/* * u_ether.c -- Ethernet-over-USB link layer utilities for Gadget stack * * Copyright (C) 2003-2005,2008 David Brownell * Copyright (C) 2003-2004 Robert Schwebel, Benedikt Spranger * Copyright (C) 2008 Nokia Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ /* #define VERBOSE_DEBUG */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "u_ether.h" /* * This component encapsulates the Ethernet link glue needed to provide * one (!) network link through the USB gadget stack, normally "usb0". * * The control and data models are handled by the function driver which * connects to this code; such as CDC Ethernet (ECM or EEM), * "CDC Subset", or RNDIS. That includes all descriptor and endpoint * management. * * Link level addressing is handled by this component using module * parameters; if no such parameters are provided, random link level * addresses are used. Each end of the link uses one address. The * host end address is exported in various ways, and is often recorded * in configuration databases. * * The driver which assembles each configuration using such a link is * responsible for ensuring that each configuration includes at most one * instance of is network link. (The network layer provides ways for * this single "physical" link to be used by multiple virtual links.) */ #define UETH__VERSION "29-May-2008" static struct workqueue_struct *uether_wq; static struct workqueue_struct *uether_tx_wq; static int tx_start_threshold = 1500; module_param(tx_start_threshold, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(tx_start_threshold, "Threashold to start stopped network queue"); static int tx_stop_threshold = 2000; module_param(tx_stop_threshold, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(tx_stop_threshold, "Threashold to stop network queue"); static unsigned int min_cpu_freq; module_param(min_cpu_freq, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(min_cpu_freq, "to set minimum cpu frquency to when ethernet ifc is active"); /* this refers to max number sgs per transfer * which includes headers/data packets */ #define DL_MAX_PKTS_PER_XFER 20 /* Extra buffer size to allocate for tx */ #define EXTRA_ALLOCATION_SIZE_U_ETH 128 enum ifc_state { ETH_UNDEFINED, ETH_STOP, ETH_START, }; struct eth_dev { /* lock is held while accessing port_usb */ spinlock_t lock; struct gether *port_usb; struct net_device *net; struct usb_gadget *gadget; spinlock_t req_lock; /* guard {rx,tx}_reqs */ struct list_head tx_reqs, rx_reqs; unsigned tx_qlen; /* Minimum number of TX USB request queued to UDC */ #define MAX_TX_REQ_WITH_NO_INT 5 int no_tx_req_used; int tx_skb_hold_count; u32 tx_req_bufsize; struct sk_buff_head tx_skb_q; struct sk_buff_head rx_frames; unsigned qmult; unsigned header_len; unsigned int ul_max_pkts_per_xfer; unsigned int dl_max_pkts_per_xfer; uint32_t dl_max_xfer_size; bool rx_trigger_enabled; struct sk_buff *(*wrap)(struct gether *, struct sk_buff *skb); int (*unwrap)(struct gether *, struct sk_buff *skb, struct sk_buff_head *list); struct work_struct work; struct work_struct rx_work; struct work_struct tx_work; unsigned long todo; unsigned long flags; unsigned short rx_needed_headroom; #define WORK_RX_MEMORY 0 bool zlp; u8 host_mac[ETH_ALEN]; u8 dev_mac[ETH_ALEN]; /* stats */ unsigned long tx_throttle; unsigned long rx_throttle; unsigned int tx_aggr_cnt[DL_MAX_PKTS_PER_XFER]; unsigned int tx_pkts_rcvd; unsigned int tx_bytes_rcvd; unsigned int loop_brk_cnt; unsigned long skb_expand_cnt; struct dentry *uether_dent; enum ifc_state state; struct notifier_block cpufreq_notifier; struct work_struct cpu_policy_w; bool sg_enabled; }; /* when sg is enabled, sg_ctx is used to track skb each usb request will * xfer */ struct sg_ctx { struct sk_buff_head skbs; }; static void uether_debugfs_init(struct eth_dev *dev, const char *n); static void uether_debugfs_exit(struct eth_dev *dev); /*-------------------------------------------------------------------------*/ #define RX_EXTRA 20 /* bytes guarding against rx overflows */ #define DEFAULT_QLEN 2 /* double buffering by default */ /* * Usually downlink rates are higher than uplink rates and it * deserve higher number of requests. For CAT-6 data rates of * 300Mbps (~30 packets per milli-sec) 40 usb request may not * be sufficient. At this rate and with interrupt moderation * of interconnect, data can be very bursty. tx_qmult is the * additional multipler on qmult. */ static unsigned tx_qmult = 2; module_param(tx_qmult, uint, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(tx_qmult, "Additional queue length multiplier for tx"); /* for dual-speed hardware, use deeper queues at high/super speed */ static inline int qlen(struct usb_gadget *gadget, unsigned qmult) { if (gadget_is_dualspeed(gadget) && (gadget->speed == USB_SPEED_HIGH || gadget->speed == USB_SPEED_SUPER)) return qmult * DEFAULT_QLEN; else return DEFAULT_QLEN; } /*-------------------------------------------------------------------------*/ #define U_ETHER_RX_PENDING_TSHOLD 500 static unsigned int u_ether_rx_pending_thld = U_ETHER_RX_PENDING_TSHOLD; module_param(u_ether_rx_pending_thld, uint, S_IRUGO | S_IWUSR); /* REVISIT there must be a better way than having two sets * of debug calls ... */ #undef DBG #undef VDBG #undef ERROR #undef INFO #define xprintk(d, level, fmt, args...) \ printk(level "%s: " fmt , (d)->net->name , ## args) #ifdef DEBUG #undef DEBUG #define DBG(dev, fmt, args...) \ xprintk(dev , KERN_DEBUG , fmt , ## args) #else #define DBG(dev, fmt, args...) \ do { } while (0) #endif /* DEBUG */ #ifdef VERBOSE_DEBUG #define VDBG DBG #else #define VDBG(dev, fmt, args...) \ do { } while (0) #endif /* DEBUG */ #define ERROR(dev, fmt, args...) \ xprintk(dev , KERN_ERR , fmt , ## args) #define INFO(dev, fmt, args...) \ xprintk(dev , KERN_INFO , fmt , ## args) /*-------------------------------------------------------------------------*/ /* NETWORK DRIVER HOOKUP (to the layer above this driver) */ static int ueth_change_mtu(struct net_device *net, int new_mtu) { struct eth_dev *dev = netdev_priv(net); unsigned long flags; int status = 0; /* don't change MTU on "live" link (peer won't know) */ spin_lock_irqsave(&dev->lock, flags); if (dev->port_usb) status = -EBUSY; else if (new_mtu <= ETH_HLEN || new_mtu > ETH_FRAME_LEN) status = -ERANGE; else net->mtu = new_mtu; spin_unlock_irqrestore(&dev->lock, flags); return status; } static int ueth_change_mtu_ip(struct net_device *net, int new_mtu) { struct eth_dev *dev = netdev_priv(net); unsigned long flags; int status = 0; spin_lock_irqsave(&dev->lock, flags); if (new_mtu <= 0) status = -EINVAL; else net->mtu = new_mtu; DBG(dev, "[%s] MTU change: old=%d new=%d\n", net->name, net->mtu, new_mtu); spin_unlock_irqrestore(&dev->lock, flags); return status; } static void eth_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *p) { struct eth_dev *dev = netdev_priv(net); strlcpy(p->driver, "g_ether", sizeof(p->driver)); strlcpy(p->version, UETH__VERSION, sizeof(p->version)); strlcpy(p->fw_version, dev->gadget->name, sizeof(p->fw_version)); strlcpy(p->bus_info, dev_name(&dev->gadget->dev), sizeof(p->bus_info)); } /* REVISIT can also support: * - WOL (by tracking suspends and issuing remote wakeup) * - msglevel (implies updated messaging) * - ... probably more ethtool ops */ static const struct ethtool_ops ops = { .get_drvinfo = eth_get_drvinfo, .get_link = ethtool_op_get_link, }; static void defer_kevent(struct eth_dev *dev, int flag) { if (test_and_set_bit(flag, &dev->todo)) return; if (!schedule_work(&dev->work)) ERROR(dev, "kevent %d may have been dropped\n", flag); else DBG(dev, "kevent %d scheduled\n", flag); } static void rx_complete(struct usb_ep *ep, struct usb_request *req); static void tx_complete(struct usb_ep *ep, struct usb_request *req); static int rx_submit(struct eth_dev *dev, struct usb_request *req, gfp_t gfp_flags) { struct sk_buff *skb; int retval = -ENOMEM; size_t size = 0; struct usb_ep *out; unsigned long flags; unsigned short reserve_headroom = 0; spin_lock_irqsave(&dev->lock, flags); if (dev->port_usb) out = dev->port_usb->out_ep; else out = NULL; if (!out) { spin_unlock_irqrestore(&dev->lock, flags); return -ENOTCONN; } /* Padding up to RX_EXTRA handles minor disagreements with host. * Normally we use the USB "terminate on short read" convention; * so allow up to (N*maxpacket), since that memory is normally * already allocated. Some hardware doesn't deal well with short * reads (e.g. DMA must be N*maxpacket), so for now don't trim a * byte off the end (to force hardware errors on overflow). * * RNDIS uses internal framing, and explicitly allows senders to * pad to end-of-packet. That's potentially nice for speed, but * means receivers can't recover lost synch on their own (because * new packets don't only start after a short RX). */ size += sizeof(struct ethhdr) + dev->net->mtu + RX_EXTRA; size += dev->port_usb->header_len; size += out->maxpacket - 1; size -= size % out->maxpacket; if (dev->ul_max_pkts_per_xfer) size *= dev->ul_max_pkts_per_xfer; if (dev->port_usb->is_fixed) size = max_t(size_t, size, dev->port_usb->fixed_out_len); spin_unlock_irqrestore(&dev->lock, flags); if (dev->rx_needed_headroom) reserve_headroom = ALIGN(dev->rx_needed_headroom, 4); pr_debug("%s: size: %zu + %d(hr)", __func__, size, reserve_headroom); skb = alloc_skb(size + reserve_headroom, gfp_flags); if (skb == NULL) { DBG(dev, "no rx skb\n"); goto enomem; } /* Some platforms perform better when IP packets are aligned, * but on at least one, checksumming fails otherwise. Note: * RNDIS headers involve variable numbers of LE32 values. */ skb_reserve(skb, reserve_headroom); req->buf = skb->data; req->length = size; req->context = skb; retval = usb_ep_queue(out, req, gfp_flags); if (retval == -ENOMEM) enomem: defer_kevent(dev, WORK_RX_MEMORY); if (retval) { DBG(dev, "rx submit --> %d\n", retval); if (skb) dev_kfree_skb_any(skb); } return retval; } static void rx_complete(struct usb_ep *ep, struct usb_request *req) { struct sk_buff *skb = req->context; struct eth_dev *dev = ep->driver_data; int status = req->status; bool queue = 0; switch (status) { /* normal completion */ case 0: skb_put(skb, req->actual); if (dev->unwrap) { unsigned long flags; spin_lock_irqsave(&dev->lock, flags); if (dev->port_usb) { status = dev->unwrap(dev->port_usb, skb, &dev->rx_frames); if (status == -EINVAL) dev->net->stats.rx_errors++; else if (status == -EOVERFLOW) dev->net->stats.rx_over_errors++; } else { dev_kfree_skb_any(skb); status = -ENOTCONN; } spin_unlock_irqrestore(&dev->lock, flags); } else { skb_queue_tail(&dev->rx_frames, skb); } if (!status) queue = 1; break; /* software-driven interface shutdown */ case -ECONNRESET: /* unlink */ case -ESHUTDOWN: /* disconnect etc */ VDBG(dev, "rx shutdown, code %d\n", status); goto quiesce; /* for hardware automagic (such as pxa) */ case -ECONNABORTED: /* endpoint reset */ DBG(dev, "rx %s reset\n", ep->name); defer_kevent(dev, WORK_RX_MEMORY); quiesce: dev_kfree_skb_any(skb); goto clean; /* data overrun */ case -EOVERFLOW: dev->net->stats.rx_over_errors++; /* FALLTHROUGH */ default: queue = 1; dev_kfree_skb_any(skb); dev->net->stats.rx_errors++; DBG(dev, "rx status %d\n", status); break; } clean: if (queue && dev->rx_frames.qlen <= u_ether_rx_pending_thld) { if (rx_submit(dev, req, GFP_ATOMIC) < 0) { spin_lock(&dev->req_lock); list_add(&req->list, &dev->rx_reqs); spin_unlock(&dev->req_lock); } } else { /* rx buffers draining is delayed,defer further queuing to wq */ if (queue) dev->rx_throttle++; spin_lock(&dev->req_lock); list_add(&req->list, &dev->rx_reqs); spin_unlock(&dev->req_lock); } if (queue) queue_work(uether_wq, &dev->rx_work); } static int prealloc(struct list_head *list, struct usb_ep *ep, unsigned n, bool sg_supported, int hlen) { unsigned i; struct usb_request *req; bool usb_in; struct sg_ctx *sg_ctx; if (!n) return -ENOMEM; /* queue/recycle up to N requests */ i = n; list_for_each_entry(req, list, list) { if (i-- == 0) goto extra; } if (ep->desc->bEndpointAddress & USB_DIR_IN) usb_in = true; else usb_in = false; while (i--) { req = usb_ep_alloc_request(ep, GFP_ATOMIC); if (!req) return list_empty(list) ? -ENOMEM : 0; /* update completion handler */ if (usb_in) { req->complete = tx_complete; if (!sg_supported) goto add_list; req->sg = kmalloc( DL_MAX_PKTS_PER_XFER * sizeof(struct scatterlist), GFP_ATOMIC); if (!req->sg) goto extra; sg_ctx = kmalloc(sizeof(*sg_ctx), GFP_ATOMIC); if (!sg_ctx) goto extra; req->context = sg_ctx; req->buf = kzalloc(DL_MAX_PKTS_PER_XFER * hlen, GFP_ATOMIC); } else { req->complete = rx_complete; } add_list: list_add(&req->list, list); } return 0; extra: /* free extras */ for (;;) { struct list_head *next; next = req->list.next; list_del(&req->list); if (sg_supported) { kfree(req->sg); kfree(req->context); kfree(req->buf); } usb_ep_free_request(ep, req); if (next == list) break; req = container_of(next, struct usb_request, list); } return 0; } static int alloc_requests(struct eth_dev *dev, struct gether *link, unsigned n) { int status; spin_lock(&dev->req_lock); status = prealloc(&dev->tx_reqs, link->in_ep, n * tx_qmult, dev->sg_enabled, dev->header_len); if (status < 0) goto fail; status = prealloc(&dev->rx_reqs, link->out_ep, n, dev->sg_enabled, dev->header_len); if (status < 0) goto fail; goto done; fail: DBG(dev, "can't alloc requests\n"); done: spin_unlock(&dev->req_lock); return status; } static void rx_fill(struct eth_dev *dev, gfp_t gfp_flags) { struct usb_request *req; unsigned long flags; int req_cnt = 0; /* fill unused rxq slots with some skb */ spin_lock_irqsave(&dev->req_lock, flags); while (!list_empty(&dev->rx_reqs)) { /* break the nexus of continuous completion and re-submission*/ if (++req_cnt > qlen(dev->gadget, dev->qmult)) break; req = container_of(dev->rx_reqs.next, struct usb_request, list); list_del_init(&req->list); spin_unlock_irqrestore(&dev->req_lock, flags); if (rx_submit(dev, req, gfp_flags) < 0) { spin_lock_irqsave(&dev->req_lock, flags); list_add(&req->list, &dev->rx_reqs); spin_unlock_irqrestore(&dev->req_lock, flags); defer_kevent(dev, WORK_RX_MEMORY); return; } spin_lock_irqsave(&dev->req_lock, flags); } spin_unlock_irqrestore(&dev->req_lock, flags); } static __be16 ether_ip_type_trans(struct sk_buff *skb, struct net_device *dev) { __be16 protocol = 0; skb->dev = dev; switch (skb->data[0] & 0xf0) { case 0x40: protocol = htons(ETH_P_IP); break; case 0x60: protocol = htons(ETH_P_IPV6); break; default: if ((skb->data[0] & 0x40) == 0x00) protocol = htons(ETH_P_MAP); else pr_debug_ratelimited("[%s] L3 protocol decode error: 0x%02x", dev->name, skb->data[0] & 0xf0); } return protocol; } static void process_rx_w(struct work_struct *work) { struct eth_dev *dev = container_of(work, struct eth_dev, rx_work); struct sk_buff *skb; int status = 0; if (!dev->port_usb) return; set_wake_up_idle(true); while ((skb = skb_dequeue(&dev->rx_frames))) { if (status < 0 || ETH_HLEN > skb->len || (skb->len > ETH_FRAME_LEN && test_bit(RMNET_MODE_LLP_ETH, &dev->flags))) { dev->net->stats.rx_errors++; dev->net->stats.rx_length_errors++; DBG(dev, "rx length %d\n", skb->len); dev_kfree_skb_any(skb); continue; } if (test_bit(RMNET_MODE_LLP_IP, &dev->flags)) skb->protocol = ether_ip_type_trans(skb, dev->net); else skb->protocol = eth_type_trans(skb, dev->net); dev->net->stats.rx_packets++; dev->net->stats.rx_bytes += skb->len; status = netif_rx_ni(skb); } set_wake_up_idle(false); if (netif_running(dev->net)) rx_fill(dev, GFP_KERNEL); } static void eth_work(struct work_struct *work) { struct eth_dev *dev = container_of(work, struct eth_dev, work); if (test_and_clear_bit(WORK_RX_MEMORY, &dev->todo)) { if (netif_running(dev->net)) rx_fill(dev, GFP_KERNEL); } if (dev->todo) DBG(dev, "work done, flags = 0x%lx\n", dev->todo); } static void tx_complete(struct usb_ep *ep, struct usb_request *req) { struct sk_buff *skb; struct eth_dev *dev; struct net_device *net; struct usb_request *new_req; struct usb_ep *in; int n = 1; int length; int retval; if (!ep->driver_data) { usb_ep_free_request(ep, req); return; } dev = ep->driver_data; net = dev->net; if (!dev->port_usb) { usb_ep_free_request(ep, req); return; } switch (req->status) { default: dev->net->stats.tx_errors++; VDBG(dev, "tx err %d\n", req->status); /* FALLTHROUGH */ case -ECONNRESET: /* unlink */ case -ESHUTDOWN: /* disconnect etc */ break; case 0: /* * Remove the header length, before updating tx_bytes in * net->stats, since when packet is received from network layer * this header is not added. So this will now give the exact * number of bytes sent to the host. */ if (req->num_sgs) req->actual -= (req->num_sgs/2) * dev->header_len; if (!req->zero) dev->net->stats.tx_bytes += req->actual-1; else dev->net->stats.tx_bytes += req->actual; } if (req->num_sgs) { struct sg_ctx *sg_ctx = req->context; n = skb_queue_len(&sg_ctx->skbs); dev->tx_aggr_cnt[n-1]++; /* sg_ctx is only accessible here, can use lock-free version */ __skb_queue_purge(&sg_ctx->skbs); } dev->net->stats.tx_packets += n; spin_lock(&dev->req_lock); if (req->num_sgs) { if (!req->status) queue_work(uether_tx_wq, &dev->tx_work); list_add_tail(&req->list, &dev->tx_reqs); spin_unlock(&dev->req_lock); return; } if (dev->port_usb->multi_pkt_xfer && !req->context) { dev->no_tx_req_used--; req->length = 0; in = dev->port_usb->in_ep; /* Do not process further if no_interrupt is set */ if (!req->no_interrupt && !list_empty(&dev->tx_reqs)) { new_req = container_of(dev->tx_reqs.next, struct usb_request, list); list_del(&new_req->list); spin_unlock(&dev->req_lock); if (new_req->length > 0) { length = new_req->length; /* NCM requires no zlp if transfer is * dwNtbInMaxSize */ if (dev->port_usb->is_fixed && length == dev->port_usb->fixed_in_len && (length % in->maxpacket) == 0) new_req->zero = 0; else new_req->zero = 1; /* use zlp framing on tx for strict CDC-Ether * conformance, though any robust network rx * path ignores extra padding. and some hardware * doesn't like to write zlps. */ if (new_req->zero && !dev->zlp && (length % in->maxpacket) == 0) { new_req->zero = 0; length++; } /* set when tx completion interrupt needed */ spin_lock(&dev->req_lock); dev->tx_qlen++; if (dev->tx_qlen == MAX_TX_REQ_WITH_NO_INT) { new_req->no_interrupt = 0; dev->tx_qlen = 0; } else { new_req->no_interrupt = 1; } spin_unlock(&dev->req_lock); new_req->length = length; new_req->complete = tx_complete; retval = usb_ep_queue(in, new_req, GFP_ATOMIC); switch (retval) { default: DBG(dev, "tx queue err %d\n", retval); new_req->length = 0; spin_lock(&dev->req_lock); list_add_tail(&new_req->list, &dev->tx_reqs); spin_unlock(&dev->req_lock); break; case 0: spin_lock(&dev->req_lock); dev->no_tx_req_used++; spin_unlock(&dev->req_lock); net->trans_start = jiffies; } } else { spin_lock(&dev->req_lock); /* * Put the idle request at the back of the * queue. The xmit function will put the * unfinished request at the beginning of the * queue. */ list_add_tail(&new_req->list, &dev->tx_reqs); spin_unlock(&dev->req_lock); } } else { spin_unlock(&dev->req_lock); } } else { skb = req->context; /* Is aggregation already enabled and buffers allocated ? */ if (dev->port_usb->multi_pkt_xfer && dev->tx_req_bufsize) { req->buf = kzalloc(dev->tx_req_bufsize + dev->gadget->extra_buf_alloc, GFP_ATOMIC); req->context = NULL; } else { req->buf = NULL; } spin_unlock(&dev->req_lock); dev_kfree_skb_any(skb); } /* put the completed req back to tx_reqs tail pool */ spin_lock(&dev->req_lock); list_add_tail(&req->list, &dev->tx_reqs); spin_unlock(&dev->req_lock); if (netif_carrier_ok(dev->net)) netif_wake_queue(dev->net); } static inline int is_promisc(u16 cdc_filter) { return cdc_filter & USB_CDC_PACKET_TYPE_PROMISCUOUS; } static int alloc_tx_buffer(struct eth_dev *dev) { struct list_head *act; struct usb_request *req; dev->tx_req_bufsize = (dev->dl_max_pkts_per_xfer * (dev->net->mtu + sizeof(struct ethhdr) /* size of rndis_packet_msg_type */ + 44 + 22)); list_for_each(act, &dev->tx_reqs) { req = container_of(act, struct usb_request, list); if (!req->buf) { req->buf = kzalloc(dev->tx_req_bufsize + dev->gadget->extra_buf_alloc, GFP_ATOMIC); if (!req->buf) goto free_buf; } /* req->context is not used for multi_pkt_xfers */ req->context = NULL; } return 0; free_buf: /* tx_req_bufsize = 0 retries mem alloc on next eth_start_xmit */ dev->tx_req_bufsize = 0; list_for_each(act, &dev->tx_reqs) { req = container_of(act, struct usb_request, list); kfree(req->buf); req->buf = NULL; } return -ENOMEM; } static void process_tx_w(struct work_struct *w) { struct eth_dev *dev = container_of(w, struct eth_dev, tx_work); struct net_device *net = NULL; struct sk_buff *skb = NULL; struct sg_ctx *sg_ctx; struct usb_request *req; struct usb_ep *in = NULL; int ret, count, hlen = 0, hdr_offset; uint32_t max_size = 0; uint32_t max_num_pkts = 1; unsigned long flags; bool header_on = false; int req_cnt = 0; bool port_usb_active; spin_lock_irqsave(&dev->lock, flags); if (dev->port_usb) { in = dev->port_usb->in_ep; max_size = dev->dl_max_xfer_size; max_num_pkts = dev->dl_max_pkts_per_xfer; if (!max_num_pkts) max_num_pkts = 1; hlen = dev->header_len; net = dev->net; } spin_unlock_irqrestore(&dev->lock, flags); spin_lock_irqsave(&dev->req_lock, flags); while (in && !list_empty(&dev->tx_reqs) && (skb = skb_dequeue(&dev->tx_skb_q))) { req = list_first_entry(&dev->tx_reqs, struct usb_request, list); list_del(&req->list); spin_unlock_irqrestore(&dev->req_lock, flags); req->num_sgs = 0; req->zero = 1; req->length = 0; sg_ctx = req->context; skb_queue_head_init(&sg_ctx->skbs); sg_init_table(req->sg, DL_MAX_PKTS_PER_XFER); hdr_offset = 0; count = 1; do { /* spinlock can be avoided if buffer can passed * wrap callback argument. However, it requires * changes to all existing clients */ spin_lock_irqsave(&dev->lock, flags); if (!dev->port_usb) { spin_unlock_irqrestore(&dev->lock, flags); skb_queue_purge(&sg_ctx->skbs); kfree(req->sg); kfree(req->context); kfree(req->buf); usb_ep_free_request(in, req); return; } if (hlen && dev->wrap) { dev->port_usb->header = req->buf + hdr_offset; skb = dev->wrap(dev->port_usb, skb); header_on = true; } spin_unlock_irqrestore(&dev->lock, flags); if (header_on) { sg_set_buf(&req->sg[req->num_sgs], req->buf + hdr_offset, hlen); req->num_sgs++; hdr_offset += hlen; req->length += hlen; } /* skb processing */ sg_set_buf(&req->sg[req->num_sgs], skb->data, skb->len); req->num_sgs++; req->length += skb->len; skb_queue_tail(&sg_ctx->skbs, skb); skb = skb_dequeue(&dev->tx_skb_q); if (!skb) break; if ((req->length + skb->len + hlen) >= max_size || count >= max_num_pkts) { skb_queue_head(&dev->tx_skb_q, skb); break; } count++; } while (true); sg_mark_end(&req->sg[req->num_sgs - 1]); spin_lock_irqsave(&dev->lock, flags); if (dev->port_usb) { in = dev->port_usb->in_ep; port_usb_active = 1; } else { port_usb_active = 0; } spin_unlock_irqrestore(&dev->lock, flags); if (!port_usb_active) { __skb_queue_purge(&sg_ctx->skbs); kfree(req->sg); kfree(req->context); kfree(req->buf); usb_ep_free_request(in, req); return; } ret = usb_ep_queue(in, req, GFP_KERNEL); spin_lock_irqsave(&dev->req_lock, flags); switch (ret) { default: dev->net->stats.tx_dropped += skb_queue_len(&sg_ctx->skbs); __skb_queue_purge(&sg_ctx->skbs); list_add_tail(&req->list, &dev->tx_reqs); break; case 0: net->trans_start = jiffies; } /* break the loop after processing 10 packets * otherwise wd may kick in */ if (ret || ++req_cnt > 10) { dev->loop_brk_cnt++; break; } if (dev->tx_skb_q.qlen < tx_start_threshold) netif_start_queue(net); } spin_unlock_irqrestore(&dev->req_lock, flags); } static netdev_tx_t eth_start_xmit(struct sk_buff *skb, struct net_device *net) { struct eth_dev *dev = netdev_priv(net); int length = 0; int tail_room = 0; int extra_alloc = 0; int retval; struct usb_request *req = NULL; struct sk_buff *new_skb; unsigned long flags; struct usb_ep *in = NULL; u16 cdc_filter = 0; bool multi_pkt_xfer = false; spin_lock_irqsave(&dev->lock, flags); if (dev->port_usb) { in = dev->port_usb->in_ep; cdc_filter = dev->port_usb->cdc_filter; multi_pkt_xfer = dev->port_usb->multi_pkt_xfer; } spin_unlock_irqrestore(&dev->lock, flags); if (!in) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* apply outgoing CDC or RNDIS filters only for ETH packets */ if (!test_bit(RMNET_MODE_LLP_IP, &dev->flags) && !is_promisc(cdc_filter)) { u8 *dest = skb->data; if (is_multicast_ether_addr(dest)) { u16 type; /* ignores USB_CDC_PACKET_TYPE_MULTICAST and host * SET_ETHERNET_MULTICAST_FILTERS requests */ if (is_broadcast_ether_addr(dest)) type = USB_CDC_PACKET_TYPE_BROADCAST; else type = USB_CDC_PACKET_TYPE_ALL_MULTICAST; if (!(cdc_filter & type)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } } /* ignores USB_CDC_PACKET_TYPE_DIRECTED */ } dev->tx_pkts_rcvd++; dev->tx_bytes_rcvd += skb->len; if (dev->sg_enabled) { skb_queue_tail(&dev->tx_skb_q, skb); if (dev->tx_skb_q.qlen > tx_stop_threshold) { dev->tx_throttle++; netif_stop_queue(net); } queue_work(uether_tx_wq, &dev->tx_work); return NETDEV_TX_OK; } /* * No buffer copies needed, unless the network stack did it * or the hardware can't use skb buffers or there's not enough * enough space for extra headers we need. */ spin_lock_irqsave(&dev->lock, flags); if (dev->wrap && dev->port_usb) skb = dev->wrap(dev->port_usb, skb); spin_unlock_irqrestore(&dev->lock, flags); if (!skb) { dev->net->stats.tx_dropped++; /* no error code for dropped packets */ return NETDEV_TX_OK; } /* Allocate memory for tx_reqs to support multi packet transfer */ spin_lock_irqsave(&dev->req_lock, flags); if (multi_pkt_xfer && !dev->tx_req_bufsize) { retval = alloc_tx_buffer(dev); if (retval < 0) { spin_unlock_irqrestore(&dev->req_lock, flags); return -ENOMEM; } } /* * this freelist can be empty if an interrupt triggered disconnect() * and reconfigured the gadget (shutting down this queue) after the * network stack decided to xmit but before we got the spinlock. */ if (list_empty(&dev->tx_reqs)) { spin_unlock_irqrestore(&dev->req_lock, flags); return NETDEV_TX_BUSY; } req = container_of(dev->tx_reqs.next, struct usb_request, list); list_del(&req->list); /* temporarily stop TX queue when the freelist empties */ if (list_empty(&dev->tx_reqs)) { /* * tx_throttle gives info about number of times u_ether * asked network layer to stop queueing packets to it * when transmit resources are unavailable */ dev->tx_throttle++; netif_stop_queue(net); } spin_unlock_irqrestore(&dev->req_lock, flags); if (multi_pkt_xfer) { pr_debug("req->length:%d header_len:%u\n" "skb->len:%d skb->data_len:%d\n", req->length, dev->header_len, skb->len, skb->data_len); /* Add RNDIS Header */ memcpy(req->buf + req->length, dev->port_usb->header, dev->header_len); /* Increment req length by header size */ req->length += dev->header_len; /* Copy received IP data from SKB */ memcpy(req->buf + req->length, skb->data, skb->len); /* Increment req length by skb data length */ req->length += skb->len; length = req->length; dev_kfree_skb_any(skb); spin_lock_irqsave(&dev->req_lock, flags); dev->tx_skb_hold_count++; if (dev->tx_skb_hold_count < dev->dl_max_pkts_per_xfer) { /* * should allow aggregation only, if the number of * requests queued more than the tx requests that can * be queued with no interrupt flag set sequentially. * Otherwise, packets may be blocked forever. */ if (dev->no_tx_req_used > MAX_TX_REQ_WITH_NO_INT) { list_add(&req->list, &dev->tx_reqs); spin_unlock_irqrestore(&dev->req_lock, flags); goto success; } } dev->no_tx_req_used++; dev->tx_skb_hold_count = 0; spin_unlock_irqrestore(&dev->req_lock, flags); } else { bool do_align = false; /* Check if TX buffer should be aligned before queuing to hw */ if (!gadget_is_dwc3(dev->gadget) && !IS_ALIGNED((size_t)skb->data, 4)) do_align = true; /* * Some UDC requires allocation of some extra bytes for * TX buffer due to hardware requirement. Check if extra * bytes are already there, otherwise allocate new buffer * with extra bytes and do memcpy to align skb as well. */ if (dev->gadget->extra_buf_alloc) extra_alloc = EXTRA_ALLOCATION_SIZE_U_ETH; tail_room = skb_tailroom(skb); if (do_align || tail_room < extra_alloc) { pr_debug("%s:align skb and update tail_room %d to %d\n", __func__, tail_room, extra_alloc); tail_room = extra_alloc; new_skb = skb_copy_expand(skb, 0, tail_room, GFP_ATOMIC); if (!new_skb) return -ENOMEM; dev_kfree_skb_any(skb); skb = new_skb; dev->skb_expand_cnt++; } length = skb->len; req->buf = skb->data; req->context = skb; } /* NCM requires no zlp if transfer is dwNtbInMaxSize */ if (dev->port_usb->is_fixed && length == dev->port_usb->fixed_in_len && (length % in->maxpacket) == 0) req->zero = 0; else req->zero = 1; /* use zlp framing on tx for strict CDC-Ether conformance, * though any robust network rx path ignores extra padding. * and some hardware doesn't like to write zlps. */ if (req->zero && !dev->zlp && (length % in->maxpacket) == 0) { req->zero = 0; length++; } req->length = length; /* throttle high/super speed IRQ rate back slightly */ if (gadget_is_dualspeed(dev->gadget) && (dev->gadget->speed == USB_SPEED_HIGH || dev->gadget->speed == USB_SPEED_SUPER)) { spin_lock_irqsave(&dev->req_lock, flags); dev->tx_qlen++; if (dev->tx_qlen == MAX_TX_REQ_WITH_NO_INT) { req->no_interrupt = 0; dev->tx_qlen = 0; } else { req->no_interrupt = 1; } spin_unlock_irqrestore(&dev->req_lock, flags); } else { req->no_interrupt = 0; } retval = usb_ep_queue(in, req, GFP_ATOMIC); switch (retval) { default: DBG(dev, "tx queue err %d\n", retval); break; case 0: net->trans_start = jiffies; } if (retval) { if (!multi_pkt_xfer) dev_kfree_skb_any(skb); else req->length = 0; dev->net->stats.tx_dropped++; spin_lock_irqsave(&dev->req_lock, flags); if (list_empty(&dev->tx_reqs)) netif_start_queue(net); list_add_tail(&req->list, &dev->tx_reqs); spin_unlock_irqrestore(&dev->req_lock, flags); } success: return NETDEV_TX_OK; } /*-------------------------------------------------------------------------*/ static void eth_start(struct eth_dev *dev, gfp_t gfp_flags) { DBG(dev, "%s\n", __func__); /* fill the rx queue */ rx_fill(dev, gfp_flags); /* and open the tx floodgates */ dev->tx_qlen = 0; netif_wake_queue(dev->net); } static int eth_open(struct net_device *net) { struct eth_dev *dev = netdev_priv(net); struct gether *link; int i; bool wait_for_rx_trigger; DBG(dev, "%s\n", __func__); dev->state = ETH_START; for_each_online_cpu(i) cpufreq_update_policy(i); spin_lock_irq(&dev->lock); link = dev->port_usb; spin_unlock_irq(&dev->lock); wait_for_rx_trigger = dev->rx_trigger_enabled && link && !link->rx_triggered; if (netif_carrier_ok(dev->net) && !wait_for_rx_trigger) eth_start(dev, GFP_KERNEL); spin_lock_irq(&dev->lock); if (link && link->open) link->open(link); spin_unlock_irq(&dev->lock); return 0; } static int eth_stop(struct net_device *net) { struct eth_dev *dev = netdev_priv(net); unsigned long flags; int i; enum ifc_state prev_state; VDBG(dev, "%s\n", __func__); netif_stop_queue(net); DBG(dev, "stop stats: rx/tx %ld/%ld, errs %ld/%ld\n", dev->net->stats.rx_packets, dev->net->stats.tx_packets, dev->net->stats.rx_errors, dev->net->stats.tx_errors ); /* ensure there are no more active requests */ spin_lock_irqsave(&dev->lock, flags); if (dev->port_usb) { struct gether *link = dev->port_usb; const struct usb_endpoint_descriptor *in; const struct usb_endpoint_descriptor *out; if (link->close) link->close(link); /* NOTE: we have no abort-queue primitive we could use * to cancel all pending I/O. Instead, we disable then * reenable the endpoints ... this idiom may leave toggle * wrong, but that's a self-correcting error. * * REVISIT: we *COULD* just let the transfers complete at * their own pace; the network stack can handle old packets. * For the moment we leave this here, since it works. */ in = link->in_ep->desc; out = link->out_ep->desc; usb_ep_disable(link->in_ep); usb_ep_disable(link->out_ep); if (netif_carrier_ok(net)) { if (config_ep_by_speed(dev->gadget, &link->func, link->in_ep) || config_ep_by_speed(dev->gadget, &link->func, link->out_ep)) { link->in_ep->desc = NULL; link->out_ep->desc = NULL; return -EINVAL; } DBG(dev, "host still using in/out endpoints\n"); link->in_ep->desc = in; link->out_ep->desc = out; usb_ep_enable(link->in_ep); usb_ep_enable(link->out_ep); } } spin_unlock_irqrestore(&dev->lock, flags); prev_state = dev->state; dev->state = ETH_STOP; /* if previous state is eth_start, update cpufreq policy to normal */ if (prev_state == ETH_START) for_each_online_cpu(i) cpufreq_update_policy(i); return 0; } /*-------------------------------------------------------------------------*/ static u8 host_ethaddr[ETH_ALEN]; static int get_ether_addr(const char *str, u8 *dev_addr) { if (str) { unsigned i; for (i = 0; i < 6; i++) { unsigned char num; if ((*str == '.') || (*str == ':')) str++; num = hex_to_bin(*str++) << 4; num |= hex_to_bin(*str++); dev_addr [i] = num; } if (is_valid_ether_addr(dev_addr)) return 0; } eth_random_addr(dev_addr); return 1; } static int get_ether_addr_str(u8 dev_addr[ETH_ALEN], char *str, int len) { if (len < 18) return -EINVAL; snprintf(str, len, "%02x:%02x:%02x:%02x:%02x:%02x", dev_addr[0], dev_addr[1], dev_addr[2], dev_addr[3], dev_addr[4], dev_addr[5]); return 18; } static int get_host_ether_addr(u8 *str, u8 *dev_addr) { memcpy(dev_addr, str, ETH_ALEN); if (is_valid_ether_addr(dev_addr)) return 0; random_ether_addr(dev_addr); memcpy(str, dev_addr, ETH_ALEN); return 1; } static int ether_ioctl(struct net_device *, struct ifreq *, int); static const struct net_device_ops eth_netdev_ops = { .ndo_open = eth_open, .ndo_stop = eth_stop, .ndo_start_xmit = eth_start_xmit, .ndo_do_ioctl = ether_ioctl, .ndo_change_mtu = ueth_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static const struct net_device_ops eth_netdev_ops_ip = { .ndo_open = eth_open, .ndo_stop = eth_stop, .ndo_start_xmit = eth_start_xmit, .ndo_do_ioctl = ether_ioctl, .ndo_change_mtu = ueth_change_mtu_ip, .ndo_set_mac_address = 0, .ndo_validate_addr = 0, }; static int rmnet_ioctl_extended(struct net_device *dev, struct ifreq *ifr) { struct rmnet_ioctl_extended_s ext_cmd; struct eth_dev *eth_dev = netdev_priv(dev); int rc = 0; rc = copy_from_user(&ext_cmd, ifr->ifr_ifru.ifru_data, sizeof(struct rmnet_ioctl_extended_s)); if (rc) { DBG(eth_dev, "%s(): copy_from_user() failed\n", __func__); return rc; } switch (ext_cmd.extended_ioctl) { case RMNET_IOCTL_GET_SUPPORTED_FEATURES: ext_cmd.u.data = 0; break; case RMNET_IOCTL_SET_MRU: if (netif_running(dev)) return -EBUSY; /* 16K max */ if ((size_t)ext_cmd.u.data > 0x4000) return -EINVAL; if (eth_dev->port_usb) { eth_dev->port_usb->is_fixed = true; eth_dev->port_usb->fixed_out_len = (size_t) ext_cmd.u.data; DBG(eth_dev, "[%s] rmnet_ioctl(): SET MRU to %u\n", dev->name, eth_dev->port_usb->fixed_out_len); } else { pr_err("[%s]: %s: SET MRU failed. Cable disconnected\n", dev->name, __func__); return -ENODEV; } break; case RMNET_IOCTL_GET_MRU: if (eth_dev->port_usb) { ext_cmd.u.data = eth_dev->port_usb->is_fixed ? eth_dev->port_usb->fixed_out_len : dev->mtu; } else { pr_err("[%s]: %s: GET MRU failed. Cable disconnected\n", dev->name, __func__); return -ENODEV; } break; case RMNET_IOCTL_GET_DRIVER_NAME: strlcpy(ext_cmd.u.if_name, dev->name, sizeof(ext_cmd.u.if_name)); break; default: break; } rc = copy_to_user(ifr->ifr_ifru.ifru_data, &ext_cmd, sizeof(struct rmnet_ioctl_extended_s)); if (rc) DBG(eth_dev, "%s(): copy_to_user() failed\n", __func__); return rc; } static int ether_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct eth_dev *eth_dev = netdev_priv(dev); void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data; int prev_mtu = dev->mtu; u32 state, old_opmode; int rc = -EFAULT; old_opmode = eth_dev->flags; /* Process IOCTL command */ switch (cmd) { case RMNET_IOCTL_SET_LLP_ETHERNET: /*Set Ethernet protocol*/ /* Perform Ethernet config only if in IP mode currently*/ if (test_bit(RMNET_MODE_LLP_IP, ð_dev->flags)) { ether_setup(dev); dev->mtu = prev_mtu; dev->netdev_ops = ð_netdev_ops; clear_bit(RMNET_MODE_LLP_IP, ð_dev->flags); set_bit(RMNET_MODE_LLP_ETH, ð_dev->flags); DBG(eth_dev, "[%s] ioctl(): set Ethernet proto mode\n", dev->name); } if (test_bit(RMNET_MODE_LLP_ETH, ð_dev->flags)) rc = 0; break; case RMNET_IOCTL_SET_LLP_IP: /* Set RAWIP protocol*/ /* Perform IP config only if in Ethernet mode currently*/ if (test_bit(RMNET_MODE_LLP_ETH, ð_dev->flags)) { /* Undo config done in ether_setup() */ dev->header_ops = 0; /* No header */ dev->type = ARPHRD_RAWIP; dev->hard_header_len = 0; dev->mtu = prev_mtu; dev->addr_len = 0; dev->flags &= ~(IFF_BROADCAST | IFF_MULTICAST); dev->netdev_ops = ð_netdev_ops_ip; clear_bit(RMNET_MODE_LLP_ETH, ð_dev->flags); set_bit(RMNET_MODE_LLP_IP, ð_dev->flags); DBG(eth_dev, "[%s] ioctl(): set IP protocol mode\n", dev->name); } if (test_bit(RMNET_MODE_LLP_IP, ð_dev->flags)) rc = 0; break; case RMNET_IOCTL_GET_LLP: /* Get link protocol state */ state = eth_dev->flags & (RMNET_MODE_LLP_ETH | RMNET_MODE_LLP_IP); if (copy_to_user(addr, &state, sizeof(state))) break; rc = 0; break; case RMNET_IOCTL_SET_RX_HEADROOM: /* Set RX headroom */ if (copy_from_user(ð_dev->rx_needed_headroom, addr, sizeof(eth_dev->rx_needed_headroom))) break; DBG(eth_dev, "[%s] ioctl(): set RX HEADROOM: %x\n", dev->name, eth_dev->rx_needed_headroom); rc = 0; break; case RMNET_IOCTL_EXTENDED: rc = rmnet_ioctl_extended(dev, ifr); break; default: pr_err("[%s] error: ioctl called for unsupported cmd[%d]", dev->name, cmd); rc = -EINVAL; } DBG(eth_dev, "[%s] %s: cmd=0x%x opmode old=0x%08x new=0x%08lx\n", dev->name, __func__, cmd, old_opmode, eth_dev->flags); return rc; } static struct device_type gadget_type = { .name = "gadget", }; static int gether_cpufreq_notifier_cb(struct notifier_block *nfb, unsigned long event, void *data) { struct cpufreq_policy *policy = data; unsigned int cpu = policy->cpu; struct eth_dev *dev = container_of(nfb, struct eth_dev, cpufreq_notifier); if (!min_cpu_freq) return NOTIFY_OK; switch (event) { case CPUFREQ_ADJUST: pr_debug("%s: cpu:%u\n", __func__, cpu); if (dev->state == ETH_START) cpufreq_verify_within_limits(policy, min_cpu_freq, UINT_MAX); break; } return NOTIFY_OK; } static void update_cpu_policy_w(struct work_struct *work) { int i; for_each_online_cpu(i) cpufreq_update_policy(i); } /** * gether_setup_name - initialize one ethernet-over-usb link * @g: gadget to associated with these links * @ethaddr: NULL, or a buffer in which the ethernet address of the * host side of the link is recorded * @netname: name for network device (for example, "usb") * Context: may sleep * * This sets up the single network link that may be exported by a * gadget driver using this framework. The link layer addresses are * set up using module parameters. * * Returns an eth_dev pointer on success, or an ERR_PTR on failure. */ struct eth_dev *gether_setup_name(struct usb_gadget *g, const char *dev_addr, const char *host_addr, u8 ethaddr[ETH_ALEN], unsigned qmult, const char *netname) { struct eth_dev *dev; struct net_device *net; int status; net = alloc_etherdev(sizeof *dev); if (!net) return ERR_PTR(-ENOMEM); dev = netdev_priv(net); spin_lock_init(&dev->lock); spin_lock_init(&dev->req_lock); INIT_WORK(&dev->work, eth_work); INIT_WORK(&dev->rx_work, process_rx_w); INIT_WORK(&dev->tx_work, process_tx_w); INIT_LIST_HEAD(&dev->tx_reqs); INIT_LIST_HEAD(&dev->rx_reqs); INIT_WORK(&dev->cpu_policy_w, update_cpu_policy_w); skb_queue_head_init(&dev->rx_frames); skb_queue_head_init(&dev->tx_skb_q); /* network device setup */ dev->net = net; dev->qmult = qmult; snprintf(net->name, sizeof(net->name), "%s%%d", netname); if (get_ether_addr(dev_addr, net->dev_addr)) dev_warn(&g->dev, "using random %s ethernet address\n", "self"); if (get_host_ether_addr(host_ethaddr, dev->host_mac)) dev_warn(&g->dev, "using random %s ethernet address\n", "host"); else dev_warn(&g->dev, "using previous %s ethernet address\n", "host"); if (ethaddr) memcpy(ethaddr, dev->host_mac, ETH_ALEN); net->netdev_ops = ð_netdev_ops; net->ethtool_ops = &ops; /* set operation mode to eth by default */ set_bit(RMNET_MODE_LLP_ETH, &dev->flags); dev->gadget = g; SET_NETDEV_DEV(net, &g->dev); SET_NETDEV_DEVTYPE(net, &gadget_type); status = register_netdev(net); if (status < 0) { dev_dbg(&g->dev, "register_netdev failed, %d\n", status); free_netdev(net); dev = ERR_PTR(status); } else { INFO(dev, "MAC %pM\n", net->dev_addr); INFO(dev, "HOST MAC %pM\n", dev->host_mac); /* * two kinds of host-initiated state changes: * - iff DATA transfer is active, carrier is "on" * - tx queueing enabled if open *and* carrier is "on" */ netif_carrier_off(net); uether_debugfs_init(dev, netname); dev->cpufreq_notifier.notifier_call = gether_cpufreq_notifier_cb; cpufreq_register_notifier(&dev->cpufreq_notifier, CPUFREQ_POLICY_NOTIFIER); } return dev; } EXPORT_SYMBOL_GPL(gether_setup_name); struct net_device *gether_setup_name_default(const char *netname) { struct net_device *net; struct eth_dev *dev; net = alloc_etherdev(sizeof(*dev)); if (!net) return ERR_PTR(-ENOMEM); dev = netdev_priv(net); spin_lock_init(&dev->lock); spin_lock_init(&dev->req_lock); INIT_WORK(&dev->work, eth_work); INIT_WORK(&dev->rx_work, process_rx_w); INIT_WORK(&dev->tx_work, process_tx_w); INIT_LIST_HEAD(&dev->tx_reqs); INIT_LIST_HEAD(&dev->rx_reqs); INIT_WORK(&dev->cpu_policy_w, update_cpu_policy_w); skb_queue_head_init(&dev->rx_frames); skb_queue_head_init(&dev->tx_skb_q); /* network device setup */ dev->net = net; dev->qmult = QMULT_DEFAULT; snprintf(net->name, sizeof(net->name), "%s%%d", netname); eth_random_addr(dev->dev_mac); pr_warn("using random %s ethernet address\n", "self"); eth_random_addr(dev->host_mac); pr_warn("using random %s ethernet address\n", "host"); net->netdev_ops = ð_netdev_ops; net->ethtool_ops = &ops; /* set operation mode to eth by default */ set_bit(RMNET_MODE_LLP_ETH, &dev->flags); SET_NETDEV_DEVTYPE(net, &gadget_type); return net; } EXPORT_SYMBOL_GPL(gether_setup_name_default); int gether_register_netdev(struct net_device *net) { struct eth_dev *dev; struct usb_gadget *g; struct sockaddr sa; int status; if (!net->dev.parent) return -EINVAL; dev = netdev_priv(net); g = dev->gadget; status = register_netdev(net); if (status < 0) { dev_dbg(&g->dev, "register_netdev failed, %d\n", status); return status; } else { INFO(dev, "HOST MAC %pM\n", dev->host_mac); /* two kinds of host-initiated state changes: * - iff DATA transfer is active, carrier is "on" * - tx queueing enabled if open *and* carrier is "on" */ netif_carrier_off(net); } sa.sa_family = net->type; memcpy(sa.sa_data, dev->dev_mac, ETH_ALEN); rtnl_lock(); status = dev_set_mac_address(net, &sa); rtnl_unlock(); if (status) pr_warn("cannot set self ethernet address: %d\n", status); else INFO(dev, "MAC %pM\n", dev->dev_mac); return status; } EXPORT_SYMBOL_GPL(gether_register_netdev); void gether_set_gadget(struct net_device *net, struct usb_gadget *g) { struct eth_dev *dev; dev = netdev_priv(net); dev->gadget = g; SET_NETDEV_DEV(net, &g->dev); } EXPORT_SYMBOL_GPL(gether_set_gadget); int gether_set_dev_addr(struct net_device *net, const char *dev_addr) { struct eth_dev *dev; u8 new_addr[ETH_ALEN]; dev = netdev_priv(net); if (get_ether_addr(dev_addr, new_addr)) return -EINVAL; memcpy(dev->dev_mac, new_addr, ETH_ALEN); return 0; } EXPORT_SYMBOL_GPL(gether_set_dev_addr); int gether_get_dev_addr(struct net_device *net, char *dev_addr, int len) { struct eth_dev *dev; dev = netdev_priv(net); return get_ether_addr_str(dev->dev_mac, dev_addr, len); } EXPORT_SYMBOL_GPL(gether_get_dev_addr); int gether_set_host_addr(struct net_device *net, const char *host_addr) { struct eth_dev *dev; u8 new_addr[ETH_ALEN]; dev = netdev_priv(net); if (get_ether_addr(host_addr, new_addr)) return -EINVAL; memcpy(dev->host_mac, new_addr, ETH_ALEN); return 0; } EXPORT_SYMBOL_GPL(gether_set_host_addr); int gether_get_host_addr(struct net_device *net, char *host_addr, int len) { struct eth_dev *dev; dev = netdev_priv(net); return get_ether_addr_str(dev->host_mac, host_addr, len); } EXPORT_SYMBOL_GPL(gether_get_host_addr); int gether_get_host_addr_cdc(struct net_device *net, char *host_addr, int len) { struct eth_dev *dev; if (len < 13) return -EINVAL; dev = netdev_priv(net); snprintf(host_addr, len, "%pm", dev->host_mac); return strlen(host_addr); } EXPORT_SYMBOL_GPL(gether_get_host_addr_cdc); void gether_get_host_addr_u8(struct net_device *net, u8 host_mac[ETH_ALEN]) { struct eth_dev *dev; dev = netdev_priv(net); memcpy(host_mac, dev->host_mac, ETH_ALEN); } EXPORT_SYMBOL_GPL(gether_get_host_addr_u8); void gether_set_qmult(struct net_device *net, unsigned qmult) { struct eth_dev *dev; dev = netdev_priv(net); dev->qmult = qmult; } EXPORT_SYMBOL_GPL(gether_set_qmult); unsigned gether_get_qmult(struct net_device *net) { struct eth_dev *dev; dev = netdev_priv(net); return dev->qmult; } EXPORT_SYMBOL_GPL(gether_get_qmult); int gether_get_ifname(struct net_device *net, char *name, int len) { rtnl_lock(); strlcpy(name, netdev_name(net), len); rtnl_unlock(); return strlen(name); } EXPORT_SYMBOL_GPL(gether_get_ifname); /** * gether_cleanup - remove Ethernet-over-USB device * Context: may sleep * * This is called to free all resources allocated by @gether_setup(). */ void gether_cleanup(struct eth_dev *dev) { int i; if (!dev) return; /* make sure cpu boost is set to normal again */ dev->state = ETH_UNDEFINED; cancel_work_sync(&dev->cpu_policy_w); for_each_online_cpu(i) cpufreq_update_policy(i); cpufreq_unregister_notifier(&dev->cpufreq_notifier, CPUFREQ_POLICY_NOTIFIER); uether_debugfs_exit(dev); unregister_netdev(dev->net); flush_work(&dev->work); free_netdev(dev->net); } EXPORT_SYMBOL_GPL(gether_cleanup); void gether_update_dl_max_xfer_size(struct gether *link, uint32_t s) { struct eth_dev *dev = link->ioport; unsigned long flags; spin_lock_irqsave(&dev->lock, flags); dev->dl_max_xfer_size = s; spin_unlock_irqrestore(&dev->lock, flags); } void gether_enable_sg(struct gether *link, bool enable) { struct eth_dev *dev = link->ioport; dev->sg_enabled = enable ? dev->gadget->sg_supported : false; } void gether_update_dl_max_pkts_per_xfer(struct gether *link, uint32_t n) { struct eth_dev *dev = link->ioport; unsigned long flags; if (n > DL_MAX_PKTS_PER_XFER) n = DL_MAX_PKTS_PER_XFER; spin_lock_irqsave(&dev->lock, flags); dev->dl_max_pkts_per_xfer = n; spin_unlock_irqrestore(&dev->lock, flags); } /** * gether_connect - notify network layer that USB link is active * @link: the USB link, set up with endpoints, descriptors matching * current device speed, and any framing wrapper(s) set up. * Context: irqs blocked * * This is called to activate endpoints and let the network layer know * the connection is active ("carrier detect"). It may cause the I/O * queues to open and start letting network packets flow, but will in * any case activate the endpoints so that they respond properly to the * USB host. * * Verify net_device pointer returned using IS_ERR(). If it doesn't * indicate some error code (negative errno), ep->driver_data values * have been overwritten. */ struct net_device *gether_connect(struct gether *link) { struct eth_dev *dev = link->ioport; int result = 0; bool wait_for_rx_trigger; if (!dev) return ERR_PTR(-EINVAL); /* if scatter/gather or sg is supported then headers can be part of * req->buf which is allocated later */ if (!dev->sg_enabled) { link->header = kzalloc(sizeof(struct rndis_packet_msg_type), GFP_ATOMIC); if (!link->header) { pr_err("RNDIS header memory allocation failed.\n"); result = -ENOMEM; goto fail; } } link->in_ep->driver_data = dev; result = usb_ep_enable(link->in_ep); if (result != 0) { DBG(dev, "enable %s --> %d\n", link->in_ep->name, result); goto fail0; } link->out_ep->driver_data = dev; result = usb_ep_enable(link->out_ep); if (result != 0) { DBG(dev, "enable %s --> %d\n", link->out_ep->name, result); goto fail1; } dev->header_len = link->header_len; dev->unwrap = link->unwrap; dev->wrap = link->wrap; dev->ul_max_pkts_per_xfer = link->ul_max_pkts_per_xfer; dev->dl_max_pkts_per_xfer = link->dl_max_pkts_per_xfer; dev->dl_max_xfer_size = link->dl_max_xfer_size; if (result == 0) result = alloc_requests(dev, link, qlen(dev->gadget, dev->qmult)); if (result == 0) { dev->zlp = link->is_zlp_ok; DBG(dev, "qlen %d\n", qlen(dev->gadget, dev->qmult)); dev->rx_trigger_enabled = link->rx_trigger_enabled; spin_lock(&dev->lock); dev->tx_skb_hold_count = 0; dev->no_tx_req_used = 0; dev->tx_req_bufsize = 0; dev->port_usb = link; if (netif_running(dev->net)) { if (link->open) link->open(link); } else { if (link->close) link->close(link); } spin_unlock(&dev->lock); netif_carrier_on(dev->net); wait_for_rx_trigger = dev->rx_trigger_enabled && !link->rx_triggered; if (netif_running(dev->net) && !wait_for_rx_trigger) eth_start(dev, GFP_ATOMIC); /* on error, disable any endpoints */ } else { (void) usb_ep_disable(link->out_ep); fail1: (void) usb_ep_disable(link->in_ep); } /* caller is responsible for cleanup on error */ if (result < 0) { fail0: kfree(link->header); fail: return ERR_PTR(result); } return dev->net; } EXPORT_SYMBOL_GPL(gether_connect); /** * gether_disconnect - notify network layer that USB link is inactive * @link: the USB link, on which gether_connect() was called * Context: irqs blocked * * This is called to deactivate endpoints and let the network layer know * the connection went inactive ("no carrier"). * * On return, the state is as if gether_connect() had never been called. * The endpoints are inactive, and accordingly without active USB I/O. * Pointers to endpoint descriptors and endpoint private data are nulled. */ void gether_disconnect(struct gether *link) { struct eth_dev *dev = link->ioport; struct usb_request *req; struct sk_buff *skb; if (!dev) return; DBG(dev, "%s\n", __func__); dev->state = ETH_UNDEFINED; queue_work(uether_wq, &dev->cpu_policy_w); netif_stop_queue(dev->net); netif_carrier_off(dev->net); /* disable endpoints, forcing (synchronous) completion * of all pending i/o. then free the request objects * and forget about the endpoints. */ usb_ep_disable(link->in_ep); spin_lock(&dev->req_lock); while (!list_empty(&dev->tx_reqs)) { req = container_of(dev->tx_reqs.next, struct usb_request, list); list_del(&req->list); spin_unlock(&dev->req_lock); if (link->multi_pkt_xfer || dev->sg_enabled) { kfree(req->buf); req->buf = NULL; } if (dev->sg_enabled) { kfree(req->context); kfree(req->sg); } usb_ep_free_request(link->in_ep, req); spin_lock(&dev->req_lock); } /* Free rndis header buffer memory */ if (!dev->sg_enabled) kfree(link->header); link->header = NULL; spin_unlock(&dev->req_lock); skb_queue_purge(&dev->tx_skb_q); link->in_ep->driver_data = NULL; link->in_ep->desc = NULL; usb_ep_disable(link->out_ep); spin_lock(&dev->req_lock); while (!list_empty(&dev->rx_reqs)) { req = container_of(dev->rx_reqs.next, struct usb_request, list); list_del(&req->list); spin_unlock(&dev->req_lock); usb_ep_free_request(link->out_ep, req); spin_lock(&dev->req_lock); } spin_unlock(&dev->req_lock); spin_lock(&dev->rx_frames.lock); while ((skb = __skb_dequeue(&dev->rx_frames))) dev_kfree_skb_any(skb); spin_unlock(&dev->rx_frames.lock); link->out_ep->driver_data = NULL; link->out_ep->desc = NULL; pr_debug("%s(): tx_throttle count= %lu", __func__, dev->tx_throttle); /* reset tx_throttle count */ dev->tx_throttle = 0; dev->rx_throttle = 0; /* finish forgetting about this USB link episode */ dev->header_len = 0; dev->unwrap = NULL; dev->wrap = NULL; dev->rx_trigger_enabled = 0; spin_lock(&dev->lock); dev->port_usb = NULL; spin_unlock(&dev->lock); } EXPORT_SYMBOL_GPL(gether_disconnect); static int uether_stat_show(struct seq_file *s, void *unused) { struct eth_dev *dev = s->private; int ret = 0; int i; if (dev) { seq_printf(s, "rx_throttle = %lu\n", dev->rx_throttle); seq_printf(s, "tx_qlen=%u tx_throttle = %lu\n aggr count:", dev->tx_skb_q.qlen, dev->tx_throttle); for (i = 0; i < DL_MAX_PKTS_PER_XFER; i++) seq_printf(s, "%u\t", dev->tx_aggr_cnt[i]); seq_printf(s, "\nloop_brk_cnt = %u\n tx_pkts_rcvd=%u\n", dev->loop_brk_cnt, dev->tx_pkts_rcvd); seq_printf(s, "skb_expand_cnt = %lu\n", dev->skb_expand_cnt); } return ret; } static int uether_open(struct inode *inode, struct file *file) { return single_open(file, uether_stat_show, inode->i_private); } static ssize_t uether_stat_reset(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { struct seq_file *s = file->private_data; struct eth_dev *dev = s->private; unsigned long flags; spin_lock_irqsave(&dev->lock, flags); /* Reset tx_throttle */ dev->tx_throttle = 0; dev->rx_throttle = 0; dev->skb_expand_cnt = 0; spin_unlock_irqrestore(&dev->lock, flags); return count; } const struct file_operations uether_stats_ops = { .open = uether_open, .read = seq_read, .write = uether_stat_reset, }; static int uether_bytes_rcvd_show(struct seq_file *s, void *unused) { struct eth_dev *dev = s->private; if (dev) seq_printf(s, "%u\n", dev->tx_bytes_rcvd); return 0; } static int uether_bytes_rcvd_open(struct inode *inode, struct file *file) { return single_open(file, uether_bytes_rcvd_show, inode->i_private); } static ssize_t uether_bytes_rcvd_reset(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { struct seq_file *s = file->private_data; struct eth_dev *dev = s->private; dev->tx_bytes_rcvd = 0; return count; } const struct file_operations uether_bytes_rcvd_ops = { .open = uether_bytes_rcvd_open, .read = seq_read, .write = uether_bytes_rcvd_reset, }; static void uether_debugfs_init(struct eth_dev *dev, const char *name) { struct dentry *uether_dent; struct dentry *uether_dfile; uether_dent = debugfs_create_dir(name, 0); if (IS_ERR(uether_dent)) return; dev->uether_dent = uether_dent; uether_dfile = debugfs_create_file("status", S_IRUGO | S_IWUSR, uether_dent, dev, &uether_stats_ops); if (!uether_dfile || IS_ERR(uether_dfile)) debugfs_remove(uether_dent); uether_dfile = debugfs_create_file("tx_bytes_rcvd", S_IRUGO | S_IWUSR, uether_dent, dev, &uether_bytes_rcvd_ops); if (!uether_dfile || IS_ERR(uether_dfile)) debugfs_remove_recursive(uether_dent); } static void uether_debugfs_exit(struct eth_dev *dev) { debugfs_remove_recursive(dev->uether_dent); } int gether_up(struct gether *link) { struct eth_dev *dev = link->ioport; if (dev && netif_carrier_ok(dev->net)) eth_start(dev, GFP_KERNEL); return 0; } static int __init gether_init(void) { uether_wq = create_singlethread_workqueue("uether"); if (!uether_wq) { pr_err("%s: Unable to create workqueue: uether\n", __func__); return -ENOMEM; } uether_tx_wq = alloc_workqueue("uether_tx", WQ_CPU_INTENSIVE | WQ_UNBOUND, 1); if (!uether_tx_wq) { destroy_workqueue(uether_wq); pr_err("%s: Unable to create workqueue: uether\n", __func__); return -ENOMEM; } return 0; } module_init(gether_init); static void __exit gether_exit(void) { destroy_workqueue(uether_tx_wq); destroy_workqueue(uether_wq); } module_exit(gether_exit); MODULE_AUTHOR("David Brownell"); MODULE_DESCRIPTION("ethernet over USB driver"); MODULE_LICENSE("GPL v2");