/* * Copyright (C) 2007 The Android Open Source Project * Copyright (c) 2011, The Linux Foundation. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "SharedBufferStack" #include #include #include #include #include #include #include #include #define DEBUG_ATOMICS 0 namespace android { // ---------------------------------------------------------------------------- SharedClient::SharedClient() : lock(Mutex::SHARED), cv(Condition::SHARED) { } SharedClient::~SharedClient() { } // these functions are used by the clients status_t SharedClient::validate(size_t i) const { if (uint32_t(i) >= uint32_t(SharedBufferStack::NUM_LAYERS_MAX)) return BAD_INDEX; return surfaces[i].status; } SharedClientTryLock::SharedClientTryLock(Mutex& m) : _status(UNLOCKED), _m(m) { /* trylock with sleeps of 1ms for times. total of 0.5 sec*/ const uint32_t U_TIMEOUT = 1000; enum { MAX_WAIT_COUNT = 500 }; for(uint32_t i=0; i < MAX_WAIT_COUNT; ++i){ if(0 == _m.tryLock()){ // we got the lock _status = LOCKED; break; } // sleep for U_TIMEOUT microsec usleep(U_TIMEOUT); } // we could not get the lock, LOGE here. if(!locked()) { LOGE("SharedBufferBase::updateCondition could not acquire lock " "within 0.5 sec giving up. (non fatal)"); } } // ---------------------------------------------------------------------------- SharedBufferStack::SharedBufferStack() { } void SharedBufferStack::init(int32_t i) { status = NO_ERROR; identity = i; } status_t SharedBufferStack::setCrop(int buffer, const Rect& crop) { if (uint32_t(buffer) >= NUM_BUFFER_MAX) return BAD_INDEX; buffers[buffer].crop.l = uint16_t(crop.left); buffers[buffer].crop.t = uint16_t(crop.top); buffers[buffer].crop.r = uint16_t(crop.right); buffers[buffer].crop.b = uint16_t(crop.bottom); return NO_ERROR; } status_t SharedBufferStack::setTransform(int buffer, uint8_t transform) { if (uint32_t(buffer) >= NUM_BUFFER_MAX) return BAD_INDEX; buffers[buffer].transform = transform; return NO_ERROR; } status_t SharedBufferStack::setDirtyRegion(int buffer, const Region& dirty) { if (uint32_t(buffer) >= NUM_BUFFER_MAX) return BAD_INDEX; FlatRegion& reg(buffers[buffer].dirtyRegion); if (dirty.isEmpty()) { reg.count = 0; return NO_ERROR; } size_t count; Rect const* r = dirty.getArray(&count); if (count > FlatRegion::NUM_RECT_MAX) { const Rect bounds(dirty.getBounds()); reg.count = 1; reg.rects[0].l = uint16_t(bounds.left); reg.rects[0].t = uint16_t(bounds.top); reg.rects[0].r = uint16_t(bounds.right); reg.rects[0].b = uint16_t(bounds.bottom); } else { reg.count = count; for (size_t i=0 ; i= NUM_BUFFER_MAX) return res; const FlatRegion& reg(buffers[buffer].dirtyRegion); if (reg.count > FlatRegion::NUM_RECT_MAX) return res; if (reg.count == 1) { const Rect r( reg.rects[0].l, reg.rects[0].t, reg.rects[0].r, reg.rects[0].b); res.set(r); } else { for (size_t i=0 ; i= NUM_BUFFER_MAX) return res; res.left = buffers[buffer].crop.l; res.top = buffers[buffer].crop.t; res.right = buffers[buffer].crop.r; res.bottom = buffers[buffer].crop.b; return res; } uint32_t SharedBufferStack::getTransform(int buffer) const { if (uint32_t(buffer) >= NUM_BUFFER_MAX) return 0; return buffers[buffer].transform; } // ---------------------------------------------------------------------------- SharedBufferBase::SharedBufferBase(SharedClient* sharedClient, int surface, int32_t identity) : mSharedClient(sharedClient), mSharedStack(sharedClient->surfaces + surface), mIdentity(identity) { } SharedBufferBase::~SharedBufferBase() { } status_t SharedBufferBase::getStatus() const { SharedBufferStack& stack( *mSharedStack ); return stack.status; } int32_t SharedBufferBase::getIdentity() const { SharedBufferStack& stack( *mSharedStack ); return stack.identity; } String8 SharedBufferBase::dump(char const* prefix) const { const size_t SIZE = 1024; char buffer[SIZE]; String8 result; SharedBufferStack& stack( *mSharedStack ); snprintf(buffer, SIZE, "%s[ head=%2d, available=%2d, queued=%2d ] " "reallocMask=%08x, identity=%d, status=%d", prefix, stack.head, stack.available, stack.queued, stack.reallocMask, stack.identity, stack.status); result.append(buffer); result.append("\n"); return result; } status_t SharedBufferBase::waitForCondition(const ConditionBase& condition) { const SharedBufferStack& stack( *mSharedStack ); SharedClient& client( *mSharedClient ); const nsecs_t TIMEOUT = s2ns(1); const int identity = mIdentity; Mutex::Autolock _l(client.lock); while ((condition()==false) && (stack.identity == identity) && (stack.status == NO_ERROR)) { status_t err = client.cv.waitRelative(client.lock, TIMEOUT); // handle errors and timeouts if (CC_UNLIKELY(err != NO_ERROR)) { if (err == TIMED_OUT) { if (condition()) { LOGE("waitForCondition(%s) timed out (identity=%d), " "but condition is true! We recovered but it " "shouldn't happen." , condition.name(), stack.identity); break; } else { LOGW("waitForCondition(%s) timed out " "(identity=%d, status=%d). " "CPU may be pegged. trying again.", condition.name(), stack.identity, stack.status); } } else { LOGE("waitForCondition(%s) error (%s) ", condition.name(), strerror(-err)); return err; } } } return (stack.identity != mIdentity) ? status_t(BAD_INDEX) : stack.status; } // ============================================================================ // conditions and updates // ============================================================================ SharedBufferClient::DequeueCondition::DequeueCondition( SharedBufferClient* sbc) : ConditionBase(sbc) { } bool SharedBufferClient::DequeueCondition::operator()() const { return stack.available > 0; } SharedBufferClient::LockCondition::LockCondition( SharedBufferClient* sbc, int buf) : ConditionBase(sbc), buf(buf) { } bool SharedBufferClient::LockCondition::operator()() const { // NOTE: if stack.head is messed up, we could crash the client // or cause some drawing artifacts. This is okay, as long as it is // limited to the client. #if defined(SF_BYPASS) /* * If comp. bypass is being used, its buffer will be marked in use * using stack.reserved, check if current buffer is same as that * being read by display. */ if ((stack.reserved != -1) && buf == stack.reserved) return false; #endif return (buf != stack.index[stack.head]); } // ---------------------------------------------------------------------------- SharedBufferClient::QueueUpdate::QueueUpdate(SharedBufferBase* sbb) : UpdateBase(sbb) { } ssize_t SharedBufferClient::QueueUpdate::operator()() { android_atomic_inc(&stack.queued); return NO_ERROR; } SharedBufferClient::DequeueUpdate::DequeueUpdate(SharedBufferBase* sbb) : UpdateBase(sbb) { } ssize_t SharedBufferClient::DequeueUpdate::operator()() { if (android_atomic_dec(&stack.available) == 0) { LOGW("dequeue probably called from multiple threads!"); } return NO_ERROR; } SharedBufferClient::CancelUpdate::CancelUpdate(SharedBufferBase* sbb, int tail, int buf) : UpdateBase(sbb), tail(tail), buf(buf) { } ssize_t SharedBufferClient::CancelUpdate::operator()() { stack.index[tail] = buf; android_atomic_inc(&stack.available); return NO_ERROR; } SharedBufferServer::BypassUpdate::BypassUpdate( SharedBufferBase* sbb, int lockedBuffer) : UpdateBase(sbb), lockedBuffer(lockedBuffer) { } ssize_t SharedBufferServer::BypassUpdate::operator()() { android_atomic_write(lockedBuffer, &stack.reserved); return NO_ERROR; } SharedBufferServer::RetireUpdate::RetireUpdate( SharedBufferBase* sbb, int numBuffers) : UpdateBase(sbb), numBuffers(numBuffers) { } ssize_t SharedBufferServer::RetireUpdate::operator()() { int32_t head = stack.head; if (uint32_t(head) >= SharedBufferStack::NUM_BUFFER_MAX) return BAD_VALUE; // Decrement the number of queued buffers int32_t queued; do { queued = stack.queued; if (queued == 0) { return NOT_ENOUGH_DATA; } } while (android_atomic_cmpxchg(queued, queued-1, &stack.queued)); // lock the buffer before advancing head, which automatically unlocks // the buffer we preventively locked upon entering this function head = (head + 1) % numBuffers; const int8_t headBuf = stack.index[head]; stack.headBuf = headBuf; // head is only modified here, so we don't need to use cmpxchg android_atomic_write(head, &stack.head); // now that head has moved, we can increment the number of available buffers android_atomic_inc(&stack.available); return head; } SharedBufferServer::StatusUpdate::StatusUpdate( SharedBufferBase* sbb, status_t status) : UpdateBase(sbb), status(status) { } ssize_t SharedBufferServer::StatusUpdate::operator()() { android_atomic_write(status, &stack.status); return NO_ERROR; } // ============================================================================ SharedBufferClient::SharedBufferClient(SharedClient* sharedClient, int surface, int num, int32_t identity) : SharedBufferBase(sharedClient, surface, identity), mNumBuffers(num), tail(0) { SharedBufferStack& stack( *mSharedStack ); tail = computeTail(); queued_head = stack.head; } int32_t SharedBufferClient::computeTail() const { SharedBufferStack& stack( *mSharedStack ); return (mNumBuffers + stack.head - stack.available + 1) % mNumBuffers; } ssize_t SharedBufferClient::dequeue() { SharedBufferStack& stack( *mSharedStack ); if (stack.head == tail && stack.available == mNumBuffers) { LOGW("dequeue: tail=%d, head=%d, avail=%d, queued=%d", tail, stack.head, stack.available, stack.queued); } RWLock::AutoRLock _rd(mLock); const nsecs_t dequeueTime = systemTime(SYSTEM_TIME_THREAD); //LOGD("[%d] about to dequeue a buffer", // mSharedStack->identity); DequeueCondition condition(this); status_t err = waitForCondition(condition); if (err != NO_ERROR) return ssize_t(err); DequeueUpdate update(this); updateCondition( update ); int dequeued = stack.index[tail]; tail = ((tail+1 >= mNumBuffers) ? 0 : tail+1); LOGD_IF(DEBUG_ATOMICS, "dequeued=%d, tail++=%d, %s", dequeued, tail, dump("").string()); mDequeueTime[dequeued] = dequeueTime; return dequeued; } status_t SharedBufferClient::undoDequeue(int buf) { return cancel(buf); } status_t SharedBufferClient::cancel(int buf) { RWLock::AutoRLock _rd(mLock); // calculate the new position of the tail index (essentially tail--) int localTail = (tail + mNumBuffers - 1) % mNumBuffers; CancelUpdate update(this, localTail, buf); status_t err = updateCondition( update ); if (err == NO_ERROR) { tail = localTail; } return err; } status_t SharedBufferClient::lock(int buf) { RWLock::AutoRLock _rd(mLock); SharedBufferStack& stack( *mSharedStack ); LockCondition condition(this, buf); status_t err = waitForCondition(condition); return err; } status_t SharedBufferClient::queue(int buf) { RWLock::AutoRLock _rd(mLock); SharedBufferStack& stack( *mSharedStack ); queued_head = (queued_head + 1) % mNumBuffers; stack.index[queued_head] = buf; QueueUpdate update(this); status_t err = updateCondition( update ); LOGD_IF(DEBUG_ATOMICS, "queued=%d, %s", buf, dump("").string()); const nsecs_t now = systemTime(SYSTEM_TIME_THREAD); stack.stats.totalTime = ns2us(now - mDequeueTime[buf]); return err; } bool SharedBufferClient::needNewBuffer(int buf) const { SharedBufferStack& stack( *mSharedStack ); const uint32_t mask = 1<<(31-buf); return (android_atomic_and(~mask, &stack.reallocMask) & mask) != 0; } status_t SharedBufferClient::setCrop(int buf, const Rect& crop) { SharedBufferStack& stack( *mSharedStack ); return stack.setCrop(buf, crop); } status_t SharedBufferClient::setTransform(int buf, uint32_t transform) { SharedBufferStack& stack( *mSharedStack ); return stack.setTransform(buf, uint8_t(transform)); } status_t SharedBufferClient::setDirtyRegion(int buf, const Region& reg) { SharedBufferStack& stack( *mSharedStack ); return stack.setDirtyRegion(buf, reg); } status_t SharedBufferClient::setBufferCount( int bufferCount, const SetBufferCountCallback& ipc) { SharedBufferStack& stack( *mSharedStack ); if (uint32_t(bufferCount) >= SharedBufferStack::NUM_BUFFER_MAX) return BAD_VALUE; if (uint32_t(bufferCount) < SharedBufferStack::NUM_BUFFER_MIN) return BAD_VALUE; RWLock::AutoWLock _wr(mLock); status_t err = ipc(bufferCount); if (err == NO_ERROR) { mNumBuffers = bufferCount; queued_head = (stack.head + stack.queued) % mNumBuffers; } return err; } // ---------------------------------------------------------------------------- SharedBufferServer::SharedBufferServer(SharedClient* sharedClient, int surface, int num, int32_t identity) : SharedBufferBase(sharedClient, surface, identity), mNumBuffers(num) { mSharedStack->init(identity); mSharedStack->token = surface; mSharedStack->head = num-1; mSharedStack->available = num; mSharedStack->queued = 0; mSharedStack->reallocMask = 0; mSharedStack->reserved = -1; memset(mSharedStack->buffers, 0, sizeof(mSharedStack->buffers)); for (int i=0 ; iindex[i] = i; } } SharedBufferServer::~SharedBufferServer() { } ssize_t SharedBufferServer::retireAndLock() { RWLock::AutoRLock _l(mLock); RetireUpdate update(this, mNumBuffers); ssize_t buf = updateCondition( update ); if (buf >= 0) { if (uint32_t(buf) >= SharedBufferStack::NUM_BUFFER_MAX) return BAD_VALUE; SharedBufferStack& stack( *mSharedStack ); buf = stack.index[buf]; LOGD_IF(DEBUG_ATOMICS && buf>=0, "retire=%d, %s", int(buf), dump("").string()); } return buf; } status_t SharedBufferServer::setInUseBypass(int buf) { LOGD_IF(DEBUG_ATOMICS, "buf=%d, %s", int(buf), dump("").string()); BypassUpdate update(this, buf); status_t err = updateCondition( update ); return err; } void SharedBufferServer::setStatus(status_t status) { if (status < NO_ERROR) { StatusUpdate update(this, status); updateCondition( update ); } } status_t SharedBufferServer::reallocateAll() { RWLock::AutoRLock _l(mLock); SharedBufferStack& stack( *mSharedStack ); uint32_t mask = mBufferList.getMask(); android_atomic_or(mask, &stack.reallocMask); return NO_ERROR; } status_t SharedBufferServer::reallocateAllExcept(int buffer) { RWLock::AutoRLock _l(mLock); SharedBufferStack& stack( *mSharedStack ); BufferList temp(mBufferList); temp.remove(buffer); uint32_t mask = temp.getMask(); android_atomic_or(mask, &stack.reallocMask); return NO_ERROR; } int32_t SharedBufferServer::getQueuedCount() const { SharedBufferStack& stack( *mSharedStack ); return stack.queued; } Region SharedBufferServer::getDirtyRegion(int buf) const { SharedBufferStack& stack( *mSharedStack ); return stack.getDirtyRegion(buf); } Rect SharedBufferServer::getCrop(int buf) const { SharedBufferStack& stack( *mSharedStack ); return stack.getCrop(buf); } uint32_t SharedBufferServer::getTransform(int buf) const { SharedBufferStack& stack( *mSharedStack ); return stack.getTransform(buf); } /* * NOTE: this is not thread-safe on the server-side, meaning * 'head' cannot move during this operation. The client-side * can safely operate an usual. * */ status_t SharedBufferServer::resize(int newNumBuffers) { if (uint32_t(newNumBuffers) >= SharedBufferStack::NUM_BUFFER_MAX) return BAD_VALUE; RWLock::AutoWLock _l(mLock); // for now we're not supporting shrinking const int numBuffers = mNumBuffers; if (newNumBuffers < numBuffers) return BAD_VALUE; SharedBufferStack& stack( *mSharedStack ); const int extra = newNumBuffers - numBuffers; // read the head, make sure it's valid int32_t head = stack.head; if (uint32_t(head) >= SharedBufferStack::NUM_BUFFER_MAX) return BAD_VALUE; int base = numBuffers; int32_t avail = stack.available; int tail = head - avail + 1; if (tail >= 0) { int8_t* const index = const_cast(stack.index); const int nb = numBuffers - head; memmove(&index[head + extra], &index[head], nb); base = head; // move head 'extra' ahead, this doesn't impact stack.index[head]; stack.head = head + extra; } stack.available += extra; // fill the new free space with unused buffers BufferList::const_iterator curr(mBufferList.free_begin()); for (int i=0 ; i= mCapacity) return BAD_VALUE; uint32_t mask = 1<<(31-value); if (mList & mask) return ALREADY_EXISTS; mList |= mask; return NO_ERROR; } status_t SharedBufferServer::BufferList::remove(int value) { if (uint32_t(value) >= mCapacity) return BAD_VALUE; uint32_t mask = 1<<(31-value); if (!(mList & mask)) return NAME_NOT_FOUND; mList &= ~mask; return NO_ERROR; } // --------------------------------------------------------------------------- }; // namespace android