV6)) continue; j = i + ATH6KL_IPA_IP_MAX_TX_PROP; tx_prop[j].ip = IPA_IP_v6; tx_prop[j].attrib.attrib_mask = IPA_FLT_TOS_MASKED; tx_prop[j].attrib.tos_value = tx_prop_map[i].tos_value << 5; tx_prop[j].attrib.tos_mask = ATH6KL_IPA_TOS_MASK; tx_prop[j].dst_pipe = tx_prop_map[i].dst_pipe; strlcpy(tx_prop[j].hdr_name, ipv6_hdr_name, IPA_RESOURCE_NAME_MAX); tx_intf.num_props++; } /* Enable this for switching between WLAN or WAN */ rx_prop[0].ip = IPA_IP_v4; rx_prop[0].attrib.attrib_mask = IPA_FLT_META_DATA; /* 12th Byte, d2 bit is set for wlan or wan interface*/ if(sta_ap == 1) /* Means AP mode */ rx_prop[0].attrib.meta_data = 0x04000000; else rx_prop[0].attrib.meta_data = 0x00000000; rx_prop[0].attrib.meta_data_mask = 0x04000000; rx_prop[0].src_pipe = IPA_CLIENT_HSIC1_PROD; rx_intf.num_props++; if (ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPV6)) { /* Enable this for switching between WLAN or WAN */ rx_prop[1].ip = IPA_IP_v6; rx_prop[1].attrib.attrib_mask = IPA_FLT_META_DATA; /* 12th Byte, d2 bit is set for wlan or wan interface*/ if(sta_ap == 1) /* Means AP mode */ rx_prop[1].attrib.meta_data = 0x04000000; else rx_prop[1].attrib.meta_data = 0x00000000; rx_prop[1].attrib.meta_data_mask = 0x04000000; rx_prop[1].src_pipe = IPA_CLIENT_HSIC1_PROD; rx_intf.num_props++; } /* If Rx is SW path, then no need to set Rx properties */ if (ath6kl_debug_quirks(ar, ATH6KL_MODULE_BAM_RX_SW_PATH)) rx_intf.num_props = 0; tx_intf.prop = tx_prop; rx_intf.prop = rx_prop; /* Call the ipa api to register interface */ ret = ipa_register_intf(name, &tx_intf, &rx_intf); end: kfree(tx_prop); kfree(rx_prop); return ret; } EXPORT_SYMBOL(ath6kl_ipa_register_interface); /* @brief * add the specified headers to SW and optionally commit them to IPA HW * @return * 0 on success, * error on failure */ int ath6kl_ipa_add_header_info(struct ath6kl *ar, u8 ap_sta, u8 device_id, char* interface_name, u8 *mac_addr) { struct ipa_ioc_add_hdr *ipahdr = NULL; int ret; uint8_t hdr[ATH6KL_IPA_WLAN_HDR_LENGTH + 1]={ /* HTC Header - 6 bytes */ 0x00, 0x00, /* Reserved */ /* length filled by IPA, after adding 32 with IP Payload * length 32 will be set while intializing the hdr */ 0x00, 0x00, /* Reserved */ 0x00, 0x00, /* WMI header - 6 bytes*/ 0x00, 0x00, 0x00, 0x00, 0x00, /* D0,D1 -> Device ID */ 0x00, /* 802.3 header - 14 bytes*/ /* Des. MAC to be filled by IPA */ 0x00,0x03,0x7f,0xaa,0xbb,0xcc, /* Src. MAC to be filled by IPA */ 0x00,0x03,0x7f,0xdd,0xee,0xff, 0x00,0x00, /* length can be zero */ /* LLC SNAP header - 8 bytes */ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x08, 0x00 /* type value(2 bytes) ,filled by wlan */ /* 0x0800 - IPV4, 0x86dd - IPV6 */ }; if(interface_name == NULL) { ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: Interface name is null and not defined\n"); return -EINVAL; } /* dynamically allocate the memory to add the hdrs */ ipahdr = (struct ipa_ioc_add_hdr *) kzalloc(sizeof(struct ipa_ioc_add_hdr) + sizeof(struct ipa_hdr_add), GFP_KERNEL); if (ipahdr == NULL) { ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: Failed while creating hdr for interface %s\n", interface_name); return -ENOMEM; } ipahdr->commit = 0; ipahdr->num_hdrs = 1; /* Set the Source MAC */ memcpy (&hdr[12+6], mac_addr, 6); /* Check the interface is AP OR STA mode, and set the Device ID */ hdr[6+4] |= (device_id & 0x3); strcpy(ipahdr->hdr[0].name,interface_name); /* Actual headers to be inserted */ memcpy(ipahdr->hdr[0].hdr, hdr, ATH6KL_IPA_WLAN_HDR_LENGTH); ipahdr->hdr[0].hdr_len = ATH6KL_IPA_WLAN_HDR_LENGTH; ipahdr->hdr[0].is_partial = ATH6KL_IPA_WLAN_HDR_PARTIAL; ipahdr->hdr[0].hdr_hdl = 0; /* output param, no need to fill */ /* Call the ipa api to configure ep */ strlcpy(ipahdr->hdr[0].name, interface_name, sizeof(ipahdr->hdr[0].name)); strlcat(ipahdr->hdr[0].name, ATH6KL_BAM2BAM_IPV4_NAME_EXT, sizeof(ipahdr->hdr[0].name)); ret = ipa_add_hdr(ipahdr); if(ret) { ath6kl_err("IPA-CM: Failed adding IPv4 hdr for interface %s," " ret: %d\n", interface_name, ret); goto end; } ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: IPA Handle for header: %s : %x\n", ipahdr->hdr[0].name, ipahdr->hdr[0].hdr_hdl); if (ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPV6)) { strlcpy(ipahdr->hdr[0].name, interface_name, sizeof(ipahdr->hdr[0].name)); strlcat(ipahdr->hdr[0].name, ATH6KL_BAM2BAM_IPV6_NAME_EXT, sizeof(ipahdr->hdr[0].name)); /* Set the type to IPV6 in the header*/ /* 0x0800 - IPV4, 0x86dd - IPV6 */ ipahdr->hdr[0].hdr[32] = 0x86; ipahdr->hdr[0].hdr[33] = 0xdd; ret = ipa_add_hdr(ipahdr); if(ret) { ath6kl_err("IPA-CM: Failed adding IPv6 hdr for" " interface %s, ret: %d\n", interface_name, ret); goto end; } ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA Handle for header: %s : %x\n", ipahdr->hdr[0].name, ipahdr->hdr[0].hdr_hdl); } /* Configure the TX and RX pipes filter rules */ ret = ath6kl_ipa_register_interface(ar, ap_sta, interface_name, interface_name); if(ret) { ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: Failed registering the interface for :%s," " ret: %d\n", interface_name, ret); } end: kfree(ipahdr); return ret; } EXPORT_SYMBOL(ath6kl_ipa_add_header_info); int ath6kl_ipa_put_header_hdl(char *hdr_name, uint32_t *hdl) { int status; /* Put and release hdr, and it is equivalent of deleting the header */ status = ipa_put_hdr(*hdl); if (status) { ath6kl_err("IPA-CM: Error in put the hdr Handle %x for hdr : " "%s, status: %d\n", *hdl, hdr_name, status); } return status; } int ath6kl_ipacm_get_ep_config_info(u32 ipa_client, struct ipa_ep_cfg *ep_cfg) { if(!ep_cfg) { ath6kl_dbg(ATH6KL_DBG_BAM2BAM, "IPA-CM: ep_cfg : Null Value %s, %d\n", __func__, __LINE__); return -EINVAL; } // Fill the details for configuration of IPA end-point if (ipa_client == IPA_CLIENT_A5_WLAN_AMPDU_PROD) { ep_cfg->hdr.hdr_len = ATH6KL_IPA_WLAN_HDR_LENGTH; /* Rx pipe */ // NAT configuration in IPA end-point ep_cfg->nat.nat_en = IPA_BYPASS_NAT; // IPA_SRC_NAT; /* * 0: Metadata_Ofst value is invalid, i.e., * no metadata within header * 1: Metadata_Ofst value is valid, i.e., metadata * within header is in offset Metadata_Ofst * Valid for Input Pipes only (IPA Consumer) * (for output pipes, metadata already set within * the header) */ ep_cfg->hdr.hdr_ofst_metadata_valid = 1; /*!< Offset within header in which metadata resides Size of metadata - 4bytes Example - Stream ID/SSID/mux ID Valid for Input Pipes only (IPA Consumer) (for output pipes, metadata already set within the header) */ ep_cfg->hdr.hdr_ofst_metadata = 11; ep_cfg->hdr.hdr_additional_const_len = 0; ep_cfg->hdr.hdr_ofst_pkt_size_valid = 0; ep_cfg->hdr.hdr_ofst_pkt_size = 0; } else if (ipa_client == IPA_CLIENT_HSIC1_PROD) { // Hdr conf in IPA end-point(HTC(6)+WMI(6)+ 802.3 (22) ) ep_cfg->hdr.hdr_len = ATH6KL_IPA_WLAN_HDR_LENGTH; /* Rx pipe */ // NAT configuration in IPA end-point ep_cfg->nat.nat_en = IPA_BYPASS_NAT; // IPA_SRC_NAT; /* 0: Metadata_Ofst value is invalid, i.e., * no metadata within header * 1: Metadata_Ofst value is valid, i.e., metadata * within header is in offset Metadata_Ofst * Valid for Input Pipes only (IPA Consumer) * (for output pipes, metadata already set within * the header) */ ep_cfg->hdr.hdr_ofst_metadata_valid = 1; /*!< Offset within header in which metadata resides Size of metadata - 4bytes Example - Stream ID/SSID/mux ID Valid for Input Pipes only (IPA Consumer) (for output pipes, metadata already set within the header) */ /* 12th Byte, d0 set for excp, so offset should be 11 */ ep_cfg->hdr.hdr_ofst_metadata = 11; ep_cfg->hdr.hdr_additional_const_len = 0; ep_cfg->hdr.hdr_ofst_pkt_size_valid = 0; ep_cfg->hdr.hdr_ofst_pkt_size = 0; } else { /* Header conf IPA end-point(HTC(6)+WMI(6)+802.3 (22) ) */ ep_cfg->hdr.hdr_len = ATH6KL_IPA_WLAN_HDR_LENGTH; /* Tx pipe */ ep_cfg->nat.nat_en = IPA_BYPASS_NAT; // IPA_DST_NAT; /* This is not valid for Tx Pipe */ ep_cfg->hdr.hdr_ofst_metadata_valid = 0; ep_cfg->hdr.hdr_ofst_metadata = 0; /*!< Defines the constant length that should be added to the payload length in order for IPA to update correctly the length field within the header (valid only in case Hdr_Ofst_Pkt_Size_Valid=1) Valid for Output Pipes (IPA Producer) */ ep_cfg->hdr.hdr_additional_const_len = ATH6KL_IPA_TX_PKT_LEN_POS; ep_cfg->hdr.hdr_ofst_pkt_size_valid = 1; /*!< Offset within header in which packet size reside. Upon Header Insertion, IPA will update this field within the header with the packet length . Assumption is that header length field size is constant and is 2Bytes Valid for Output Pipes (IPA Producer) */ ep_cfg->hdr.hdr_ofst_pkt_size = 2; } ep_cfg->hdr.hdr_a5_mux = 0; /* Mode setting type in IPA end-point */ ep_cfg->mode.mode = IPA_BASIC; ep_cfg->mode.dst = ipa_client; /* Aggregation configuration in IPA end-point */ ep_cfg->aggr.aggr_en = IPA_BYPASS_AGGR; ep_cfg->aggr.aggr = IPA_MBIM_16; ep_cfg->aggr.aggr_byte_limit = 0; ep_cfg->aggr.aggr_time_limit = 0; /* Route configuration in IPA end-point */ ep_cfg->route.rt_tbl_hdl = 0; ep_cfg->route.rt_tbl_hdl = 0; return 0; } EXPORT_SYMBOL(ath6kl_ipacm_get_ep_config_info); int ath6kl_data_ipa_ampdu_tx_complete_cb(enum ath6kl_bam_tx_evt_type evt_type, struct sk_buff *skb) { switch (evt_type) { case AMPDU_FLUSH: if (!skb || !skb->data) goto fatal; ath6kl_dbg(ATH6KL_DBG_OOO, "ooo: AMPDU TX comp callback recv, " "Freeing the skb\n"); dev_kfree_skb(skb); break; default: ath6kl_err("ooo: Unknown event from sysbam tx_complete: %d\n", evt_type); break; } return 0; fatal: WARN_ON(1); return -1; } /* Callback function to handle only SYS BAM Pipe Tx Complete */ void ath6kl_ipa_sysbam_tx_callback(void *priv, enum ipa_dp_evt_type evt, unsigned long data) { u32 client; struct sk_buff *skb; /* typecast the skb buffer pointer */ skb = (struct sk_buff *) data; client = *((enum ipa_client_type *)priv); switch (evt) { /* IPA sends data to WLAN class driver */ case IPA_RECEIVE: ath6kl_err("BAM-CM: Received Data from SysBAM pipe\n"); dev_kfree_skb_any(skb); break; /* IPA sends Tx complete Event to WLAN */ case IPA_WRITE_DONE: switch (client) { /* AMPDU Flush completed by IPA and event received */ case IPA_CLIENT_A5_WLAN_AMPDU_PROD: ath6kl_dbg(ATH6KL_DBG_OOO, "BAM-CM: %s: sys pipe: %d, AMPDU " "Tx complete event received\n", __func__, client); /* send to wlan class driver */ ath6kl_data_ipa_ampdu_tx_complete_cb(AMPDU_FLUSH , skb); break; default: ath6kl_err("BAM-CM: IPA sysbam pipe Tx complete\ callback received wrong context : %d\n", client); break; } break; default: ath6kl_err("BAM-CM: IPA sysbam pipe Tx comp callback\ received wrong event type : %d\n", evt); break; } } /* Disconnect all the Sys BAM pipes, in our case, only 1 pipe */ void ath6kl_disconnect_sysbam_pipes(struct ath6kl *ar) { int status,i; /* If Rx SW path, then no need to create/delete sysbam pipe */ if (!!(debug_quirks & ATH6KL_MODULE_BAM_RX_SW_PATH)) return; for (i = 0; i < MAX_SYSBAM_PIPE; i++) { status = ipa_teardown_sys_pipe(sysbam_pipe[i].clnt_hdl); if (status) ath6kl_err("BAM-CM:Error in disconnect SYSBAM pipe" " status: %d\n", status); } } EXPORT_SYMBOL(ath6kl_disconnect_sysbam_pipes); /* Create the SysBAM pipe */ int ath6kl_usb_create_sysbam_pipes(struct ath6kl *ar) { int status,i; /* If Rx SW path, then no need to create/delete sysbam pipe */ if (!!(debug_quirks & ATH6KL_MODULE_BAM_RX_SW_PATH)) return 0; /* The config is similar to the RX Bam pipe configuration */ for (i = 0; i < MAX_SYSBAM_PIPE; i++) { sysbam_pipe[i].ipa_params.client = sysbam_info[i].client; ath6kl_ipacm_get_ep_config_info(sysbam_pipe[i].ipa_params.client, &(sysbam_pipe[i].ipa_params.ipa_ep_cfg)); sysbam_pipe[i].ipa_params.desc_fifo_sz = 0x400; sysbam_pipe[i].ipa_params.priv=(void *)&(sysbam_info[i].client); /* sysbam pipe callback evt handler same as bam pipe handler */ sysbam_pipe[i].ipa_params.notify= ath6kl_ipa_sysbam_tx_callback; /* Create the SYS BAM pipe to send AMPDU re-ordered packets */ status = ipa_setup_sys_pipe(&(sysbam_pipe[i].ipa_params), &(sysbam_pipe[i].clnt_hdl)); if (status) { ath6kl_err("BAM-CM: Failed to create SYSBAM: %d pipe " "status: %d\n", sysbam_pipe[i].ipa_params.client, status); break; } ath6kl_dbg(ATH6KL_DBG_BAM2BAM, "BAM-CM: Successfully created SYSBAM pipe " "client: %d, Control handle: %d\n", sysbam_info[i].client, sysbam_pipe[i].clnt_hdl); } return status; } EXPORT_SYMBOL(ath6kl_usb_create_sysbam_pipes); /* Send data to the IPA HW via SYSBAM */ int ath6kl_usb_data_send_to_sysbam_pipe(struct ath6kl *ar, struct sk_buff *skb) { int status=0; if ( (ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPACM)) && !(ath6kl_debug_quirks(ar, ATH6KL_MODULE_BAM_AMPDU_TO_NETIF) && !(ath6kl_debug_quirks(ar, ATH6KL_MODULE_BAM_RX_SW_PATH)))) { ath6kl_dbg(ATH6KL_DBG_OOO, "BAM-CM: TX:(AMPDU_PROD)Sending reorderd pkt of size %d (dec)\n", skb->len); /* Add the Hdr (HTC+WMI+802.3+LLC SNAP = 34(wlan hdr len) back , as required by the AMPDU pipe, since the filter settings are same as HSIC1_PROD pipe */ skb_push(skb, ATH6KL_IPA_WLAN_HDR_LENGTH); /* WMI header Byte6: D0 : Exception bit (0-LTE/WAN, 1-Data to * Host for re-ordering) */ /* Reset the exception bit, since the packets are orderded now, * and not need to send to host */ skb->data[11] &= 0xfe; /* Reset the D0 bit */ status = ipa_tx_dp(IPA_CLIENT_A5_WLAN_AMPDU_PROD, skb, NULL); if (status) ath6kl_err("BAM-CM: Failed to send data over sysbam :%d" "status: %d\n", IPA_CLIENT_A5_WLAN_AMPDU_PROD, status); return status; } /* Use netif to send re-ordered packets in absence of IPACM */ ath6kl_dbg(ATH6KL_DBG_OOO, "BAM-CM: TX:(To Netif)Sending reordered pkt of size %d (dec)\n", skb->len); netif_rx_ni(skb); return status; } void ath6kl_delete_ipa_header(uint32_t hdl) { int status; int len; struct ipa_ioc_del_hdr *ipahdr; ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: Deleting the IPA header handle : %x\n", hdl); len = sizeof(struct ipa_ioc_del_hdr) + sizeof(struct ipa_hdr_del)*1; ipahdr = (struct ipa_ioc_del_hdr *) kzalloc(len, GFP_KERNEL); if (ipahdr == NULL) { ath6kl_err("IPA-CM: Failed to allocate memory for hdr removal " "for handle: %x\n", hdl); return; } ipahdr->num_hdls = 1; ipahdr->commit = 0; ipahdr->hdl[0].hdl = hdl; ipahdr->hdl[0].status = -1; status = ipa_del_hdr(ipahdr); if (status != 0) { ath6kl_err("IPA-CM: Delete hdr from IPA Failed, return-status: " "%d param-status: %d handle: %x\n", status, ipahdr->hdl[0].status, ipahdr->hdl[0].hdl); kfree(ipahdr); return; } kfree(ipahdr); return; } void ath6kl_remove_ipa_header(char *name) { struct ipa_ioc_get_hdr hdrlookup; int ret = 0; memset(&hdrlookup, 0, sizeof(hdrlookup)); strlcpy(hdrlookup.name, name, sizeof(hdrlookup.name)); ret = ipa_get_hdr(&hdrlookup); if (ret) { ath6kl_info("IPA-CM: Header may have already been deleted for:" " %s, ret: %d\n", name, ret); return; } ath6kl_delete_ipa_header(hdrlookup.hdl); ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: Successfully removed the hdr:%s handle:%x\n", name, hdrlookup.hdl); return; } void ath6kl_remove_filter_rule(enum ipa_ip_type ip_type, uint32_t hdl) { int status; struct ipa_ioc_del_flt_rule *fltdel; if (ip_type == IPA_IP_v4) ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: Deleting the exception filter for IPV4...\n"); else ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: Deleting the exception filter for IPV6...\n"); fltdel = (struct ipa_ioc_del_flt_rule *) kmalloc(sizeof(struct ipa_ioc_del_flt_rule) + sizeof(struct ipa_flt_rule_del), GFP_KERNEL); if (fltdel == NULL) { ath6kl_err("IPA-CM: Failed in allocating memory for deleting " "the Filter : Handle :%x \n", hdl); return; } fltdel->hdl[0].hdl = hdl; fltdel->num_hdls = 1; fltdel->commit = 1; fltdel->ip = ip_type; fltdel->hdl[0].status = -1; status = ipa_del_flt_rule(fltdel); if (status || fltdel->hdl[0].status != 0) { ath6kl_err("IPA-CM: Failed to delete exception filter for " "Handle : %x status: %d, %d\n", hdl, status, fltdel->hdl[0].status); kfree(fltdel); return; } kfree(fltdel); return; } void ath6kl_remove_ipa_exception_filters(struct ath6kl *ar) { /* In Rx SW path, no need to create/delete the exception filter */ if (!!(debug_quirks & ATH6KL_MODULE_BAM_RX_SW_PATH)) return; /* Remove the filters */ ath6kl_remove_filter_rule(IPA_IP_v4, flt_hdl_ipv4); if (!!(debug_quirks & ATH6KL_MODULE_IPA_WITH_IPV6)) ath6kl_remove_filter_rule(IPA_IP_v6, flt_hdl_ipv6); } EXPORT_SYMBOL(ath6kl_remove_ipa_exception_filters); void ath6kl_clean_ipa_headers(struct ath6kl *ar, char *name) { int status; char name_ipa[IPA_RESOURCE_NAME_MAX]; if (!ath6kl_debug_quirks(ar, ATH6KL_MODULE_BAM2BAM)) return; /* Remove the headers */ strlcpy(name_ipa, name, sizeof(name_ipa)); strlcat(name_ipa, ATH6KL_BAM2BAM_IPV4_NAME_EXT, sizeof(name_ipa)); ath6kl_remove_ipa_header(name_ipa); if (ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPV6)) { strlcpy(name_ipa, name, sizeof(name_ipa)); strlcat(name_ipa, ATH6KL_BAM2BAM_IPV6_NAME_EXT, sizeof(name_ipa)); ath6kl_remove_ipa_header(name_ipa); } /* unregister the interface with IPA */ status = ipa_deregister_intf(name); if (status) ath6kl_err("IPA-CM: Interface %s : deregister failed," " status: %d\n", name, status); } EXPORT_SYMBOL(ath6kl_clean_ipa_headers); /* IPA calls this fn, once the message is processed */ static void ath6kl_ipa_msg_free_fn(void *buff, u32 len, u32 type) { ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: Msg Callback msg type: %d, len: %d\n", type, len); kfree(buff); } #ifdef CONFIG_ATH6KL_DEBUG /* Based on msm_ipa.h */ const char *ath6kl_ipa_event_name[IPA_WLAN_EVENT_MAX] = { __stringify(WLAN_CLIENT_CONNECT), __stringify(WLAN_CLIENT_DISCONNECT), __stringify(WLAN_CLIENT_POWER_SAVE_MODE), __stringify(WLAN_CLIENT_NORMAL_MODE), __stringify(SW_ROUTING_ENABLE), __stringify(SW_ROUTING_DISABLE), __stringify(WLAN_AP_CONNECT), __stringify(WLAN_AP_DISCONNECT), __stringify(WLAN_STA_CONNECT), __stringify(WLAN_STA_DISCONNECT), }; #define ATH6KL_DBG_PRINT_IPA_EVENT(_mask, _iface_name, _type, _mac_addr) \ ath6kl_dbg(_mask, \ "IPA-CM: %s: %s event received, MAC Addr: %pM\n", \ _iface_name, ath6kl_ipa_event_name[_type], _mac_addr); #else #define ATH6KL_DBG_PRINT_IPA_EVENT(_mask, _iface_name, _type, _mac_addr) #endif int ath6kl_send_msg_ipa(struct ath6kl_vif *vif, enum ipa_wlan_event type, u8 *mac_addr) { struct ipa_msg_meta meta; struct ipa_wlan_msg *buff; char iface_name[IPA_RESOURCE_NAME_MAX]; int status; if (!ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM)) return 0; if (!ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_IPA_WITH_IPACM)) return 0; if (type >= IPA_WLAN_EVENT_MAX) { ath6kl_err("IPA-CM: Unknown IPA event type: %d\n", type); return -EINVAL; } if (WARN_ON(is_zero_ether_addr(mac_addr))) return -EINVAL; strlcpy(iface_name, vif->ndev->name, sizeof(iface_name)); ATH6KL_DBG_PRINT_IPA_EVENT(ATH6KL_DBG_IPA_MSG, iface_name, type, mac_addr); switch(type) { case WLAN_AP_CONNECT: ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: AP mode Adding Partial hdr: %s, %pM\n", vif->ndev->name, vif->ndev->dev_addr); /* Add partial header with IPA for this interface */ if (!(test_bit(CONNECTED, &vif->flags))) { ath6kl_ipa_add_header_info(vif->ar, 1, vif->fw_vif_idx, vif->ndev->name, vif->ndev->dev_addr); } break; case WLAN_AP_DISCONNECT: ath6kl_clean_ipa_headers(vif->ar, vif->ndev->name); break; case WLAN_STA_CONNECT: ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: STA Connect adding partial hdr: %s, %pM\n", vif->ndev->name, vif->ndev->dev_addr); ath6kl_ipa_add_header_info(vif->ar, 0, vif->fw_vif_idx, vif->ndev->name, vif->ndev->dev_addr); break; case WLAN_STA_DISCONNECT: ath6kl_clean_ipa_headers(vif->ar, vif->ndev->name); break; case WLAN_CLIENT_POWER_SAVE_MODE: case WLAN_CLIENT_NORMAL_MODE: /* If MCC is enabled, then dont send PS events */ if(vif->ar->is_mcc_enabled == true) return 0; case SW_ROUTING_ENABLE: case SW_ROUTING_DISABLE: case WLAN_CLIENT_CONNECT: case WLAN_CLIENT_DISCONNECT: default: /* Nothing to be done for these events */ break; } /* Fille the message len */ meta.msg_len = sizeof(struct ipa_wlan_msg); /* Allocate memory for the msg, Ipa call the callback fn to free this */ buff = (struct ipa_wlan_msg *)kmalloc (meta.msg_len, GFP_KERNEL); if (buff == NULL) { ath6kl_err("IPA-CM: Failed to allocate memory for msg type:%d\n" , type); return -ENOMEM; } /* Fill the message type*/ meta.msg_type = type; /* Fill the message */ strcpy(buff->name, iface_name); /* need to be changed later */ memcpy(buff->mac_addr, mac_addr, ETH_ALEN); ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "IPA-CM: IPA send msg : Event ID : %d, interface name: %s \n", meta.msg_type, buff->name); status = ipa_send_msg(&meta, buff, ath6kl_ipa_msg_free_fn); if(status) { ath6kl_err ("IPA-CM: Failed to send msg for type: %d," " status: %d\n", type, status); kfree(buff); return status; } /*Note: *buff memory will be free by the callback func: ath6kl_ipa_msg_free_fn */ return status; } #endif /* CONFIG_ATH6KL_BAM2BAM */ static inline u8 ath6kl_get_tid(u8 tid_mux) { return tid_mux & ATH6KL_TID_MASK; } static inline u8 ath6kl_get_aid(u8 tid_mux) { return tid_mux >> ATH6KL_AID_SHIFT; } static u8 ath6kl_ibss_map_epid(struct sk_buff *skb, struct net_device *dev, u32 *map_no) { struct ath6kl *ar = ath6kl_priv(dev); struct ethhdr *eth_hdr; u32 i, ep_map = -1; u8 *datap; *map_no = 0; datap = skb->data; eth_hdr = (struct ethhdr *) (datap + sizeof(struct wmi_data_hdr)); if (is_multicast_ether_addr(eth_hdr->h_dest)) return ENDPOINT_2; for (i = 0; i < ar->node_num; i++) { if (memcmp(eth_hdr->h_dest, ar->node_map[i].mac_addr, ETH_ALEN) == 0) { *map_no = i + 1; ar->node_map[i].tx_pend++; return ar->node_map[i].ep_id; } if ((ep_map == -1) && !ar->node_map[i].tx_pend) ep_map = i; } if (ep_map == -1) { ep_map = ar->node_num; ar->node_num++; if (ar->node_num > MAX_NODE_NUM) return ENDPOINT_UNUSED; } memcpy(ar->node_map[ep_map].mac_addr, eth_hdr->h_dest, ETH_ALEN); for (i = ENDPOINT_2; i <= ENDPOINT_5; i++) { if (!ar->tx_pending[i]) { ar->node_map[ep_map].ep_id = i; break; } /* * No free endpoint is available, start redistribution on * the inuse endpoints. */ if (i == ENDPOINT_5) { ar->node_map[ep_map].ep_id = ar->next_ep_id; ar->next_ep_id++; if (ar->next_ep_id > ENDPOINT_5) ar->next_ep_id = ENDPOINT_2; } } *map_no = ep_map + 1; ar->node_map[ep_map].tx_pend++; return ar->node_map[ep_map].ep_id; } static bool ath6kl_process_uapsdq(struct ath6kl_sta *conn, struct ath6kl_vif *vif, struct sk_buff *skb, u32 *flags) { struct ath6kl *ar = vif->ar; bool is_apsdq_empty = false; struct ethhdr *datap = (struct ethhdr *) skb->data; u8 up = 0, traffic_class, *ip_hdr; u16 ether_type; struct ath6kl_llc_snap_hdr *llc_hdr; struct sk_buff *skb_to_drop = NULL; if (conn->sta_flags & STA_PS_APSD_TRIGGER) { /* * This tx is because of a uAPSD trigger, determine * more and EOSP bit. Set EOSP if queue is empty * or sufficient frames are delivered for this trigger. */ spin_lock_bh(&conn->psq_lock); if (!skb_queue_empty(&conn->apsdq)) *flags |= WMI_DATA_HDR_FLAGS_MORE; else if (conn->sta_flags & STA_PS_APSD_EOSP) *flags |= WMI_DATA_HDR_FLAGS_EOSP; *flags |= WMI_DATA_HDR_FLAGS_UAPSD; spin_unlock_bh(&conn->psq_lock); return false; } else if (!conn->apsd_info) return false; if (test_bit(WMM_ENABLED, &vif->flags)) { ether_type = be16_to_cpu(datap->h_proto); if (is_ethertype(ether_type)) { /* packet is in DIX format */ ip_hdr = (u8 *)(datap + 1); } else { /* packet is in 802.3 format */ llc_hdr = (struct ath6kl_llc_snap_hdr *) (datap + 1); ether_type = be16_to_cpu(llc_hdr->eth_type); ip_hdr = (u8 *)(llc_hdr + 1); } if (ether_type == IP_ETHERTYPE) up = ath6kl_wmi_determine_user_priority( ip_hdr, 0); } traffic_class = ath6kl_wmi_get_traffic_class(up); if ((conn->apsd_info & (1 << traffic_class)) == 0) return false; /* Queue the frames if the STA is sleeping */ spin_lock_bh(&conn->psq_lock); if (skb_queue_len(&conn->apsdq) >= ar->tx_psq_threshold) { ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "TX APSD queue is full\n"); skb_to_drop = skb_dequeue(&conn->apsdq); } is_apsdq_empty = skb_queue_empty(&conn->apsdq); skb_queue_tail(&conn->apsdq, skb); spin_unlock_bh(&conn->psq_lock); /* * If this is the first pkt getting queued * for this STA, update the PVB for this STA */ if (is_apsdq_empty) { ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi, vif->fw_vif_idx, conn->aid, 1, 0); } *flags |= WMI_DATA_HDR_FLAGS_UAPSD; if (skb_to_drop != NULL) { dev_kfree_skb(skb_to_drop); vif->net_stats.tx_dropped++; vif->net_stats.tx_aborted_errors++; } return true; } static bool ath6kl_process_psq(struct ath6kl_sta *conn, struct ath6kl_vif *vif, struct sk_buff *skb, u32 *flags) { bool is_psq_empty = false; struct ath6kl *ar = vif->ar; struct sk_buff *skb_to_drop = NULL; if (conn->sta_flags & STA_PS_POLLED) { spin_lock_bh(&conn->psq_lock); if (!skb_queue_empty(&conn->psq)) *flags |= WMI_DATA_HDR_FLAGS_MORE; spin_unlock_bh(&conn->psq_lock); return false; } /* Queue the frames if the STA is sleeping */ spin_lock_bh(&conn->psq_lock); if (skb_queue_len(&conn->psq) >= ar->tx_psq_threshold) { ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "TX PS queue is full\n"); skb_to_drop = skb_dequeue(&conn->psq); } is_psq_empty = skb_queue_empty(&conn->psq); skb_queue_tail(&conn->psq, skb); spin_unlock_bh(&conn->psq_lock); /* * If this is the first pkt getting queued * for this STA, update the PVB for this * STA. */ if (is_psq_empty) ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, conn->aid, 1); if (skb_to_drop != NULL) { dev_kfree_skb(skb_to_drop); vif->net_stats.tx_dropped++; vif->net_stats.tx_aborted_errors++; } return true; } static bool ath6kl_powersave_ap(struct ath6kl_vif *vif, struct sk_buff *skb, u32 *flags) { struct ethhdr *datap = (struct ethhdr *) skb->data; struct ath6kl_sta *conn = NULL; bool ps_queued = false; struct ath6kl *ar = vif->ar; struct sk_buff *skb_to_drop = NULL; if (is_multicast_ether_addr(datap->h_dest)) { u8 ctr = 0; bool q_mcast = false; for (ctr = 0; ctr < NUM_CONN; ctr++) { if (ar->sta_list[ctr].sta_flags & STA_PS_SLEEP) { q_mcast = true; break; } } if (q_mcast) { /* * If this transmit is not because of a Dtim Expiry * q it. */ if (!test_bit(DTIM_EXPIRED, &vif->flags)) { bool is_mcastq_empty = false; spin_lock_bh(&ar->mcastpsq_lock); if (skb_queue_len(&ar->mcastpsq) >= ar->tx_psq_threshold) { ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "TX Mcast PS queue is full\n"); skb_to_drop = skb_dequeue(&ar->mcastpsq); } is_mcastq_empty = skb_queue_empty(&ar->mcastpsq); skb_queue_tail(&ar->mcastpsq, skb); spin_unlock_bh(&ar->mcastpsq_lock); /* * If this is the first Mcast pkt getting * queued indicate to the target to set the * BitmapControl LSB of the TIM IE. */ if (is_mcastq_empty) ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, MCAST_AID, 1); ps_queued = true; if (skb_to_drop != NULL) { dev_kfree_skb(skb_to_drop); vif->net_stats.tx_dropped++; vif->net_stats.tx_aborted_errors++; } } else { /* * This transmit is because of Dtim expiry. * Determine if MoreData bit has to be set. */ spin_lock_bh(&ar->mcastpsq_lock); if (!skb_queue_empty(&ar->mcastpsq)) *flags |= WMI_DATA_HDR_FLAGS_MORE; spin_unlock_bh(&ar->mcastpsq_lock); } } } else { conn = ath6kl_find_sta(vif, datap->h_dest, false); if (!conn) { dev_kfree_skb(skb); /* Inform the caller that the skb is consumed */ return true; } if (conn->sta_flags & STA_PS_SLEEP) { ps_queued = ath6kl_process_uapsdq(conn, vif, skb, flags); if (!(*flags & WMI_DATA_HDR_FLAGS_UAPSD)) ps_queued = ath6kl_process_psq(conn, vif, skb, flags); } } return ps_queued; } /* Tx functions */ int ath6kl_control_tx(void *devt, struct sk_buff *skb, enum htc_endpoint_id eid) { struct ath6kl *ar = devt; int status = 0; struct ath6kl_cookie *cookie = NULL; struct ath6kl_vif *vif; if (ar->fw_recovery->state == ATH6KL_FW_RECOVERY_INPROGRESS) { dev_kfree_skb(skb); return -EACCES; } spin_lock_bh(&ar->lock); ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "%s: skb=0x%p, len=0x%x eid =%d\n", __func__, skb, skb->len, eid); if (test_bit(WMI_CTRL_EP_FULL, &ar->flag) && (eid == ar->ctrl_ep)) { /* * Control endpoint is full, don't allocate resources, we * are just going to drop this packet. */ cookie = NULL; ath6kl_err("wmi ctrl ep full, dropping pkt : 0x%p, len:%d\n", skb, skb->len); } else { vif = ath6kl_get_vif_by_index(ar, 0); cookie = ath6kl_alloc_cookie(ar, vif, eid); } if (cookie == NULL) { spin_unlock_bh(&ar->lock); status = -ENOMEM; goto fail_ctrl_tx; } ar->tx_pending[eid]++; if (eid != ar->ctrl_ep) ar->total_tx_data_pend++; spin_unlock_bh(&ar->lock); cookie->skb = skb; cookie->map_no = 0; set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len, eid, ATH6KL_CONTROL_PKT_TAG); cookie->htc_pkt.skb = skb; /* * This interface is asynchronous, if there is an error, cleanup * will happen in the TX completion callback. */ ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt); return 0; fail_ctrl_tx: ath6kl_err("ath6kl_control_tx failed !: %d", status); dev_kfree_skb(skb); return status; } void ath6kl_mcc_flowctrl_conn_list_cleanup(struct ath6kl *ar) { int i; struct ath6kl_fw_conn_list *pcon; struct htc_packet *packet, *tmp_pkt; struct list_head container; INIT_LIST_HEAD(&container); for (i = 0; i < NUM_CONN; i++) { pcon = &ar->mcc_flowctrl_ctx->fw_conn_list[i]; spin_lock_bh(&ar->lock); if (!list_empty(&pcon->re_queue)) { list_for_each_entry_safe(packet, tmp_pkt, &pcon->re_queue, list) { list_del(&packet->list); packet->status = 0; list_add_tail(&packet->list, &container); } } if (!list_empty(&pcon->conn_queue)) { list_for_each_entry_safe(packet, tmp_pkt, &pcon->conn_queue, list) { list_del(&packet->list); packet->status = 0; list_add_tail(&packet->list, &container); } } spin_unlock_bh(&ar->lock); } ath6kl_tx_complete(ar->htc_target, &container); } int ath6kl_data_tx(struct sk_buff *skb, struct net_device *dev) { struct ath6kl *ar = ath6kl_priv(dev); struct ath6kl_cookie *cookie = NULL; enum htc_endpoint_id eid = ENDPOINT_UNUSED; struct ath6kl_vif *vif = netdev_priv(dev); u32 map_no = 0; u16 htc_tag = ATH6KL_DATA_PKT_TAG; u8 ac = 99 ; /* initialize to unmapped ac */ bool chk_adhoc_ps_mapping = false; int ret; struct wmi_tx_meta_v2 meta_v2; void *meta; u8 csum_start = 0, csum_dest = 0, csum = skb->ip_summed; u8 meta_ver = 0; u32 flags = 0; ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "%s: skb=0x%p, data=0x%p, len=0x%x\n", __func__, skb, skb->data, skb->len); if(skb_cloned(skb)) { skb = skb_unshare(skb, GFP_ATOMIC); if(skb == NULL) { ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "skb cannot be shared\n"); goto fail_tx; } } /* If target is not associated */ if (!test_bit(CONNECTED, &vif->flags) && !test_bit(TESTMODE_EPPING, &ar->flag)) goto fail_tx; if (!test_bit(WMI_READY, &ar->flag) && !test_bit(TESTMODE_EPPING, &ar->flag)) goto fail_tx; /* AP mode Power saving processing */ if (vif->nw_type == AP_NETWORK) { if (ath6kl_powersave_ap(vif, skb, &flags)) return 0; } if (test_bit(WMI_ENABLED, &ar->flag)) { if ((dev->features & NETIF_F_IP_CSUM) && (csum == CHECKSUM_PARTIAL)) { csum_start = skb->csum_start - (skb_network_header(skb) - skb->head) + sizeof(struct ath6kl_llc_snap_hdr); csum_dest = skb->csum_offset + csum_start; } if (skb_headroom(skb) < dev->needed_headroom) { struct sk_buff *tmp_skb = skb; skb = skb_realloc_headroom(skb, dev->needed_headroom); kfree_skb(tmp_skb); if (skb == NULL) { vif->net_stats.tx_dropped++; return 0; } } if (ath6kl_wmi_dix_2_dot3(ar->wmi, skb)) { ath6kl_err("ath6kl_wmi_dix_2_dot3 failed\n"); goto fail_tx; } if ((dev->features & NETIF_F_IP_CSUM) && (csum == CHECKSUM_PARTIAL)) { meta_v2.csum_start = csum_start; meta_v2.csum_dest = csum_dest; /* instruct target to calculate checksum */ meta_v2.csum_flags = WMI_META_V2_FLAG_CSUM_OFFLOAD; meta_ver = WMI_META_VERSION_2; meta = &meta_v2; } else { meta_ver = 0; meta = NULL; } ret = ath6kl_wmi_data_hdr_add(ar->wmi, skb, DATA_MSGTYPE, flags, 0, meta_ver, meta, vif->fw_vif_idx); if (ret) { ath6kl_warn("failed to add wmi data header:%d\n" , ret); goto fail_tx; } if ((vif->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable && test_bit(CONNECTED, &vif->flags)) chk_adhoc_ps_mapping = true; else { /* get the stream mapping */ ret = ath6kl_wmi_implicit_create_pstream(ar->wmi, vif->fw_vif_idx, skb, 0, test_bit(WMM_ENABLED, &vif->flags), &ac); if (ret) goto fail_tx; } } else if (test_bit(TESTMODE_EPPING, &ar->flag)) { struct epping_header *epping_hdr; epping_hdr = (struct epping_header *)skb->data; if (IS_EPPING_PACKET(epping_hdr)) { ac = epping_hdr->stream_no_h; /* some EPPING packets cannot be dropped no matter what * access class it was sent on. Change the packet tag * to guarantee it will not get dropped */ if (IS_EPING_PACKET_NO_DROP(epping_hdr)) { htc_tag = ATH6KL_CONTROL_PKT_TAG; } if (ac == HCI_TRANSPORT_STREAM_NUM) { goto fail_tx; } else { /* The payload of the frame is 32-bit aligned * and thus the addition of the HTC header will * mis-align the start of the HTC frame, * the padding will be stripped off in the * target */ if (EPPING_ALIGNMENT_PAD > 0) { skb_push(skb, EPPING_ALIGNMENT_PAD); } } } else { /* In loopback mode, drop non-loopback packet */ goto fail_tx; } } else goto fail_tx; spin_lock_bh(&ar->lock); if (chk_adhoc_ps_mapping) eid = ath6kl_ibss_map_epid(skb, dev, &map_no); else eid = ar->ac2ep_map[ac]; if (eid == 0 || eid == ENDPOINT_UNUSED) { if ((ac == WMM_NUM_AC) && test_bit(TESTMODE_EPPING, &ar->flag)){ /* for epping testing, the last AC maps to the control * endpoint */ eid = ar->ctrl_ep; } else { ath6kl_err("eid %d is not mapped!\n", eid); spin_unlock_bh(&ar->lock); goto fail_tx; } } if (eid <= ENDPOINT_UNUSED || eid >= ENDPOINT_MAX) { ath6kl_err("Invalid eid %d!\n", eid); goto fail_tx; } /* allocate resource for this packet */ cookie = ath6kl_alloc_cookie(ar, vif, eid); if (!cookie) { spin_unlock_bh(&ar->lock); goto fail_tx; } /* update counts while the lock is held */ ar->tx_pending[eid]++; ar->total_tx_data_pend++; spin_unlock_bh(&ar->lock); if (!IS_ALIGNED((unsigned long) skb->data - HTC_HDR_LENGTH, 4) && skb_cloned(skb)) { /* * We will touch (move the buffer data to align it. Since the * skb buffer is cloned and not only the header is changed, we * have to copy it to allow the changes. Since we are copying * the data here, we may as well align it by reserving suitable * headroom to avoid the memmove in ath6kl_htc_tx_buf_align(). */ struct sk_buff *nskb; nskb = skb_copy_expand(skb, HTC_HDR_LENGTH, 0, GFP_ATOMIC); if (nskb == NULL) goto fail_skbexp; kfree_skb(skb); skb = nskb; } cookie->skb = skb; cookie->map_no = map_no; set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len, eid, htc_tag); cookie->htc_pkt.skb = skb; ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "tx ", skb->data, skb->len); /* MCC Flowctrl */ if ((ar->is_mcc_enabled == true) && (ath6kl_debug_quirks(ar, ATH6KL_MODULE_MCC_FLOWCTRL))) { enum htc_send_queue_result queue_result; u8 conn_id = ath6kl_mcc_flowctrl_get_conn_id(vif, skb); if (conn_id >= NUM_CONN) goto fail_skbexp; cookie->htc_pkt.connid = conn_id; cookie->htc_pkt.recycle_count = 0; queue_result = ath6kl_mcc_flowctrl_tx_schedule_pkt(ar, (void *)cookie); if (queue_result == HTC_SEND_QUEUE_OK) { /* Queue it */ ar->mcc_flowctrl_ctx->fw_conn_list[conn_id].mcc_stats.sche_tx_queued += 1; return 0; } else if (queue_result == HTC_SEND_QUEUE_DROP) { /* Error, drop it. */ ar->mcc_flowctrl_ctx->fw_conn_list[conn_id].mcc_stats.tx_sched_dropped += 1; goto fail_skbexp; } } /* * HTC interface is asynchronous, if this fails, cleanup will * happen in the ath6kl_tx_complete callback. */ ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt); return 0; fail_skbexp: /* Release the cookie */ ath6kl_free_cookie(ar, vif, cookie); fail_tx: dev_kfree_skb(skb); vif->net_stats.tx_dropped++; vif->net_stats.tx_aborted_errors++; return 0; } /* indicate tx activity or inactivity on a WMI stream */ void ath6kl_indicate_tx_activity(void *devt, u8 traffic_class, bool active) { struct ath6kl *ar = devt; enum htc_endpoint_id eid; int i; eid = ar->ac2ep_map[traffic_class]; if (!test_bit(WMI_ENABLED, &ar->flag)) goto notify_htc; spin_lock_bh(&ar->lock); ar->ac_stream_active[traffic_class] = active; if (active) { /* * Keep track of the active stream with the highest * priority. */ if (ar->ac_stream_pri_map[traffic_class] > ar->hiac_stream_active_pri) /* set the new highest active priority */ ar->hiac_stream_active_pri = ar->ac_stream_pri_map[traffic_class]; } else { /* * We may have to search for the next active stream * that is the highest priority. */ if (ar->hiac_stream_active_pri == ar->ac_stream_pri_map[traffic_class]) { /* * The highest priority stream just went inactive * reset and search for the "next" highest "active" * priority stream. */ ar->hiac_stream_active_pri = 0; for (i = 0; i < WMM_NUM_AC; i++) { if (ar->ac_stream_active[i] && (ar->ac_stream_pri_map[i] > ar->hiac_stream_active_pri)) /* * Set the new highest active * priority. */ ar->hiac_stream_active_pri = ar->ac_stream_pri_map[i]; } } } spin_unlock_bh(&ar->lock); notify_htc: /* notify HTC, this may cause credit distribution changes */ ath6kl_htc_activity_changed(ar->htc_target, eid, active); } enum htc_send_full_action ath6kl_tx_queue_full(struct htc_target *target, struct htc_packet *packet) { struct ath6kl *ar = target->dev->ar; struct ath6kl_vif *vif; enum htc_endpoint_id endpoint = packet->endpoint; enum htc_send_full_action action = HTC_SEND_FULL_KEEP; if (test_bit(TESTMODE_EPPING, &ar->flag)) { int ac; if (packet->info.tx.tag == ATH6KL_CONTROL_PKT_TAG) { /* don't drop special control packets */ return HTC_SEND_FULL_KEEP; } ac = ar->ep2ac_map[endpoint]; /* for endpoint ping testing drop Best Effort and Background * if any of the higher priority traffic is active */ if ((ar->ac_stream_active[WMM_AC_VO] || ar->ac_stream_active[WMM_AC_BE]) && ((ac == WMM_AC_BE) || (ac == WMM_AC_BK))) { return HTC_SEND_FULL_DROP; } else { spin_lock_bh(&ar->list_lock); list_for_each_entry(vif, &ar->vif_list, list) { spin_unlock_bh(&ar->list_lock); /* keep but stop the netqueues */ spin_lock_bh(&vif->if_lock); set_bit(NETQ_STOPPED, &vif->flags); spin_unlock_bh(&vif->if_lock); netif_stop_queue(vif->ndev); } return HTC_SEND_FULL_KEEP; } } if (endpoint == ar->ctrl_ep) { /* * Under normal WMI if this is getting full, then something * is running rampant the host should not be exhausting the * WMI queue with too many commands the only exception to * this is during testing using endpointping. */ set_bit(WMI_CTRL_EP_FULL, &ar->flag); ath6kl_err("wmi ctrl ep is full\n"); ath6kl_recovery_err_notify(ar, ATH6KL_FW_EP_FULL); return action; } if (packet->info.tx.tag == ATH6KL_CONTROL_PKT_TAG) return action; /* * The last MAX_HI_COOKIE_NUM "batch" of cookies are reserved for * the highest active stream. */ if (ar->ac_stream_pri_map[ar->ep2ac_map[endpoint]] < ar->hiac_stream_active_pri && ar->cookie_count <= target->endpoint[endpoint].tx_drop_packet_threshold) /* * Give preference to the highest priority stream by * dropping the packets which overflowed. */ action = HTC_SEND_FULL_DROP; /* FIXME: Locking */ spin_lock_bh(&ar->list_lock); list_for_each_entry(vif, &ar->vif_list, list) { spin_unlock_bh(&ar->list_lock); if (vif->nw_type == ADHOC_NETWORK || action != HTC_SEND_FULL_DROP) { if ((!test_bit(NETQ_STOPPED, &vif->flags)) && (vif->cookie_used > NETIF_STOP_THOLD)) { set_bit(NETQ_STOPPED, &vif->flags); netif_stop_queue(vif->ndev); } } spin_lock_bh(&ar->list_lock); } spin_unlock_bh(&ar->list_lock); return action; } /* TODO this needs to be looked at */ static void ath6kl_tx_clear_node_map(struct ath6kl_vif *vif, enum htc_endpoint_id eid, u32 map_no) { struct ath6kl *ar = vif->ar; u32 i; if (vif->nw_type != ADHOC_NETWORK) return; if (!ar->ibss_ps_enable) return; if (eid == ar->ctrl_ep) return; if (map_no == 0) return; map_no--; ar->node_map[map_no].tx_pend--; if (ar->node_map[map_no].tx_pend) return; if (map_no != (ar->node_num - 1)) return; for (i = ar->node_num; i > 0; i--) { if (ar->node_map[i - 1].tx_pend) break; memset(&ar->node_map[i - 1], 0, sizeof(struct ath6kl_node_mapping)); ar->node_num--; } } void ath6kl_tx_complete(struct htc_target *target, struct list_head *packet_queue) { struct ath6kl *ar = target->dev->ar; struct sk_buff_head skb_queue; struct htc_packet *packet; struct sk_buff *skb; struct ath6kl_cookie *ath6kl_cookie; u32 map_no = 0; int status; enum htc_endpoint_id eid; bool wake_event = false; bool flushing[ATH6KL_VIF_MAX] = {false}; u8 if_idx; struct ath6kl_vif *vif = NULL; u16 tag; skb_queue_head_init(&skb_queue); /* lock the driver as we update internal state */ spin_lock_bh(&ar->lock); /* reap completed packets */ while (!list_empty(packet_queue)) { packet = list_first_entry(packet_queue, struct htc_packet, list); list_del(&packet->list); ath6kl_cookie = (struct ath6kl_cookie *)packet->pkt_cntxt; if (!ath6kl_cookie) goto fatal; status = packet->status; skb = ath6kl_cookie->skb; eid = packet->endpoint; map_no = ath6kl_cookie->map_no; tag = packet->info.tx.tag; if (!skb || !skb->data) goto fatal; __skb_queue_tail(&skb_queue, skb); if (!status && (packet->act_len != skb->len)) goto fatal; if (eid <= ENDPOINT_UNUSED || eid >= ENDPOINT_MAX) goto fatal; ar->tx_pending[eid]--; if (!test_bit(TESTMODE_EPPING, &ar->flag)) { if (eid != ar->ctrl_ep) ar->total_tx_data_pend--; if (eid == ar->ctrl_ep) { if (test_bit(WMI_CTRL_EP_FULL, &ar->flag)) clear_bit(WMI_CTRL_EP_FULL, &ar->flag); if (ar->tx_pending[eid] == 0) wake_event = true; } if (eid == ar->ctrl_ep) { if_idx = wmi_cmd_hdr_get_if_idx( (struct wmi_cmd_hdr *) packet->buf); } else { if_idx = wmi_data_hdr_get_if_idx( (struct wmi_data_hdr *) packet->buf); } } else { /* The epping packet is not coming from wmi, skip the index * retrival, epping assume using the first if_idx anyway */ if_idx = 0; } vif = ath6kl_get_vif_by_index(ar, if_idx); if (!vif || if_idx >= ATH6KL_VIF_MAX) { ath6kl_free_cookie(ar, vif, ath6kl_cookie); continue; } if (status) { if (status == -ECANCELED) /* a packet was flushed */ flushing[if_idx] = true; if (status != -ENOSPC && status != -ECANCELED) { if (status == -ENOMEM) { if(!(vif->net_stats.tx_errors % ATH6KL_DBGPRNT_FREQ)) { ath6kl_warn("tx complete error" ": -ENOMEM\n"); } } else { ath6kl_warn("tx complete error: %d\n", status); } } vif->net_stats.tx_errors++; ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n", __func__, skb, packet->buf, packet->act_len, eid, "error!"); } else { ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n", __func__, skb, packet->buf, packet->act_len, eid, "OK"); flushing[if_idx] = false; vif->net_stats.tx_packets++; vif->net_stats.tx_bytes += skb->len; } ath6kl_tx_clear_node_map(vif, eid, map_no); if (eid == ar->ctrl_ep || tag == ATH6KL_CONTROL_PKT_TAG) vif = ath6kl_get_vif_by_index(ar, 0); ath6kl_free_cookie(ar, vif, ath6kl_cookie); #ifdef ATH6KL_IF_NEEDED_LATER if (test_bit(NETQ_STOPPED, &vif->flags)) clear_bit(NETQ_STOPPED, &vif->flags); #endif } spin_unlock_bh(&ar->lock); __skb_queue_purge(&skb_queue); /* FIXME: Locking */ spin_lock_bh(&ar->list_lock); list_for_each_entry(vif, &ar->vif_list, list) { if ((test_bit(CONNECTED, &vif->flags) || test_bit(TESTMODE_EPPING, &ar->flag)) && !flushing[vif->fw_vif_idx]) { spin_unlock_bh(&ar->list_lock); if ((vif->intra_bss_data_cnt > 0) || (vif->cookie_used < NETIF_WAKE_THOLD)) { if (test_bit(NETQ_STOPPED, &vif->flags)) { clear_bit(NETQ_STOPPED, &vif->flags); netif_wake_queue(vif->ndev); } } if (vif->intra_bss_data_cnt > 0) vif->intra_bss_data_cnt--; spin_lock_bh(&ar->list_lock); } } spin_unlock_bh(&ar->list_lock); if (wake_event) wake_up(&ar->event_wq); return; fatal: WARN_ON(1); spin_unlock_bh(&ar->lock); return; } void ath6kl_tx_data_cleanup(struct ath6kl *ar) { int i; /* flush all the data (non-control) streams */ for (i = 0; i < WMM_NUM_AC; i++) ath6kl_htc_flush_txep(ar->htc_target, ar->ac2ep_map[i], ATH6KL_DATA_PKT_TAG); ath6kl_mcc_flowctrl_conn_list_cleanup(ar); } #ifdef CONFIG_ATH6KL_BAM2BAM static void ath6kl_deliver_ampdu_frames_to_ipa(struct ath6kl *ar, struct net_device *dev, struct sk_buff *skb) { int status; struct ath6kl_vif *vif = netdev_priv(dev); struct ethhdr *datap = NULL; struct sk_buff *skb1 = NULL; struct ath6kl_sta *conn = NULL; if (!skb) return; datap = (struct ethhdr *) skb->data; if (vif->nw_type == AP_NETWORK) { if (datap) conn = ath6kl_find_sta(vif, datap->h_dest, ar->inter_bss); /* * Search for a connected STA with dstMac * as the Mac address. If found send the * frame to it on the air else send the * frame up the stack. */ if (conn) { if (vif->intra_bss) { skb1 = skb; skb = NULL; } else { if(vif == conn->vif) { dev_kfree_skb(skb); skb = NULL; } else { skb1 = skb; skb = NULL; } } } else if (!is_broadcast_ether_addr(datap->h_dest) && !is_multicast_ether_addr(datap->h_dest) && (NULL != ath6kl_find_sta(vif, datap->h_dest, true))) { dev_kfree_skb(skb); skb = NULL; } if (skb1 && conn) { if (vif->intra_bss_data_cnt < vif->cookie_used) vif->intra_bss_data_cnt++; ath6kl_data_tx(skb1, conn->vif->ndev); } if (skb == NULL) /* nothing to deliver up the stack */ return; } skb->dev = dev; if (!(skb->dev->flags & IFF_UP)) { dev_kfree_skb(skb); return; } skb->protocol = eth_type_trans(skb, skb->dev); status = ath6kl_usb_data_send_to_sysbam_pipe(ar, skb); if (status) { ath6kl_dbg(ATH6KL_DBG_OOO, "BAM-CM: Failed to send data over sysbam pipe %s\n", __func__); } } #endif /* Rx functions */ static void ath6kl_deliver_frames_to_nw_stack(struct net_device *dev, struct sk_buff *skb) { struct ath6kl *ar = ath6kl_priv(dev); struct ath6kl_vif *vif = netdev_priv(dev); struct ethhdr *datap = NULL; struct sk_buff *skb1 = NULL; struct ath6kl_sta *conn = NULL; if (!skb) return; datap = (struct ethhdr *) skb->data; if (vif->nw_type == AP_NETWORK) { if (datap) conn = ath6kl_find_sta(vif, datap->h_dest, ar->inter_bss); /* * Search for a connected STA with dstMac * as the Mac address. If found send the * frame to it on the air else send the * frame up the stack. */ if (conn) { if (vif->intra_bss) { skb1 = skb; skb = NULL; } else { if(vif == conn->vif) { dev_kfree_skb(skb); skb = NULL; } else { skb1 = skb; skb = NULL; } } } else if (!is_broadcast_ether_addr(datap->h_dest) && !is_multicast_ether_addr(datap->h_dest) && (NULL != ath6kl_find_sta(vif, datap->h_dest, true))) { dev_kfree_skb(skb); skb = NULL; } if (skb1 && conn && conn->vif) { if (vif->intra_bss_data_cnt < vif->cookie_used) vif->intra_bss_data_cnt++; ath6kl_data_tx(skb1, conn->vif->ndev); } if (skb == NULL) /* nothing to deliver up the stack */ return; } skb->dev = dev; if (!(skb->dev->flags & IFF_UP)) { dev_kfree_skb(skb); return; } skb->protocol = eth_type_trans(skb, skb->dev); netif_rx_ni(skb); } static void ath6kl_alloc_netbufs(struct sk_buff_head *q, u16 num) { struct sk_buff *skb; while (num) { skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE); if (!skb) { ath6kl_err("netbuf allocation failed\n"); return; } skb_queue_tail(q, skb); num--; } } void ath6kl_rx_refill(struct htc_target *target, enum htc_endpoint_id endpoint) { struct ath6kl *ar = target->dev->ar; struct sk_buff *skb; int rx_buf; int n_buf_refill; struct htc_packet *packet; struct list_head queue; n_buf_refill = ATH6KL_MAX_RX_BUFFERS - ath6kl_htc_get_rxbuf_num(ar->htc_target, endpoint); if (n_buf_refill <= 0) return; INIT_LIST_HEAD(&queue); ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: providing htc with %d buffers at eid=%d\n", __func__, n_buf_refill, endpoint); for (rx_buf = 0; rx_buf < n_buf_refill; rx_buf++) { skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE); if (!skb) break; packet = (struct htc_packet *) skb->head; if (!IS_ALIGNED((unsigned long) skb->data, 4)) { size_t len = skb_headlen(skb); skb->data = PTR_ALIGN(skb->data - 4, 4); skb_set_tail_pointer(skb, len); } set_htc_rxpkt_info(packet, skb, skb->data, ATH6KL_BUFFER_SIZE, endpoint); packet->skb = skb; list_add_tail(&packet->list, &queue); } if (!list_empty(&queue)) ath6kl_htc_add_rxbuf_multiple(ar->htc_target, &queue); } void ath6kl_refill_amsdu_rxbufs(struct ath6kl *ar, int count) { struct htc_packet *packet; struct sk_buff *skb; while (count) { skb = ath6kl_buf_alloc(ATH6KL_AMSDU_BUFFER_SIZE); if (!skb) return; packet = (struct htc_packet *) skb->head; if (!IS_ALIGNED((unsigned long) skb->data, 4)) { size_t len = skb_headlen(skb); skb->data = PTR_ALIGN(skb->data - 4, 4); skb_set_tail_pointer(skb, len); } set_htc_rxpkt_info(packet, skb, skb->data, ATH6KL_AMSDU_BUFFER_SIZE, 0); packet->skb = skb; spin_lock_bh(&ar->lock); list_add_tail(&packet->list, &ar->amsdu_rx_buffer_queue); spin_unlock_bh(&ar->lock); count--; } } /* * Callback to allocate a receive buffer for a pending packet. We use a * pre-allocated list of buffers of maximum AMSDU size (4K). */ struct htc_packet *ath6kl_alloc_amsdu_rxbuf(struct htc_target *target, enum htc_endpoint_id endpoint, int len) { struct ath6kl *ar = target->dev->ar; struct htc_packet *packet = NULL; struct list_head *pkt_pos; int refill_cnt = 0, depth = 0; ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: eid=%d, len:%d\n", __func__, endpoint, len); if ((len <= ATH6KL_BUFFER_SIZE) || (len > ATH6KL_AMSDU_BUFFER_SIZE)) return NULL; spin_lock_bh(&ar->lock); if (list_empty(&ar->amsdu_rx_buffer_queue)) { spin_unlock_bh(&ar->lock); refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS; goto refill_buf; } packet = list_first_entry(&ar->amsdu_rx_buffer_queue, struct htc_packet, list); list_del(&packet->list); list_for_each(pkt_pos, &ar->amsdu_rx_buffer_queue) depth++; refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS - depth; spin_unlock_bh(&ar->lock); /* set actual endpoint ID */ packet->endpoint = endpoint; refill_buf: if (refill_cnt >= ATH6KL_AMSDU_REFILL_THRESHOLD) ath6kl_refill_amsdu_rxbufs(ar, refill_cnt); return packet; } static struct sk_buff *ath6kl_aggr_get_free_skb(struct aggr_info *p_aggr) { struct sk_buff *skb = NULL; if (skb_queue_len(&p_aggr->rx_amsdu_freeq) < (AGGR_NUM_OF_FREE_NETBUFS >> 2)) ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq, AGGR_NUM_OF_FREE_NETBUFS); skb = skb_dequeue(&p_aggr->rx_amsdu_freeq); return skb; } static void aggr_slice_amsdu(struct aggr_info *p_aggr, struct rxtid *rxtid, struct sk_buff *skb) { struct sk_buff *new_skb; struct ethhdr *hdr; u16 frame_8023_len, payload_8023_len, mac_hdr_len, amsdu_len; u8 *framep; mac_hdr_len = sizeof(struct ethhdr); framep = skb->data + mac_hdr_len; amsdu_len = skb->len - mac_hdr_len; while (amsdu_len > mac_hdr_len) { hdr = (struct ethhdr *) framep; payload_8023_len = ntohs(hdr->h_proto); if (payload_8023_len < MIN_MSDU_SUBFRAME_PAYLOAD_LEN || payload_8023_len > MAX_MSDU_SUBFRAME_PAYLOAD_LEN) { ath6kl_err("802.3 AMSDU bound check failed. len %d\n", payload_8023_len); break; } frame_8023_len = payload_8023_len + mac_hdr_len; new_skb = ath6kl_aggr_get_free_skb(p_aggr); if (!new_skb) { ath6kl_err("no buffer available\n"); break; } memcpy(new_skb->data, framep, frame_8023_len); skb_put(new_skb, frame_8023_len); if (ath6kl_wmi_dot3_2_dix(new_skb)) { ath6kl_err("dot3_2_dix error\n"); dev_kfree_skb(new_skb); break; } skb_queue_tail(&rxtid->q, new_skb); /* Is this the last subframe within this aggregate ? */ if ((amsdu_len - frame_8023_len) == 0) break; /* Add the length of A-MSDU subframe padding bytes - * Round to nearest word. */ frame_8023_len = ALIGN(frame_8023_len, 4); framep += frame_8023_len; amsdu_len -= frame_8023_len; } dev_kfree_skb(skb); } #ifdef CONFIG_ATH6KL_BAM2BAM static void aggr_deque_frms_bam2bam(struct aggr_info_conn *agg_conn, u8 tid, u16 seq_no, u8 order) { struct sk_buff *skb; struct rxtid *rxtid; struct skb_hold_q *node; u16 idx, idx_end, seq_end, i, j, ext_end; struct rxtid_stats *stats; bool is_update = false; rxtid = &agg_conn->rx_tid[tid]; stats = &agg_conn->stat[tid]; if (!rxtid->aggr) { return; } spin_lock_bh(&rxtid->lock); if (order == 1) { idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz); rxtid->seq_next = seq_no; ath6kl_dbg(ATH6KL_DBG_OOO, "ooo:flush seq_no with order 1= %d\n", seq_no); } else { idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz); ath6kl_dbg(ATH6KL_DBG_OOO, "ooo:flush seq_no = %d\n", seq_no); } /* * idx_end is typically the last possible frame in the window, * but changes to 'the' seq_no, when BAR comes. If seq_no * is non-zero, we will go up to that and stop. * Note: last seq no in current window will occupy the same * index position as index that is just previous to start. * An imp point : if win_sz is 7, for seq_no space of 4095, * then, there would be holes when sequence wrap around occurs. * Target should judiciously choose the win_sz, based on * this condition. For 4095, (TID_WINDOW_SZ = 2 x win_sz * 2, 4, 8, 16 win_sz works fine). * We must deque from "idx" to "idx_end", including both. */ if (!order || order == 2) { seq_end = rxtid->seq_next; } else { seq_end = seq_no; } idx_end = AGGR_WIN_IDX(seq_end, rxtid->hold_q_sz); do { ext_end = (rxtid->seq_next + rxtid->hold_q_sz - 1) & ATH6KL_MAX_SEQ_NO; node = &rxtid->hold_q[idx]; if (((order == 1) && (!node->skb)) || ((order == 2) && ((ext_end >= seq_no) && (!node->skb)))) break; if (node->skb) { if (node->is_amsdu) aggr_slice_amsdu(agg_conn->aggr_info, rxtid, node->skb); else skb_queue_tail(&rxtid->q, node->skb); node->skb = NULL; ath6kl_dbg(ATH6KL_DBG_OOO, "ooo:Data removed = %d\n", rxtid->seq_next); } else stats->num_hole++; rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next); idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz); } while (idx != idx_end); spin_unlock_bh(&rxtid->lock); stats->num_delivered += skb_queue_len(&rxtid->q); while ((skb = skb_dequeue(&rxtid->q))) ath6kl_deliver_ampdu_frames_to_ipa(agg_conn->vif->ar, agg_conn->dev, skb); spin_lock_bh(&rxtid->lock); if (!order) { rxtid->seq_next = 0; } else if (order == 1){ idx_end = idx; do { node = &rxtid->hold_q[idx]; if (node->skb) { ath6kl_dbg(ATH6KL_DBG_OOO, "ooo:Now seq_next = %d\n", rxtid->seq_next); is_update = true; break; } rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next); idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz); } while (idx != idx_end); if (!is_update) rxtid->seq_next = 0; } spin_unlock_bh(&rxtid->lock); if (agg_conn->timer_scheduled) { agg_conn->timer_scheduled = false; for (i = 0; i < NUM_OF_TIDS; i++) { rxtid = &agg_conn->rx_tid[i]; if (rxtid->aggr && rxtid->hold_q) { spin_lock_bh(&rxtid->lock); for (j = 0; j < rxtid->hold_q_sz; j++) { if (rxtid->hold_q[j].skb) { agg_conn->timer_scheduled = true; rxtid->timer_mon = true; break; } } spin_unlock_bh(&rxtid->lock); if (j >= rxtid->hold_q_sz) { rxtid->timer_mon = false; ath6kl_dbg(ATH6KL_DBG_OOO, "ooo:No hole is present and timer is stopped\n"); } } } if (agg_conn->timer_scheduled) { mod_timer(&agg_conn->timer, jiffies + msecs_to_jiffies(AGGR_RX_TIMEOUT)); } else { del_timer(&agg_conn->timer); } } } static bool aggr_process_recv_frm_bam2bam(struct aggr_info_conn *agg_conn, u8 tid, u16 seq_no, bool is_amsdu, struct sk_buff *frame) { struct sk_buff *skb; struct rxtid *rxtid; struct rxtid_stats *stats; struct skb_hold_q *node; u16 idx; bool is_queued = false; rxtid = &agg_conn->rx_tid[tid]; stats = &agg_conn->stat[tid]; stats->num_into_aggr++; if (!rxtid->aggr) { if (is_amsdu) { aggr_slice_amsdu(agg_conn->aggr_info, rxtid, frame); is_queued = true; stats->num_amsdu++; while ((skb = skb_dequeue(&rxtid->q))) ath6kl_deliver_frames_to_nw_stack(agg_conn->dev, skb); } return is_queued; } /* Set the seq next to current incoming seq no if 1. There are no frames in hold q for this tid/aid pair 2. The incoming seq no is before the current seq next sequence number */ if ((rxtid->timer_mon) || (rxtid->seq_next)) { if ((((rxtid->seq_next > seq_no) && ((seq_no + rxtid->hold_q_sz -1) > rxtid->seq_next )) || (((rxtid->seq_next < seq_no) && (rxtid->seq_next + rxtid->hold_q_sz -1) < seq_no)))) rxtid->seq_next = seq_no; } else { rxtid->seq_next = seq_no; } idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz); node = &rxtid->hold_q[idx]; spin_lock_bh(&rxtid->lock); ath6kl_dbg(ATH6KL_DBG_OOO, "ooo:frame %d is in idx = %d\n",seq_no, idx); /* * Is the cur frame duplicate or something beyond our window(hold_q * -> which is 2x, already)? * * 1. Duplicate is easy - drop incoming frame. * 2. Not falling in current sliding window. * 2a. is the frame_seq_no preceding current tid_seq_no? * -> drop the frame. perhaps sender did not get our ACK. * this is taken care of above. * 2b. is the frame_seq_no beyond window(st, TID_WINDOW_SZ); * -> Taken care of it above, by moving window forward. */ if (node->skb) { dev_kfree_skb(node->skb); stats->num_dups++; } node->skb = frame; is_queued = true; stats->num_mpdu++; node->is_amsdu = is_amsdu; node->seq_no = seq_no; spin_unlock_bh(&rxtid->lock); if (agg_conn->timer_scheduled) { ath6kl_dbg(ATH6KL_DBG_OOO, "ooo:timer is already scheduled \n"); return is_queued; } spin_lock_bh(&rxtid->lock); for (idx = 0 ; idx < rxtid->hold_q_sz; idx++) { if (rxtid->hold_q[idx].skb) { /* * There is a frame in the queue and no * timer so start a timer to ensure that * the frame doesn't remain stuck * forever. */ ath6kl_dbg(ATH6KL_DBG_OOO, "ooo:start the timer\n"); agg_conn->timer_scheduled = true; mod_timer(&agg_conn->timer, (jiffies + (HZ * AGGR_RX_TIMEOUT) / 1000)); rxtid->timer_mon = true; break; } } spin_unlock_bh(&rxtid->lock); return is_queued; } static void aggr_process_amsdu_bam2bam(struct aggr_info_conn *agg_conn, u8 tid, struct sk_buff *frame) { struct sk_buff *skb; struct rxtid *rxtid; rxtid = &agg_conn->rx_tid[tid]; aggr_slice_amsdu(agg_conn->aggr_info, rxtid, frame); while ((skb = skb_dequeue(&rxtid->q))) ath6kl_deliver_frames_to_nw_stack(agg_conn->dev, skb); } #endif /* CONFIG_ATH6KL_BAM2BAM */ static void aggr_deque_frms(struct aggr_info_conn *agg_conn, u8 tid, u16 seq_no, u8 order) { struct sk_buff *skb; struct rxtid *rxtid; struct skb_hold_q *node; u16 idx, idx_end, seq_end; struct rxtid_stats *stats; rxtid = &agg_conn->rx_tid[tid]; stats = &agg_conn->stat[tid]; spin_lock_bh(&rxtid->lock); idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz); /* * idx_end is typically the last possible frame in the window, * but changes to 'the' seq_no, when BAR comes. If seq_no * is non-zero, we will go up to that and stop. * Note: last seq no in current window will occupy the same * index position as index that is just previous to start. * An imp point : if win_sz is 7, for seq_no space of 4095, * then, there would be holes when sequence wrap around occurs. * Target should judiciously choose the win_sz, based on * this condition. For 4095, (TID_WINDOW_SZ = 2 x win_sz * 2, 4, 8, 16 win_sz works fine). * We must deque from "idx" to "idx_end", including both. */ seq_end = seq_no ? seq_no : rxtid->seq_next; idx_end = AGGR_WIN_IDX(seq_end, rxtid->hold_q_sz); do { node = &rxtid->hold_q[idx]; if ((order == 1) && (!node->skb)) break; if (node->skb) { if (node->is_amsdu) aggr_slice_amsdu(agg_conn->aggr_info, rxtid, node->skb); else skb_queue_tail(&rxtid->q, node->skb); node->skb = NULL; } else stats->num_hole++; rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next); idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz); } while (idx != idx_end); spin_unlock_bh(&rxtid->lock); stats->num_delivered += skb_queue_len(&rxtid->q); while ((skb = skb_dequeue(&rxtid->q))) ath6kl_deliver_frames_to_nw_stack(agg_conn->dev, skb); } static bool aggr_process_recv_frm(struct aggr_info_conn *agg_conn, u8 tid, u16 seq_no, bool is_amsdu, struct sk_buff *frame) { struct rxtid *rxtid; struct rxtid_stats *stats; struct sk_buff *skb; struct skb_hold_q *node; u16 idx, st, cur, end; bool is_queued = false; u16 extended_end; rxtid = &agg_conn->rx_tid[tid]; stats = &agg_conn->stat[tid]; stats->num_into_aggr++; if (!rxtid->aggr) { if (is_amsdu) { aggr_slice_amsdu(agg_conn->aggr_info, rxtid, frame); is_queued = true; stats->num_amsdu++; while ((skb = skb_dequeue(&rxtid->q))) ath6kl_deliver_frames_to_nw_stack(agg_conn->dev, skb); } return is_queued; } /* Check the incoming sequence no, if it's in the window */ st = rxtid->seq_next; cur = seq_no; end = (st + rxtid->hold_q_sz-1) & ATH6KL_MAX_SEQ_NO; if (((st < end) && (cur < st || cur > end)) || ((st > end) && (cur > end) && (cur < st))) { extended_end = (end + rxtid->hold_q_sz - 1) & ATH6KL_MAX_SEQ_NO; if (((end < extended_end) && (cur < end || cur > extended_end)) || ((end > extended_end) && (cur > extended_end) && (cur < end))) { aggr_deque_frms(agg_conn, tid, 0, 0); spin_lock_bh(&rxtid->lock); if (cur >= rxtid->hold_q_sz - 1) rxtid->seq_next = cur - (rxtid->hold_q_sz - 1); else rxtid->seq_next = ATH6KL_MAX_SEQ_NO - (rxtid->hold_q_sz - 2 - cur); spin_unlock_bh(&rxtid->lock); } else { /* * Dequeue only those frames that are outside the * new shifted window. */ if (cur >= rxtid->hold_q_sz - 1) st = cur - (rxtid->hold_q_sz - 1); else st = ATH6KL_MAX_SEQ_NO - (rxtid->hold_q_sz - 2 - cur); aggr_deque_frms(agg_conn, tid, st, 0); } stats->num_oow++; } idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz); node = &rxtid->hold_q[idx]; spin_lock_bh(&rxtid->lock); /* * Is the cur frame duplicate or something beyond our window(hold_q * -> which is 2x, already)? * * 1. Duplicate is easy - drop incoming frame. * 2. Not falling in current sliding window. * 2a. is the frame_seq_no preceding current tid_seq_no? * -> drop the frame. perhaps sender did not get our ACK. * this is taken care of above. * 2b. is the frame_seq_no beyond window(st, TID_WINDOW_SZ); * -> Taken care of it above, by moving window forward. */ dev_kfree_skb(node->skb); stats->num_dups++; node->skb = frame; is_queued = true; node->is_amsdu = is_amsdu; node->seq_no = seq_no; if (node->is_amsdu) stats->num_amsdu++; else stats->num_mpdu++; spin_unlock_bh(&rxtid->lock); aggr_deque_frms(agg_conn, tid, 0, 1); if (agg_conn->timer_scheduled) return is_queued; spin_lock_bh(&rxtid->lock); for (idx = 0 ; idx < rxtid->hold_q_sz; idx++) { if (rxtid->hold_q[idx].skb) { /* * There is a frame in the queue and no * timer so start a timer to ensure that * the frame doesn't remain stuck * forever. */ agg_conn->timer_scheduled = true; mod_timer(&agg_conn->timer, (jiffies + (HZ * AGGR_RX_TIMEOUT) / 1000)); rxtid->timer_mon = true; break; } } spin_unlock_bh(&rxtid->lock); return is_queued; } static void ath6kl_uapsd_trigger_frame_rx(struct ath6kl_vif *vif, struct ath6kl_sta *conn) { struct ath6kl *ar = vif->ar; bool is_apsdq_empty, is_apsdq_empty_at_start; u32 num_frames_to_deliver, flags; struct sk_buff *skb = NULL; /* * If the APSD q for this STA is not empty, dequeue and * send a pkt from the head of the q. Also update the * More data bit in the WMI_DATA_HDR if there are * more pkts for this STA in the APSD q. * If there are no more pkts for this STA, * update the APSD bitmap for this STA. */ num_frames_to_deliver = (conn->apsd_info >> ATH6KL_APSD_NUM_OF_AC) & ATH6KL_APSD_FRAME_MASK; /* * Number of frames to send in a service period is * indicated by the station * in the QOS_INFO of the association request * If it is zero, send all frames */ if (!num_frames_to_deliver) num_frames_to_deliver = ATH6KL_APSD_ALL_FRAME; spin_lock_bh(&conn->psq_lock); is_apsdq_empty = skb_queue_empty(&conn->apsdq); spin_unlock_bh(&conn->psq_lock); is_apsdq_empty_at_start = is_apsdq_empty; while ((!is_apsdq_empty) && (num_frames_to_deliver)) { spin_lock_bh(&conn->psq_lock); skb = skb_dequeue(&conn->apsdq); is_apsdq_empty = skb_queue_empty(&conn->apsdq); spin_unlock_bh(&conn->psq_lock); /* * Set the STA flag to Trigger delivery, * so that the frame will go out */ conn->sta_flags |= STA_PS_APSD_TRIGGER; num_frames_to_deliver--; /* Last frame in the service period, set EOSP or queue empty */ if ((is_apsdq_empty) || (!num_frames_to_deliver)) conn->sta_flags |= STA_PS_APSD_EOSP; if (skb) ath6kl_data_tx(skb, vif->ndev); conn->sta_flags &= ~(STA_PS_APSD_TRIGGER); conn->sta_flags &= ~(STA_PS_APSD_EOSP); } if (is_apsdq_empty) { if (is_apsdq_empty_at_start) flags = WMI_AP_APSD_NO_DELIVERY_FRAMES; else flags = 0; ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi, vif->fw_vif_idx, conn->aid, 0, flags); } return; } void ath6kl_rx(struct htc_target *target, struct htc_packet *packet) { struct ath6kl *ar = target->dev->ar; struct sk_buff *skb = packet->pkt_cntxt; struct wmi_rx_meta_v2 *meta; struct wmi_data_hdr *dhdr; int min_hdr_len; u8 meta_type, dot11_hdr = 0; u8 pad_before_data_start = 0; int status = packet->status; enum htc_endpoint_id ept = packet->endpoint; bool is_amsdu, prev_ps, ps_state = false; bool trig_state = false; struct ath6kl_sta *conn = NULL; struct sk_buff *skb1 = NULL; struct ethhdr *datap = NULL; struct ath6kl_vif *vif; struct aggr_info_conn *aggr_conn; u16 seq_no, offset; u8 tid, if_idx; #ifdef CONFIG_ATH6KL_BAM2BAM bool is_flush = 0, is_out_of_order = 0; bool is_partial_flush = 0, is_flush_all = 0; #endif ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: ar=0x%p eid=%d, skb=0x%p, data=0x%p, len=0x%x status:%d", __func__, ar, ept, skb, packet->buf, packet->act_len, status); if (status || !(skb->data + HTC_HDR_LENGTH)) { dev_kfree_skb(skb); return; } skb_put(skb, packet->act_len + HTC_HDR_LENGTH); skb_pull(skb, HTC_HDR_LENGTH); ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "rx ", skb->data, skb->len); if (!test_bit(TESTMODE_EPPING, &ar->flag)) { if (ept == ar->ctrl_ep) { if (test_bit(WMI_ENABLED, &ar->flag)) { ath6kl_check_wow_status(ar); ath6kl_wmi_control_rx(ar->wmi, skb); return; } if_idx = wmi_cmd_hdr_get_if_idx((struct wmi_cmd_hdr *) skb->data); } else { if_idx = wmi_data_hdr_get_if_idx((struct wmi_data_hdr *) skb->data); } } else { /* The epping packet is not coming from wmi, skip the index * retrival, epping assume using the first if_idx anyway */ if_idx = 0; } vif = ath6kl_get_vif_by_index(ar, if_idx); if (!vif) { dev_kfree_skb(skb); return; } /* * Take lock to protect buffer counts and adaptive power throughput * state. */ spin_lock_bh(&vif->if_lock); vif->net_stats.rx_packets++; vif->net_stats.rx_bytes += packet->act_len; spin_unlock_bh(&vif->if_lock); skb->dev = vif->ndev; if (!test_bit(WMI_ENABLED, &ar->flag)) { if (EPPING_ALIGNMENT_PAD > 0) skb_pull(skb, EPPING_ALIGNMENT_PAD); ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb); return; } ath6kl_check_wow_status(ar); min_hdr_len = sizeof(struct ethhdr) + sizeof(struct wmi_data_hdr) + sizeof(struct ath6kl_llc_snap_hdr); dhdr = (struct wmi_data_hdr *) skb->data; /* * In the case of AP mode we may receive NULL data frames * that do not have LLC hdr. They are 16 bytes in size. * Allow these frames in the AP mode. */ if (vif->nw_type != AP_NETWORK && ((packet->act_len < min_hdr_len) || (packet->act_len > WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH))) { ath6kl_info("frame len is too short or too long\n"); vif->net_stats.rx_errors++; vif->net_stats.rx_length_errors++; dev_kfree_skb(skb); return; } /* Get the Power save state of the STA */ if (vif->nw_type == AP_NETWORK) { meta_type = wmi_data_hdr_get_meta(dhdr); ps_state = !!((dhdr->info >> WMI_DATA_HDR_PS_SHIFT) & WMI_DATA_HDR_PS_MASK); offset = sizeof(struct wmi_data_hdr); trig_state = !!(le16_to_cpu(dhdr->info3) & WMI_DATA_HDR_TRIG); switch (meta_type) { case 0: break; case WMI_META_VERSION_1: offset += sizeof(struct wmi_rx_meta_v1); break; case WMI_META_VERSION_2: offset += sizeof(struct wmi_rx_meta_v2); break; default: break; } datap = (struct ethhdr *) (skb->data + offset); conn = ath6kl_find_sta(vif, datap->h_source, false); if (!conn) { dev_kfree_skb(skb); return; } /* * If there is a change in PS state of the STA, * take appropriate steps: * * 1. If Sleep-->Awake, flush the psq for the STA * Clear the PVB for the STA. * 2. If Awake-->Sleep, Starting queueing frames * the STA. */ prev_ps = !!(conn->sta_flags & STA_PS_SLEEP); if (ps_state) conn->sta_flags |= STA_PS_SLEEP; else conn->sta_flags &= ~STA_PS_SLEEP; /* Accept trigger only when the station is in sleep */ if ((conn->sta_flags & STA_PS_SLEEP) && trig_state) ath6kl_uapsd_trigger_frame_rx(vif, conn); if (prev_ps ^ !!(conn->sta_flags & STA_PS_SLEEP)) { #ifdef CONFIG_ATH6KL_BAM2BAM if (ps_state) { ath6kl_send_msg_ipa(vif, WLAN_CLIENT_POWER_SAVE_MODE, datap->h_source); } else { ath6kl_send_msg_ipa(vif, WLAN_CLIENT_NORMAL_MODE, datap->h_source); } #endif if (!(conn->sta_flags & STA_PS_SLEEP)) { struct sk_buff *skbuff = NULL; bool is_apsdq_empty; struct ath6kl_mgmt_buff *mgmt; u8 idx; spin_lock_bh(&conn->psq_lock); while (conn->mgmt_psq_len > 0) { mgmt = list_first_entry( &conn->mgmt_psq, struct ath6kl_mgmt_buff, list); list_del(&mgmt->list); conn->mgmt_psq_len--; spin_unlock_bh(&conn->psq_lock); idx = vif->fw_vif_idx; ath6kl_wmi_send_mgmt_cmd(ar->wmi, idx, mgmt->id, mgmt->freq, mgmt->wait, mgmt->buf, mgmt->len, mgmt->no_cck); kfree(mgmt); spin_lock_bh(&conn->psq_lock); } conn->mgmt_psq_len = 0; while ((skbuff = skb_dequeue(&conn->psq))) { spin_unlock_bh(&conn->psq_lock); ath6kl_data_tx(skbuff, vif->ndev); spin_lock_bh(&conn->psq_lock); } is_apsdq_empty = skb_queue_empty(&conn->apsdq); while ((skbuff = skb_dequeue(&conn->apsdq))) { spin_unlock_bh(&conn->psq_lock); ath6kl_data_tx(skbuff, vif->ndev); spin_lock_bh(&conn->psq_lock); } spin_unlock_bh(&conn->psq_lock); if (!is_apsdq_empty) ath6kl_wmi_set_apsd_bfrd_traf( ar->wmi, vif->fw_vif_idx, conn->aid, 0, 0); /* Clear the PVB for this STA */ ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, conn->aid, 0); } } /* drop NULL data frames here */ if ((packet->act_len < min_hdr_len) || (packet->act_len > WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH)) { dev_kfree_skb(skb); return; } } is_amsdu = wmi_data_hdr_is_amsdu(dhdr) ? true : false; tid = wmi_data_hdr_get_up(dhdr); seq_no = wmi_data_hdr_get_seqno(dhdr); meta_type = wmi_data_hdr_get_meta(dhdr); dot11_hdr = wmi_data_hdr_get_dot11(dhdr); #ifdef CONFIG_ATH6KL_BAM2BAM if (ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM)) { is_out_of_order = wmi_data_hdr_is_out_of_order(dhdr); is_flush = wmi_data_hdr_is_ampdu_flush(dhdr); is_partial_flush = wmi_data_hdr_is_ampdu_partial_flush(dhdr); is_flush_all = wmi_data_hdr_is_ampdu_flush_all(dhdr); } #endif /* Padding is done only for 1_3 HW VERSION */ if (ar->version.target_ver == AR6004_HW_1_3_VERSION) { pad_before_data_start = (le16_to_cpu(dhdr->info3) >> WMI_DATA_HDR_PAD_BEFORE_DATA_SHIFT) & WMI_DATA_HDR_PAD_BEFORE_DATA_MASK; } skb_pull(skb, sizeof(struct wmi_data_hdr)); switch (meta_type) { case WMI_META_VERSION_1: skb_pull(skb, sizeof(struct wmi_rx_meta_v1)); break; case WMI_META_VERSION_2: meta = (struct wmi_rx_meta_v2 *) skb->data; if (meta->csum_flags & 0x1) { skb->ip_summed = CHECKSUM_COMPLETE; skb->csum = (__force __wsum) meta->csum; } skb_pull(skb, sizeof(struct wmi_rx_meta_v2)); break; default: break; } skb_pull(skb, pad_before_data_start); if (dot11_hdr) status = ath6kl_wmi_dot11_hdr_remove(ar->wmi, skb); else if (!is_amsdu) status = ath6kl_wmi_dot3_2_dix(skb); if (status) { /* * Drop frames that could not be processed (lack of * memory, etc.) */ dev_kfree_skb(skb); return; } if (!(vif->ndev->flags & IFF_UP)) { dev_kfree_skb(skb); return; } if (vif->nw_type == AP_NETWORK) { datap = (struct ethhdr *) skb->data; if (is_multicast_ether_addr(datap->h_dest)) { /* * Bcast/Mcast frames should be sent to the * OS stack as well as over the air. */ skb1 = skb_copy(skb, GFP_ATOMIC); if (skb1) ath6kl_data_tx(skb1, conn->vif->ndev); } } datap = (struct ethhdr *) skb->data; if (!((is_multicast_ether_addr(datap->h_dest)) && (vif->nw_type == INFRA_NETWORK))) { if (vif->nw_type == AP_NETWORK) { conn = ath6kl_find_sta(vif, datap->h_source, false); if (!conn) return; aggr_conn = conn->aggr_conn; } else aggr_conn = vif->aggr_cntxt->aggr_conn; #ifdef CONFIG_ATH6KL_BAM2BAM if (ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM) && !ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM_RX_SW_PATH)) { if (!is_out_of_order && is_amsdu) { aggr_process_amsdu_bam2bam(aggr_conn, tid, skb); return; } if (is_flush_all) aggr_deque_frms_bam2bam(aggr_conn, tid, 0, 0); if (is_partial_flush) aggr_deque_frms_bam2bam(aggr_conn, tid, seq_no , 2); if (is_out_of_order && aggr_process_recv_frm_bam2bam(aggr_conn, tid, seq_no, is_amsdu, skb)) { /* Counter */ un_ordered++; aggr_conn->vif = vif; if (is_flush) aggr_deque_frms_bam2bam(aggr_conn, tid, seq_no, 1); /* aggregation code will handle the skb */ return; } } else { if (aggr_process_recv_frm(aggr_conn, tid, seq_no, is_amsdu, skb)) { /* aggregation code will handle the skb */ return; } } #else /* Non BAM2BAM path */ if (aggr_process_recv_frm(aggr_conn, tid, seq_no, is_amsdu, skb)) { /* aggregation code will handle the skb */ return; } #endif } else if (!is_broadcast_ether_addr(datap->h_dest)) vif->net_stats.multicast++; #ifdef CONFIG_ATH6KL_BAM2BAM if (ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM)) { ordered++; } #endif ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb); } static void aggr_timeout(unsigned long arg) { u8 i, j; struct aggr_info_conn *aggr_conn = (struct aggr_info_conn *) arg; struct rxtid *rxtid; struct rxtid_stats *stats; for (i = 0; i < NUM_OF_TIDS; i++) { rxtid = &aggr_conn->rx_tid[i]; stats = &aggr_conn->stat[i]; if (!rxtid->aggr || !rxtid->timer_mon) continue; stats->num_timeouts++; ath6kl_dbg(ATH6KL_DBG_AGGR, "aggr timeout (st %d end %d)\n", rxtid->seq_next, ((rxtid->seq_next + rxtid->hold_q_sz-1) & ATH6KL_MAX_SEQ_NO)); #ifdef CONFIG_ATH6KL_BAM2BAM if (ath6kl_debug_quirks(aggr_conn->vif->ar, ATH6KL_MODULE_BAM2BAM) && !ath6kl_debug_quirks(aggr_conn->vif->ar, ATH6KL_MODULE_BAM_RX_SW_PATH)) aggr_deque_frms_bam2bam(aggr_conn, i, 0, 0); else { /* This path for non BAM2BAM path during run time */ aggr_deque_frms(aggr_conn, i, 0, 0); } #else /* This path for non BAM2BAM path during compile time */ aggr_deque_frms(aggr_conn, i, 0, 0); #endif } aggr_conn->timer_scheduled = false; for (i = 0; i < NUM_OF_TIDS; i++) { rxtid = &aggr_conn->rx_tid[i]; if (rxtid->aggr && rxtid->hold_q) { spin_lock_bh(&rxtid->lock); for (j = 0; j < rxtid->hold_q_sz; j++) { if (rxtid->hold_q[j].skb) { aggr_conn->timer_scheduled = true; rxtid->timer_mon = true; break; } } spin_unlock_bh(&rxtid->lock); if (j >= rxtid->hold_q_sz) rxtid->timer_mon = false; } } if (aggr_conn->timer_scheduled) mod_timer(&aggr_conn->timer, jiffies + msecs_to_jiffies(AGGR_RX_TIMEOUT)); } static void aggr_delete_tid_state(struct aggr_info_conn *aggr_conn, u8 tid) { struct rxtid *rxtid; struct rxtid_stats *stats; if (!aggr_conn || tid >= NUM_OF_TIDS) return; rxtid = &aggr_conn->rx_tid[tid]; stats = &aggr_conn->stat[tid]; if (rxtid->aggr) { #ifdef CONFIG_ATH6KL_BAM2BAM if (ath6kl_debug_quirks(aggr_conn->vif->ar, ATH6KL_MODULE_BAM2BAM) && !ath6kl_debug_quirks(aggr_conn->vif->ar, ATH6KL_MODULE_BAM_RX_SW_PATH)) aggr_deque_frms_bam2bam(aggr_conn, tid, 0, 0); else { /* This path for non BAM2BAM path during run time */ aggr_deque_frms(aggr_conn, tid, 0, 0); } #else /* This path for non BAM2BAM path during compile time */ aggr_deque_frms(aggr_conn, tid, 0, 0); #endif } rxtid->aggr = false; rxtid->timer_mon = false; rxtid->win_sz = 0; rxtid->seq_next = 0; rxtid->hold_q_sz = 0; kfree(rxtid->hold_q); rxtid->hold_q = NULL; memset(stats, 0, sizeof(struct rxtid_stats)); } void aggr_recv_addba_req_evt(struct ath6kl_vif *vif, u8 tid_mux, u16 seq_no, u8 win_sz) { struct ath6kl_sta *sta; struct aggr_info_conn *aggr_conn = NULL; struct rxtid *rxtid; struct rxtid_stats *stats; u16 hold_q_size; u8 tid, aid; if (vif->nw_type == AP_NETWORK) { aid = ath6kl_get_aid(tid_mux); sta = ath6kl_find_sta_by_aid(vif, aid); if (sta) aggr_conn = sta->aggr_conn; } else aggr_conn = vif->aggr_cntxt->aggr_conn; if (!aggr_conn) return; tid = ath6kl_get_tid(tid_mux); if (tid >= NUM_OF_TIDS) return; rxtid = &aggr_conn->rx_tid[tid]; stats = &aggr_conn->stat[tid]; if (win_sz < AGGR_WIN_SZ_MIN || win_sz > AGGR_WIN_SZ_MAX) ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: win_sz %d, tid %d\n", __func__, win_sz, tid); #ifdef CONFIG_ATH6KL_BAM2BAM aggr_conn->vif = vif; #endif if (rxtid->aggr) aggr_delete_tid_state(aggr_conn, tid); rxtid->seq_next = seq_no; hold_q_size = TID_WINDOW_SZ(win_sz) * sizeof(struct skb_hold_q); rxtid->hold_q = kzalloc(hold_q_size, GFP_KERNEL); if (!rxtid->hold_q) return; rxtid->win_sz = win_sz; rxtid->hold_q_sz = TID_WINDOW_SZ(win_sz); if (!skb_queue_empty(&rxtid->q)) return; rxtid->aggr = true; } void aggr_conn_init(struct ath6kl_vif *vif, struct aggr_info *aggr_info, struct aggr_info_conn *aggr_conn) { struct rxtid *rxtid; u8 i; aggr_conn->aggr_sz = AGGR_SZ_DEFAULT; aggr_conn->dev = vif->ndev; #ifdef CONFIG_ATH6KL_BAM2BAM aggr_conn->vif = vif; #endif init_timer(&aggr_conn->timer); aggr_conn->timer.function = aggr_timeout; aggr_conn->timer.data = (unsigned long) aggr_conn; aggr_conn->aggr_info = aggr_info; aggr_conn->timer_scheduled = false; for (i = 0; i < NUM_OF_TIDS; i++) { rxtid = &aggr_conn->rx_tid[i]; rxtid->aggr = false; rxtid->timer_mon = false; skb_queue_head_init(&rxtid->q); spin_lock_init(&rxtid->lock); } } struct aggr_info *aggr_init(struct ath6kl_vif *vif) { struct aggr_info *p_aggr = NULL; p_aggr = kzalloc(sizeof(struct aggr_info), GFP_KERNEL); if (!p_aggr) { ath6kl_err("failed to alloc memory for aggr_node\n"); return NULL; } p_aggr->aggr_conn = kzalloc(sizeof(struct aggr_info_conn), GFP_KERNEL); if (!p_aggr->aggr_conn) { ath6kl_err("failed to alloc memory for conn spec aggr info\n"); kfree(p_aggr); return NULL; } aggr_conn_init(vif, p_aggr, p_aggr->aggr_conn); skb_queue_head_init(&p_aggr->rx_amsdu_freeq); ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq, AGGR_NUM_OF_FREE_NETBUFS); return p_aggr; } void aggr_recv_delba_req_evt(struct ath6kl_vif *vif, u8 tid_mux) { struct ath6kl_sta *sta; struct rxtid *rxtid; struct aggr_info_conn *aggr_conn = NULL; u8 tid, aid; if (vif->nw_type == AP_NETWORK) { aid = ath6kl_get_aid(tid_mux); sta = ath6kl_find_sta_by_aid(vif, aid); if (sta) aggr_conn = sta->aggr_conn; } else aggr_conn = vif->aggr_cntxt->aggr_conn; if (!aggr_conn) return; tid = ath6kl_get_tid(tid_mux); if (tid >= NUM_OF_TIDS) return; rxtid = &aggr_conn->rx_tid[tid]; #ifdef CONFIG_ATH6KL_BAM2BAM aggr_conn->vif = vif; #endif if (rxtid->aggr) aggr_delete_tid_state(aggr_conn, tid); } void aggr_reset_state(struct aggr_info_conn *aggr_conn) { u8 tid; if (!aggr_conn) return; if (aggr_conn->timer_scheduled) { del_timer(&aggr_conn->timer); aggr_conn->timer_scheduled = false; } for (tid = 0; tid < NUM_OF_TIDS; tid++) aggr_delete_tid_state(aggr_conn, tid); } /* clean up our amsdu buffer list */ void ath6kl_cleanup_amsdu_rxbufs(struct ath6kl *ar) { struct htc_packet *packet, *tmp_pkt; spin_lock_bh(&ar->lock); if (list_empty(&ar->amsdu_rx_buffer_queue)) { spin_unlock_bh(&ar->lock); return; } list_for_each_entry_safe(packet, tmp_pkt, &ar->amsdu_rx_buffer_queue, list) { list_del(&packet->list); spin_unlock_bh(&ar->lock); dev_kfree_skb(packet->pkt_cntxt); spin_lock_bh(&ar->lock); } spin_unlock_bh(&ar->lock); } void aggr_module_destroy(struct aggr_info *aggr_info) { if (!aggr_info) return; aggr_reset_state(aggr_info->aggr_conn); skb_queue_purge(&aggr_info->rx_amsdu_freeq); kfree(aggr_info->aggr_conn); kfree(aggr_info); } struct ath6kl_mcc_flowctrl *ath6kl_mcc_flowctrl_conn_list_init(struct ath6kl *ar) { struct ath6kl_mcc_flowctrl *mcc_flowctrl; struct ath6kl_fw_conn_list *fw_conn; int i; mcc_flowctrl = kzalloc(sizeof(struct ath6kl_mcc_flowctrl), GFP_KERNEL); if (!mcc_flowctrl) { ath6kl_err("failed to alloc memory for mcc_flowctrl\n"); return NULL; } mcc_flowctrl->ar = ar; spin_lock_init(&mcc_flowctrl->mcc_flowctrl_lock); mcc_flowctrl->mcc_events_resumed = 0; setup_timer(&mcc_flowctrl->mcc_event_ctrl_timer, ath6kl_mcc_event_ctrl_timer_handler, (unsigned long) ar); for (i = 0; i < NUM_CONN; i++) { fw_conn = &mcc_flowctrl->fw_conn_list[i]; INIT_LIST_HEAD(&fw_conn->conn_queue); INIT_LIST_HEAD(&fw_conn->re_queue); fw_conn->connect_status = 0; fw_conn->previous_can_send = true; fw_conn->conn_id = ATH6KL_MCC_FLOWCTRL_NULL_CONNID; memset(fw_conn->mac_addr, 0, ETH_ALEN); } ath6kl_dbg(ATH6KL_DBG_FLOWCTRL, "mcc_flowctrl init (ar %p) NUM_CONN %d\n", ar, NUM_CONN); return mcc_flowctrl; } void ath6kl_mcc_flowctrl_conn_list_deinit(struct ath6kl *ar) { struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx; del_timer(&mcc_flowctrl->mcc_event_ctrl_timer); if (mcc_flowctrl) { /* * It's better to check whether any conn_queue/re_queue * need to reclaim. */ kfree(mcc_flowctrl); } ar->mcc_flowctrl_ctx = NULL; ath6kl_dbg(ATH6KL_DBG_FLOWCTRL, "mcc_flowctrl deinit (ar %p)\n", ar); return; } /* Check if this connId is off-channel * return 0 - the connId is off-channel * 1 - the device is in connId channel, so tx can be sent */ static bool ath6kl_check_can_send(struct ath6kl_mcc_flowctrl *mcc_flowctrl, u8 conn_id) { struct ath6kl_fw_conn_list *fw_conn; bool can_send = false; fw_conn = &mcc_flowctrl->fw_conn_list[conn_id]; do { if (fw_conn->ocs) break; if (!mcc_flowctrl->mcc_events_resumed) break; can_send = true; } while(false); return can_send; } void ath6kl_mcc_flowctrl_tx_schedule(struct ath6kl *ar, u8 is_ch_chg) { struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx; struct ath6kl_fw_conn_list *fw_conn; struct htc_packet *packet, *tmp_pkt; int i, tx, re_tx; WARN_ON(!mcc_flowctrl); for (i = 0; i < NUM_CONN; i++) { fw_conn = &mcc_flowctrl->fw_conn_list[i]; spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock); /* Bypass this fw_conn if it not yet used. */ if (fw_conn->conn_id == ATH6KL_MCC_FLOWCTRL_NULL_CONNID) { spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock); continue; } tx = re_tx = 0; if (ath6kl_check_can_send(mcc_flowctrl, i)) { if (!list_empty(&fw_conn->re_queue)) { list_for_each_entry_safe(packet, tmp_pkt, &fw_conn->re_queue, list) { list_del(&packet->list); if (packet->endpoint >= ENDPOINT_MAX) continue; re_tx++; ath6kl_htc_tx(ar->htc_target, packet); } } if (!list_empty(&fw_conn->conn_queue)) { list_for_each_entry_safe(packet, tmp_pkt, &fw_conn->conn_queue, list) { list_del(&packet->list); if (packet->endpoint >= ENDPOINT_MAX) continue; tx++; ath6kl_htc_tx(ar->htc_target, packet); } } } spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock); ath6kl_dbg(ATH6KL_DBG_FLOWCTRL, "mcc_flowctrl schedule(ar %p)connId %d tx%d re_tx%d\n", ar, i, tx, re_tx); } return; } /* Check if this packet needs to be held(cached) in host. * If not, send the packets that were cached earlier for this conn * * for home channel packet : netif -> ep txq -> fw * for off channel packet : netif -> conn queue -> channel switch event -> * conn queue -> ep txq * for tx epq packets that are not drained : channel switch event -> eq txq * -> conn queue */ enum htc_send_queue_result ath6kl_mcc_flowctrl_tx_schedule_pkt(struct ath6kl *ar, void *pkt) { struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx; struct ath6kl_fw_conn_list *fw_conn; struct ath6kl_cookie *cookie = (struct ath6kl_cookie *)pkt; int conn_id = cookie->htc_pkt.connid; enum htc_send_queue_result ret = HTC_SEND_QUEUE_OK; struct ath6kl_vif *vif = NULL; WARN_ON(!mcc_flowctrl); if (conn_id == ATH6KL_MCC_FLOWCTRL_NULL_CONNID) { ath6kl_err("mcc_flowctrl tx schedule packet fail, NULL connId," "just send??\n"); /* Just send it */ return HTC_SEND_QUEUE_SENT; } mod_timer(&mcc_flowctrl->mcc_event_ctrl_timer, jiffies + msecs_to_jiffies(MCC_STOP_EVENT_TIMER_INTVL)); if (!mcc_flowctrl->mcc_events_resumed) { ath6kl_wmi_set_mcc_event_mode_cmd(ar->wmi, MCC_START_EVENT); mcc_flowctrl->mcc_events_resumed = 1; } fw_conn = &mcc_flowctrl->fw_conn_list[conn_id]; vif = fw_conn->vif; /* irrespective of channel, keep consuming only in multiples of * this count */ if(((MAX_OFFCH_HOLD_COOKIE_NUM) < vif->cookie_used) && (!test_bit(NETQ_STOPPED, &vif->flags))) { set_bit(NETQ_STOPPED, &vif->flags); netif_stop_queue(vif->ndev); } spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock); fw_conn = &mcc_flowctrl->fw_conn_list[conn_id]; if (!ath6kl_check_can_send(mcc_flowctrl, conn_id)) { spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock); list_add_tail(&cookie->htc_pkt.list, &fw_conn->conn_queue); goto result; } else { /* send thr packet through */ ret = HTC_SEND_QUEUE_SENT; } spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock); result: ath6kl_dbg(ATH6KL_DBG_FLOWCTRL, "mcc_flowctrl schedule pkt (ar %p) %s\n", ar, ((ret == HTC_SEND_QUEUE_OK) ? "queue" : "send")); return ret; } /* channel switch event -> ep txq -> conn queue * if packets are cycled between eq txq and conn queue for more than * ATH6KL_MCC_FLOWCTRL_RECYCLE_LIMIT times, drop the pkt */ void ath6kl_mcc_flowctrl_state_change(struct ath6kl *ar) { struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx; struct ath6kl_fw_conn_list *fw_conn; struct htc_packet *packet, *tmp_pkt; struct htc_endpoint *endpoint; struct list_head *tx_queue, container; int i, eid, re_tx, drop_tx; WARN_ON(!mcc_flowctrl); INIT_LIST_HEAD(&container); for (i = 0; i < NUM_CONN; i++) { re_tx = drop_tx = 0; fw_conn = &mcc_flowctrl->fw_conn_list[i]; if (!ath6kl_check_can_send(mcc_flowctrl, i) && fw_conn->previous_can_send) { spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock); spin_lock_bh(&ar->htc_target->tx_lock); for (eid = ENDPOINT_2; eid <= ENDPOINT_5; eid++) { endpoint = &ar->htc_target->endpoint[eid]; tx_queue = &endpoint->txq; if (list_empty(tx_queue)) continue; list_for_each_entry_safe(packet, tmp_pkt, tx_queue, list) { if (packet->connid != i) continue; list_del(&packet->list); if (packet->recycle_count > ATH6KL_MCC_FLOWCTRL_RECYCLE_LIMIT) { packet->status = 0; list_add_tail(&packet->list, &container); drop_tx++; } else { packet->recycle_count++; list_add_tail(&packet->list, &fw_conn->re_queue); re_tx++; } } } spin_unlock_bh(&ar->htc_target->tx_lock); spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock); } fw_conn->previous_can_send = ath6kl_check_can_send(mcc_flowctrl, i); fw_conn->mcc_stats.sche_re_tx += re_tx; fw_conn->mcc_stats.recycle_drop_count += drop_tx; ath6kl_dbg(ATH6KL_DBG_FLOWCTRL, "mcc_flowctrl state_change" " (conn %pM) re_tx %d drop_tx %d \n", fw_conn->mac_addr, re_tx, drop_tx); } ath6kl_tx_complete(ar->htc_target, &container); return; } /* Update the bit-map for each conn, as sent in flowctrl event from FW * This flag needs to be checked for all Tx */ void ath6kl_mcc_flowctrl_state_update(struct ath6kl *ar, u8 num_conn, u8 ac_map[], u8 ac_queue_depth[]) { struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx; struct ath6kl_fw_conn_list *fw_conn; int i; WARN_ON(!mcc_flowctrl); spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock); for (i = 0; i < NUM_CONN; i++) { fw_conn = &mcc_flowctrl->fw_conn_list[i]; fw_conn->connect_status = ac_map[i]; } spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock); ath6kl_dbg(ATH6KL_DBG_FLOWCTRL, "mcc_flowctrl state_update(ar %p)ac_map %02x %02x %02x %02x\n", ar, ac_map[0], ac_map[1], ac_map[2], ac_map[3]); return; } /* Find conn based on the mac address. * If this packet doesnt have any of the matching mac, assume doing * transmit of this packet is fine */ void ath6kl_mcc_flowctrl_set_conn_id(struct ath6kl_vif *vif, u8 mac_addr[], u8 conn_id) { struct ath6kl *ar = vif->ar; struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx; struct ath6kl_fw_conn_list *fw_conn; WARN_ON(!mcc_flowctrl); /* Here using "connection" based concept. * For STA/AP mode, set mac address as STA/AP-Client's. * For AP node, set mac address as AP's. * For AP's client, set mac address as client's. * * Mac address is a "hint" used to find the connection id when TX. * Host driver need to * 1.Call this API w/ NULL mac address if DISCONNECT event. * 2.Recycle the conn_queue/re_queue. * 3.Reset the flowctrl status. */ fw_conn = &mcc_flowctrl->fw_conn_list[conn_id]; spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock); if (mac_addr) { fw_conn->conn_id = conn_id; memcpy(fw_conn->mac_addr, mac_addr, ETH_ALEN); fw_conn->vif = vif; } else { fw_conn->conn_id = ATH6KL_MCC_FLOWCTRL_NULL_CONNID; memset(fw_conn->mac_addr, 0, ETH_ALEN); memset(&fw_conn->mcc_stats, 0, sizeof(struct ath6kl_mcc_stats)); fw_conn->vif = NULL; } spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock); ath6kl_dbg(ATH6KL_DBG_FLOWCTRL, "mcc_flowctrl set conn_id (ar %p) mode %d connId %d" "mac_addr %pM\n", ar, vif->nw_type, conn_id, mac_addr); return; } u8 ath6kl_mcc_flowctrl_get_conn_id(struct ath6kl_vif *vif, struct sk_buff *skb) { struct ath6kl *ar = vif->ar; struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx; struct ath6kl_fw_conn_list *fw_conn; struct ethhdr *ethhdr; u8 *hint; u8 conn_id = ATH6KL_MCC_FLOWCTRL_NULL_CONNID; int i; if (!mcc_flowctrl) { return conn_id; } ethhdr = (struct ethhdr *)(skb->data + sizeof(struct wmi_data_hdr)); if (vif->nw_type != AP_NETWORK) { hint = ethhdr->h_source; } else { if (is_multicast_ether_addr(ethhdr->h_dest)) hint = ethhdr->h_source; else hint = ethhdr->h_dest; } fw_conn = &mcc_flowctrl->fw_conn_list[0]; spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock); for (i = 0; i < NUM_CONN; i++, fw_conn++) { if (fw_conn->conn_id == ATH6KL_MCC_FLOWCTRL_NULL_CONNID) continue; if (memcmp(fw_conn->mac_addr, hint, ETH_ALEN) == 0) { conn_id = fw_conn->conn_id; break; } } spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock); ath6kl_dbg(ATH6KL_DBG_FLOWCTRL, "mcc_flowctrl get conn_id (ar %p) connId %d" "hint %pM\n", ar, conn_id, hint); return conn_id; } #ifdef CONFIG_ATH6KL_BAM2BAM void ath6kl_aggr_deque_bam2bam(struct ath6kl_vif *vif, u16 seq_no,u8 tid, u8 aid) { struct ath6kl_sta *sta; struct aggr_info_conn *aggr_conn = NULL; struct rxtid *rxtid; if (vif->nw_type == AP_NETWORK) { sta = ath6kl_find_sta_by_aid(vif, aid); if (sta) aggr_conn = sta->aggr_conn; } else { aggr_conn = vif->aggr_cntxt->aggr_conn; } if (!aggr_conn) return; if (tid >= NUM_OF_TIDS) return; rxtid = &aggr_conn->rx_tid[tid]; if (!rxtid->aggr) return; ath6kl_dbg(ATH6KL_DBG_OOO, "ooo: Control Packet from Rx-non bam2bam Event pipe...\n"); aggr_conn->vif = vif; if (seq_no > ATH6KL_MAX_SEQ_NO) { if (ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM)) { aggr_deque_frms_bam2bam(aggr_conn, tid, 0, 0); } } else { if (ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM)) { aggr_deque_frms_bam2bam(aggr_conn, tid, seq_no, 2); } } } int ath6kl_send_dummy_data(struct ath6kl_vif *vif, u8 ac_category) { struct ath6kl *ar = vif->ar; struct ath6kl_cookie *cookie = NULL; enum htc_endpoint_id eid = ENDPOINT_UNUSED; u16 htc_tag = ATH6KL_DATA_PKT_TAG; struct sk_buff *skb = NULL; int ret = 0; struct wmi_data_hdr *data_hdr; if(ar->cookie_count < (MAX_DEF_COOKIE_NUM/3)) return -ENOMEM; if (WARN_ON_ONCE(ar->state != ATH6KL_STATE_ON)) return -EINVAL; if (!test_bit(WMI_READY, &ar->flag)) return -EINVAL; skb = ath6kl_buf_alloc(0); if (skb == NULL) return -ENOMEM; ret = ath6kl_wmi_data_hdr_add(ar->wmi, skb, DATA_MSGTYPE, 0, 0, 0, NULL, vif->fw_vif_idx); if (ret) { ath6kl_warn("failed to add wmi data header:%d\n" , ret); goto dfail_tx; } data_hdr = (struct wmi_data_hdr *)skb->data; data_hdr->info3 |= cpu_to_le16(WMI_DATA_HDR_DUMMY_DATA_BIT_MASK << WMI_DATA_HDR_DUMMY_DATA_BIT_SHIFT); spin_lock_bh(&ar->lock); eid = ac_category; if (eid == 0 || eid == ENDPOINT_UNUSED) { ath6kl_err("eid %d is not mapped!\n", eid); spin_unlock_bh(&ar->lock); ret = -EINVAL; goto dfail_tx; } /* allocate resource for this packet */ cookie = ath6kl_alloc_cookie(ar, vif, eid); if (!cookie) { spin_unlock_bh(&ar->lock); ret = -ENOMEM; goto dfail_tx; } /* update counts while the lock is held */ ar->tx_pending[eid]++; ar->total_tx_data_pend++; spin_unlock_bh(&ar->lock); if (!IS_ALIGNED((unsigned long) skb->data - HTC_HDR_LENGTH, 4) && skb_cloned(skb)) { /* * We will touch (move the buffer data to align it. Since the * skb buffer is cloned and not only the header is changed, we * have to copy it to allow the changes. Since we are copying * the data here, we may as well align it by reserving suitable * headroom to avoid the memmove in ath6kl_htc_tx_buf_align(). */ struct sk_buff *nskb; nskb = skb_copy_expand(skb, HTC_HDR_LENGTH, 0, GFP_ATOMIC); if (nskb == NULL) goto dfail_skbexp; kfree_skb(skb); skb = nskb; } cookie->skb = skb; cookie->map_no = 0; set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len, eid, htc_tag); cookie->htc_pkt.skb = skb; ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "dummy tx ", skb->data, skb->len); /* * HTC interface is asynchronous, if this fails, cleanup will * happen in the ath6kl_tx_complete callback. */ ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt); return 0; dfail_skbexp: /* Release the cookie */ ath6kl_free_cookie(ar, vif, cookie); dfail_tx: if (skb) dev_kfree_skb(skb); return ret; } void ath6kl_client_power_save(struct ath6kl_vif *vif, u8 power_save, u8 aid) { struct ath6kl_sta *conn; struct ath6kl *ar = vif->ar; ath6kl_dbg(ATH6KL_DBG_BAM2BAM, "IPA-CM: Power save event is successfully received\n"); if (vif->nw_type == AP_NETWORK) { conn = ath6kl_find_sta_by_aid(vif, aid); if(!conn) return; } else { return; } if (power_save ^ !!(conn->sta_flags & STA_PS_SLEEP)) { if (power_save) { conn->sta_flags |= STA_PS_SLEEP; ath6kl_send_msg_ipa(vif, WLAN_CLIENT_POWER_SAVE_MODE, conn->mac); } else { conn->sta_flags &= ~STA_PS_SLEEP; ath6kl_send_msg_ipa(vif, WLAN_CLIENT_NORMAL_MODE, conn->mac); } } if (!(conn->sta_flags & STA_PS_SLEEP)) { struct sk_buff *skbuff = NULL; bool is_apsdq_empty; struct ath6kl_mgmt_buff *mgmt; u8 idx; spin_lock_bh(&conn->psq_lock); while (conn->mgmt_psq_len > 0) { mgmt = list_first_entry( &conn->mgmt_psq, struct ath6kl_mgmt_buff, list); list_del(&mgmt->list); conn->mgmt_psq_len--; spin_unlock_bh(&conn->psq_lock); idx = vif->fw_vif_idx; ath6kl_wmi_send_mgmt_cmd(ar->wmi, idx, mgmt->id, mgmt->freq, mgmt->wait, mgmt->buf, mgmt->len, mgmt->no_cck); kfree(mgmt); spin_lock_bh(&conn->psq_lock); } conn->mgmt_psq_len = 0; while ((skbuff = skb_dequeue(&conn->psq))) { spin_unlock_bh(&conn->psq_lock); ath6kl_data_tx(skbuff, vif->ndev); spin_lock_bh(&conn->psq_lock); } is_apsdq_empty = skb_queue_empty(&conn->apsdq); while ((skbuff = skb_dequeue(&conn->apsdq))) { spin_unlock_bh(&conn->psq_lock); ath6kl_data_tx(skbuff, vif->ndev); spin_lock_bh(&conn->psq_lock); } spin_unlock_bh(&conn->psq_lock); if (!is_apsdq_empty) ath6kl_wmi_set_apsd_bfrd_traf( ar->wmi, vif->fw_vif_idx, conn->aid, 0, 0); /* Clear the PVB for this STA */ ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, conn->aid, 0); } } void ath6kl_allow_packet_drop(struct ath6kl_vif *vif, u8 enable_drop) { struct ipa_ep_cfg_holb ipa_ep_cfg; ath6kl_dbg(ATH6KL_DBG_BAM2BAM, "IPA-CM: IPA HOLB event is successfully received\n"); if (enable_drop) ipa_ep_cfg.en = true; else ipa_ep_cfg.en = false; ipa_ep_cfg.tmr_val = ATH6KL_IPA_HOLB_TIMER_VAL; ipa_cfg_ep_holb_by_client(IPA_CLIENT_HSIC1_CONS, &ipa_ep_cfg); ipa_cfg_ep_holb_by_client(IPA_CLIENT_HSIC2_CONS, &ipa_ep_cfg); ipa_cfg_ep_holb_by_client(IPA_CLIENT_HSIC3_CONS, &ipa_ep_cfg); ipa_cfg_ep_holb_by_client(IPA_CLIENT_HSIC4_CONS, &ipa_ep_cfg); } #endif static void ath6kl_mcc_event_ctrl_timer_handler(unsigned long ptr) { struct ath6kl *ar = (struct ath6kl *)ptr; struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx; ath6kl_wmi_set_mcc_event_mode_cmd(ar->wmi, MCC_STOP_EVENT); mcc_flowctrl->mcc_events_resumed = 0; return; }