#define _LARGEFILE64_SOURCE #define LOG_TAG "f2fs_sparseblock" #include #include #include #include #include #include "f2fs_sparseblock.h" #define D_DISP_u32(ptr, member) \ do { \ SLOGD("%-30s" "\t\t[0x%#08x : %u]\n", \ #member, le32_to_cpu((ptr)->member), le32_to_cpu((ptr)->member) ); \ } while (0); #define D_DISP_u64(ptr, member) \ do { \ SLOGD("%-30s" "\t\t[0x%#016llx : %llu]\n", \ #member, le64_to_cpu((ptr)->member), le64_to_cpu((ptr)->member) ); \ } while (0); #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) static void dbg_print_raw_sb_info(struct f2fs_super_block *sb) { SLOGD("\n"); SLOGD("+--------------------------------------------------------+\n"); SLOGD("| Super block |\n"); SLOGD("+--------------------------------------------------------+\n"); D_DISP_u32(sb, magic); D_DISP_u32(sb, major_ver); D_DISP_u32(sb, minor_ver); D_DISP_u32(sb, log_sectorsize); D_DISP_u32(sb, log_sectors_per_block); D_DISP_u32(sb, log_blocksize); D_DISP_u32(sb, log_blocks_per_seg); D_DISP_u32(sb, segs_per_sec); D_DISP_u32(sb, secs_per_zone); D_DISP_u32(sb, checksum_offset); D_DISP_u64(sb, block_count); D_DISP_u32(sb, section_count); D_DISP_u32(sb, segment_count); D_DISP_u32(sb, segment_count_ckpt); D_DISP_u32(sb, segment_count_sit); D_DISP_u32(sb, segment_count_nat); D_DISP_u32(sb, segment_count_ssa); D_DISP_u32(sb, segment_count_main); D_DISP_u32(sb, segment0_blkaddr); D_DISP_u32(sb, cp_blkaddr); D_DISP_u32(sb, sit_blkaddr); D_DISP_u32(sb, nat_blkaddr); D_DISP_u32(sb, ssa_blkaddr); D_DISP_u32(sb, main_blkaddr); D_DISP_u32(sb, root_ino); D_DISP_u32(sb, node_ino); D_DISP_u32(sb, meta_ino); D_DISP_u32(sb, cp_payload); SLOGD("\n"); } static void dbg_print_raw_ckpt_struct(struct f2fs_checkpoint *cp) { SLOGD("\n"); SLOGD("+--------------------------------------------------------+\n"); SLOGD("| Checkpoint |\n"); SLOGD("+--------------------------------------------------------+\n"); D_DISP_u64(cp, checkpoint_ver); D_DISP_u64(cp, user_block_count); D_DISP_u64(cp, valid_block_count); D_DISP_u32(cp, rsvd_segment_count); D_DISP_u32(cp, overprov_segment_count); D_DISP_u32(cp, free_segment_count); D_DISP_u32(cp, alloc_type[CURSEG_HOT_NODE]); D_DISP_u32(cp, alloc_type[CURSEG_WARM_NODE]); D_DISP_u32(cp, alloc_type[CURSEG_COLD_NODE]); D_DISP_u32(cp, cur_node_segno[0]); D_DISP_u32(cp, cur_node_segno[1]); D_DISP_u32(cp, cur_node_segno[2]); D_DISP_u32(cp, cur_node_blkoff[0]); D_DISP_u32(cp, cur_node_blkoff[1]); D_DISP_u32(cp, cur_node_blkoff[2]); D_DISP_u32(cp, alloc_type[CURSEG_HOT_DATA]); D_DISP_u32(cp, alloc_type[CURSEG_WARM_DATA]); D_DISP_u32(cp, alloc_type[CURSEG_COLD_DATA]); D_DISP_u32(cp, cur_data_segno[0]); D_DISP_u32(cp, cur_data_segno[1]); D_DISP_u32(cp, cur_data_segno[2]); D_DISP_u32(cp, cur_data_blkoff[0]); D_DISP_u32(cp, cur_data_blkoff[1]); D_DISP_u32(cp, cur_data_blkoff[2]); D_DISP_u32(cp, ckpt_flags); D_DISP_u32(cp, cp_pack_total_block_count); D_DISP_u32(cp, cp_pack_start_sum); D_DISP_u32(cp, valid_node_count); D_DISP_u32(cp, valid_inode_count); D_DISP_u32(cp, next_free_nid); D_DISP_u32(cp, sit_ver_bitmap_bytesize); D_DISP_u32(cp, nat_ver_bitmap_bytesize); D_DISP_u32(cp, checksum_offset); D_DISP_u64(cp, elapsed_time); D_DISP_u32(cp, sit_nat_version_bitmap[0]); SLOGD("\n\n"); } static void dbg_print_info_struct(struct f2fs_info *info) { SLOGD("\n"); SLOGD("+--------------------------------------------------------+\n"); SLOGD("| F2FS_INFO |\n"); SLOGD("+--------------------------------------------------------+\n"); SLOGD("blocks_per_segment: %"PRIu64, info->blocks_per_segment); SLOGD("block_size: %d", info->block_size); SLOGD("sit_bmp loc: %p", info->sit_bmp); SLOGD("sit_bmp_size: %d", info->sit_bmp_size); SLOGD("blocks_per_sit: %"PRIu64, info->blocks_per_sit); SLOGD("sit_blocks loc: %p", info->sit_blocks); SLOGD("sit_sums loc: %p", info->sit_sums); SLOGD("sit_sums num: %d", le16_to_cpu(info->sit_sums->n_sits)); unsigned int i; for(i = 0; i < (le16_to_cpu(info->sit_sums->n_sits)); i++) { SLOGD("entry %d in journal entries is for segment %d",i, le32_to_cpu(segno_in_journal(info->sit_sums, i))); } SLOGD("cp_blkaddr: %"PRIu64, info->cp_blkaddr); SLOGD("cp_valid_cp_blkaddr: %"PRIu64, info->cp_valid_cp_blkaddr); SLOGD("sit_blkaddr: %"PRIu64, info->sit_blkaddr); SLOGD("nat_blkaddr: %"PRIu64, info->nat_blkaddr); SLOGD("ssa_blkaddr: %"PRIu64, info->ssa_blkaddr); SLOGD("main_blkaddr: %"PRIu64, info->main_blkaddr); SLOGD("total_user_used: %"PRIu64, info->total_user_used); SLOGD("total_blocks: %"PRIu64, info->total_blocks); SLOGD("\n\n"); } /* read blocks */ static int read_structure(int fd, unsigned long long start, void *buf, ssize_t len) { off64_t ret; ret = lseek64(fd, start, SEEK_SET); if (ret < 0) { SLOGE("failed to seek\n"); return ret; } ret = read(fd, buf, len); if (ret < 0) { SLOGE("failed to read\n"); return ret; } if (ret != len) { SLOGE("failed to read all\n"); return -1; } return 0; } static int read_structure_blk(int fd, unsigned long long start_blk, void *buf, size_t len) { return read_structure(fd, F2FS_BLKSIZE*start_blk, buf, F2FS_BLKSIZE * len); } static int read_f2fs_sb(int fd, struct f2fs_super_block *sb) { int rc; rc = read_structure(fd, F2FS_SUPER_OFFSET, sb, sizeof(*sb)); if (le32_to_cpu(sb->magic) != F2FS_SUPER_MAGIC) { SLOGE("Not a valid F2FS super block. Magic:%#08x != %#08x", le32_to_cpu(sb->magic), F2FS_SUPER_MAGIC); return -1; } return 0; } unsigned int get_f2fs_filesystem_size_sec(char *dev) { int fd; if ((fd = open(dev, O_RDONLY)) < 0) { SLOGE("Cannot open device to get filesystem size "); return 0; } struct f2fs_super_block sb; if(read_f2fs_sb(fd, &sb)) return 0; return (unsigned int)(le64_to_cpu(sb.block_count)*F2FS_BLKSIZE/DEFAULT_SECTOR_SIZE); } static struct f2fs_checkpoint *validate_checkpoint(block_t cp_addr, unsigned long long *version, int fd) { unsigned char *cp_block_1, *cp_block_2; struct f2fs_checkpoint *cp_block, *cp_ret; u64 cp1_version = 0, cp2_version = 0; cp_block_1 = malloc(F2FS_BLKSIZE); if (!cp_block_1) return NULL; /* Read the 1st cp block in this CP pack */ if (read_structure_blk(fd, cp_addr, cp_block_1, 1)) goto invalid_cp1; /* get the version number */ cp_block = (struct f2fs_checkpoint *)cp_block_1; cp1_version = le64_to_cpu(cp_block->checkpoint_ver); cp_block_2 = malloc(F2FS_BLKSIZE); if (!cp_block_2) { goto invalid_cp1; } /* Read the 2nd cp block in this CP pack */ cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; if (read_structure_blk(fd, cp_addr, cp_block_2, 1)) { goto invalid_cp2; } cp_block = (struct f2fs_checkpoint *)cp_block_2; cp2_version = le64_to_cpu(cp_block->checkpoint_ver); if (cp2_version == cp1_version) { *version = cp2_version; free(cp_block_2); return (struct f2fs_checkpoint *)cp_block_1; } /* There must be something wrong with this checkpoint */ invalid_cp2: free(cp_block_2); invalid_cp1: free(cp_block_1); return NULL; } int get_valid_checkpoint_info(int fd, struct f2fs_super_block *sb, struct f2fs_checkpoint **cp, struct f2fs_info *info) { struct f2fs_checkpoint *cp_block; struct f2fs_checkpoint *cp1, *cp2, *cur_cp; int cur_cp_no; unsigned long blk_size;// = 1<sb->log_blocksize); unsigned long long cp1_version = 0, cp2_version = 0; unsigned long long cp1_start_blk_no; unsigned long long cp2_start_blk_no; u32 bmp_size; blk_size = 1U<log_blocksize); /* * Find valid cp by reading both packs and finding most recent one. */ cp1_start_blk_no = le32_to_cpu(sb->cp_blkaddr); cp1 = validate_checkpoint(cp1_start_blk_no, &cp1_version, fd); /* The second checkpoint pack should start at the next segment */ cp2_start_blk_no = cp1_start_blk_no + (1 << le32_to_cpu(sb->log_blocks_per_seg)); cp2 = validate_checkpoint(cp2_start_blk_no, &cp2_version, fd); if (cp1 && cp2) { if (ver_after(cp2_version, cp1_version)) { cur_cp = cp2; info->cp_valid_cp_blkaddr = cp2_start_blk_no; free(cp1); } else { cur_cp = cp1; info->cp_valid_cp_blkaddr = cp1_start_blk_no; free(cp2); } } else if (cp1) { cur_cp = cp1; info->cp_valid_cp_blkaddr = cp1_start_blk_no; } else if (cp2) { cur_cp = cp2; info->cp_valid_cp_blkaddr = cp2_start_blk_no; } else { goto fail_no_cp; } *cp = cur_cp; return 0; fail_no_cp: SLOGE("Valid Checkpoint not found!!"); return -EINVAL; } static int gather_sit_info(int fd, struct f2fs_info *info) { u64 num_segments = (info->total_blocks - info->main_blkaddr + info->blocks_per_segment - 1) / info->blocks_per_segment; u64 num_sit_blocks = (num_segments + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK; u64 sit_block; info->sit_blocks = malloc(num_sit_blocks * sizeof(struct f2fs_sit_block)); if (!info->sit_blocks) return -1; for(sit_block = 0; sit_blocksit_blkaddr + sit_block; if (f2fs_test_bit(sit_block, info->sit_bmp)) address += info->blocks_per_sit; SLOGD("Reading cache block starting at block %"PRIu64, address); if (read_structure(fd, address * F2FS_BLKSIZE, &info->sit_blocks[sit_block], sizeof(struct f2fs_sit_block))) { SLOGE("Could not read sit block at block %"PRIu64, address); free(info->sit_blocks); return -1; } } return 0; } static inline int is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); return !!(ckpt_flags & f); } static inline u64 sum_blk_addr(struct f2fs_checkpoint *cp, struct f2fs_info *info, int base, int type) { return info->cp_valid_cp_blkaddr + le32_to_cpu(cp->cp_pack_total_block_count) - (base + 1) + type; } static int get_sit_summary(int fd, struct f2fs_info *info, struct f2fs_checkpoint *cp) { char buffer[F2FS_BLKSIZE]; info->sit_sums = calloc(1, sizeof(struct f2fs_summary_block)); if (!info->sit_sums) return -1; /* CURSEG_COLD_DATA where the journaled SIT entries are. */ if (is_set_ckpt_flags(cp, CP_COMPACT_SUM_FLAG)) { if (read_structure_blk(fd, info->cp_valid_cp_blkaddr + le32_to_cpu(cp->cp_pack_start_sum), buffer, 1)) return -1; memcpy(&info->sit_sums->n_sits, &buffer[SUM_JOURNAL_SIZE], SUM_JOURNAL_SIZE); } else { u64 blk_addr; if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG)) blk_addr = sum_blk_addr(cp, info, NR_CURSEG_TYPE, CURSEG_COLD_DATA); else blk_addr = sum_blk_addr(cp, info, NR_CURSEG_DATA_TYPE, CURSEG_COLD_DATA); if (read_structure_blk(fd, blk_addr, buffer, 1)) return -1; memcpy(info->sit_sums, buffer, sizeof(struct f2fs_summary_block)); } return 0; } struct f2fs_info *generate_f2fs_info(int fd) { struct f2fs_super_block *sb = NULL; struct f2fs_checkpoint *cp = NULL; struct f2fs_info *info; info = calloc(1, sizeof(*info)); if (!info) { SLOGE("Out of memory!"); return NULL; } sb = malloc(sizeof(*sb)); if(!sb) { SLOGE("Out of memory!"); free(info); return NULL; } if (read_f2fs_sb(fd, sb)) { SLOGE("Failed to read superblock"); free(info); free(sb); return NULL; } dbg_print_raw_sb_info(sb); info->cp_blkaddr = le32_to_cpu(sb->cp_blkaddr); info->sit_blkaddr = le32_to_cpu(sb->sit_blkaddr); info->nat_blkaddr = le32_to_cpu(sb->nat_blkaddr); info->ssa_blkaddr = le32_to_cpu(sb->ssa_blkaddr); info->main_blkaddr = le32_to_cpu(sb->main_blkaddr); info->block_size = F2FS_BLKSIZE; info->total_blocks = sb->block_count; info->blocks_per_sit = (le32_to_cpu(sb->segment_count_sit) >> 1) << le32_to_cpu(sb->log_blocks_per_seg); info->blocks_per_segment = 1U << le32_to_cpu(sb->log_blocks_per_seg); if (get_valid_checkpoint_info(fd, sb, &cp, info)) goto error; dbg_print_raw_ckpt_struct(cp); info->total_user_used = le32_to_cpu(cp->valid_block_count); u32 bmp_size = le32_to_cpu(cp->sit_ver_bitmap_bytesize); /* get sit validity bitmap */ info->sit_bmp = malloc(bmp_size); if(!info->sit_bmp) { SLOGE("Out of memory!"); goto error; } info->sit_bmp_size = bmp_size; if (read_structure(fd, info->cp_valid_cp_blkaddr * F2FS_BLKSIZE + offsetof(struct f2fs_checkpoint, sit_nat_version_bitmap), info->sit_bmp, bmp_size)) { SLOGE("Error getting SIT validity bitmap"); goto error; } if (gather_sit_info(fd , info)) { SLOGE("Error getting SIT information"); goto error; } if (get_sit_summary(fd, info, cp)) { SLOGE("Error getting SIT entries in summary area"); goto error; } dbg_print_info_struct(info); return info; error: free(sb); free(cp); free_f2fs_info(info); return NULL; } void free_f2fs_info(struct f2fs_info *info) { if (info) { free(info->sit_blocks); info->sit_blocks = NULL; free(info->sit_bmp); info->sit_bmp = NULL; free(info->sit_sums); info->sit_sums = NULL; } free(info); } u64 get_num_blocks_used(struct f2fs_info *info) { return info->main_blkaddr + info->total_user_used; } int f2fs_test_bit(unsigned int nr, const char *p) { int mask; char *addr = (char *)p; addr += (nr >> 3); mask = 1 << (7 - (nr & 0x07)); return (mask & *addr) != 0; } int run_on_used_blocks(u64 startblock, struct f2fs_info *info, int (*func)(u64 pos, void *data), void *data) { struct f2fs_sit_block sit_block_cache; struct f2fs_sit_entry * sit_entry; u64 sit_block_num_cur = 0, segnum = 0, block_offset; u64 block; unsigned int used, found, started = 0, i; for (block=startblock; blocktotal_blocks; block++) { /* TODO: Save only relevant portions of metadata */ if (block < info->main_blkaddr) { if (func(block, data)) { SLOGI("func error"); return -1; } } else { /* Main Section */ segnum = (block - info->main_blkaddr)/info->blocks_per_segment; /* check the SIT entries in the journal */ found = 0; for(i = 0; i < le16_to_cpu(info->sit_sums->n_sits); i++) { if (le32_to_cpu(segno_in_journal(info->sit_sums, i)) == segnum) { sit_entry = &sit_in_journal(info->sit_sums, i); found = 1; break; } } /* get SIT entry from SIT section */ if (!found) { sit_block_num_cur = segnum/SIT_ENTRY_PER_BLOCK; sit_entry = &info->sit_blocks[sit_block_num_cur].entries[segnum % SIT_ENTRY_PER_BLOCK]; } block_offset = (block - info->main_blkaddr) % info->blocks_per_segment; used = f2fs_test_bit(block_offset, (char *)sit_entry->valid_map); if(used) if (func(block, data)) return -1; } } return 0; } struct privdata { int count; int infd; int outfd; char* buf; char *zbuf; int done; struct f2fs_info *info; }; /* * This is a simple test program. It performs a block to block copy of a * filesystem, replacing blocks identified as unused with 0's. */ int copy_used(u64 pos, void *data) { struct privdata *d = data; char *buf; int pdone = (pos*100)/d->info->total_blocks; if (pdone > d->done) { d->done = pdone; printf("Done with %d percent\n", d->done); } d->count++; buf = d->buf; if(read_structure_blk(d->infd, (unsigned long long)pos, d->buf, 1)) { printf("Error reading!!!\n"); return -1; } off64_t ret; ret = lseek64(d->outfd, pos*F2FS_BLKSIZE, SEEK_SET); if (ret < 0) { SLOGE("failed to seek\n"); return ret; } ret = write(d->outfd, d->buf, F2FS_BLKSIZE); if (ret < 0) { SLOGE("failed to write\n"); return ret; } if (ret != F2FS_BLKSIZE) { SLOGE("failed to read all\n"); return -1; } return 0; } int main(int argc, char **argv) { if (argc != 3) printf("Usage: %s fs_file_in fs_file_out\n", argv[0]); char *in = argv[1]; char *out = argv[2]; int infd, outfd; if ((infd = open(in, O_RDONLY)) < 0) { SLOGE("Cannot open device"); return 0; } if ((outfd = open(out, O_WRONLY|O_CREAT, S_IRUSR | S_IWUSR)) < 0) { SLOGE("Cannot open output"); return 0; } struct privdata d; d.infd = infd; d.outfd = outfd; d.count = 0; struct f2fs_info *info = generate_f2fs_info(infd); if (!info) { printf("Failed to generate info!"); return -1; } char *buf = malloc(F2FS_BLKSIZE); char *zbuf = calloc(1, F2FS_BLKSIZE); d.buf = buf; d.zbuf = zbuf; d.done = 0; d.info = info; int expected_count = get_num_blocks_used(info); run_on_used_blocks(0, info, ©_used, &d); printf("Copied %d blocks. Expected to copy %d\n", d.count, expected_count); ftruncate64(outfd, info->total_blocks * F2FS_BLKSIZE); free_f2fs_info(info); free(buf); free(zbuf); close(infd); close(outfd); return 0; }