/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.server; import static android.os.Process.*; import android.os.Process; import android.os.SystemClock; import android.util.Config; import android.util.Slog; import java.io.File; import java.io.FileInputStream; import java.io.PrintWriter; import java.io.StringWriter; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.StringTokenizer; public class ProcessStats { private static final String TAG = "ProcessStats"; private static final boolean DEBUG = false; private static final boolean localLOGV = DEBUG || Config.LOGV; private static final int[] PROCESS_STATS_FORMAT = new int[] { PROC_SPACE_TERM, PROC_SPACE_TERM|PROC_PARENS, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM|PROC_OUT_LONG, // 9: minor faults PROC_SPACE_TERM, PROC_SPACE_TERM|PROC_OUT_LONG, // 11: major faults PROC_SPACE_TERM, PROC_SPACE_TERM|PROC_OUT_LONG, // 13: utime PROC_SPACE_TERM|PROC_OUT_LONG // 14: stime }; static final int PROCESS_STAT_MINOR_FAULTS = 0; static final int PROCESS_STAT_MAJOR_FAULTS = 1; static final int PROCESS_STAT_UTIME = 2; static final int PROCESS_STAT_STIME = 3; /** Stores user time and system time in 100ths of a second. */ private final long[] mProcessStatsData = new long[4]; /** Stores user time and system time in 100ths of a second. */ private final long[] mSinglePidStatsData = new long[4]; private static final int[] PROCESS_FULL_STATS_FORMAT = new int[] { PROC_SPACE_TERM, PROC_SPACE_TERM|PROC_PARENS|PROC_OUT_STRING, // 1: name PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM|PROC_OUT_LONG, // 9: minor faults PROC_SPACE_TERM, PROC_SPACE_TERM|PROC_OUT_LONG, // 11: major faults PROC_SPACE_TERM, PROC_SPACE_TERM|PROC_OUT_LONG, // 13: utime PROC_SPACE_TERM|PROC_OUT_LONG, // 14: stime PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM, PROC_SPACE_TERM|PROC_OUT_LONG, // 21: vsize }; static final int PROCESS_FULL_STAT_MINOR_FAULTS = 1; static final int PROCESS_FULL_STAT_MAJOR_FAULTS = 2; static final int PROCESS_FULL_STAT_UTIME = 3; static final int PROCESS_FULL_STAT_STIME = 4; static final int PROCESS_FULL_STAT_VSIZE = 5; private final String[] mProcessFullStatsStringData = new String[6]; private final long[] mProcessFullStatsData = new long[6]; private static final int[] SYSTEM_CPU_FORMAT = new int[] { PROC_SPACE_TERM|PROC_COMBINE, PROC_SPACE_TERM|PROC_OUT_LONG, // 1: user time PROC_SPACE_TERM|PROC_OUT_LONG, // 2: nice time PROC_SPACE_TERM|PROC_OUT_LONG, // 3: sys time PROC_SPACE_TERM|PROC_OUT_LONG, // 4: idle time PROC_SPACE_TERM|PROC_OUT_LONG, // 5: iowait time PROC_SPACE_TERM|PROC_OUT_LONG, // 6: irq time PROC_SPACE_TERM|PROC_OUT_LONG // 7: softirq time }; private final long[] mSystemCpuData = new long[7]; private static final int[] LOAD_AVERAGE_FORMAT = new int[] { PROC_SPACE_TERM|PROC_OUT_FLOAT, // 0: 1 min PROC_SPACE_TERM|PROC_OUT_FLOAT, // 1: 5 mins PROC_SPACE_TERM|PROC_OUT_FLOAT // 2: 15 mins }; private final float[] mLoadAverageData = new float[3]; private final boolean mIncludeThreads; private float mLoad1 = 0; private float mLoad5 = 0; private float mLoad15 = 0; private long mCurrentSampleTime; private long mLastSampleTime; private long mCurrentSampleRealTime; private long mLastSampleRealTime; private long mBaseUserTime; private long mBaseSystemTime; private long mBaseIoWaitTime; private long mBaseIrqTime; private long mBaseSoftIrqTime; private long mBaseIdleTime; private int mRelUserTime; private int mRelSystemTime; private int mRelIoWaitTime; private int mRelIrqTime; private int mRelSoftIrqTime; private int mRelIdleTime; private int[] mCurPids; private int[] mCurThreadPids; private final ArrayList mProcStats = new ArrayList(); private final ArrayList mWorkingProcs = new ArrayList(); private boolean mWorkingProcsSorted; private boolean mFirst = true; private byte[] mBuffer = new byte[512]; /** * The time in microseconds that the CPU has been running at each speed. */ private long[] mCpuSpeedTimes; /** * The relative time in microseconds that the CPU has been running at each speed. */ private long[] mRelCpuSpeedTimes; /** * The different speeds that the CPU can be running at. */ private long[] mCpuSpeeds; public static class Stats { public final int pid; final String statFile; final String cmdlineFile; final String threadsDir; final ArrayList threadStats; final ArrayList workingThreads; public boolean interesting; public String baseName; public String name; int nameWidth; public long base_uptime; public long rel_uptime; public long base_utime; public long base_stime; public int rel_utime; public int rel_stime; public long base_minfaults; public long base_majfaults; public int rel_minfaults; public int rel_majfaults; public boolean active; public boolean working; public boolean added; public boolean removed; Stats(int _pid, int parentPid, boolean includeThreads) { pid = _pid; if (parentPid < 0) { final File procDir = new File("/proc", Integer.toString(pid)); statFile = new File(procDir, "stat").toString(); cmdlineFile = new File(procDir, "cmdline").toString(); threadsDir = (new File(procDir, "task")).toString(); if (includeThreads) { threadStats = new ArrayList(); workingThreads = new ArrayList(); } else { threadStats = null; workingThreads = null; } } else { final File procDir = new File("/proc", Integer.toString( parentPid)); final File taskDir = new File( new File(procDir, "task"), Integer.toString(pid)); statFile = new File(taskDir, "stat").toString(); cmdlineFile = null; threadsDir = null; threadStats = null; workingThreads = null; } } } private final static Comparator sLoadComparator = new Comparator() { public final int compare(Stats sta, Stats stb) { int ta = sta.rel_utime + sta.rel_stime; int tb = stb.rel_utime + stb.rel_stime; if (ta != tb) { return ta > tb ? -1 : 1; } if (sta.added != stb.added) { return sta.added ? -1 : 1; } if (sta.removed != stb.removed) { return sta.added ? -1 : 1; } return 0; } }; public ProcessStats(boolean includeThreads) { mIncludeThreads = includeThreads; } public void onLoadChanged(float load1, float load5, float load15) { } public int onMeasureProcessName(String name) { return 0; } public void init() { if (DEBUG) Slog.v(TAG, "Init: " + this); mFirst = true; update(); } public void update() { if (DEBUG) Slog.v(TAG, "Update: " + this); mLastSampleTime = mCurrentSampleTime; mCurrentSampleTime = SystemClock.uptimeMillis(); mLastSampleRealTime = mCurrentSampleRealTime; mCurrentSampleRealTime = SystemClock.elapsedRealtime(); final long[] sysCpu = mSystemCpuData; if (Process.readProcFile("/proc/stat", SYSTEM_CPU_FORMAT, null, sysCpu, null)) { // Total user time is user + nice time. final long usertime = sysCpu[0]+sysCpu[1]; // Total system time is simply system time. final long systemtime = sysCpu[2]; // Total idle time is simply idle time. final long idletime = sysCpu[3]; // Total irq time is iowait + irq + softirq time. final long iowaittime = sysCpu[4]; final long irqtime = sysCpu[5]; final long softirqtime = sysCpu[6]; mRelUserTime = (int)(usertime - mBaseUserTime); mRelSystemTime = (int)(systemtime - mBaseSystemTime); mRelIoWaitTime = (int)(iowaittime - mBaseIoWaitTime); mRelIrqTime = (int)(irqtime - mBaseIrqTime); mRelSoftIrqTime = (int)(softirqtime - mBaseSoftIrqTime); mRelIdleTime = (int)(idletime - mBaseIdleTime); if (DEBUG) { Slog.i("Load", "Total U:" + sysCpu[0] + " N:" + sysCpu[1] + " S:" + sysCpu[2] + " I:" + sysCpu[3] + " W:" + sysCpu[4] + " Q:" + sysCpu[5] + " O:" + sysCpu[6]); Slog.i("Load", "Rel U:" + mRelUserTime + " S:" + mRelSystemTime + " I:" + mRelIdleTime + " Q:" + mRelIrqTime); } mBaseUserTime = usertime; mBaseSystemTime = systemtime; mBaseIoWaitTime = iowaittime; mBaseIrqTime = irqtime; mBaseSoftIrqTime = softirqtime; mBaseIdleTime = idletime; } mCurPids = collectStats("/proc", -1, mFirst, mCurPids, mProcStats); final float[] loadAverages = mLoadAverageData; if (Process.readProcFile("/proc/loadavg", LOAD_AVERAGE_FORMAT, null, null, loadAverages)) { float load1 = loadAverages[0]; float load5 = loadAverages[1]; float load15 = loadAverages[2]; if (load1 != mLoad1 || load5 != mLoad5 || load15 != mLoad15) { mLoad1 = load1; mLoad5 = load5; mLoad15 = load15; onLoadChanged(load1, load5, load15); } } if (DEBUG) Slog.i(TAG, "*** TIME TO COLLECT STATS: " + (SystemClock.uptimeMillis()-mCurrentSampleTime)); mWorkingProcsSorted = false; mFirst = false; } private int[] collectStats(String statsFile, int parentPid, boolean first, int[] curPids, ArrayList allProcs) { int[] pids = Process.getPids(statsFile, curPids); int NP = (pids == null) ? 0 : pids.length; int NS = allProcs.size(); int curStatsIndex = 0; for (int i=0; i pid) { // We have a new process! st = new Stats(pid, parentPid, mIncludeThreads); allProcs.add(curStatsIndex, st); curStatsIndex++; NS++; if (DEBUG) Slog.v(TAG, "New " + (parentPid < 0 ? "process" : "thread") + " pid " + pid + ": " + st); final String[] procStatsString = mProcessFullStatsStringData; final long[] procStats = mProcessFullStatsData; st.base_uptime = SystemClock.uptimeMillis(); if (Process.readProcFile(st.statFile.toString(), PROCESS_FULL_STATS_FORMAT, procStatsString, procStats, null)) { // This is a possible way to filter out processes that // are actually kernel threads... do we want to? Some // of them do use CPU, but there can be a *lot* that are // not doing anything. if (true || procStats[PROCESS_FULL_STAT_VSIZE] != 0) { st.interesting = true; st.baseName = procStatsString[0]; st.base_minfaults = procStats[PROCESS_FULL_STAT_MINOR_FAULTS]; st.base_majfaults = procStats[PROCESS_FULL_STAT_MAJOR_FAULTS]; st.base_utime = procStats[PROCESS_FULL_STAT_UTIME]; st.base_stime = procStats[PROCESS_FULL_STAT_STIME]; } else { Slog.i(TAG, "Skipping kernel process pid " + pid + " name " + procStatsString[0]); st.baseName = procStatsString[0]; } } else { Slog.w(TAG, "Skipping unknown process pid " + pid); st.baseName = ""; st.base_utime = st.base_stime = 0; st.base_minfaults = st.base_majfaults = 0; } if (parentPid < 0) { getName(st, st.cmdlineFile); if (st.threadStats != null) { mCurThreadPids = collectStats(st.threadsDir, pid, true, mCurThreadPids, st.threadStats); } } else if (st.interesting) { st.name = st.baseName; st.nameWidth = onMeasureProcessName(st.name); } if (DEBUG) Slog.v("Load", "Stats added " + st.name + " pid=" + st.pid + " utime=" + st.base_utime + " stime=" + st.base_stime + " minfaults=" + st.base_minfaults + " majfaults=" + st.base_majfaults); st.rel_utime = 0; st.rel_stime = 0; st.rel_minfaults = 0; st.rel_majfaults = 0; st.added = true; if (!first && st.interesting) { st.working = true; } continue; } // This process has gone away! st.rel_utime = 0; st.rel_stime = 0; st.rel_minfaults = 0; st.rel_majfaults = 0; st.removed = true; st.working = true; allProcs.remove(curStatsIndex); NS--; if (DEBUG) Slog.v(TAG, "Removed " + (parentPid < 0 ? "process" : "thread") + " pid " + pid + ": " + st); // Decrement the loop counter so that we process the current pid // again the next time through the loop. i--; continue; } while (curStatsIndex < NS) { // This process has gone away! final Stats st = allProcs.get(curStatsIndex); st.rel_utime = 0; st.rel_stime = 0; st.rel_minfaults = 0; st.rel_majfaults = 0; st.removed = true; st.working = true; allProcs.remove(curStatsIndex); NS--; if (localLOGV) Slog.v(TAG, "Removed pid " + st.pid + ": " + st); } return pids; } public long getCpuTimeForPid(int pid) { final String statFile = "/proc/" + pid + "/stat"; final long[] statsData = mSinglePidStatsData; if (Process.readProcFile(statFile, PROCESS_STATS_FORMAT, null, statsData, null)) { long time = statsData[PROCESS_STAT_UTIME] + statsData[PROCESS_STAT_STIME]; return time; } return 0; } /** * Returns the times spent at each CPU speed, since the last call to this method. If this * is the first time, it will return 1 for each value. * @return relative times spent at different speed steps. */ public long[] getLastCpuSpeedTimes() { if (mCpuSpeedTimes == null) { mCpuSpeedTimes = getCpuSpeedTimes(null); mRelCpuSpeedTimes = new long[mCpuSpeedTimes.length]; for (int i = 0; i < mCpuSpeedTimes.length; i++) { mRelCpuSpeedTimes[i] = 1; // Initialize } } else { getCpuSpeedTimes(mRelCpuSpeedTimes); for (int i = 0; i < mCpuSpeedTimes.length; i++) { long temp = mRelCpuSpeedTimes[i]; mRelCpuSpeedTimes[i] -= mCpuSpeedTimes[i]; mCpuSpeedTimes[i] = temp; } } return mRelCpuSpeedTimes; } private long[] getCpuSpeedTimes(long[] out) { long[] tempTimes = out; long[] tempSpeeds = mCpuSpeeds; final int MAX_SPEEDS = 20; if (out == null) { tempTimes = new long[MAX_SPEEDS]; // Hopefully no more than that tempSpeeds = new long[MAX_SPEEDS]; } int speed = 0; String file = readFile("/sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state", '\0'); // Note: file may be null on kernels without cpufreq (i.e. the emulator's) if (file != null) { StringTokenizer st = new StringTokenizer(file, "\n "); while (st.hasMoreElements()) { String token = st.nextToken(); try { long val = Long.parseLong(token); tempSpeeds[speed] = val; token = st.nextToken(); val = Long.parseLong(token); tempTimes[speed] = val; speed++; if (speed == MAX_SPEEDS) break; // No more if (localLOGV && out == null) { Slog.v(TAG, "First time : Speed/Time = " + tempSpeeds[speed - 1] + "\t" + tempTimes[speed - 1]); } } catch (NumberFormatException nfe) { Slog.i(TAG, "Unable to parse time_in_state"); } } } if (out == null) { out = new long[speed]; mCpuSpeeds = new long[speed]; System.arraycopy(tempSpeeds, 0, mCpuSpeeds, 0, speed); System.arraycopy(tempTimes, 0, out, 0, speed); } return out; } final public int getLastUserTime() { return mRelUserTime; } final public int getLastSystemTime() { return mRelSystemTime; } final public int getLastIoWaitTime() { return mRelIoWaitTime; } final public int getLastIrqTime() { return mRelIrqTime; } final public int getLastSoftIrqTime() { return mRelSoftIrqTime; } final public int getLastIdleTime() { return mRelIdleTime; } final public float getTotalCpuPercent() { return ((float)(mRelUserTime+mRelSystemTime+mRelIrqTime)*100) / (mRelUserTime+mRelSystemTime+mRelIrqTime+mRelIdleTime); } final void buildWorkingProcs() { if (!mWorkingProcsSorted) { mWorkingProcs.clear(); final int N = mProcStats.size(); for (int i=0; i 1) { stats.workingThreads.clear(); final int M = stats.threadStats.size(); for (int j=0; j mLastSampleTime) { pw.print(now-mLastSampleTime); pw.print("ms to "); pw.print(now-mCurrentSampleTime); pw.print("ms ago"); } else { pw.print(mLastSampleTime-now); pw.print("ms to "); pw.print(mCurrentSampleTime-now); pw.print("ms later"); } long sampleTime = mCurrentSampleTime - mLastSampleTime; long sampleRealTime = mCurrentSampleRealTime - mLastSampleRealTime; long percAwake = (sampleTime*100) / sampleRealTime; if (percAwake != 100) { pw.print(" with "); pw.print(percAwake); pw.print("% awake"); } pw.println(":"); final int totalTime = mRelUserTime + mRelSystemTime + mRelIoWaitTime + mRelIrqTime + mRelSoftIrqTime + mRelIdleTime; if (DEBUG) Slog.i(TAG, "totalTime " + totalTime + " over sample time " + (mCurrentSampleTime-mLastSampleTime)); int N = mWorkingProcs.size(); for (int i=0; i= 0) { pw.print(pid); pw.print("/"); } pw.print(label); pw.print(": "); printRatio(pw, user, totalTime); pw.print("% user + "); printRatio(pw, system, totalTime); pw.print("% kernel"); if (iowait > 0) { pw.print(" + "); printRatio(pw, iowait, totalTime); pw.print("% iowait"); } if (irq > 0) { pw.print(" + "); printRatio(pw, irq, totalTime); pw.print("% irq"); } if (softIrq > 0) { pw.print(" + "); printRatio(pw, softIrq, totalTime); pw.print("% softirq"); } if (minFaults > 0 || majFaults > 0) { pw.print(" / faults:"); if (minFaults > 0) { pw.print(" "); pw.print(minFaults); pw.print(" minor"); } if (majFaults > 0) { pw.print(" "); pw.print(majFaults); pw.print(" major"); } } pw.println(); } private String readFile(String file, char endChar) { try { FileInputStream is = new FileInputStream(file); int len = is.read(mBuffer); is.close(); if (len > 0) { int i; for (i=0; i")) { String cmdName = readFile(cmdlineFile, '\0'); if (cmdName != null && cmdName.length() > 1) { newName = cmdName; int i = newName.lastIndexOf("/"); if (i > 0 && i < newName.length()-1) { newName = newName.substring(i+1); } } if (newName == null) { newName = st.baseName; } } if (st.name == null || !newName.equals(st.name)) { st.name = newName; st.nameWidth = onMeasureProcessName(st.name); } } }