/* * Software AES encryption/descryption routines * * $Id: 8192cd_aes.c,v 1.1.4.2 2010/11/29 12:23:52 button Exp $ * * Copyright (c) 2009 Realtek Semiconductor Corp. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define _8192CD_AES_C_ #ifdef __KERNEL__ #include #elif defined(__ECOS) #include #include #include #include #endif #include "./8192cd_cfg.h" #if !defined(__KERNEL__) && !defined(__ECOS) #include "./sys-support.h" #endif #include "./8192cd.h" #ifdef __KERNEL__ #include "./ieee802_mib.h" #elif defined(__ECOS) #include #endif #include "./8192cd_util.h" #include "./8192cd_headers.h" #include "./8192cd_debug.h" #define SHOW_INIT_BLOCKS #define SHOW_HEADER_FIELDS #define SHOW_CTR_PRELOAD #define MAX_MSG_SIZE 2048 /*****************************/ /******** SBOX Table *********/ /*****************************/ unsigned char sbox_table[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; /*****************************/ /**** Function Prototypes ****/ /*****************************/ void bitwise_xor(unsigned char *ina, unsigned char *inb, unsigned char *out); void construct_mic_iv( unsigned char *mic_header1, int qc_exists, int a4_exists, unsigned char *mpdu, unsigned int payload_length, unsigned char * pn_vector #ifdef CONFIG_IEEE80211W ,unsigned char isMgmt #endif ); void construct_mic_header1( unsigned char *mic_header1, int header_length, unsigned char *mpdu #ifdef CONFIG_IEEE80211W ,unsigned char isMgmt #endif ); void construct_mic_header2( unsigned char *mic_header2, unsigned char *mpdu, int a4_exists, int qc_exists); void construct_ctr_preload( unsigned char *ctr_preload, int a4_exists, int qc_exists, unsigned char *mpdu, unsigned char *pn_vector, int c #ifdef CONFIG_IEEE80211W ,unsigned char isMgmt #endif ); void xor_128(unsigned char *a, unsigned char *b, unsigned char *out); void xor_32(unsigned char *a, unsigned char *b, unsigned char *out); unsigned char sbox(unsigned char a); void next_key(unsigned char *key, int round); void byte_sub(unsigned char *in, unsigned char *out); void shift_row(unsigned char *in, unsigned char *out); void mix_column(unsigned char *in, unsigned char *out); void add_round_key( unsigned char *shiftrow_in, unsigned char *mcol_in, unsigned char *block_in, int round, unsigned char *out); void aes128k128d(unsigned char *key, unsigned char *data, unsigned char *ciphertext); /****************************************/ /* aes128k128d() */ /* Performs a 128 bit AES encrypt with */ /* 128 bit data. */ /****************************************/ void xor_128(unsigned char *a, unsigned char *b, unsigned char *out) { int i; for (i=0;i<16; i++) { out[i] = a[i] ^ b[i]; } } void xor_32(unsigned char *a, unsigned char *b, unsigned char *out) { int i; for (i=0;i<4; i++) { out[i] = a[i] ^ b[i]; } } unsigned char sbox(unsigned char a) { return sbox_table[(int)a]; } void next_key(unsigned char *key, int round) { unsigned char rcon; unsigned char sbox_key[4]; unsigned char rcon_table[12] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x36, 0x36 }; sbox_key[0] = sbox(key[13]); sbox_key[1] = sbox(key[14]); sbox_key[2] = sbox(key[15]); sbox_key[3] = sbox(key[12]); rcon = rcon_table[round]; xor_32(&key[0], sbox_key, &key[0]); key[0] = key[0] ^ rcon; xor_32(&key[4], &key[0], &key[4]); xor_32(&key[8], &key[4], &key[8]); xor_32(&key[12], &key[8], &key[12]); } void byte_sub(unsigned char *in, unsigned char *out) { int i; for (i=0; i< 16; i++) { out[i] = sbox(in[i]); } } void shift_row(unsigned char *in, unsigned char *out) { out[0] = in[0]; out[1] = in[5]; out[2] = in[10]; out[3] = in[15]; out[4] = in[4]; out[5] = in[9]; out[6] = in[14]; out[7] = in[3]; out[8] = in[8]; out[9] = in[13]; out[10] = in[2]; out[11] = in[7]; out[12] = in[12]; out[13] = in[1]; out[14] = in[6]; out[15] = in[11]; } void mix_column(unsigned char *in, unsigned char *out) { int i; unsigned char add1b[4]; unsigned char add1bf7[4]; unsigned char rotl[4]; unsigned char swap_halfs[4]; unsigned char andf7[4]; unsigned char rotr[4]; unsigned char temp[4]; unsigned char tempb[4]; for (i=0 ; i<4; i++) { if ((in[i] & 0x80)== 0x80) add1b[i] = 0x1b; else add1b[i] = 0x00; } swap_halfs[0] = in[2]; /* Swap halfs */ swap_halfs[1] = in[3]; swap_halfs[2] = in[0]; swap_halfs[3] = in[1]; rotl[0] = in[3]; /* Rotate left 8 bits */ rotl[1] = in[0]; rotl[2] = in[1]; rotl[3] = in[2]; andf7[0] = in[0] & 0x7f; andf7[1] = in[1] & 0x7f; andf7[2] = in[2] & 0x7f; andf7[3] = in[3] & 0x7f; for (i = 3; i>0; i--) /* logical shift left 1 bit */ { andf7[i] = andf7[i] << 1; if ((andf7[i-1] & 0x80) == 0x80) { andf7[i] = (andf7[i] | 0x01); } } andf7[0] = andf7[0] << 1; andf7[0] = andf7[0] & 0xfe; xor_32(add1b, andf7, add1bf7); xor_32(in, add1bf7, rotr); temp[0] = rotr[0]; /* Rotate right 8 bits */ rotr[0] = rotr[1]; rotr[1] = rotr[2]; rotr[2] = rotr[3]; rotr[3] = temp[0]; xor_32(add1bf7, rotr, temp); xor_32(swap_halfs, rotl,tempb); xor_32(temp, tempb, out); } void aes128k128d(unsigned char *key, unsigned char *data, unsigned char *ciphertext) { int round; int i; unsigned char intermediatea[16]; unsigned char intermediateb[16]; unsigned char round_key[16]; for(i=0; i<16; i++) round_key[i] = key[i]; for (round = 0; round < 11; round++) { if (round == 0) { xor_128(round_key, data, ciphertext); next_key(round_key, round); } else if (round == 10) { byte_sub(ciphertext, intermediatea); shift_row(intermediatea, intermediateb); xor_128(intermediateb, round_key, ciphertext); } else /* 1 - 9 */ { byte_sub(ciphertext, intermediatea); shift_row(intermediatea, intermediateb); mix_column(&intermediateb[0], &intermediatea[0]); mix_column(&intermediateb[4], &intermediatea[4]); mix_column(&intermediateb[8], &intermediatea[8]); mix_column(&intermediateb[12], &intermediatea[12]); xor_128(intermediatea, round_key, ciphertext); next_key(round_key, round); } } } #ifdef CONFIG_IEEE80211W extern void AES_Encrypt(const unsigned long *in_blk, unsigned long *out_blk); extern unsigned long *AES_SetKey(const unsigned long *in_key, const unsigned long key_len); #define AES_BLOCK_SIZE 16 static void gf_mulx(unsigned char *pad) { int i, carry; carry = pad[0] & 0x80; for (i = 0; i < AES_BLOCK_SIZE - 1; i++) pad[i] = (pad[i] << 1) | (pad[i + 1] >> 7); pad[AES_BLOCK_SIZE - 1] <<= 1; if (carry) pad[AES_BLOCK_SIZE - 1] ^= 0x87; } /** * omac1_aes_128_vector - One-Key CBC MAC (OMAC1) hash with AES-128 * @key: 128-bit key for the hash operation * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for MAC (128 bits, i.e., 16 bytes) * Returns: 0 on success, -1 on failure * * This is a mode for using block cipher (AES in this case) for authentication. * OMAC1 was standardized with the name CMAC by NIST in a Special Publication * (SP) 800-38B. */ int omac1_aes_128_vector(const unsigned char *key, int num_elem, const unsigned char *addr[], const int *len, unsigned char *mac) { void *ctx; unsigned char cbc[AES_BLOCK_SIZE], pad[AES_BLOCK_SIZE]; const unsigned char *pos, *end; int i, e, left, total_len; ctx = AES_SetKey(key, 128); if (ctx == NULL) return -1; memset(cbc, 0, AES_BLOCK_SIZE); total_len = 0; for (e = 0; e < num_elem; e++) total_len += len[e]; left = total_len; e = 0; pos = addr[0]; end = pos + len[0]; while (left >= AES_BLOCK_SIZE) { for (i = 0; i < AES_BLOCK_SIZE; i++) { cbc[i] ^= *pos++; if (pos >= end) { e++; pos = addr[e]; end = pos + len[e]; } } if (left > AES_BLOCK_SIZE) AES_Encrypt(cbc, cbc); left -= AES_BLOCK_SIZE; } memset(pad, 0, AES_BLOCK_SIZE); AES_Encrypt(pad, pad); gf_mulx(pad); if (left || total_len == 0) { for (i = 0; i < left; i++) { cbc[i] ^= *pos++; if (pos >= end) { e++; pos = addr[e]; end = pos + len[e]; } } cbc[left] ^= 0x80; gf_mulx(pad); } for (i = 0; i < AES_BLOCK_SIZE; i++) pad[i] ^= cbc[i]; AES_Encrypt(pad, mac); return 0; } /** * omac1_aes_128 - One-Key CBC MAC (OMAC1) hash with AES-128 (aka AES-CMAC) * @key: 128-bit key for the hash operation * @data: Data buffer for which a MAC is determined * @data_len: Length of data buffer in bytes * @mac: Buffer for MAC (128 bits, i.e., 16 bytes) * Returns: 0 on success, -1 on failure * * This is a mode for using block cipher (AES in this case) for authentication. * OMAC1 was standardized with the name CMAC by NIST in a Special Publication * (SP) 800-38B. */ int omac1_aes_128(const unsigned char *key, const unsigned char *data, int data_len, unsigned char *mac) { return omac1_aes_128_vector(key, 1, &data, &data_len, mac); } #endif /************************************************/ /* construct_mic_iv() */ /* Builds the MIC IV from header fields and PN */ /************************************************/ void construct_mic_iv( unsigned char *mic_iv, int qc_exists, int a4_exists, unsigned char *mpdu, unsigned int payload_length, unsigned char *pn_vector #ifdef CONFIG_IEEE80211W ,unsigned char isMgmt #endif ) { int i; mic_iv[0] = 0x59; if (qc_exists && a4_exists) mic_iv[1] = mpdu[30] & 0x0f; /* QoS_TC */ if (qc_exists && !a4_exists) mic_iv[1] = mpdu[24] & 0x0f; /* mute bits 7-4 */ if (!qc_exists) mic_iv[1] = 0x00; #ifdef CONFIG_IEEE80211W if (isMgmt) mic_iv[1] |= BIT(4); // Management fields of Nonce. Figure 11-20 in IEEE 802.11-2012 #endif for (i = 2; i < 8; i++) mic_iv[i] = mpdu[i + 8]; /* mic_iv[2:7] = A2[0:5] = mpdu[10:15] */ #ifdef CONSISTENT_PN_ORDER for (i = 8; i < 14; i++) mic_iv[i] = pn_vector[i - 8]; /* mic_iv[8:13] = PN[0:5] */ #else for (i = 8; i < 14; i++) mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */ #endif mic_iv[14] = (unsigned char) (payload_length / 256); mic_iv[15] = (unsigned char) (payload_length % 256); } /************************************************/ /* construct_mic_header1() */ /* Builds the first MIC header block from */ /* header fields. */ /************************************************/ void construct_mic_header1( unsigned char *mic_header1, int header_length, unsigned char *mpdu #ifdef CONFIG_IEEE80211W ,unsigned char isMgmt #endif ) { mic_header1[0] = (unsigned char)((header_length - 2) / 256); mic_header1[1] = (unsigned char)((header_length - 2) % 256); #ifdef CONFIG_IEEE80211W if (isMgmt) mic_header1[2] = mpdu[0]; else #endif mic_header1[2] = mpdu[0] & 0xcf; /* Mute CF poll & CF ack bits */ mic_header1[3] = mpdu[1] & 0xc7; /* Mute retry, more data and pwr mgt bits */ mic_header1[4] = mpdu[4]; /* A1 */ mic_header1[5] = mpdu[5]; mic_header1[6] = mpdu[6]; mic_header1[7] = mpdu[7]; mic_header1[8] = mpdu[8]; mic_header1[9] = mpdu[9]; mic_header1[10] = mpdu[10]; /* A2 */ mic_header1[11] = mpdu[11]; mic_header1[12] = mpdu[12]; mic_header1[13] = mpdu[13]; mic_header1[14] = mpdu[14]; mic_header1[15] = mpdu[15]; } /************************************************/ /* construct_mic_header2() */ /* Builds the last MIC header block from */ /* header fields. */ /************************************************/ void construct_mic_header2( unsigned char *mic_header2, unsigned char *mpdu, int a4_exists, int qc_exists ) { int i; for (i = 0; i<16; i++) mic_header2[i]=0x00; mic_header2[0] = mpdu[16]; /* A3 */ mic_header2[1] = mpdu[17]; mic_header2[2] = mpdu[18]; mic_header2[3] = mpdu[19]; mic_header2[4] = mpdu[20]; mic_header2[5] = mpdu[21]; //mic_header2[6] = mpdu[22] & 0xf0; /* SC */ mic_header2[6] = 0x00; mic_header2[7] = 0x00; /* mpdu[23]; */ if (!qc_exists && a4_exists) { for (i=0;i<6;i++) mic_header2[8+i] = mpdu[24+i]; /* A4 */ } if (qc_exists && !a4_exists) { mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */ mic_header2[9] = mpdu[25] & 0x00; } if (qc_exists && a4_exists) { for (i=0;i<6;i++) mic_header2[8+i] = mpdu[24+i]; /* A4 */ mic_header2[14] = mpdu[30] & 0x0f; mic_header2[15] = mpdu[31] & 0x00; } } /************************************************/ /* construct_mic_header2() */ /* Builds the last MIC header block from */ /* header fields. */ /************************************************/ void construct_ctr_preload( unsigned char *ctr_preload, int a4_exists, int qc_exists, unsigned char *mpdu, unsigned char *pn_vector, int c #ifdef CONFIG_IEEE80211W ,unsigned char isMgmt #endif ) { int i = 0; for (i=0; i<16; i++) ctr_preload[i] = 0x00; i = 0; ctr_preload[0] = 0x01; /* flag */ if (qc_exists && a4_exists) ctr_preload[1] = mpdu[30] & 0x0f; /* QoC_Control */ if (qc_exists && !a4_exists) ctr_preload[1] = mpdu[24] & 0x0f; #ifdef CONFIG_IEEE80211W if (isMgmt) ctr_preload[1] |= BIT(4); #endif for (i = 2; i < 8; i++) ctr_preload[i] = mpdu[i + 8]; /* ctr_preload[2:7] = A2[0:5] = mpdu[10:15] */ #ifdef CONSISTENT_PN_ORDER for (i = 8; i < 14; i++) ctr_preload[i] = pn_vector[i - 8]; /* ctr_preload[8:13] = PN[0:5] */ #else for (i = 8; i < 14; i++) ctr_preload[i] = pn_vector[13 - i]; /* ctr_preload[8:13] = PN[5:0] */ #endif ctr_preload[14] = (unsigned char) (c / 256); /* Ctr */ ctr_preload[15] = (unsigned char) (c % 256); } /************************************/ /* bitwise_xor() */ /* A 128 bit, bitwise exclusive or */ /************************************/ void bitwise_xor(unsigned char *ina, unsigned char *inb, unsigned char *out) { int i; for (i=0; i<16; i++) { out[i] = ina[i] ^ inb[i]; } } /*----------------------------------------------------------------------------- hdr: wlanhdr llc: llc_snap pframe: raw data payload plen: length of raw data payload mic: mic of AES ------------------------------------------------------------------------------*/ static void aes_tx(struct rtl8192cd_priv *priv, UINT8 *key, UINT8 keyid, union PN48 *pn48, UINT8 *hdr, UINT8 *llc, UINT8 *pframe, UINT32 plen, UINT8* txmic #ifdef CONFIG_IEEE80211W ,unsigned char isMgmt ,unsigned char checkmic #endif ) { static UINT8 message[MAX_MSG_SIZE]; UINT32 qc_exists, a4_exists, i, j, payload_remainder, num_blocks,payload_length, payload_index; UINT8 pn_vector[6]; UINT8 mic_iv[16]; UINT8 mic_header1[16]; UINT8 mic_header2[16]; UINT8 ctr_preload[16]; /* Intermediate Buffers */ UINT8 chain_buffer[16]; UINT8 aes_out[16]; UINT8 padded_buffer[16]; UINT8 mic[8]; UINT32 offset = 0; UINT32 hdrlen = get_hdrlen(priv, hdr); memset((void *)mic_iv, 0, 16); memset((void *)mic_header1, 0, 16); memset((void *)mic_header2, 0, 16); memset((void *)ctr_preload, 0, 16); memset((void *)chain_buffer, 0, 16); memset((void *)aes_out, 0, 16); memset((void *)padded_buffer, 0, 16); if (get_tofr_ds(hdr) != 0x03) a4_exists = 0; else a4_exists = 1; if (is_qos_data(hdr)) { qc_exists = 1; //hdrlen += 2; // these 2 bytes has already added } else qc_exists = 0; // below is to collecting each frag(hdr, llc, pay, and mic into single message buf) // extiv (8 bytes long) should have been appended pn_vector[0] = hdr[hdrlen] = pn48->_byte_.TSC0; pn_vector[1] = hdr[hdrlen+1] = pn48->_byte_.TSC1; hdr[hdrlen+2] = 0x00; hdr[hdrlen+3] = (0x20 | (keyid << 6)); pn_vector[2] = hdr[hdrlen+4] = pn48->_byte_.TSC2; pn_vector[3] = hdr[hdrlen+5] = pn48->_byte_.TSC3; pn_vector[4] = hdr[hdrlen+6] = pn48->_byte_.TSC4; pn_vector[5] = hdr[hdrlen+7] = pn48->_byte_.TSC5; memcpy((void *)message, hdr, (hdrlen + 8)); //8 is for ext iv len offset = (hdrlen + 8); #ifdef CONFIG_IEEE80211W if (isMgmt) llc = 0; #endif if (llc) { memcpy((void *)(message + offset), (void *)llc, 8); offset += 8; } memcpy((void *)(message + offset), (void *)pframe, plen); offset += plen; // now we have collecting all the bytes into single message buf payload_length = plen; // 8 is for llc if (llc) payload_length += 8; construct_mic_iv( mic_iv, qc_exists, a4_exists, message, (payload_length), pn_vector #ifdef CONFIG_IEEE80211W ,isMgmt #endif ); construct_mic_header1( mic_header1, hdrlen, message #ifdef CONFIG_IEEE80211W ,isMgmt #endif ); construct_mic_header2( mic_header2, message, a4_exists, qc_exists ); payload_remainder = (payload_length) % 16; num_blocks = (payload_length) / 16; /* Find start of payload */ payload_index = (hdrlen + 8); /* Calculate MIC */ aes128k128d(key, mic_iv, aes_out); bitwise_xor(aes_out, mic_header1, chain_buffer); aes128k128d(key, chain_buffer, aes_out); bitwise_xor(aes_out, mic_header2, chain_buffer); aes128k128d(key, chain_buffer, aes_out); for (i = 0; i < num_blocks; i++) { bitwise_xor(aes_out, &message[payload_index], chain_buffer); payload_index += 16; aes128k128d(key, chain_buffer, aes_out); } /* Add on the final payload block if it needs padding */ if (payload_remainder > 0) { for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) { padded_buffer[j] = message[payload_index++]; } bitwise_xor(aes_out, padded_buffer, chain_buffer); aes128k128d(key, chain_buffer, aes_out); } for (j = 0 ; j < 8; j++) mic[j] = aes_out[j]; /* Insert MIC into payload */ for (j = 0; j < 8; j++) message[payload_index+j] = mic[j]; payload_index = hdrlen + 8; for (i=0; i< num_blocks; i++) { construct_ctr_preload( ctr_preload, a4_exists, qc_exists, message, pn_vector, i+1 #ifdef CONFIG_IEEE80211W ,isMgmt #endif ); aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, &message[payload_index], chain_buffer); for (j=0; j<16;j++) message[payload_index++] = chain_buffer[j]; } if (payload_remainder > 0) /* If there is a short final block, then pad it,*/ { /* encrypt it and copy the unpadded part back */ construct_ctr_preload( ctr_preload, a4_exists, qc_exists, message, pn_vector, num_blocks+1 #ifdef CONFIG_IEEE80211W ,isMgmt #endif ); for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) { padded_buffer[j] = message[payload_index+j]; } aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j=0; jval48 == 0xffffffffffffULL) pn48->val48 = 0; else pn48->val48++; } #ifdef CONFIG_IEEE80211W void BIP_encrypt(struct rtl8192cd_priv *priv, unsigned char *pwlhdr, unsigned char *frag1, unsigned char *frag2, unsigned int frag2_len, unsigned char *frag3, unsigned char isMgmt) { #ifdef CONFIG_IEEE80211W_BIPTEST unsigned char BIP_data[40]={0xc0,0x00,0xff,0xff,0xff,0xff,0xff,0xff, 0x02,0x00,0x00,0x00,0x00,0x00,0x02,0x00, 0x00,0x00,0x00,0x00,0x02,0x00,0x4c,0x10, 0x04,0x00,0x04,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; // Test Data unsigned char IGTK[16]={0x4e,0xa9,0x54,0x3e,0x09,0xcf,0x2b,0x1e,0xca,0x66,0xff,0xc5,0x8b,0xde,0xcb,0xcf}; unsigned char Addr[6]={0x02,0x00,0x00,0x00,0x00,0x00}; #else unsigned char *BIP_data; #endif unsigned char IMIC[16]; int i; union PN48 *pn48; union PN48 BIPPN; unsigned char *da; unsigned char *ttkey = NULL; unsigned int keyid = 0; struct stat_info *pstat = NULL; UINT32 hdrlen = get_hdrlen(priv, pwlhdr); unsigned char *pn; unsigned int offset; unsigned char pn_vector[6]; printk("frag2_len=%d\n",frag2_len); frag2_len -= 10; // payload length = frag2_len - 10, MMIE Length = 10 ttkey = GET_IGROUP_ENCRYP_KEY; PMFDEBUG("IGTK="); for (i=0;i<16;i++) PMFDEBUG("%x",priv->pmib->dot11IGTKTable.dot11EncryptKey.dot11TTKey.skey[i]); PMFDEBUG("\n"); pn48 = GET_IGROUP_ENCRYP_PN; #ifdef CONFIG_IEEE80211W_BIPTEST // test data memcpy(pwlhdr+10,Addr,6); memcpy(pwlhdr+16,Addr,6); ttkey = IGTK; BIPPN.val48 = 4; pn48 = &BIPPN; #endif pn_vector[0] = pn48->_byte_.TSC0; pn_vector[1] = pn48->_byte_.TSC1; pn_vector[2] = pn48->_byte_.TSC2; pn_vector[3] = pn48->_byte_.TSC3; pn_vector[4] = pn48->_byte_.TSC4; pn_vector[5] = pn48->_byte_.TSC5; keyid = 4; #ifndef CONFIG_IEEE80211W_BIPTEST BIP_data = (unsigned char *)kmalloc(20+ frag2_len + 18, GFP_ATOMIC); #endif // Generate BIP AAD (FC | A1 | A2 | A3) BIP_data[0] = pwlhdr[0]; pwlhdr[1] &= 0xBF; BIP_data[1] = pwlhdr[1]; memcpy(BIP_data+2,pwlhdr+4,18); // A1 | A2 | A3 (18 bytes) // Generate Management Frame Body memcpy(BIP_data+20,frag2,frag2_len); // Generate MMIE offset = 20 + frag2_len; BIP_data[offset++] = 0x4c; // element ID (Management MIC frame) BIP_data[offset++] = 0x10; // MMIC length BIP_data[offset++] = 0x04; // Key ID BIP_data[offset++] = 0x00; // Key ID memcpy(BIP_data+offset,pn_vector,6); // IPN offset += 6; memset(BIP_data+offset,0,8); #ifdef CONFIG_IEEE80211W_BIPTEST printk("BIP_data len=%d data=",frag2_len); for (i=0;i<20+ frag2_len + 18;i++) printk("%02x ",BIP_data[i]); printk("\n"); #endif memcpy(frag2+frag2_len,BIP_data+20+frag2_len,10); // Use AES-128-CMAC to generate IMIC omac1_aes_128(ttkey,BIP_data,20+ frag2_len + 18,IMIC); #ifdef CONFIG_IEEE80211W_BIPTEST printk("IMIC="); for (i=0;i<16;i++) printk("%02x",IMIC[i]); printk("\n"); #endif memcpy(frag3,IMIC,8); #ifdef CONFIG_PCI_HCI rtl_cache_sync_wback(priv, (unsigned long)pwlhdr, hdrlen, PCI_DMA_TODEVICE); rtl_cache_sync_wback(priv, (unsigned long)frag2, frag2_len+10, PCI_DMA_TODEVICE); rtl_cache_sync_wback(priv, (unsigned long)frag3, 8, PCI_DMA_TODEVICE); #endif kfree(BIP_data); if (pn48->val48 == 0xffffffffffffULL) pn48->val48 = 0; else pn48->val48++; } /*when STA mode rx broadcast deauth , check Management MIC Information Element (MMIE) campare least 8 bytes(MIC) ret:1 success ret:0 fail */ int MMIE_check(struct rtl8192cd_priv *priv, struct rx_frinfo *pfrinfo) { #define FC_LEN 2 #define DUR_LEN 2 #define A1A2A3_LEN 18 #define SEQ_LEN 2 #define REASON_LEN 2 #define MMIE_LEN 10 #define MIC_LEN 8 #define _SUCCESS 1 #define _FAIL 0 unsigned char *pframe = get_pframe(pfrinfo); unsigned char *ttkey = NULL; unsigned char BIP_data[40]; unsigned char MIC_be_chk[16]; // 16 ? why not 8? #ifdef CONFIG_IEEE80211W_CLI_DEBUG int i=0; #endif memset(BIP_data,0,40); memset(MIC_be_chk,0,16); ttkey = GET_IGROUP_ENCRYP_KEY; #ifdef CONFIG_IEEE80211W_CLI_DEBUG panic_printk("IGTK="); for (i=0;i<16;i++) panic_printk("%x ",priv->pmib->dot11IGTKTable.dot11EncryptKey.dot11TTKey.skey[i]); panic_printk("\n"); #endif /*cp BIP AAD (FC | A1 | A2 | A3)*/ memcpy(&BIP_data[0],pframe,FC_LEN); // cp FC memcpy(&BIP_data[FC_LEN],pframe+FC_LEN+DUR_LEN ,A1A2A3_LEN ); // cp A1 , A2 ,A3 /*cp Management Frame Body*/ memcpy(&BIP_data[FC_LEN + A1A2A3_LEN],pframe+FC_LEN+DUR_LEN+A1A2A3_LEN+SEQ_LEN ,REASON_LEN ); /*cp MMIE */ memcpy(&BIP_data[FC_LEN + A1A2A3_LEN + REASON_LEN],pframe+FC_LEN+DUR_LEN+A1A2A3_LEN+SEQ_LEN+REASON_LEN ,MMIE_LEN ); /*Use AES-128-CMAC to generate IMIC*/ omac1_aes_128(ttkey,BIP_data,FC_LEN + A1A2A3_LEN + REASON_LEN + MMIE_LEN + MIC_LEN , MIC_be_chk ); #ifdef CONFIG_IEEE80211W_CLI_DEBUG PMFDEBUG("IMIC="); for(i=0;i<16;i++) panic_printk("%02x",MIC_be_chk[i]); panic_printk("\n"); #endif if (!memcmp(MIC_be_chk, pframe + BIP_HEADER_LEN + 10, MIC_LEN)) return _SUCCESS ; //match! else return _FAIL ; } int aesccmp_checkmic(struct rtl8192cd_priv *priv, struct rx_frinfo *pfrinfo, unsigned char *pmic) { unsigned char *sa; unsigned char *ttkey = NULL; union PN48 pn48; unsigned int keyid = 0; struct stat_info *pstat = NULL; unsigned int i; unsigned char *pframe = get_pframe(pfrinfo); unsigned char calmic[8]; unsigned char data[1460]; sa = get_sa(pframe); if (OPMODE & WIFI_AP_STATE #ifdef CONFIG_IEEE80211W_CLI || (OPMODE & WIFI_STATION_STATE) #endif ) { if (!IS_MCAST(sa)) { pstat = get_stainfo(priv, sa); if (pstat == NULL) { DEBUG_ERR("tx aes pstat == NULL\n"); return 0; } ttkey = GET_UNICAST_ENCRYP_KEY; pn48._byte_.TSC0 = pframe[pfrinfo->hdr_len]; pn48._byte_.TSC1 = pframe[pfrinfo->hdr_len+1]; pn48._byte_.TSC2 = pframe[pfrinfo->hdr_len+4]; pn48._byte_.TSC3 = pframe[pfrinfo->hdr_len+5]; pn48._byte_.TSC4 = pframe[pfrinfo->hdr_len+6]; pn48._byte_.TSC5 = pframe[pfrinfo->hdr_len+7]; keyid = 0; } } if ((ttkey == NULL)) { DEBUG_ERR("no encrypt key for AES due to ttkey=NULL\n"); return 0; } memcpy(data, pframe + pfrinfo->hdr_len + 8, pfrinfo->pktlen - pfrinfo->hdr_len - 8 - 8); aes_tx(priv, ttkey, keyid, &pn48, pframe, 0, pframe + pfrinfo->hdr_len + 8, pfrinfo->pktlen - pfrinfo->hdr_len - 8 - 8, calmic, 1, 1); if (!memcmp(pmic, calmic,8)) return 1; else return 0; } #endif // CONFIG_IEEE80211W void aesccmp_encrypt(struct rtl8192cd_priv *priv, unsigned char *pwlhdr, unsigned char *frag1, unsigned char *frag2, unsigned int frag2_len, unsigned char *frag3 #ifdef CONFIG_IEEE80211W ,unsigned char isMgmt #endif ) { #ifdef CONFIG_IEEE80211W_TEST unsigned char CCMPTK[16]={0x66,0xed,0x21,0x04,0x2f,0x9f,0x26,0xd7,0x11,0x57,0x06,0xe4,0x04,0x14,0xcf,0x2e}; // test for PMF unsigned char testDa[6]={0x02,0x00,0x00,0x00,0x01,0x00};// test for PMF (unicast Deauth frame) //unsigned char testDa[6]={0xff,0xff,0xff,0xff,0xff,0xff};// test for PMF (broadcast Deauth frame) unsigned char testSa[6]={0x02,0x00,0x00,0x00,0x00,0x00};// test for PMF union PN48 CCMPPN;// test for PMF #endif unsigned char *da; unsigned char *ttkey = NULL; union PN48 *pn48 = NULL; unsigned int keyid = 0; struct stat_info *pstat = NULL; #ifdef CONFIG_IEEE80211W_TEST if (isMgmt) { printk("isMgmt\n"); memcpy(pwlhdr+4,testDa,6);// test for PMF memcpy(pwlhdr+10,testSa,6); // test for PMF memcpy(pwlhdr+16,testSa,6);// test for PMF CCMPPN.val48 = 1;// test for PMF (unicast) } #endif da = get_da(pwlhdr); if (OPMODE & WIFI_AP_STATE) { #if defined(WDS) || defined(CONFIG_RTK_MESH) || defined(A4_STA) unsigned int to_fr_ds = (GetToDs(pwlhdr) << 1) | GetFrDs(pwlhdr); if (to_fr_ds == 3) da = GetAddr1Ptr(pwlhdr); #endif if (IS_MCAST(da)) { ttkey = GET_GROUP_ENCRYP_KEY; pn48 = GET_GROUP_ENCRYP_PN; //keyid = 1; keyid = priv->pmib->dot11GroupKeysTable.keyid;//use mib keyid } else { #ifdef CONFIG_IEEE80211W_TEST // marked test for PMF if (isMgmt) { // when test and Mgmt frame ttkey = CCMPTK; pn48 = &CCMPPN; } else #endif { pstat = get_stainfo(priv, da); if (pstat == NULL) { DEBUG_ERR("tx aes pstat == NULL\n"); return; } ttkey = GET_UNICAST_ENCRYP_KEY; pn48 = GET_UNICAST_ENCRYP_PN; } #ifdef CONFIG_IEEE80211W_TEST if (isMgmt) { printk("isUnicast\n"); printk("ttkey="); for(i=0;i<16;i++) printk("%02x",ttkey[i]); printk("\n"); printk("pn48=%02x%02x%02x%02x%02x%02x\n",pn48->_byte_.TSC0,pn48->_byte_.TSC1,pn48->_byte_.TSC2,pn48->_byte_.TSC3,pn48->_byte_.TSC4,pn48->_byte_.TSC5); } #endif keyid = 0; } } #ifdef CLIENT_MODE else if (OPMODE & WIFI_STATION_STATE) { if (IS_MCAST(da)) //eric-ath { ttkey = GET_GROUP_ENCRYP_KEY; pn48 = GET_GROUP_ENCRYP_PN; keyid = GET_ROOT(priv)->pmib->dot11GroupKeysTable.keyid; } else { pstat = get_stainfo(priv, BSSID); if (pstat == NULL) { DEBUG_ERR("tx aes pstat == NULL\n"); return; } ttkey = GET_UNICAST_ENCRYP_KEY; pn48 = GET_UNICAST_ENCRYP_PN; keyid = 0; } } else if (OPMODE & WIFI_ADHOC_STATE) { ttkey = GET_GROUP_ENCRYP_KEY; pn48 = GET_GROUP_ENCRYP_PN; keyid = 0; } #endif if ((ttkey == NULL) || (pn48 == NULL)) { DEBUG_ERR("no encrypt key for AES due to ttkey=NULL or pn48=NULL\n"); return; } #ifdef CONFIG_IEEE80211W if (isMgmt) frag1 = 0; #endif aes_tx(priv, ttkey, keyid, pn48, pwlhdr, frag1, frag2, frag2_len, frag3 #ifdef CONFIG_IEEE80211W ,isMgmt ,0 #endif ); } static void aes_rx(UINT8 *ttkey, UINT8 qc_exists, UINT8 a4_exists, UINT8 *pframe, UINT32 hdrlen, UINT32 plen #ifdef CONFIG_IEEE80211W ,unsigned char isMgmt #endif ) { UINT32 i, j, payload_remainder, num_blocks, payload_index; UINT8 pn_vector[6]; UINT8 mic_iv[16]; UINT8 mic_header1[16]; UINT8 mic_header2[16]; UINT8 ctr_preload[16]; UINT8 chain_buffer[16]; UINT8 aes_out[16]; UINT8 padded_buffer[16]; UINT8 mic[8]; memset((void *)mic_iv, 0, 16); memset((void *)mic_header1, 0, 16); memset((void *)mic_header2, 0, 16); memset((void *)ctr_preload, 0, 16); memset((void *)chain_buffer, 0, 16); memset((void *)aes_out, 0, 16); memset((void *)mic, 0, 8); num_blocks = plen / 16; //(plen including llc, payload_length and mic ) payload_remainder = plen % 16; pn_vector[0] = pframe[hdrlen]; pn_vector[1] = pframe[hdrlen+1]; pn_vector[2] = pframe[hdrlen+4]; pn_vector[3] = pframe[hdrlen+5]; pn_vector[4] = pframe[hdrlen+6]; pn_vector[5] = pframe[hdrlen+7]; // now, decrypt pframe with hdrlen offset and plen long payload_index = hdrlen + 8; // 8 is for extiv for (i=0; i< num_blocks; i++) { construct_ctr_preload( ctr_preload, a4_exists, qc_exists, pframe, pn_vector, i+1 #ifdef CONFIG_IEEE80211W ,isMgmt #endif ); aes128k128d(ttkey, ctr_preload, aes_out); bitwise_xor(aes_out, &pframe[payload_index], chain_buffer); for (j=0; j<16;j++) pframe[payload_index++] = chain_buffer[j]; } if (payload_remainder > 0) /* If there is a short final block, then pad it,*/ { /* encrypt it and copy the unpadded part back */ construct_ctr_preload( ctr_preload, a4_exists, qc_exists, pframe, pn_vector, num_blocks+1 #ifdef CONFIG_IEEE80211W ,isMgmt #endif ); for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) { padded_buffer[j] = pframe[payload_index+j]; } aes128k128d(ttkey, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j=0; jsa; UINT8 *pframe = get_pframe(pfrinfo); UINT8 to_fr_ds = pfrinfo->to_fr_ds; struct stat_info *pstat = NULL; #ifdef CONFIG_IEEE80211W_TEST unsigned char CCMPTK[16]={0x66,0xed,0x21,0x04,0x2f,0x9f,0x26,0xd7,0x11,0x57,0x06,0xe4,0x04,0x14,0xcf,0x2e}; // test for PMF unsigned char testDa[6]={0x02,0x00,0x00,0x00,0x01,0x00};// test for PMF (unicast Deauth frame) //unsigned char testDa[6]={0xff,0xff,0xff,0xff,0xff,0xff};// test for PMF (broadcast Deauth frame) unsigned char testSa[6]={0x02,0x00,0x00,0x00,0x00,0x00};// test for PMF unsigned char testIV[8]={0x01,0x00,0x00,0x20,0x00,0x00,0x00,0x00}; unsigned char testdata[10]={0x1d,0x07,0xca,0xfd,0x04,0x09,0xbb,0x8b,0xaf,0xef}; if (isMgmt) { printk("isMgmt\n"); pframe[0]=0xc0; pframe[1]=0x00; memcpy(pframe+4,testDa,6);// test for PMF memcpy(pframe+10,testSa,6); // test for PMF memcpy(pframe+16,testSa,6);// test for PMF memcpy(pframe+24,testIV,8); memcpy(pframe+32,testdata,10); pfrinfo->pktlen = 42; } #endif if (to_fr_ds != 0x03) { hdrlen = WLAN_HDR_A3_LEN; a4_exists = 0; } else { hdrlen = WLAN_HDR_A4_LEN; a4_exists = 1; } if (is_qos_data(pframe)) { qc_exists = 1; hdrlen += 2; } else qc_exists = 0; if (OPMODE & WIFI_AP_STATE) { #if defined(WDS) || defined(CONFIG_RTK_MESH) if (to_fr_ds == 3) pstat = get_stainfo (priv, GetAddr2Ptr(pframe)); else #endif #ifdef A4_STA if (to_fr_ds == 3) pstat = get_stainfo (priv, GetAddr2Ptr(pframe)); else #endif pstat = get_stainfo (priv, sa); #ifdef CONFIG_IEEE80211W_TEST // marked test for PMF if (isMgmt) { // when test and Mgmt frame ttkey = CCMPTK; keylen = 16; } else #endif { if (pstat == NULL) { DEBUG_ERR("AES Rx fails! sa=%02X%02X%02X%02X%02X%02X\n", sa[0], sa[1], sa[2], sa[3], sa[4], sa[5]); return FALSE; } keylen = GET_UNICAST_ENCRYP_KEYLEN; ttkey = GET_UNICAST_ENCRYP_KEY; } } #ifdef CLIENT_MODE else if (OPMODE & WIFI_STATION_STATE) { if (IS_MCAST(pfrinfo->da)) { keylen = GET_GROUP_ENCRYP_KEYLEN; ttkey = GET_GROUP_ENCRYP_KEY; } else { pstat = get_stainfo(priv, BSSID); if (pstat == NULL) { DEBUG_ERR("rx aes pstat == NULL\n"); return FALSE; } keylen = GET_UNICAST_ENCRYP_KEYLEN; ttkey = GET_UNICAST_ENCRYP_KEY; } } else if (OPMODE & WIFI_ADHOC_STATE) { keylen = GET_GROUP_ENCRYP_KEYLEN; ttkey = GET_GROUP_ENCRYP_KEY; } #endif if (keylen == 0) { DEBUG_ERR("no descrypt key for AES due to keylen=0\n"); return FALSE; } #ifdef CONFIG_IEEE80211W_TEST if (isMgmt) { int i; printk("pframe="); for (i=0;ipktlen;i++) printk("%02x ",pframe[i]); printk("\n"); printk("ttkey="); for (i=0;ipktlen-hdrlen-8 #ifdef CONFIG_IEEE80211W ,isMgmt #endif ); return TRUE; }