/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #define MAX_I2C_CMDS 16 void dss_reg_w(struct dss_io_data *io, u32 offset, u32 value, u32 debug) { u32 in_val; if (!io || !io->base) { DEV_ERR("%pS->%s: invalid input\n", __builtin_return_address(0), __func__); return; } if (offset > io->len) { DEV_ERR("%pS->%s: offset out of range\n", __builtin_return_address(0), __func__); return; } writel_relaxed(value, io->base + offset); if (debug) { in_val = readl_relaxed(io->base + offset); DEV_DBG("[%08x] => %08x [%08x]\n", (u32)(unsigned long)(io->base + offset), value, in_val); } } /* dss_reg_w */ EXPORT_SYMBOL(dss_reg_w); u32 dss_reg_r(struct dss_io_data *io, u32 offset, u32 debug) { u32 value; if (!io || !io->base) { DEV_ERR("%pS->%s: invalid input\n", __builtin_return_address(0), __func__); return -EINVAL; } if (offset > io->len) { DEV_ERR("%pS->%s: offset out of range\n", __builtin_return_address(0), __func__); return -EINVAL; } value = readl_relaxed(io->base + offset); if (debug) DEV_DBG("[%08x] <= %08x\n", (u32)(unsigned long)(io->base + offset), value); return value; } /* dss_reg_r */ EXPORT_SYMBOL(dss_reg_r); void dss_reg_dump(void __iomem *base, u32 length, const char *prefix, u32 debug) { if (debug) print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET, 32, 4, (void *)base, length, false); } /* dss_reg_dump */ EXPORT_SYMBOL(dss_reg_dump); static struct resource *msm_dss_get_res_byname(struct platform_device *pdev, unsigned int type, const char *name) { struct resource *res = NULL; res = platform_get_resource_byname(pdev, type, name); if (!res) DEV_ERR("%s: '%s' resource not found\n", __func__, name); return res; } /* msm_dss_get_res_byname */ EXPORT_SYMBOL(msm_dss_get_res_byname); int msm_dss_ioremap_byname(struct platform_device *pdev, struct dss_io_data *io_data, const char *name) { struct resource *res = NULL; if (!pdev || !io_data) { DEV_ERR("%pS->%s: invalid input\n", __builtin_return_address(0), __func__); return -EINVAL; } res = msm_dss_get_res_byname(pdev, IORESOURCE_MEM, name); if (!res) { DEV_ERR("%pS->%s: '%s' msm_dss_get_res_byname failed\n", __builtin_return_address(0), __func__, name); return -ENODEV; } io_data->len = (u32)resource_size(res); io_data->base = ioremap(res->start, io_data->len); if (!io_data->base) { DEV_ERR("%pS->%s: '%s' ioremap failed\n", __builtin_return_address(0), __func__, name); return -EIO; } return 0; } /* msm_dss_ioremap_byname */ EXPORT_SYMBOL(msm_dss_ioremap_byname); void msm_dss_iounmap(struct dss_io_data *io_data) { if (!io_data) { DEV_ERR("%pS->%s: invalid input\n", __builtin_return_address(0), __func__); return; } if (io_data->base) { iounmap(io_data->base); io_data->base = NULL; } io_data->len = 0; } /* msm_dss_iounmap */ EXPORT_SYMBOL(msm_dss_iounmap); int msm_dss_config_vreg(struct device *dev, struct dss_vreg *in_vreg, int num_vreg, int config) { int i = 0, rc = 0; struct dss_vreg *curr_vreg = NULL; enum dss_vreg_type type; if (!in_vreg || !num_vreg) return rc; if (config) { for (i = 0; i < num_vreg; i++) { curr_vreg = &in_vreg[i]; curr_vreg->vreg = regulator_get(dev, curr_vreg->vreg_name); rc = PTR_RET(curr_vreg->vreg); if (rc) { DEV_ERR("%pS->%s: %s get failed. rc=%d\n", __builtin_return_address(0), __func__, curr_vreg->vreg_name, rc); curr_vreg->vreg = NULL; goto vreg_get_fail; } type = (regulator_count_voltages(curr_vreg->vreg) > 0) ? DSS_REG_LDO : DSS_REG_VS; if (type == DSS_REG_LDO) { rc = regulator_set_voltage( curr_vreg->vreg, curr_vreg->min_voltage, curr_vreg->max_voltage); if (rc < 0) { DEV_ERR("%pS->%s: %s set vltg fail\n", __builtin_return_address(0), __func__, curr_vreg->vreg_name); goto vreg_set_voltage_fail; } } } } else { for (i = num_vreg-1; i >= 0; i--) { curr_vreg = &in_vreg[i]; if (curr_vreg->vreg) { type = (regulator_count_voltages( curr_vreg->vreg) > 0) ? DSS_REG_LDO : DSS_REG_VS; if (type == DSS_REG_LDO) { regulator_set_voltage(curr_vreg->vreg, 0, curr_vreg->max_voltage); } regulator_put(curr_vreg->vreg); curr_vreg->vreg = NULL; } } } return 0; vreg_unconfig: if (type == DSS_REG_LDO) regulator_set_optimum_mode(curr_vreg->vreg, 0); vreg_set_voltage_fail: regulator_put(curr_vreg->vreg); curr_vreg->vreg = NULL; vreg_get_fail: for (i--; i >= 0; i--) { curr_vreg = &in_vreg[i]; type = (regulator_count_voltages(curr_vreg->vreg) > 0) ? DSS_REG_LDO : DSS_REG_VS; goto vreg_unconfig; } return rc; } /* msm_dss_config_vreg */ EXPORT_SYMBOL(msm_dss_config_vreg); int msm_dss_enable_vreg(struct dss_vreg *in_vreg, int num_vreg, int enable) { int i = 0, rc = 0; bool need_sleep; if (enable) { for (i = 0; i < num_vreg; i++) { rc = PTR_RET(in_vreg[i].vreg); if (rc) { DEV_ERR("%pS->%s: %s regulator error. rc=%d\n", __builtin_return_address(0), __func__, in_vreg[i].vreg_name, rc); goto vreg_set_opt_mode_fail; } need_sleep = !regulator_is_enabled(in_vreg[i].vreg); if (in_vreg[i].pre_on_sleep && need_sleep) usleep_range(in_vreg[i].pre_on_sleep * 1000, in_vreg[i].pre_on_sleep * 1000); rc = regulator_set_optimum_mode(in_vreg[i].vreg, in_vreg[i].enable_load); if (rc < 0) { DEV_ERR("%pS->%s: %s set opt m fail\n", __builtin_return_address(0), __func__, in_vreg[i].vreg_name); goto vreg_set_opt_mode_fail; } rc = regulator_enable(in_vreg[i].vreg); if (in_vreg[i].post_on_sleep && need_sleep) usleep_range(in_vreg[i].post_on_sleep * 1000, in_vreg[i].post_on_sleep * 1000); if (rc < 0) { DEV_ERR("%pS->%s: %s enable failed\n", __builtin_return_address(0), __func__, in_vreg[i].vreg_name); goto disable_vreg; } } } else { for (i = num_vreg-1; i >= 0; i--) { if (in_vreg[i].pre_off_sleep) usleep_range(in_vreg[i].pre_off_sleep * 1000, in_vreg[i].pre_off_sleep * 1000); regulator_set_optimum_mode(in_vreg[i].vreg, in_vreg[i].disable_load); regulator_disable(in_vreg[i].vreg); if (in_vreg[i].post_off_sleep) usleep_range(in_vreg[i].post_off_sleep * 1000, in_vreg[i].post_off_sleep * 1000); } } return rc; disable_vreg: regulator_set_optimum_mode(in_vreg[i].vreg, in_vreg[i].disable_load); vreg_set_opt_mode_fail: for (i--; i >= 0; i--) { if (in_vreg[i].pre_off_sleep) usleep_range(in_vreg[i].pre_off_sleep * 1000, in_vreg[i].pre_off_sleep * 1000); regulator_set_optimum_mode(in_vreg[i].vreg, in_vreg[i].disable_load); regulator_disable(in_vreg[i].vreg); if (in_vreg[i].post_off_sleep) usleep_range(in_vreg[i].post_off_sleep * 1000, in_vreg[i].post_off_sleep * 1000); } return rc; } /* msm_dss_enable_vreg */ EXPORT_SYMBOL(msm_dss_enable_vreg); int msm_dss_enable_gpio(struct dss_gpio *in_gpio, int num_gpio, int enable) { int i = 0, rc = 0; if (enable) { for (i = 0; i < num_gpio; i++) { DEV_DBG("%pS->%s: %s enable\n", __builtin_return_address(0), __func__, in_gpio[i].gpio_name); rc = gpio_request(in_gpio[i].gpio, in_gpio[i].gpio_name); if (rc < 0) { DEV_ERR("%pS->%s: %s enable failed\n", __builtin_return_address(0), __func__, in_gpio[i].gpio_name); goto disable_gpio; } gpio_set_value(in_gpio[i].gpio, in_gpio[i].value); } } else { for (i = num_gpio-1; i >= 0; i--) { DEV_DBG("%pS->%s: %s disable\n", __builtin_return_address(0), __func__, in_gpio[i].gpio_name); if (in_gpio[i].gpio) gpio_free(in_gpio[i].gpio); } } return rc; disable_gpio: for (i--; i >= 0; i--) if (in_gpio[i].gpio) gpio_free(in_gpio[i].gpio); return rc; } /* msm_dss_enable_gpio */ EXPORT_SYMBOL(msm_dss_enable_gpio); void msm_dss_put_clk(struct dss_clk *clk_arry, int num_clk) { int i; for (i = num_clk - 1; i >= 0; i--) { if (clk_arry[i].clk) clk_put(clk_arry[i].clk); clk_arry[i].clk = NULL; } } /* msm_dss_put_clk */ EXPORT_SYMBOL(msm_dss_put_clk); int msm_dss_get_clk(struct device *dev, struct dss_clk *clk_arry, int num_clk) { int i, rc = 0; for (i = 0; i < num_clk; i++) { clk_arry[i].clk = clk_get(dev, clk_arry[i].clk_name); rc = PTR_RET(clk_arry[i].clk); if (rc) { DEV_ERR("%pS->%s: '%s' get failed. rc=%d\n", __builtin_return_address(0), __func__, clk_arry[i].clk_name, rc); goto error; } } return rc; error: msm_dss_put_clk(clk_arry, num_clk); return rc; } /* msm_dss_get_clk */ EXPORT_SYMBOL(msm_dss_get_clk); int msm_dss_clk_set_rate(struct dss_clk *clk_arry, int num_clk) { int i, rc = 0; for (i = 0; i < num_clk; i++) { if (clk_arry[i].clk) { if (DSS_CLK_AHB != clk_arry[i].type) { DEV_DBG("%pS->%s: '%s' rate %ld\n", __builtin_return_address(0), __func__, clk_arry[i].clk_name, clk_arry[i].rate); rc = clk_set_rate(clk_arry[i].clk, clk_arry[i].rate); if (rc) { DEV_ERR("%pS->%s: %s failed. rc=%d\n", __builtin_return_address(0), __func__, clk_arry[i].clk_name, rc); break; } } } else { DEV_ERR("%pS->%s: '%s' is not available\n", __builtin_return_address(0), __func__, clk_arry[i].clk_name); rc = -EPERM; break; } } return rc; } /* msm_dss_clk_set_rate */ EXPORT_SYMBOL(msm_dss_clk_set_rate); int msm_dss_enable_clk(struct dss_clk *clk_arry, int num_clk, int enable) { int i, rc = 0; if (enable) { for (i = 0; i < num_clk; i++) { DEV_DBG("%pS->%s: enable '%s'\n", __builtin_return_address(0), __func__, clk_arry[i].clk_name); if (clk_arry[i].clk) { rc = clk_prepare_enable(clk_arry[i].clk); if (rc) DEV_ERR("%pS->%s: %s en fail. rc=%d\n", __builtin_return_address(0), __func__, clk_arry[i].clk_name, rc); } else { DEV_ERR("%pS->%s: '%s' is not available\n", __builtin_return_address(0), __func__, clk_arry[i].clk_name); rc = -EPERM; } if (rc) { msm_dss_enable_clk(&clk_arry[i], i, false); break; } } } else { for (i = num_clk - 1; i >= 0; i--) { DEV_DBG("%pS->%s: disable '%s'\n", __builtin_return_address(0), __func__, clk_arry[i].clk_name); if (clk_arry[i].clk) clk_disable_unprepare(clk_arry[i].clk); else DEV_ERR("%pS->%s: '%s' is not available\n", __builtin_return_address(0), __func__, clk_arry[i].clk_name); } } return rc; } /* msm_dss_enable_clk */ EXPORT_SYMBOL(msm_dss_enable_clk); int mdss_i2c_byte_read(struct i2c_client *client, uint8_t slave_addr, uint8_t reg_offset, uint8_t *read_buf) { struct i2c_msg msgs[2]; int ret = -1; pr_debug("%s: reading from slave_addr=[%x] and offset=[%x]\n", __func__, slave_addr, reg_offset); msgs[0].addr = slave_addr >> 1; msgs[0].flags = 0; msgs[0].buf = ®_offset; msgs[0].len = 1; msgs[1].addr = slave_addr >> 1; msgs[1].flags = I2C_M_RD; msgs[1].buf = read_buf; msgs[1].len = 1; ret = i2c_transfer(client->adapter, msgs, 2); if (ret < 1) { pr_err("%s: I2C READ FAILED=[%d]\n", __func__, ret); return -EACCES; } pr_debug("%s: i2c buf is [%x]\n", __func__, *read_buf); return 0; } EXPORT_SYMBOL(mdss_i2c_byte_read); int mdss_i2c_byte_write(struct i2c_client *client, uint8_t slave_addr, uint8_t reg_offset, uint8_t *value) { struct i2c_msg msgs[1]; uint8_t data[2]; int status = -EACCES; pr_debug("%s: writing from slave_addr=[%x] and offset=[%x]\n", __func__, slave_addr, reg_offset); data[0] = reg_offset; data[1] = *value; msgs[0].addr = slave_addr >> 1; msgs[0].flags = 0; msgs[0].len = 2; msgs[0].buf = data; status = i2c_transfer(client->adapter, msgs, 1); if (status < 1) { pr_err("I2C WRITE FAILED=[%d]\n", status); return -EACCES; } pr_debug("%s: I2C write status=%x\n", __func__, status); return status; } EXPORT_SYMBOL(mdss_i2c_byte_write);