/* * Copyright (c) 2012-2015 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include "wil6210.h" #include "txrx.h" #include "wmi.h" #include "boot_loader.h" #define WAIT_FOR_DISCONNECT_TIMEOUT_MS 2000 #define WAIT_FOR_DISCONNECT_INTERVAL_MS 10 bool debug_fw; /* = false; */ module_param(debug_fw, bool, S_IRUGO); MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug"); bool no_fw_recovery; module_param(no_fw_recovery, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery"); /* if not set via modparam, will be set to default value of 1/8 of * rx ring size during init flow */ unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT; module_param(rx_ring_overflow_thrsh, ushort, S_IRUGO); MODULE_PARM_DESC(rx_ring_overflow_thrsh, " RX ring overflow threshold in descriptors."); /* We allow allocation of more than 1 page buffers to support large packets. * It is suboptimal behavior performance wise in case MTU above page size. */ unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD; static int mtu_max_set(const char *val, const struct kernel_param *kp) { int ret; /* sets mtu_max directly. no need to restore it in case of * illegal value since we assume this will fail insmod */ ret = param_set_uint(val, kp); if (ret) return ret; if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU) ret = -EINVAL; return ret; } static struct kernel_param_ops mtu_max_ops = { .set = mtu_max_set, .get = param_get_uint, }; module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, S_IRUGO); MODULE_PARM_DESC(mtu_max, " Max MTU value."); static uint rx_ring_order = WIL_RX_RING_SIZE_ORDER_DEFAULT; static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT; static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT; static int ring_order_set(const char *val, const struct kernel_param *kp) { int ret; uint x; ret = kstrtouint(val, 0, &x); if (ret) return ret; if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX)) return -EINVAL; *((uint *)kp->arg) = x; return 0; } static struct kernel_param_ops ring_order_ops = { .set = ring_order_set, .get = param_get_uint, }; module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, S_IRUGO); MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order"); module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, S_IRUGO); MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order"); module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, S_IRUGO); MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order"); #define RST_DELAY (20) /* msec, for loop in @wil_target_reset */ #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */ /* * Due to a hardware issue, * one has to read/write to/from NIC in 32-bit chunks; * regular memcpy_fromio and siblings will * not work on 64-bit platform - it uses 64-bit transactions * * Force 32-bit transactions to enable NIC on 64-bit platforms * * To avoid byte swap on big endian host, __raw_{read|write}l * should be used - {read|write}l would swap bytes to provide * little endian on PCI value in host endianness. */ void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src, size_t count) { u32 *d = dst; const volatile u32 __iomem *s = src; /* size_t is unsigned, if (count%4 != 0) it will wrap */ for (count += 4; count > 4; count -= 4) *d++ = __raw_readl(s++); } void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src, size_t count) { volatile u32 __iomem *d = dst; const u32 *s = src; for (count += 4; count > 4; count -= 4) __raw_writel(*s++, d++); } static void wil_disconnect_cid(struct wil6210_priv *wil, int cid, u16 reason_code, bool from_event) __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock) { uint i; struct net_device *ndev = wil_to_ndev(wil); struct wireless_dev *wdev = wil->wdev; struct wil_sta_info *sta = &wil->sta[cid]; might_sleep(); wil_dbg_misc(wil, "%s(CID %d, status %d)\n", __func__, cid, sta->status); if (sta->status != wil_sta_unused) { if (!from_event) wmi_disconnect_sta(wil, sta->addr, reason_code); switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: /* AP-like interface */ cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL); break; default: break; } sta->status = wil_sta_unused; } for (i = 0; i < WIL_STA_TID_NUM; i++) { struct wil_tid_ampdu_rx *r; spin_lock_bh(&sta->tid_rx_lock); r = sta->tid_rx[i]; sta->tid_rx[i] = NULL; wil_tid_ampdu_rx_free(wil, r); spin_unlock_bh(&sta->tid_rx_lock); } for (i = 0; i < ARRAY_SIZE(wil->vring_tx); i++) { if (wil->vring2cid_tid[i][0] == cid) wil_vring_fini_tx(wil, i); } memset(&sta->stats, 0, sizeof(sta->stats)); } static void _wil6210_disconnect(struct wil6210_priv *wil, const u8 *bssid, u16 reason_code, bool from_event) { int cid = -ENOENT; struct net_device *ndev = wil_to_ndev(wil); struct wireless_dev *wdev = wil->wdev; might_sleep(); wil_dbg_misc(wil, "%s(bssid=%pM, reason=%d, ev%s)\n", __func__, bssid, reason_code, from_event ? "+" : "-"); /* Cases are: * - disconnect single STA, still connected * - disconnect single STA, already disconnected * - disconnect all * * For "disconnect all", there are 3 options: * - bssid == NULL * - bssid is broadcast address (ff:ff:ff:ff:ff:ff) * - bssid is our MAC address */ if (bssid && !is_broadcast_ether_addr(bssid) && !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) { cid = wil_find_cid(wil, bssid); wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n", bssid, cid, reason_code); if (cid >= 0) /* disconnect 1 peer */ wil_disconnect_cid(wil, cid, reason_code, from_event); } else { /* all */ wil_dbg_misc(wil, "Disconnect all\n"); for (cid = 0; cid < WIL6210_MAX_CID; cid++) wil_disconnect_cid(wil, cid, reason_code, from_event); } /* link state */ switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: wil_bcast_fini(wil); netif_tx_stop_all_queues(ndev); netif_carrier_off(ndev); if (test_bit(wil_status_fwconnected, wil->status)) { clear_bit(wil_status_fwconnected, wil->status); cfg80211_disconnected(ndev, reason_code, NULL, 0, GFP_KERNEL); } else if (test_bit(wil_status_fwconnecting, wil->status)) { cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0, WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL); } clear_bit(wil_status_fwconnecting, wil->status); break; default: break; } } static void wil_disconnect_worker(struct work_struct *work) { struct wil6210_priv *wil = container_of(work, struct wil6210_priv, disconnect_worker); mutex_lock(&wil->mutex); _wil6210_disconnect(wil, NULL, WLAN_REASON_UNSPECIFIED, false); mutex_unlock(&wil->mutex); } static void wil_connect_timer_fn(ulong x) { struct wil6210_priv *wil = (void *)x; wil_dbg_misc(wil, "Connect timeout\n"); /* reschedule to thread context - disconnect won't * run from atomic context */ schedule_work(&wil->disconnect_worker); } static void wil_scan_timer_fn(ulong x) { struct wil6210_priv *wil = (void *)x; clear_bit(wil_status_fwready, wil->status); wil_err(wil, "Scan timeout detected, start fw error recovery\n"); wil_fw_error_recovery(wil); } static int wil_wait_for_recovery(struct wil6210_priv *wil) { if (wait_event_interruptible(wil->wq, wil->recovery_state != fw_recovery_pending)) { wil_err(wil, "Interrupt, canceling recovery\n"); return -ERESTARTSYS; } if (wil->recovery_state != fw_recovery_running) { wil_info(wil, "Recovery cancelled\n"); return -EINTR; } wil_info(wil, "Proceed with recovery\n"); return 0; } void wil_set_recovery_state(struct wil6210_priv *wil, int state) { wil_dbg_misc(wil, "%s(%d -> %d)\n", __func__, wil->recovery_state, state); wil->recovery_state = state; wake_up_interruptible(&wil->wq); } static void wil_fw_error_worker(struct work_struct *work) { struct wil6210_priv *wil = container_of(work, struct wil6210_priv, fw_error_worker); struct wireless_dev *wdev = wil->wdev; wil_dbg_misc(wil, "fw error worker\n"); if (!netif_running(wil_to_ndev(wil))) { wil_info(wil, "No recovery - interface is down\n"); return; } /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO * passed since last recovery attempt */ if (time_is_after_jiffies(wil->last_fw_recovery + WIL6210_FW_RECOVERY_TO)) wil->recovery_count++; else wil->recovery_count = 1; /* fw was alive for a long time */ if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) { wil_err(wil, "too many recovery attempts (%d), giving up\n", wil->recovery_count); return; } wil->last_fw_recovery = jiffies; mutex_lock(&wil->mutex); switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_MONITOR: wil_info(wil, "fw error recovery requested (try %d)...\n", wil->recovery_count); if (!no_fw_recovery) wil->recovery_state = fw_recovery_running; if (0 != wil_wait_for_recovery(wil)) break; __wil_down(wil); __wil_up(wil); break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: wil_info(wil, "No recovery for AP-like interface\n"); /* recovery in these modes is done by upper layers */ break; default: wil_err(wil, "No recovery - unknown interface type %d\n", wdev->iftype); break; } mutex_unlock(&wil->mutex); } static int wil_find_free_vring(struct wil6210_priv *wil) { int i; for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) { if (!wil->vring_tx[i].va) return i; } return -EINVAL; } int wil_bcast_init(struct wil6210_priv *wil) { int ri = wil->bcast_vring, rc; if ((ri >= 0) && wil->vring_tx[ri].va) return 0; ri = wil_find_free_vring(wil); if (ri < 0) return ri; wil->bcast_vring = ri; rc = wil_vring_init_bcast(wil, ri, 1 << bcast_ring_order); if (rc) wil->bcast_vring = -1; return rc; } void wil_bcast_fini(struct wil6210_priv *wil) { int ri = wil->bcast_vring; if (ri < 0) return; wil->bcast_vring = -1; wil_vring_fini_tx(wil, ri); } static void wil_connect_worker(struct work_struct *work) { int rc, cid, ringid; struct wil6210_priv *wil = container_of(work, struct wil6210_priv, connect_worker); struct net_device *ndev = wil_to_ndev(wil); mutex_lock(&wil->mutex); cid = wil->pending_connect_cid; if (cid < 0) { wil_err(wil, "No connection pending\n"); goto out; } ringid = wil_find_free_vring(wil); if (ringid < 0) { wil_err(wil, "No free vring found\n"); goto out; } wil_dbg_wmi(wil, "Configure for connection CID %d vring %d\n", cid, ringid); rc = wil_vring_init_tx(wil, ringid, 1 << tx_ring_order, cid, 0); wil->pending_connect_cid = -1; if (rc == 0) { wil->sta[cid].status = wil_sta_connected; netif_tx_wake_all_queues(ndev); } else { wil_disconnect_cid(wil, cid, WLAN_REASON_UNSPECIFIED, true); } out: mutex_unlock(&wil->mutex); } int wil_priv_init(struct wil6210_priv *wil) { uint i; wil_dbg_misc(wil, "%s()\n", __func__); memset(wil->sta, 0, sizeof(wil->sta)); for (i = 0; i < WIL6210_MAX_CID; i++) spin_lock_init(&wil->sta[i].tid_rx_lock); mutex_init(&wil->mutex); mutex_init(&wil->wmi_mutex); mutex_init(&wil->back_rx_mutex); mutex_init(&wil->back_tx_mutex); mutex_init(&wil->probe_client_mutex); init_completion(&wil->wmi_ready); init_completion(&wil->wmi_call); wil->pending_connect_cid = -1; wil->bcast_vring = -1; setup_timer(&wil->connect_timer, wil_connect_timer_fn, (ulong)wil); setup_timer(&wil->scan_timer, wil_scan_timer_fn, (ulong)wil); INIT_WORK(&wil->connect_worker, wil_connect_worker); INIT_WORK(&wil->disconnect_worker, wil_disconnect_worker); INIT_WORK(&wil->wmi_event_worker, wmi_event_worker); INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker); INIT_WORK(&wil->back_rx_worker, wil_back_rx_worker); INIT_WORK(&wil->back_tx_worker, wil_back_tx_worker); INIT_WORK(&wil->probe_client_worker, wil_probe_client_worker); INIT_LIST_HEAD(&wil->pending_wmi_ev); INIT_LIST_HEAD(&wil->back_rx_pending); INIT_LIST_HEAD(&wil->back_tx_pending); INIT_LIST_HEAD(&wil->probe_client_pending); spin_lock_init(&wil->wmi_ev_lock); init_waitqueue_head(&wil->wq); wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi"); if (!wil->wmi_wq) return -EAGAIN; wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service"); if (!wil->wq_service) goto out_wmi_wq; wil->last_fw_recovery = jiffies; wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT; wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT; wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT; wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT; if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT) rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT; return 0; out_wmi_wq: destroy_workqueue(wil->wmi_wq); return -EAGAIN; } /** * wil6210_disconnect - disconnect one connection * @wil: driver context * @bssid: peer to disconnect, NULL to disconnect all * @reason_code: Reason code for the Disassociation frame * @from_event: whether is invoked from FW event handler * * Disconnect and release associated resources. If invoked not from the * FW event handler, issue WMI command(s) to trigger MAC disconnect. */ void wil6210_disconnect(struct wil6210_priv *wil, const u8 *bssid, u16 reason_code, bool from_event) { wil_dbg_misc(wil, "%s()\n", __func__); del_timer_sync(&wil->connect_timer); _wil6210_disconnect(wil, bssid, reason_code, from_event); } void wil_priv_deinit(struct wil6210_priv *wil) { wil_dbg_misc(wil, "%s()\n", __func__); wil_set_recovery_state(wil, fw_recovery_idle); del_timer_sync(&wil->scan_timer); cancel_work_sync(&wil->disconnect_worker); cancel_work_sync(&wil->fw_error_worker); mutex_lock(&wil->mutex); wil6210_disconnect(wil, NULL, WLAN_REASON_DEAUTH_LEAVING, false); mutex_unlock(&wil->mutex); wmi_event_flush(wil); wil_back_rx_flush(wil); cancel_work_sync(&wil->back_rx_worker); wil_back_tx_flush(wil); cancel_work_sync(&wil->back_tx_worker); wil_probe_client_flush(wil); cancel_work_sync(&wil->probe_client_worker); destroy_workqueue(wil->wq_service); destroy_workqueue(wil->wmi_wq); } static inline void wil_halt_cpu(struct wil6210_priv *wil) { wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST); wil_w(wil, RGF_USER_MAC_CPU_0, BIT_USER_MAC_CPU_MAN_RST); } static inline void wil_release_cpu(struct wil6210_priv *wil) { /* Start CPU */ wil_w(wil, RGF_USER_USER_CPU_0, 1); } static int wil_target_reset(struct wil6210_priv *wil) { int delay = 0; u32 x, x1 = 0; wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name); /* Clear MAC link up */ wil_s(wil, RGF_HP_CTRL, BIT(15)); wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_HPAL_PERST_FROM_PAD); wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST); wil_halt_cpu(wil); /* clear all boot loader "ready" bits */ wil_w(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v0, boot_loader_ready), 0); /* Clear Fw Download notification */ wil_c(wil, RGF_USER_USAGE_6, BIT(0)); wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN); /* XTAL stabilization should take about 3ms */ usleep_range(5000, 7000); x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS); if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) { wil_err(wil, "Xtal stabilization timeout\n" "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x); return -ETIME; } /* switch 10k to XTAL*/ wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF); /* 40 MHz */ wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL); wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f); wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xFE000000); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003F); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xFFE7FE00); wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0); wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003); /* reset A2 PCIE AHB */ wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0); /* wait until device ready. typical time is 20..80 msec */ do { msleep(RST_DELAY); x = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v0, boot_loader_ready)); if (x1 != x) { wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n", x1, x); x1 = x; } if (delay++ > RST_COUNT) { wil_err(wil, "Reset not completed, bl.ready 0x%08x\n", x); return -ETIME; } } while (x != BL_READY); wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD); /* enable fix for HW bug related to the SA/DA swap in AP Rx */ wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN | BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC); wil_dbg_misc(wil, "Reset completed in %d ms\n", delay * RST_DELAY); return 0; } void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r) { le32_to_cpus(&r->base); le16_to_cpus(&r->entry_size); le16_to_cpus(&r->size); le32_to_cpus(&r->tail); le32_to_cpus(&r->head); } static int wil_get_bl_info(struct wil6210_priv *wil) { struct net_device *ndev = wil_to_ndev(wil); union { struct bl_dedicated_registers_v0 bl0; struct bl_dedicated_registers_v1 bl1; } bl; u32 bl_ver; u8 *mac; u16 rf_status; wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL), sizeof(bl)); bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version); mac = bl.bl0.mac_address; if (bl_ver == 0) { le32_to_cpus(&bl.bl0.rf_type); le32_to_cpus(&bl.bl0.baseband_type); rf_status = 0; /* actually, unknown */ wil_info(wil, "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n", bl_ver, mac, bl.bl0.rf_type, bl.bl0.baseband_type); wil_info(wil, "Boot Loader build unknown for struct v0\n"); } else { le16_to_cpus(&bl.bl1.rf_type); rf_status = le16_to_cpu(bl.bl1.rf_status); le32_to_cpus(&bl.bl1.baseband_type); le16_to_cpus(&bl.bl1.bl_version_subminor); le16_to_cpus(&bl.bl1.bl_version_build); wil_info(wil, "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n", bl_ver, mac, bl.bl1.rf_type, rf_status, bl.bl1.baseband_type); wil_info(wil, "Boot Loader build %d.%d.%d.%d\n", bl.bl1.bl_version_major, bl.bl1.bl_version_minor, bl.bl1.bl_version_subminor, bl.bl1.bl_version_build); } if (!is_valid_ether_addr(mac)) { wil_err(wil, "BL: Invalid MAC %pM\n", mac); return -EINVAL; } ether_addr_copy(ndev->perm_addr, mac); if (!is_valid_ether_addr(ndev->dev_addr)) ether_addr_copy(ndev->dev_addr, mac); if (rf_status) {/* bad RF cable? */ wil_err(wil, "RF communication error 0x%04x", rf_status); return -EAGAIN; } return 0; } static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err) { u32 bl_assert_code, bl_assert_blink, bl_magic_number; u32 bl_ver = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v0, boot_loader_struct_version)); if (bl_ver < 2) return; bl_assert_code = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_assert_code)); bl_assert_blink = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_assert_blink)); bl_magic_number = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_magic_number)); if (is_err) { wil_err(wil, "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n", bl_assert_code, bl_assert_blink, bl_magic_number); } else { wil_dbg_misc(wil, "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n", bl_assert_code, bl_assert_blink, bl_magic_number); } } static int wil_wait_for_fw_ready(struct wil6210_priv *wil) { ulong to = msecs_to_jiffies(1000); ulong left = wait_for_completion_timeout(&wil->wmi_ready, to); if (0 == left) { wil_err(wil, "Firmware not ready\n"); return -ETIME; } else { wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n", jiffies_to_msecs(to-left), wil->hw_version); } return 0; } /* * We reset all the structures, and we reset the UMAC. * After calling this routine, you're expected to reload * the firmware. */ int wil_reset(struct wil6210_priv *wil, bool load_fw) { int rc; wil_dbg_misc(wil, "%s()\n", __func__); WARN_ON(!mutex_is_locked(&wil->mutex)); WARN_ON(test_bit(wil_status_napi_en, wil->status)); if (debug_fw) { static const u8 mac[ETH_ALEN] = { 0x00, 0xde, 0xad, 0x12, 0x34, 0x56, }; struct net_device *ndev = wil_to_ndev(wil); ether_addr_copy(ndev->perm_addr, mac); ether_addr_copy(ndev->dev_addr, ndev->perm_addr); return 0; } if (wil->hw_version == HW_VER_UNKNOWN) return -ENODEV; set_bit(wil_status_resetting, wil->status); cancel_work_sync(&wil->disconnect_worker); wil6210_disconnect(wil, NULL, WLAN_REASON_DEAUTH_LEAVING, false); wil_bcast_fini(wil); /* prevent NAPI from being scheduled and prevent wmi commands */ mutex_lock(&wil->wmi_mutex); bitmap_zero(wil->status, wil_status_last); mutex_unlock(&wil->wmi_mutex); if (wil->scan_request) { wil_dbg_misc(wil, "Abort scan_request 0x%p\n", wil->scan_request); del_timer_sync(&wil->scan_timer); cfg80211_scan_done(wil->scan_request, true); wil->scan_request = NULL; } wil_mask_irq(wil); wmi_event_flush(wil); flush_workqueue(wil->wq_service); flush_workqueue(wil->wmi_wq); wil_bl_crash_info(wil, false); rc = wil_target_reset(wil); wil_rx_fini(wil); if (rc) { wil_bl_crash_info(wil, true); return rc; } rc = wil_get_bl_info(wil); if (rc == -EAGAIN && !load_fw) /* ignore RF error if not going up */ rc = 0; if (rc) return rc; if (load_fw) { wil_info(wil, "Use firmware <%s> + board <%s>\n", WIL_FW_NAME, WIL_FW2_NAME); wil_halt_cpu(wil); /* Loading f/w from the file */ rc = wil_request_firmware(wil, WIL_FW_NAME); if (rc) return rc; rc = wil_request_firmware(wil, WIL_FW2_NAME); if (rc) return rc; /* Mark FW as loaded from host */ wil_s(wil, RGF_USER_USAGE_6, 1); /* clear any interrupts which on-card-firmware * may have set */ wil6210_clear_irq(wil); /* CAF_ICR - clear and mask */ /* it is W1C, clear by writing back same value */ wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0); wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0); wil_release_cpu(wil); } /* init after reset */ wil->pending_connect_cid = -1; wil->ap_isolate = 0; reinit_completion(&wil->wmi_ready); reinit_completion(&wil->wmi_call); if (load_fw) { wil_configure_interrupt_moderation(wil); wil_unmask_irq(wil); /* we just started MAC, wait for FW ready */ rc = wil_wait_for_fw_ready(wil); if (rc == 0) /* check FW is responsive */ rc = wmi_echo(wil); } return rc; } void wil_fw_error_recovery(struct wil6210_priv *wil) { wil_dbg_misc(wil, "starting fw error recovery\n"); if (test_bit(wil_status_resetting, wil->status)) { wil_info(wil, "Reset already in progress\n"); return; } wil->recovery_state = fw_recovery_pending; schedule_work(&wil->fw_error_worker); } int __wil_up(struct wil6210_priv *wil) { struct net_device *ndev = wil_to_ndev(wil); struct wireless_dev *wdev = wil->wdev; int rc; WARN_ON(!mutex_is_locked(&wil->mutex)); rc = wil_reset(wil, true); if (rc) return rc; /* Rx VRING. After MAC and beacon */ rc = wil_rx_init(wil, 1 << rx_ring_order); if (rc) return rc; switch (wdev->iftype) { case NL80211_IFTYPE_STATION: wil_dbg_misc(wil, "type: STATION\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_AP: wil_dbg_misc(wil, "type: AP\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_P2P_CLIENT: wil_dbg_misc(wil, "type: P2P_CLIENT\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_P2P_GO: wil_dbg_misc(wil, "type: P2P_GO\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_MONITOR: wil_dbg_misc(wil, "type: Monitor\n"); ndev->type = ARPHRD_IEEE80211_RADIOTAP; /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */ break; default: return -EOPNOTSUPP; } /* MAC address - pre-requisite for other commands */ wmi_set_mac_address(wil, ndev->dev_addr); wil_dbg_misc(wil, "NAPI enable\n"); napi_enable(&wil->napi_rx); napi_enable(&wil->napi_tx); set_bit(wil_status_napi_en, wil->status); if (wil->platform_ops.bus_request) wil->platform_ops.bus_request(wil->platform_handle, WIL_MAX_BUS_REQUEST_KBPS); return 0; } int wil_up(struct wil6210_priv *wil) { int rc; wil_dbg_misc(wil, "%s()\n", __func__); mutex_lock(&wil->mutex); rc = __wil_up(wil); mutex_unlock(&wil->mutex); return rc; } int __wil_down(struct wil6210_priv *wil) { int iter = WAIT_FOR_DISCONNECT_TIMEOUT_MS / WAIT_FOR_DISCONNECT_INTERVAL_MS; WARN_ON(!mutex_is_locked(&wil->mutex)); if (wil->platform_ops.bus_request) wil->platform_ops.bus_request(wil->platform_handle, 0); wil_disable_irq(wil); if (test_and_clear_bit(wil_status_napi_en, wil->status)) { napi_disable(&wil->napi_rx); napi_disable(&wil->napi_tx); wil_dbg_misc(wil, "NAPI disable\n"); } wil_enable_irq(wil); if (wil->scan_request) { wil_dbg_misc(wil, "Abort scan_request 0x%p\n", wil->scan_request); del_timer_sync(&wil->scan_timer); cfg80211_scan_done(wil->scan_request, true); wil->scan_request = NULL; } if (test_bit(wil_status_fwconnected, wil->status) || test_bit(wil_status_fwconnecting, wil->status)) wmi_send(wil, WMI_DISCONNECT_CMDID, NULL, 0); /* make sure wil is idle (not connected) */ mutex_unlock(&wil->mutex); while (iter--) { int idle = !test_bit(wil_status_fwconnected, wil->status) && !test_bit(wil_status_fwconnecting, wil->status); if (idle) break; msleep(WAIT_FOR_DISCONNECT_INTERVAL_MS); } mutex_lock(&wil->mutex); if (iter < 0) wil_err(wil, "timeout waiting for idle FW/HW\n"); wil_reset(wil, false); return 0; } int wil_down(struct wil6210_priv *wil) { int rc; wil_dbg_misc(wil, "%s()\n", __func__); wil_set_recovery_state(wil, fw_recovery_idle); mutex_lock(&wil->mutex); rc = __wil_down(wil); mutex_unlock(&wil->mutex); return rc; } int wil_find_cid(struct wil6210_priv *wil, const u8 *mac) { int i; int rc = -ENOENT; for (i = 0; i < ARRAY_SIZE(wil->sta); i++) { if ((wil->sta[i].status != wil_sta_unused) && ether_addr_equal(wil->sta[i].addr, mac)) { rc = i; break; } } return rc; }