/* drivers/usb/gadget/f_diag.c * Diag Function Device - Route ARM9 and ARM11 DIAG messages * between HOST and DEVICE. * Copyright (C) 2007 Google, Inc. * Copyright (c) 2008-2015, The Linux Foundation. All rights reserved. * Author: Brian Swetland * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_SPINLOCK(ch_lock); static LIST_HEAD(usb_diag_ch_list); static struct usb_interface_descriptor intf_desc = { .bLength = sizeof intf_desc, .bDescriptorType = USB_DT_INTERFACE, .bNumEndpoints = 2, .bInterfaceClass = 0xFF, .bInterfaceSubClass = 0xFF, .bInterfaceProtocol = 0xFF, }; static struct usb_endpoint_descriptor hs_bulk_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = __constant_cpu_to_le16(512), .bInterval = 0, }; static struct usb_endpoint_descriptor fs_bulk_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = __constant_cpu_to_le16(64), .bInterval = 0, }; static struct usb_endpoint_descriptor hs_bulk_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = __constant_cpu_to_le16(512), .bInterval = 0, }; static struct usb_endpoint_descriptor fs_bulk_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = __constant_cpu_to_le16(64), .bInterval = 0, }; static struct usb_endpoint_descriptor ss_bulk_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = __constant_cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor ss_bulk_in_comp_desc = { .bLength = sizeof ss_bulk_in_comp_desc, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, /* the following 2 values can be tweaked if necessary */ /* .bMaxBurst = 0, */ /* .bmAttributes = 0, */ }; static struct usb_endpoint_descriptor ss_bulk_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = __constant_cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor ss_bulk_out_comp_desc = { .bLength = sizeof ss_bulk_out_comp_desc, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, /* the following 2 values can be tweaked if necessary */ /* .bMaxBurst = 0, */ /* .bmAttributes = 0, */ }; static struct usb_descriptor_header *fs_diag_desc[] = { (struct usb_descriptor_header *) &intf_desc, (struct usb_descriptor_header *) &fs_bulk_in_desc, (struct usb_descriptor_header *) &fs_bulk_out_desc, NULL, }; static struct usb_descriptor_header *hs_diag_desc[] = { (struct usb_descriptor_header *) &intf_desc, (struct usb_descriptor_header *) &hs_bulk_in_desc, (struct usb_descriptor_header *) &hs_bulk_out_desc, NULL, }; static struct usb_descriptor_header *ss_diag_desc[] = { (struct usb_descriptor_header *) &intf_desc, (struct usb_descriptor_header *) &ss_bulk_in_desc, (struct usb_descriptor_header *) &ss_bulk_in_comp_desc, (struct usb_descriptor_header *) &ss_bulk_out_desc, (struct usb_descriptor_header *) &ss_bulk_out_comp_desc, NULL, }; /** * struct diag_context - USB diag function driver private structure * @function: function structure for USB interface * @out: USB OUT endpoint struct * @in: USB IN endpoint struct * @in_desc: USB IN endpoint descriptor struct * @out_desc: USB OUT endpoint descriptor struct * @read_pool: List of requests used for Rx (OUT ep) * @write_pool: List of requests used for Tx (IN ep) * @lock: Spinlock to proctect read_pool, write_pool lists * @cdev: USB composite device struct * @ch: USB diag channel * */ struct diag_context { struct usb_function function; struct usb_ep *out; struct usb_ep *in; struct list_head read_pool; struct list_head write_pool; spinlock_t lock; unsigned configured; struct usb_composite_dev *cdev; int (*update_pid_and_serial_num)(uint32_t, const char *); struct usb_diag_ch *ch; struct kref kref; /* pkt counters */ unsigned long dpkts_tolaptop; unsigned long dpkts_tomodem; unsigned dpkts_tolaptop_pending; /* A list node inside the diag_dev_list */ struct list_head list_item; }; static struct list_head diag_dev_list; static inline struct diag_context *func_to_diag(struct usb_function *f) { return container_of(f, struct diag_context, function); } /* Called with ctxt->lock held; i.e. only use with kref_put_spinlock_irqsave */ static void diag_context_release(struct kref *kref) { struct diag_context *ctxt = container_of(kref, struct diag_context, kref); spin_unlock(&ctxt->lock); kfree(ctxt); } static void diag_update_pid_and_serial_num(struct diag_context *ctxt) { struct usb_composite_dev *cdev = ctxt->cdev; struct usb_gadget_strings *table; struct usb_string *s; if (!ctxt->update_pid_and_serial_num) return; /* * update pid and serail number to dload only if diag * interface is zeroth interface. */ if (intf_desc.bInterfaceNumber) return; /* pass on product id and serial number to dload */ if (!cdev->desc.iSerialNumber) { ctxt->update_pid_and_serial_num( cdev->desc.idProduct, 0); return; } /* * Serial number is filled by the composite driver. So * it is fair enough to assume that it will always be * found at first table of strings. */ table = *(cdev->driver->strings); for (s = table->strings; s && s->s; s++) if (s->id == cdev->desc.iSerialNumber) { ctxt->update_pid_and_serial_num( cdev->desc.idProduct, s->s); break; } } static void diag_write_complete(struct usb_ep *ep, struct usb_request *req) { struct diag_context *ctxt = ep->driver_data; struct diag_request *d_req = req->context; unsigned long flags; ctxt->dpkts_tolaptop_pending--; if (!req->status) { if ((req->length >= ep->maxpacket) && ((req->length % ep->maxpacket) == 0)) { ctxt->dpkts_tolaptop_pending++; req->length = 0; d_req->actual = req->actual; d_req->status = req->status; /* Queue zero length packet */ if (!usb_ep_queue(ctxt->in, req, GFP_ATOMIC)) return; } else { ctxt->dpkts_tolaptop++; } } spin_lock_irqsave(&ctxt->lock, flags); list_add_tail(&req->list, &ctxt->write_pool); if (req->length != 0) { d_req->actual = req->actual; d_req->status = req->status; } spin_unlock_irqrestore(&ctxt->lock, flags); if (ctxt->ch && ctxt->ch->notify) ctxt->ch->notify(ctxt->ch->priv, USB_DIAG_WRITE_DONE, d_req); kref_put_spinlock_irqsave(&ctxt->kref, diag_context_release, &ctxt->lock); } static void diag_read_complete(struct usb_ep *ep, struct usb_request *req) { struct diag_context *ctxt = ep->driver_data; struct diag_request *d_req = req->context; unsigned long flags; d_req->actual = req->actual; d_req->status = req->status; spin_lock_irqsave(&ctxt->lock, flags); list_add_tail(&req->list, &ctxt->read_pool); spin_unlock_irqrestore(&ctxt->lock, flags); ctxt->dpkts_tomodem++; if (ctxt->ch && ctxt->ch->notify) ctxt->ch->notify(ctxt->ch->priv, USB_DIAG_READ_DONE, d_req); kref_put_spinlock_irqsave(&ctxt->kref, diag_context_release, &ctxt->lock); } /** * usb_diag_open() - Open a diag channel over USB * @name: Name of the channel * @priv: Private structure pointer which will be passed in notify() * @notify: Callback function to receive notifications * * This function iterates overs the available channels and returns * the channel handler if the name matches. The notify callback is called * for CONNECT, DISCONNECT, READ_DONE and WRITE_DONE events. * */ struct usb_diag_ch *usb_diag_open(const char *name, void *priv, void (*notify)(void *, unsigned, struct diag_request *)) { struct usb_diag_ch *ch; unsigned long flags; int found = 0; spin_lock_irqsave(&ch_lock, flags); /* Check if we already have a channel with this name */ list_for_each_entry(ch, &usb_diag_ch_list, list) { if (!strcmp(name, ch->name)) { found = 1; break; } } spin_unlock_irqrestore(&ch_lock, flags); if (!found) { ch = kzalloc(sizeof(*ch), GFP_KERNEL); if (!ch) return ERR_PTR(-ENOMEM); } ch->name = name; ch->priv = priv; ch->notify = notify; spin_lock_irqsave(&ch_lock, flags); list_add_tail(&ch->list, &usb_diag_ch_list); spin_unlock_irqrestore(&ch_lock, flags); return ch; } EXPORT_SYMBOL(usb_diag_open); /** * usb_diag_close() - Close a diag channel over USB * @ch: Channel handler * * This function closes the diag channel. * */ void usb_diag_close(struct usb_diag_ch *ch) { struct diag_context *dev = NULL; unsigned long flags; spin_lock_irqsave(&ch_lock, flags); ch->priv = NULL; ch->notify = NULL; /* Free-up the resources if channel is no more active */ list_del(&ch->list); list_for_each_entry(dev, &diag_dev_list, list_item) if (dev->ch == ch) dev->ch = NULL; kfree(ch); spin_unlock_irqrestore(&ch_lock, flags); } EXPORT_SYMBOL(usb_diag_close); static void free_reqs(struct diag_context *ctxt) { struct list_head *act, *tmp; struct usb_request *req; list_for_each_safe(act, tmp, &ctxt->write_pool) { req = list_entry(act, struct usb_request, list); list_del(&req->list); usb_ep_free_request(ctxt->in, req); } list_for_each_safe(act, tmp, &ctxt->read_pool) { req = list_entry(act, struct usb_request, list); list_del(&req->list); usb_ep_free_request(ctxt->out, req); } } /** * usb_diag_alloc_req() - Allocate USB requests * @ch: Channel handler * @n_write: Number of requests for Tx * @n_read: Number of requests for Rx * * This function allocate read and write USB requests for the interface * associated with this channel. The actual buffer is not allocated. * The buffer is passed by diag char driver. * */ int usb_diag_alloc_req(struct usb_diag_ch *ch, int n_write, int n_read) { struct diag_context *ctxt = ch->priv_usb; struct usb_request *req; int i; unsigned long flags; if (!ctxt) return -ENODEV; spin_lock_irqsave(&ctxt->lock, flags); /* Free previous session's stale requests */ free_reqs(ctxt); for (i = 0; i < n_write; i++) { req = usb_ep_alloc_request(ctxt->in, GFP_ATOMIC); if (!req) goto fail; kmemleak_not_leak(req); req->complete = diag_write_complete; list_add_tail(&req->list, &ctxt->write_pool); } for (i = 0; i < n_read; i++) { req = usb_ep_alloc_request(ctxt->out, GFP_ATOMIC); if (!req) goto fail; kmemleak_not_leak(req); req->complete = diag_read_complete; list_add_tail(&req->list, &ctxt->read_pool); } spin_unlock_irqrestore(&ctxt->lock, flags); return 0; fail: free_reqs(ctxt); spin_unlock_irqrestore(&ctxt->lock, flags); return -ENOMEM; } EXPORT_SYMBOL(usb_diag_alloc_req); #define DWC3_MAX_REQUEST_SIZE (1024 * 1024) #define CI_MAX_REQUEST_SIZE (16 * 1024) /** * usb_diag_request_size - Max request size for controller * @ch: Channel handler * * Infom max request size so that diag driver can split packets * in chunks of max size which controller can handle. */ int usb_diag_request_size(struct usb_diag_ch *ch) { struct diag_context *ctxt = ch->priv_usb; struct usb_composite_dev *cdev = ctxt->cdev; if (gadget_is_dwc3(cdev->gadget)) return DWC3_MAX_REQUEST_SIZE; else return CI_MAX_REQUEST_SIZE; } EXPORT_SYMBOL(usb_diag_request_size); /** * usb_diag_read() - Read data from USB diag channel * @ch: Channel handler * @d_req: Diag request struct * * Enqueue a request on OUT endpoint of the interface corresponding to this * channel. This function returns proper error code when interface is not * in configured state, no Rx requests available and ep queue is failed. * * This function operates asynchronously. READ_DONE event is notified after * completion of OUT request. * */ int usb_diag_read(struct usb_diag_ch *ch, struct diag_request *d_req) { struct diag_context *ctxt = ch->priv_usb; unsigned long flags; struct usb_request *req; struct usb_ep *out; static DEFINE_RATELIMIT_STATE(rl, 10*HZ, 1); if (!ctxt) return -ENODEV; spin_lock_irqsave(&ctxt->lock, flags); if (!ctxt->configured || !ctxt->out) { spin_unlock_irqrestore(&ctxt->lock, flags); return -EIO; } out = ctxt->out; if (list_empty(&ctxt->read_pool)) { spin_unlock_irqrestore(&ctxt->lock, flags); ERROR(ctxt->cdev, "%s: no requests available\n", __func__); return -EAGAIN; } req = list_first_entry(&ctxt->read_pool, struct usb_request, list); list_del(&req->list); kref_get(&ctxt->kref); /* put called in complete callback */ spin_unlock_irqrestore(&ctxt->lock, flags); req->buf = d_req->buf; req->length = d_req->length; req->context = d_req; /* make sure context is still valid after releasing lock */ if (ctxt != ch->priv_usb) { usb_ep_free_request(out, req); kref_put_spinlock_irqsave(&ctxt->kref, diag_context_release, &ctxt->lock); return -EIO; } if (usb_ep_queue(out, req, GFP_ATOMIC)) { /* If error add the link to linked list again*/ spin_lock_irqsave(&ctxt->lock, flags); list_add_tail(&req->list, &ctxt->read_pool); /* 1 error message for every 10 sec */ if (__ratelimit(&rl)) ERROR(ctxt->cdev, "%s: cannot queue" " read request\n", __func__); if (kref_put(&ctxt->kref, diag_context_release)) /* diag_context_release called spin_unlock already */ local_irq_restore(flags); else spin_unlock_irqrestore(&ctxt->lock, flags); return -EIO; } return 0; } EXPORT_SYMBOL(usb_diag_read); /** * usb_diag_write() - Write data from USB diag channel * @ch: Channel handler * @d_req: Diag request struct * * Enqueue a request on IN endpoint of the interface corresponding to this * channel. This function returns proper error code when interface is not * in configured state, no Tx requests available and ep queue is failed. * * This function operates asynchronously. WRITE_DONE event is notified after * completion of IN request. * */ int usb_diag_write(struct usb_diag_ch *ch, struct diag_request *d_req) { struct diag_context *ctxt = ch->priv_usb; unsigned long flags; struct usb_request *req = NULL; struct usb_ep *in; static DEFINE_RATELIMIT_STATE(rl, 10*HZ, 1); if (!ctxt) return -ENODEV; spin_lock_irqsave(&ctxt->lock, flags); if (!ctxt->configured || !ctxt->in) { spin_unlock_irqrestore(&ctxt->lock, flags); return -EIO; } in = ctxt->in; if (list_empty(&ctxt->write_pool)) { spin_unlock_irqrestore(&ctxt->lock, flags); ERROR(ctxt->cdev, "%s: no requests available\n", __func__); return -EAGAIN; } req = list_first_entry(&ctxt->write_pool, struct usb_request, list); list_del(&req->list); kref_get(&ctxt->kref); /* put called in complete callback */ spin_unlock_irqrestore(&ctxt->lock, flags); req->buf = d_req->buf; req->length = d_req->length; req->context = d_req; /* make sure context is still valid after releasing lock */ if (ctxt != ch->priv_usb) { usb_ep_free_request(in, req); kref_put_spinlock_irqsave(&ctxt->kref, diag_context_release, &ctxt->lock); return -EIO; } ctxt->dpkts_tolaptop_pending++; if (usb_ep_queue(in, req, GFP_ATOMIC)) { /* If error add the link to linked list again*/ spin_lock_irqsave(&ctxt->lock, flags); list_add_tail(&req->list, &ctxt->write_pool); ctxt->dpkts_tolaptop_pending--; /* 1 error message for every 10 sec */ if (__ratelimit(&rl)) ERROR(ctxt->cdev, "%s: cannot queue" " read request\n", __func__); if (kref_put(&ctxt->kref, diag_context_release)) /* diag_context_release called spin_unlock already */ local_irq_restore(flags); else spin_unlock_irqrestore(&ctxt->lock, flags); return -EIO; } /* * It's possible that both write completion AND unbind could have been * completed asynchronously by this point. Since they both release the * kref, ctxt is _NOT_ guaranteed to be valid here. */ return 0; } EXPORT_SYMBOL(usb_diag_write); static void diag_function_disable(struct usb_function *f) { struct diag_context *dev = func_to_diag(f); unsigned long flags; DBG(dev->cdev, "diag_function_disable\n"); spin_lock_irqsave(&dev->lock, flags); dev->configured = 0; spin_unlock_irqrestore(&dev->lock, flags); if (dev->ch && dev->ch->notify) dev->ch->notify(dev->ch->priv, USB_DIAG_DISCONNECT, NULL); usb_ep_disable(dev->in); dev->in->driver_data = NULL; usb_ep_disable(dev->out); dev->out->driver_data = NULL; if (dev->ch) dev->ch->priv_usb = NULL; } static int diag_function_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct diag_context *dev = func_to_diag(f); struct usb_composite_dev *cdev = f->config->cdev; unsigned long flags; int rc = 0; if (config_ep_by_speed(cdev->gadget, f, dev->in) || config_ep_by_speed(cdev->gadget, f, dev->out)) { dev->in->desc = NULL; dev->out->desc = NULL; return -EINVAL; } if (!dev->ch) return -ENODEV; /* * Indicate to the diag channel that the active diag device is dev. * Since a few diag devices can point to the same channel. */ dev->ch->priv_usb = dev; dev->in->driver_data = dev; rc = usb_ep_enable(dev->in); if (rc) { ERROR(dev->cdev, "can't enable %s, result %d\n", dev->in->name, rc); return rc; } dev->out->driver_data = dev; rc = usb_ep_enable(dev->out); if (rc) { ERROR(dev->cdev, "can't enable %s, result %d\n", dev->out->name, rc); usb_ep_disable(dev->in); return rc; } dev->dpkts_tolaptop = 0; dev->dpkts_tomodem = 0; dev->dpkts_tolaptop_pending = 0; spin_lock_irqsave(&dev->lock, flags); dev->configured = 1; spin_unlock_irqrestore(&dev->lock, flags); if (dev->ch->notify) dev->ch->notify(dev->ch->priv, USB_DIAG_CONNECT, NULL); return rc; } static void diag_function_unbind(struct usb_configuration *c, struct usb_function *f) { struct diag_context *ctxt = func_to_diag(f); unsigned long flags; if (gadget_is_superspeed(c->cdev->gadget)) usb_free_descriptors(f->ss_descriptors); if (gadget_is_dualspeed(c->cdev->gadget)) usb_free_descriptors(f->hs_descriptors); usb_free_descriptors(f->fs_descriptors); /* * Channel priv_usb may point to other diag function. * Clear the priv_usb only if the channel is used by the * diag dev we unbind here. */ if (ctxt->ch && ctxt->ch->priv_usb == ctxt) ctxt->ch->priv_usb = NULL; list_del(&ctxt->list_item); /* Free any pending USB requests from last session */ spin_lock_irqsave(&ctxt->lock, flags); free_reqs(ctxt); if (kref_put(&ctxt->kref, diag_context_release)) /* diag_context_release called spin_unlock already */ local_irq_restore(flags); else spin_unlock_irqrestore(&ctxt->lock, flags); } static int diag_function_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct diag_context *ctxt = func_to_diag(f); struct usb_ep *ep; int status = -ENODEV; intf_desc.bInterfaceNumber = usb_interface_id(c, f); ep = usb_ep_autoconfig(cdev->gadget, &fs_bulk_in_desc); if (!ep) goto fail; ctxt->in = ep; ep->driver_data = ctxt; ep = usb_ep_autoconfig(cdev->gadget, &fs_bulk_out_desc); if (!ep) goto fail; ctxt->out = ep; ep->driver_data = ctxt; status = -ENOMEM; /* copy descriptors, and track endpoint copies */ f->fs_descriptors = usb_copy_descriptors(fs_diag_desc); if (!f->fs_descriptors) goto fail; if (gadget_is_dualspeed(c->cdev->gadget)) { hs_bulk_in_desc.bEndpointAddress = fs_bulk_in_desc.bEndpointAddress; hs_bulk_out_desc.bEndpointAddress = fs_bulk_out_desc.bEndpointAddress; /* copy descriptors, and track endpoint copies */ f->hs_descriptors = usb_copy_descriptors(hs_diag_desc); if (!f->hs_descriptors) goto fail; } if (gadget_is_superspeed(c->cdev->gadget)) { ss_bulk_in_desc.bEndpointAddress = fs_bulk_in_desc.bEndpointAddress; ss_bulk_out_desc.bEndpointAddress = fs_bulk_out_desc.bEndpointAddress; /* copy descriptors, and track endpoint copies */ f->ss_descriptors = usb_copy_descriptors(ss_diag_desc); if (!f->ss_descriptors) goto fail; } diag_update_pid_and_serial_num(ctxt); return 0; fail: if (f->ss_descriptors) usb_free_descriptors(f->ss_descriptors); if (f->hs_descriptors) usb_free_descriptors(f->hs_descriptors); if (f->fs_descriptors) usb_free_descriptors(f->fs_descriptors); if (ctxt->out) ctxt->out->driver_data = NULL; if (ctxt->in) ctxt->in->driver_data = NULL; return status; } int diag_function_add(struct usb_configuration *c, const char *name, int (*update_pid)(uint32_t, const char *)) { struct diag_context *dev; struct usb_diag_ch *_ch; int found = 0, ret; DBG(c->cdev, "diag_function_add\n"); list_for_each_entry(_ch, &usb_diag_ch_list, list) { if (!strcmp(name, _ch->name)) { found = 1; break; } } if (!found) { ERROR(c->cdev, "unable to get diag usb channel\n"); return -ENODEV; } dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; list_add_tail(&dev->list_item, &diag_dev_list); /* * A few diag devices can point to the same channel, in case that * the diag devices belong to different configurations, however * only the active diag device will claim the channel by setting * the ch->priv_usb (see diag_function_set_alt). */ dev->ch = _ch; dev->update_pid_and_serial_num = update_pid; dev->cdev = c->cdev; dev->function.name = _ch->name; dev->function.fs_descriptors = fs_diag_desc; dev->function.hs_descriptors = hs_diag_desc; dev->function.bind = diag_function_bind; dev->function.unbind = diag_function_unbind; dev->function.set_alt = diag_function_set_alt; dev->function.disable = diag_function_disable; kref_init(&dev->kref); spin_lock_init(&dev->lock); INIT_LIST_HEAD(&dev->read_pool); INIT_LIST_HEAD(&dev->write_pool); ret = usb_add_function(c, &dev->function); if (ret) { INFO(c->cdev, "usb_add_function failed\n"); list_del(&dev->list_item); kfree(dev); } return ret; } #if defined(CONFIG_DEBUG_FS) static char debug_buffer[PAGE_SIZE]; static ssize_t debug_read_stats(struct file *file, char __user *ubuf, size_t count, loff_t *ppos) { char *buf = debug_buffer; int temp = 0; struct usb_diag_ch *ch; list_for_each_entry(ch, &usb_diag_ch_list, list) { struct diag_context *ctxt = ch->priv_usb; unsigned long flags; if (ctxt) { spin_lock_irqsave(&ctxt->lock, flags); temp += scnprintf(buf + temp, PAGE_SIZE - temp, "---Name: %s---\n" "endpoints: %s, %s\n" "dpkts_tolaptop: %lu\n" "dpkts_tomodem: %lu\n" "pkts_tolaptop_pending: %u\n", ch->name, ctxt->in->name, ctxt->out->name, ctxt->dpkts_tolaptop, ctxt->dpkts_tomodem, ctxt->dpkts_tolaptop_pending); spin_unlock_irqrestore(&ctxt->lock, flags); } } return simple_read_from_buffer(ubuf, count, ppos, buf, temp); } static ssize_t debug_reset_stats(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct usb_diag_ch *ch; list_for_each_entry(ch, &usb_diag_ch_list, list) { struct diag_context *ctxt = ch->priv_usb; unsigned long flags; if (ctxt) { spin_lock_irqsave(&ctxt->lock, flags); ctxt->dpkts_tolaptop = 0; ctxt->dpkts_tomodem = 0; ctxt->dpkts_tolaptop_pending = 0; spin_unlock_irqrestore(&ctxt->lock, flags); } } return count; } static int debug_open(struct inode *inode, struct file *file) { return 0; } static const struct file_operations debug_fdiag_ops = { .open = debug_open, .read = debug_read_stats, .write = debug_reset_stats, }; struct dentry *dent_diag; static void fdiag_debugfs_init(void) { struct dentry *dent_diag_status; dent_diag = debugfs_create_dir("usb_diag", 0); if (!dent_diag || IS_ERR(dent_diag)) return; dent_diag_status = debugfs_create_file("status", 0444, dent_diag, 0, &debug_fdiag_ops); if (!dent_diag_status || IS_ERR(dent_diag_status)) { debugfs_remove(dent_diag); dent_diag = NULL; return; } } static void fdiag_debugfs_remove(void) { debugfs_remove_recursive(dent_diag); } #else static inline void fdiag_debugfs_init(void) {} static inline void fdiag_debugfs_remove(void) {} #endif static void diag_cleanup(void) { struct list_head *act, *tmp; struct usb_diag_ch *_ch; unsigned long flags; fdiag_debugfs_remove(); list_for_each_safe(act, tmp, &usb_diag_ch_list) { _ch = list_entry(act, struct usb_diag_ch, list); spin_lock_irqsave(&ch_lock, flags); /* Free if diagchar is not using the channel anymore */ if (!_ch->priv) { list_del(&_ch->list); kfree(_ch); } spin_unlock_irqrestore(&ch_lock, flags); } } static int diag_setup(void) { INIT_LIST_HEAD(&diag_dev_list); fdiag_debugfs_init(); return 0; }