/* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ /* * I2C controller driver for Qualcomm Technologies Inc platforms */ #define pr_fmt(fmt) "#%d " fmt "\n", __LINE__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG static const enum msm_i2_debug_level DEFAULT_DBG_LVL = MSM_DBG; #else static const enum msm_i2_debug_level DEFAULT_DBG_LVL = MSM_ERR; #endif /* Forward declarations */ static bool i2c_msm_xfer_next_buf(struct i2c_msm_ctrl *ctrl); static int i2c_msm_xfer_wait_for_completion(struct i2c_msm_ctrl *ctrl, struct completion *complete); static int i2c_msm_pm_resume(struct device *dev); static void i2c_msm_pm_suspend(struct device *dev); static void i2c_msm_clk_path_init(struct i2c_msm_ctrl *ctrl); /* string table for enum i2c_msm_xfer_mode_id */ const char * const i2c_msm_mode_str_tbl[] = { "FIFO", "BLOCK", "DMA", "None", }; static const u32 i2c_msm_fifo_block_sz_tbl[] = {16, 16 , 32, 0}; /* from enum i2c_msm_xfer_mode_id to qup_io_modes register values */ static const u32 i2c_msm_mode_to_reg_tbl[] = { 0x0, /* map I2C_MSM_XFER_MODE_FIFO -> binary 00 */ 0x1, /* map I2C_MSM_XFER_MODE_BLOCK -> binary 01 */ 0x3 /* map I2C_MSM_XFER_MODE_DMA -> binary 11 */ }; const char *i2c_msm_err_str_table[] = { [I2C_MSM_NO_ERR] = "NONE", [I2C_MSM_ERR_NACK] = "NACK: slave not responding, ensure its powered", [I2C_MSM_ERR_ARB_LOST] = "ARB_LOST", [I2C_MSM_ERR_BUS_ERR] = "BUS ERROR:noisy bus/unexpected start/stop tag", [I2C_MSM_ERR_TIMEOUT] = "TIMEOUT_ERROR", [I2C_MSM_ERR_CORE_CLK] = "CLOCK OFF: Check Core Clock", [I2C_MSM_ERR_OVR_UNDR_RUN] = "OVER_UNDER_RUN_ERROR", }; static void i2c_msm_dbg_dump_diag(struct i2c_msm_ctrl *ctrl, bool use_param_vals, u32 status, u32 qup_op) { struct i2c_msm_xfer *xfer = &ctrl->xfer; const char *str = i2c_msm_err_str_table[xfer->err]; char buf[I2C_MSM_REG_2_STR_BUF_SZ]; if (!use_param_vals) { void __iomem *base = ctrl->rsrcs.base; status = readl_relaxed(base + QUP_I2C_STATUS); qup_op = readl_relaxed(base + QUP_OPERATIONAL); } if (xfer->err == I2C_MSM_ERR_TIMEOUT) { /* * if we are not the bus master or SDA/SCL is low then it may be * that slave is pulling the lines low. Otherwise it is likely a * GPIO issue */ if (!(status & QUP_BUS_MASTER)) snprintf(buf, I2C_MSM_REG_2_STR_BUF_SZ, "%s(val:%dmsec) misconfigured GPIO or slave pulling bus line(s) low\n", str, jiffies_to_msecs(xfer->timeout)); else snprintf(buf, I2C_MSM_REG_2_STR_BUF_SZ, "%s(val:%dmsec)", str, jiffies_to_msecs(xfer->timeout)); str = buf; } /* dump xfer details */ dev_err(ctrl->dev, "%s: msgs(n:%d cur:%d %s) bc(rx:%zu tx:%zu) mode:%s slv_addr:0x%0x MSTR_STS:0x%08x OPER:0x%08x\n", str, xfer->msg_cnt, xfer->cur_buf.msg_idx, xfer->cur_buf.is_rx ? "rx" : "tx", xfer->rx_cnt, xfer->tx_cnt, i2c_msm_mode_str_tbl[xfer->mode_id], xfer->msgs->addr, status, qup_op); } static u32 i2c_msm_reg_io_modes_out_blk_sz(u32 qup_io_modes) { return i2c_msm_fifo_block_sz_tbl[qup_io_modes & 0x3]; } static u32 i2c_msm_reg_io_modes_in_blk_sz(u32 qup_io_modes) { return i2c_msm_fifo_block_sz_tbl[BITS_AT(qup_io_modes, 5, 2)]; } static const u32 i2c_msm_fifo_sz_table[] = {2, 4 , 8, 16}; static void i2c_msm_qup_fifo_calc_size(struct i2c_msm_ctrl *ctrl) { u32 reg_data, output_fifo_size, input_fifo_size; struct i2c_msm_xfer_mode_fifo *fifo = &ctrl->xfer.fifo; /* Gurad to read fifo size only once. It hard wired and never changes */ if (fifo->input_fifo_sz && fifo->output_fifo_sz) return; reg_data = readl_relaxed(ctrl->rsrcs.base + QUP_IO_MODES); output_fifo_size = BITS_AT(reg_data, 2, 2); input_fifo_size = BITS_AT(reg_data, 7, 2); fifo->input_fifo_sz = i2c_msm_reg_io_modes_in_blk_sz(reg_data) * i2c_msm_fifo_sz_table[input_fifo_size]; fifo->output_fifo_sz = i2c_msm_reg_io_modes_out_blk_sz(reg_data) * i2c_msm_fifo_sz_table[output_fifo_size]; i2c_msm_dbg(ctrl, MSM_PROF, "QUP input-sz:%zu, input-sz:%zu", fifo->input_fifo_sz, fifo->output_fifo_sz); } /* * i2c_msm_tag_byte: accessor for tag as four bytes array */ static u8 *i2c_msm_tag_byte(struct i2c_msm_tag *tag, int byte_n) { return ((u8 *)tag) + byte_n; } /* * i2c_msm_buf_to_ptr: translates a xfer buf to a pointer into the i2c_msg data */ static u8 *i2c_msm_buf_to_ptr(struct i2c_msm_xfer_buf *buf) { struct i2c_msm_xfer *xfer = container_of(buf, struct i2c_msm_xfer, cur_buf); struct i2c_msg *msg = xfer->msgs + buf->msg_idx; return msg->buf + buf->byte_idx; } /* * tag_lookup_table[is_new_addr][is_last][is_rx] * @is_new_addr Is start tag required? (which requires two more bytes.) * @is_last Use the XXXXX_N_STOP tag varient * @is_rx READ/WRITE */ static const struct i2c_msm_tag tag_lookup_table[2][2][2] = { {{{QUP_TAG2_DATA_WRITE , 2}, {QUP_TAG2_DATA_READ , 2} }, /* last buffer */ {{QUP_TAG2_DATA_WRITE_N_STOP , 2}, {QUP_TAG2_DATA_READ_N_STOP , 2} } } , /* new addr */ {{{QUP_TAG2_START | (QUP_TAG2_DATA_WRITE << 16), 4}, {QUP_TAG2_START | (QUP_TAG2_DATA_READ << 16), 4} }, /* last buffer + new addr */ {{QUP_TAG2_START | (QUP_TAG2_DATA_WRITE_N_STOP << 16), 4}, {QUP_TAG2_START | (QUP_TAG2_DATA_READ_N_STOP << 16), 4} } }, }; /* * i2c_msm_tag_create: format a qup tag ver2 */ static struct i2c_msm_tag i2c_msm_tag_create(bool is_new_addr, bool is_last_buf, bool is_rx, u8 buf_len, u8 slave_addr) { struct i2c_msm_tag tag; /* Normalize booleans to 1 or 0 */ is_new_addr = is_new_addr ? 1 : 0; is_last_buf = is_last_buf ? 1 : 0; is_rx = is_rx ? 1 : 0; tag = tag_lookup_table[is_new_addr][is_last_buf][is_rx]; /* fill in the non-const value: the address and the length */ if (tag.len == I2C_MSM_TAG2_MAX_LEN) { *i2c_msm_tag_byte(&tag, 1) = slave_addr; *i2c_msm_tag_byte(&tag, 3) = buf_len; } else { *i2c_msm_tag_byte(&tag, 1) = buf_len; } return tag; } static int i2c_msm_qup_state_wait_valid(struct i2c_msm_ctrl *ctrl, enum i2c_msm_qup_state state, bool only_valid) { u32 status; void __iomem *base = ctrl->rsrcs.base; int ret = 0; int read_cnt = 0; do { status = readl_relaxed(base + QUP_STATE); ++read_cnt; /* * If only valid bit needs to be checked, requested state is * 'don't care' */ if (status & QUP_STATE_VALID) { if (only_valid) goto poll_valid_end; else if ((state & QUP_I2C_MAST_GEN) && (status & QUP_I2C_MAST_GEN)) goto poll_valid_end; else if ((status & QUP_STATE_MASK) == state) goto poll_valid_end; } /* * Sleeping for 1-1.5 ms for every 100 iterations and break if * iterations crosses the 1500 marks allows roughly 10-15 msec * of time to get the core to valid state. */ if (!(read_cnt % 100)) usleep_range(1000, 1500); } while (read_cnt <= 1500); ret = -ETIMEDOUT; dev_err(ctrl->dev, "error timeout on polling for valid state. check core_clk\n"); poll_valid_end: if (!only_valid) i2c_msm_prof_evnt_add(ctrl, MSM_DBG, I2C_MSM_VALID_END, /* aggregate ret and state */ (((-ret) & 0xff) | ((state & 0xf) << 16)), read_cnt, status); return ret; } static int i2c_msm_qup_state_set(struct i2c_msm_ctrl *ctrl, enum i2c_msm_qup_state state) { if (i2c_msm_qup_state_wait_valid(ctrl, 0, true)) return -EIO; writel_relaxed(state, ctrl->rsrcs.base + QUP_STATE); if (i2c_msm_qup_state_wait_valid(ctrl, state, false)) return -EIO; return 0; } static int i2c_msm_qup_sw_reset(struct i2c_msm_ctrl *ctrl) { int ret; writel_relaxed(1, ctrl->rsrcs.base + QUP_SW_RESET); /* * Ensure that QUP that reset state is written before waiting for a the * reset state to be valid. */ wmb(); ret = i2c_msm_qup_state_wait_valid(ctrl, QUP_STATE_RESET, false); if (ret) { if (atomic_read(&ctrl->xfer.is_active)) ctrl->xfer.err = I2C_MSM_ERR_CORE_CLK; dev_err(ctrl->dev, "error on issuing QUP software-reset\n"); } return ret; } /* * i2c_msm_qup_xfer_init_reset_state: setup QUP registers for the next run state * @pre QUP must be in reset state. * @pre xfer->mode_id is set to the chosen transfer state * @post update values in QUP_MX_*_COUNT, QUP_CONFIG, QUP_IO_MODES, * and QUP_OPERATIONAL_MASK registers */ static void i2c_msm_qup_xfer_init_reset_state(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer *xfer = &ctrl->xfer; void __iomem * const base = ctrl->rsrcs.base; u32 mx_rd_cnt = 0; u32 mx_wr_cnt = 0; u32 mx_in_cnt = 0; u32 mx_out_cnt = 0; u32 no_input = 0; u32 no_output = 0; u32 input_mode = i2c_msm_mode_to_reg_tbl[xfer->mode_id] << 12; u32 output_mode = i2c_msm_mode_to_reg_tbl[xfer->mode_id] << 10; u32 config_reg; u32 io_modes_reg; u32 op_mask; u32 rx_cnt = 0; u32 tx_cnt = 0; /* * DMA mode: * 1. QUP_MX_*_COUNT must be zero in all cases. * 2. both QUP_NO_INPUT and QUP_NO_OUPUT are unset. * FIFO mode: * 1. QUP_MX_INPUT_COUNT and QUP_MX_OUTPUT_COUNT are zero * 2. QUP_MX_READ_COUNT and QUP_MX_WRITE_COUNT reflect true count * 3. QUP_NO_INPUT and QUP_NO_OUPUT are set according to counts */ if (xfer->mode_id != I2C_MSM_XFER_MODE_DMA) { rx_cnt = xfer->rx_cnt + xfer->rx_ovrhd_cnt; tx_cnt = xfer->tx_cnt + xfer->tx_ovrhd_cnt; no_input = rx_cnt ? 0 : QUP_NO_INPUT; switch (xfer->mode_id) { case I2C_MSM_XFER_MODE_FIFO: mx_rd_cnt = rx_cnt; mx_wr_cnt = tx_cnt; break; case I2C_MSM_XFER_MODE_BLOCK: mx_in_cnt = rx_cnt; mx_out_cnt = tx_cnt; break; default: break; } } /* init DMA/BLOCK modes counter */ writel_relaxed(mx_in_cnt, base + QUP_MX_INPUT_COUNT); writel_relaxed(mx_out_cnt, base + QUP_MX_OUTPUT_COUNT); /* int FIFO mode counter */ writel_relaxed(mx_rd_cnt, base + QUP_MX_READ_COUNT); writel_relaxed(mx_wr_cnt, base + QUP_MX_WRITE_COUNT); /* * Set QUP mini-core to I2C tags ver-2 * sets NO_INPUT / NO_OUTPUT as needed */ config_reg = readl_relaxed(base + QUP_CONFIG); config_reg &= ~(QUP_NO_INPUT | QUP_NO_OUPUT | QUP_N_MASK | QUP_MINI_CORE_MASK); config_reg |= (no_input | no_output | QUP_N_VAL | QUP_MINI_CORE_I2C_VAL); writel_relaxed(config_reg, base + QUP_CONFIG); /* * Turns-on packing/unpacking * sets NO_INPUT / NO_OUTPUT as needed */ io_modes_reg = readl_relaxed(base + QUP_IO_MODES); io_modes_reg &= ~(QUP_INPUT_MODE | QUP_OUTPUT_MODE | QUP_PACK_EN | QUP_UNPACK_EN | QUP_OUTPUT_BIT_SHIFT_EN); io_modes_reg |= (input_mode | output_mode | QUP_PACK_EN | QUP_UNPACK_EN); writel_relaxed(io_modes_reg, base + QUP_IO_MODES); /* * mask INPUT and OUTPUT service flags in to prevent IRQs on FIFO status * change on DMA-mode transfers */ op_mask = (xfer->mode_id == I2C_MSM_XFER_MODE_DMA) ? (QUP_INPUT_SERVICE_MASK | QUP_OUTPUT_SERVICE_MASK) : 0 ; writel_relaxed(op_mask, base + QUP_OPERATIONAL_MASK); /* Ensure that QUP configuration is written before leaving this func */ wmb(); } /* * i2c_msm_clk_div_fld: * @clk_freq_out output clock frequency * @fs_div fs divider value * @ht_div high time divider value */ struct i2c_msm_clk_div_fld { u32 clk_freq_out; u8 fs_div; u8 ht_div; }; /* * divider values as per HW Designers */ static struct i2c_msm_clk_div_fld i2c_msm_clk_div_map[] = { {KHz(100), 124, 62}, {KHz(400), 28, 14}, {KHz(1000), 8, 5}, }; /* * @return zero on success * @fs_div when zero use value from table above, otherwise use given value * @ht_div when zero use value from table above, otherwise use given value * * Format the value to be configured into the clock divider register. This * register is configured every time core is moved from reset to run state. */ static int i2c_msm_set_mstr_clk_ctl(struct i2c_msm_ctrl *ctrl, int fs_div, int ht_div, int noise_rjct_scl, int noise_rjct_sda) { int ret = 0; int i; u32 reg_val = 0; struct i2c_msm_clk_div_fld *itr = i2c_msm_clk_div_map; /* set noise rejection values for scl and sda */ reg_val = I2C_MSM_SCL_NOISE_REJECTION(reg_val, noise_rjct_scl); reg_val = I2C_MSM_SDA_NOISE_REJECTION(reg_val, noise_rjct_sda); /* * find matching freq and set divider values unless they are forced * from parametr list */ for (i = 0; i < ARRAY_SIZE(i2c_msm_clk_div_map); ++i, ++itr) { if (ctrl->rsrcs.clk_freq_out == itr->clk_freq_out) { if (!fs_div) fs_div = itr->fs_div; if (!ht_div) ht_div = itr->ht_div; break; } } if (!fs_div) { dev_err(ctrl->dev, "For non-standard clock freq:%dKHz\n" "clk divider value fs_div should be supply by client through\n" "device tree\n", (ctrl->rsrcs.clk_freq_out / 1000)); return -EINVAL; } /* format values in clk-ctl cache */ ctrl->mstr_clk_ctl = (reg_val & (~0xff07ff)) | ((ht_div & 0xff) << 16) |(fs_div & 0xff); return ret; } /* * i2c_msm_qup_xfer_init_run_state: set qup regs which must be set *after* reset */ static void i2c_msm_qup_xfer_init_run_state(struct i2c_msm_ctrl *ctrl) { void __iomem *base = ctrl->rsrcs.base; writel_relaxed(ctrl->mstr_clk_ctl, base + QUP_I2C_MASTER_CLK_CTL); /* Ensure that QUP configuration is written before leaving this func */ wmb(); if (ctrl->dbgfs.dbg_lvl == MSM_DBG) { dev_info(ctrl->dev, "QUP state after programming for next transfers\n"); i2c_msm_dbg_qup_reg_dump(ctrl); } } static void i2c_msm_fifo_wr_word(struct i2c_msm_ctrl *ctrl, u32 data) { writel_relaxed(data, ctrl->rsrcs.base + QUP_OUT_FIFO_BASE); i2c_msm_dbg(ctrl, MSM_DBG, "OUT-FIFO:0x%08x", data); } static u32 i2c_msm_fifo_rd_word(struct i2c_msm_ctrl *ctrl, u32 *data) { u32 val; val = readl_relaxed(ctrl->rsrcs.base + QUP_IN_FIFO_BASE); i2c_msm_dbg(ctrl, MSM_DBG, "IN-FIFO :0x%08x", val); if (data) *data = val; return val; } /* * i2c_msm_fifo_wr_buf_flush: */ static void i2c_msm_fifo_wr_buf_flush(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_mode_fifo *fifo = &ctrl->xfer.fifo; u32 *word; if (!fifo->out_buf_idx) return; word = (u32 *) fifo->out_buf; i2c_msm_fifo_wr_word(ctrl, *word); fifo->out_buf_idx = 0; *word = 0; } /* * i2c_msm_fifo_wr_buf: * * @len buf size (in bytes) * @return number of bytes from buf which have been processed (written to * FIFO or kept in out buffer and will be written later) */ static size_t i2c_msm_fifo_wr_buf(struct i2c_msm_ctrl *ctrl, u8 *buf, size_t len) { struct i2c_msm_xfer_mode_fifo *fifo = &ctrl->xfer.fifo; int i; for (i = 0 ; i < len; ++i, ++buf) { fifo->out_buf[fifo->out_buf_idx] = *buf; ++fifo->out_buf_idx; if (fifo->out_buf_idx == 4) { u32 *word = (u32 *) fifo->out_buf; i2c_msm_fifo_wr_word(ctrl, *word); fifo->out_buf_idx = 0; *word = 0; } } return i; } static size_t i2c_msm_fifo_xfer_wr_tag(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf; size_t len = 0; if (ctrl->dbgfs.dbg_lvl >= MSM_DBG) { char str[I2C_MSM_REG_2_STR_BUF_SZ]; dev_info(ctrl->dev, "tag.val:0x%llx tag.len:%d %s\n", buf->out_tag.val, buf->out_tag.len, i2c_msm_dbg_tag_to_str(&buf->out_tag, str, sizeof(str))); } if (buf->out_tag.len) { len = i2c_msm_fifo_wr_buf(ctrl, (u8 *) &buf->out_tag.val, buf->out_tag.len); if (len < buf->out_tag.len) goto done; buf->out_tag = (struct i2c_msm_tag) {0}; } done: return len; } /* * i2c_msm_fifo_read: reads up to fifo size into user's buf */ static void i2c_msm_fifo_read_xfer_buf(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf; struct i2c_msg *msg = ctrl->xfer.msgs + buf->msg_idx; u8 *p_tag_val = (u8 *) &buf->in_tag.val; int buf_need_bc = msg->len - buf->byte_idx; u8 word[4]; int copy_bc; int word_idx; int word_bc; if (!buf->is_rx) return; while (buf_need_bc || buf->in_tag.len) { i2c_msm_fifo_rd_word(ctrl, (u32 *) word); word_bc = sizeof(word); word_idx = 0; /* * copy bytes from fifo word to tag. * @note buf->in_tag.len (max 2bytes) < word_bc (4bytes) */ if (buf->in_tag.len) { copy_bc = min_t(int, word_bc, buf->in_tag.len); memcpy(p_tag_val + buf->in_tag.len, word, copy_bc); word_idx += copy_bc; word_bc -= copy_bc; buf->in_tag.len -= copy_bc; if ((ctrl->dbgfs.dbg_lvl >= MSM_DBG) && !buf->in_tag.len) { char str[64]; dev_info(ctrl->dev, "%s\n", i2c_msm_dbg_tag_to_str(&buf->in_tag, str, sizeof(str))); } } /* copy bytes from fifo word to user's buffer */ copy_bc = min_t(int, word_bc, buf_need_bc); memcpy(msg->buf + buf->byte_idx, word + word_idx, copy_bc); buf->byte_idx += copy_bc; buf_need_bc -= copy_bc; } } /* * i2c_msm_fifo_write_xfer_buf: write xfer.cur_buf (user's-buf + tag) to fifo */ static void i2c_msm_fifo_write_xfer_buf(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf; size_t len; size_t tag_len; tag_len = buf->out_tag.len; len = i2c_msm_fifo_xfer_wr_tag(ctrl); if (len < tag_len) { dev_err(ctrl->dev, "error on writing tag to out FIFO\n"); return; } if (!buf->is_rx) { if (ctrl->dbgfs.dbg_lvl >= MSM_DBG) { char str[I2C_MSM_REG_2_STR_BUF_SZ]; int offset = 0; u8 *p = i2c_msm_buf_to_ptr(buf); int i; for (i = 0 ; i < len; ++i, ++p) offset += snprintf(str + offset, sizeof(str) - offset, "0x%x ", *p); dev_info(ctrl->dev, "data: %s\n", str); } len = i2c_msm_fifo_wr_buf(ctrl, i2c_msm_buf_to_ptr(buf), buf->len); if (len < buf->len) dev_err(ctrl->dev, "error on xfering buf with FIFO\n"); } } /* * i2c_msm_fifo_xfer_process: * * @pre transfer size is less then or equal to fifo size. * @pre QUP in run state/pause * @return zero on success */ static int i2c_msm_fifo_xfer_process(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_buf first_buf = ctrl->xfer.cur_buf; int ret; /* load fifo while in pause state to avoid race conditions */ ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_PAUSE); if (ret < 0) return ret; /* write all that goes to output fifo */ while (i2c_msm_xfer_next_buf(ctrl)) i2c_msm_fifo_write_xfer_buf(ctrl); i2c_msm_fifo_wr_buf_flush(ctrl); ctrl->xfer.cur_buf = first_buf; ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN); if (ret < 0) return ret; /* wait for input done interrupt */ ret = i2c_msm_xfer_wait_for_completion(ctrl, &ctrl->xfer.complete); if (ret < 0) return ret; /* read all from input fifo */ while (i2c_msm_xfer_next_buf(ctrl)) i2c_msm_fifo_read_xfer_buf(ctrl); return 0; } /* * i2c_msm_fifo_xfer: process transfer using fifo mode */ static int i2c_msm_fifo_xfer(struct i2c_msm_ctrl *ctrl) { int ret; i2c_msm_dbg(ctrl, MSM_DBG, "Starting FIFO transfer"); ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RESET); if (ret < 0) return ret; /* program qup registers */ i2c_msm_qup_xfer_init_reset_state(ctrl); ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN); if (ret < 0) return ret; /* program qup registers which must be set *after* reset */ i2c_msm_qup_xfer_init_run_state(ctrl); ret = i2c_msm_fifo_xfer_process(ctrl); return ret; } /* * i2c_msm_blk_init_struct: Allocate memory and initialize blk structure * * @return 0 on success or error code */ static int i2c_msm_blk_init_struct(struct i2c_msm_ctrl *ctrl) { u32 reg_data = readl_relaxed(ctrl->rsrcs.base + QUP_IO_MODES); int ret; struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk; blk->in_blk_sz = i2c_msm_reg_io_modes_in_blk_sz(reg_data), blk->out_blk_sz = i2c_msm_reg_io_modes_out_blk_sz(reg_data), blk->tx_cache = kmalloc(blk->out_blk_sz, GFP_KERNEL); if (!blk->tx_cache) { dev_err(ctrl->dev, "error on allocating memory for block tx_cache. malloc(size:%zu)\n", blk->out_blk_sz); ret = -ENOMEM; goto out_buf_err; } blk->rx_cache = kmalloc(blk->in_blk_sz, GFP_KERNEL); if (!blk->tx_cache) { dev_err(ctrl->dev, "error on allocating memory for block tx_cache. malloc(size:%zu)\n", blk->out_blk_sz); ret = -ENOMEM; goto in_buf_err; } blk->is_init = true; return 0; in_buf_err: kfree(blk->tx_cache); out_buf_err: return ret; } /* * i2c_msm_blk_wr_flush: flushes internal cached block to FIFO * * @return 0 on success or error code */ static int i2c_msm_blk_wr_flush(struct i2c_msm_ctrl *ctrl) { int byte_num; int ret = 0; struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk; u32 *buf_u32_ptr; if (!blk->tx_cache_idx) return 0; /* if no blocks availble wait for interrupt */ ret = i2c_msm_xfer_wait_for_completion(ctrl, &blk->wait_tx_blk); if (ret) return ret; /* * pause the controller until we finish loading the block in order to * avoid race conditions */ ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_PAUSE); if (ret < 0) return ret; i2c_msm_dbg(ctrl, MSM_DBG, "OUT-BLK:%*phC", blk->tx_cache_idx, blk->tx_cache); for (byte_num = 0; byte_num < blk->tx_cache_idx; byte_num += sizeof(u32)) { buf_u32_ptr = (u32 *) (blk->tx_cache + byte_num); writel_relaxed(*buf_u32_ptr, ctrl->rsrcs.base + QUP_OUT_FIFO_BASE); *buf_u32_ptr = 0; } /* now cache is empty */ blk->tx_cache_idx = 0; ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN); if (ret < 0) return ret; return ret; } /* * i2c_msm_blk_wr_buf: * * @len buf size (in bytes) * @return number of bytes from buf which have been processed (written to * FIFO or kept in out buffer and will be written later) */ static int i2c_msm_blk_wr_buf(struct i2c_msm_ctrl *ctrl, const u8 *buf, int len) { struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk; int byte_num; int ret = 0; for (byte_num = 0; byte_num < len; ++byte_num, ++buf) { blk->tx_cache[blk->tx_cache_idx] = *buf; ++blk->tx_cache_idx; /* flush cached buffer to HW FIFO when full */ if (blk->tx_cache_idx == blk->out_blk_sz) { ret = i2c_msm_blk_wr_flush(ctrl); if (ret) return ret; } } return byte_num; } /* * i2c_msm_blk_xfer_wr_tag: buffered writing the tag of current buf * @return zero on success */ static int i2c_msm_blk_xfer_wr_tag(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf; int len = 0; if (!buf->out_tag.len) return 0; len = i2c_msm_blk_wr_buf(ctrl, (u8 *) &buf->out_tag.val, buf->out_tag.len); if (len != buf->out_tag.len) return -EFAULT; buf->out_tag = (struct i2c_msm_tag) {0}; return 0; } /* * i2c_msm_blk_wr_xfer_buf: writes ctrl->xfer.cur_buf to HW * * @return zero on success */ static int i2c_msm_blk_wr_xfer_buf(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf; int len; int ret; ret = i2c_msm_blk_xfer_wr_tag(ctrl); if (ret) return ret; len = i2c_msm_blk_wr_buf(ctrl, i2c_msm_buf_to_ptr(buf), buf->len); if (len < buf->len) return -EFAULT; buf->byte_idx += len; return 0; } /* * i2c_msm_blk_rd_blk: read a block from HW FIFO to internal cache * * @return number of bytes read or negative error value * @need_bc number of bytes that we need * * uses internal counter to keep track of number of available blocks. When * zero, waits for interrupt. */ static int i2c_msm_blk_rd_blk(struct i2c_msm_ctrl *ctrl, int need_bc) { int byte_num; int ret = 0; struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk; u32 *cache_ptr = (u32 *) blk->rx_cache; int read_bc = min_t(int, blk->in_blk_sz, need_bc); /* wait for block avialble interrupt */ ret = i2c_msm_xfer_wait_for_completion(ctrl, &blk->wait_rx_blk); if (ret) return ret; /* Read block from HW to cache */ for (byte_num = 0; byte_num < blk->in_blk_sz; byte_num += sizeof(u32)) { if (byte_num < read_bc) { *cache_ptr = readl_relaxed(ctrl->rsrcs.base + QUP_IN_FIFO_BASE); ++cache_ptr; } } blk->rx_cache_idx = 0; return read_bc; } /* * i2c_msm_blk_rd_xfer_buf: fill in ctrl->xfer.cur_buf from HW * * @return zero on success */ static int i2c_msm_blk_rd_xfer_buf(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk; struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf; struct i2c_msg *msg = ctrl->xfer.msgs + buf->msg_idx; int copy_bc; /* number of bytes to copy to user's buffer */ int cache_avail_bc; int ret = 0; /* write tag to out FIFO */ ret = i2c_msm_blk_xfer_wr_tag(ctrl); if (ret) return ret; i2c_msm_blk_wr_flush(ctrl); while (buf->len || buf->in_tag.len) { cache_avail_bc = i2c_msm_blk_rd_blk(ctrl, buf->len + buf->in_tag.len); i2c_msm_dbg(ctrl, MSM_DBG, "IN-BLK:%*phC\n", cache_avail_bc, blk->rx_cache + blk->rx_cache_idx); if (cache_avail_bc < 0) return cache_avail_bc; /* discard tag from input FIFO */ if (buf->in_tag.len) { int discard_bc = min_t(int, cache_avail_bc, buf->in_tag.len); blk->rx_cache_idx += discard_bc; buf->in_tag.len -= discard_bc; cache_avail_bc -= discard_bc; } /* copy bytes from cached block to user's buffer */ copy_bc = min_t(int, cache_avail_bc, buf->len); memcpy(msg->buf + buf->byte_idx, blk->rx_cache + blk->rx_cache_idx, copy_bc); blk->rx_cache_idx += copy_bc; buf->len -= copy_bc; buf->byte_idx += copy_bc; } return ret; } /* * i2c_msm_blk_xfer: process transfer using block mode */ static int i2c_msm_blk_xfer(struct i2c_msm_ctrl *ctrl) { int ret = 0; struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf; struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk; if (!blk->is_init) { ret = i2c_msm_blk_init_struct(ctrl); if (!blk->is_init) return ret; } init_completion(&blk->wait_rx_blk); init_completion(&blk->wait_tx_blk); /* tx_cnt > 0 always */ blk->complete_mask = QUP_MAX_OUTPUT_DONE_FLAG; if (ctrl->xfer.rx_cnt) blk->complete_mask |= QUP_MAX_INPUT_DONE_FLAG; /* initialize block mode for new transfer */ blk->tx_cache_idx = 0; blk->rx_cache_idx = 0; ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RESET); if (ret < 0) return ret; /* program qup registers */ i2c_msm_qup_xfer_init_reset_state(ctrl); ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN); if (ret < 0) return ret; /* program qup registers which must be set *after* reset */ i2c_msm_qup_xfer_init_run_state(ctrl); while (i2c_msm_xfer_next_buf(ctrl)) { if (buf->is_rx) { ret = i2c_msm_blk_rd_xfer_buf(ctrl); if (ret) return ret; /* * SW workaround to wait for extra interrupt from * hardware for last block in block mode for read */ if (buf->is_last) { ret = i2c_msm_xfer_wait_for_completion(ctrl, &blk->wait_rx_blk); if (!ret) complete(&ctrl->xfer.complete); } } else { ret = i2c_msm_blk_wr_xfer_buf(ctrl); if (ret) return ret; } } i2c_msm_blk_wr_flush(ctrl); return i2c_msm_xfer_wait_for_completion(ctrl, &ctrl->xfer.complete); } /* * i2c_msm_dma_xfer_prepare: map DMA buffers, and create tags. * @return zero on success or negative error value */ static int i2c_msm_dma_xfer_prepare(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_mode_dma *dma = &ctrl->xfer.dma; struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf; struct i2c_msm_dma_chan *tx = &dma->chan[I2C_MSM_DMA_TX]; struct i2c_msm_dma_chan *rx = &dma->chan[I2C_MSM_DMA_RX]; struct i2c_msm_dma_buf *dma_buf; int rem_buf_cnt = I2C_MSM_DMA_DESC_ARR_SIZ; struct i2c_msg *cur_msg; enum dma_data_direction buf_dma_dirctn; struct i2c_msm_dma_mem data; u8 *tag_arr_itr_vrtl_addr; dma_addr_t tag_arr_itr_phy_addr; tx->desc_cnt_cur = 0; rx->desc_cnt_cur = 0; dma->buf_arr_cnt = 0; dma_buf = dma->buf_arr; tag_arr_itr_vrtl_addr = ((u8 *) dma->tag_arr.vrtl_addr); tag_arr_itr_phy_addr = dma->tag_arr.phy_addr; for (; i2c_msm_xfer_next_buf(ctrl) && rem_buf_cnt; ++dma_buf, tag_arr_itr_phy_addr += sizeof(dma_addr_t), tag_arr_itr_vrtl_addr += sizeof(dma_addr_t)) { /* dma-map the client's message */ cur_msg = ctrl->xfer.msgs + buf->msg_idx; data.vrtl_addr = cur_msg->buf + buf->byte_idx; if (buf->is_rx) { buf_dma_dirctn = DMA_FROM_DEVICE; rx->desc_cnt_cur += 2; /* msg + tag */ tx->desc_cnt_cur += 1; /* tag */ } else { buf_dma_dirctn = DMA_TO_DEVICE; tx->desc_cnt_cur += 2; /* msg + tag */ } /* for last buffer in a transfer msg */ if (buf->is_last) { /* add ovrhead byte cnt for tags specific to DMA mode */ ctrl->xfer.rx_ovrhd_cnt += 2; /* EOT+FLUSH_STOP tags*/ ctrl->xfer.tx_ovrhd_cnt += 2; /* EOT+FLUSH_STOP tags */ /* increment rx desc cnt to read off tags and * increment tx desc cnt to queue EOT+FLUSH_STOP tags */ tx->desc_cnt_cur++; rx->desc_cnt_cur++; } if ((rx->desc_cnt_cur >= I2C_MSM_DMA_RX_SZ) || (tx->desc_cnt_cur >= I2C_MSM_DMA_TX_SZ)) return -ENOMEM; data.phy_addr = dma_map_single(ctrl->dev, data.vrtl_addr, buf->len, buf_dma_dirctn); if (dma_mapping_error(ctrl->dev, data.phy_addr)) { dev_err(ctrl->dev, "error DMA mapping DMA buffers, err:%lld buf_vrtl:0x%p data_len:%d dma_dir:%s\n", (u64) data.phy_addr, data.vrtl_addr, buf->len, ((buf_dma_dirctn == DMA_FROM_DEVICE) ? "DMA_FROM_DEVICE" : "DMA_TO_DEVICE")); return -EFAULT; } /* copy 8 bytes. Only tag.len bytes will be used */ *((u64 *)tag_arr_itr_vrtl_addr) = buf->out_tag.val; i2c_msm_dbg(ctrl, MSM_DBG, "vrtl:0x%p phy:0x%llx val:0x%llx sizeof(dma_addr_t):%zu", tag_arr_itr_vrtl_addr, (u64) tag_arr_itr_phy_addr, *((u64 *)tag_arr_itr_vrtl_addr), sizeof(dma_addr_t)); /* * create dma buf, in the dma buf arr, based on the buf created * by i2c_msm_xfer_next_buf() */ *dma_buf = (struct i2c_msm_dma_buf) { .ptr = data, .len = buf->len, .dma_dir = buf_dma_dirctn, .is_rx = buf->is_rx, .is_last = buf->is_last, .tag = (struct i2c_msm_dma_tag) { .buf = tag_arr_itr_phy_addr, .len = buf->out_tag.len, }, }; ++dma->buf_arr_cnt; --rem_buf_cnt; } return 0; } /* * i2c_msm_dma_xfer_unprepare: DAM unmap buffers. */ static void i2c_msm_dma_xfer_unprepare(struct i2c_msm_ctrl *ctrl) { int i; struct i2c_msm_dma_buf *buf_itr = ctrl->xfer.dma.buf_arr; for (i = 0 ; i < ctrl->xfer.dma.buf_arr_cnt ; ++i, ++buf_itr) dma_unmap_single(ctrl->dev, buf_itr->ptr.phy_addr, buf_itr->len, buf_itr->dma_dir); } static void i2c_msm_dma_callback_xfer_complete(void *dma_async_param) { struct i2c_msm_ctrl *ctrl = dma_async_param; complete(&ctrl->xfer.complete); } /* * i2c_msm_dma_xfer_process: Queue transfers to DMA * @pre 1)QUP is in run state. 2) i2c_msm_dma_xfer_prepare() was called. * @return zero on success or negative error value */ static int i2c_msm_dma_xfer_process(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_mode_dma *dma = &ctrl->xfer.dma; struct i2c_msm_dma_chan *tx = &dma->chan[I2C_MSM_DMA_TX]; struct i2c_msm_dma_chan *rx = &dma->chan[I2C_MSM_DMA_RX]; struct scatterlist *sg_rx = NULL; struct scatterlist *sg_rx_itr = NULL; struct scatterlist *sg_tx = NULL; struct scatterlist *sg_tx_itr = NULL; struct dma_async_tx_descriptor *dma_desc_rx; struct dma_async_tx_descriptor *dma_desc_tx; struct i2c_msm_dma_buf *buf_itr; int i; int ret = 0; i2c_msm_dbg(ctrl, MSM_DBG, "Going to enqueue %zu buffers in DMA", dma->buf_arr_cnt); /* Set the QUP State to pause while DMA completes the txn */ ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_PAUSE); if (ret) { dev_err(ctrl->dev, "transition to pause state failed before DMA transaction :%d\n", ret); return ret; } sg_tx = kzalloc(sizeof(struct scatterlist) * tx->desc_cnt_cur, GFP_KERNEL); if (!sg_tx) { ret = -ENOMEM; goto dma_xfer_end; } sg_init_table(sg_tx, tx->desc_cnt_cur); sg_tx_itr = sg_tx; sg_rx = kzalloc(sizeof(struct scatterlist) * rx->desc_cnt_cur, GFP_KERNEL); if (!sg_rx) { ret = -ENOMEM; goto dma_xfer_end; } sg_init_table(sg_rx, rx->desc_cnt_cur); sg_rx_itr = sg_rx; buf_itr = dma->buf_arr; for (i = 0; i < dma->buf_arr_cnt ; ++i, ++buf_itr) { /* Queue tag */ sg_dma_address(sg_tx_itr) = buf_itr->tag.buf; sg_dma_len(sg_tx_itr) = buf_itr->tag.len; ++sg_tx_itr; /* read off tag + len bytes(don't care) in input FIFO * on read transfer */ if (buf_itr->is_rx) { /* rid of input tag */ sg_dma_address(sg_rx_itr) = ctrl->xfer.dma.input_tag.phy_addr; sg_dma_len(sg_rx_itr) = QUP_BUF_OVERHD_BC; ++sg_rx_itr; /* queue data buffer */ sg_dma_address(sg_rx_itr) = buf_itr->ptr.phy_addr; sg_dma_len(sg_rx_itr) = buf_itr->len; ++sg_rx_itr; } else { sg_dma_address(sg_tx_itr) = buf_itr->ptr.phy_addr; sg_dma_len(sg_tx_itr) = buf_itr->len; ++sg_tx_itr; } } /* this tag will be copied to rx fifo */ sg_dma_address(sg_tx_itr) = dma->eot_n_flush_stop_tags.phy_addr; sg_dma_len(sg_tx_itr) = QUP_BUF_OVERHD_BC; ++sg_tx_itr; /* * Reading the tag off the input fifo has side effects and * it is mandatory for getting the DMA's interrupt. */ sg_dma_address(sg_rx_itr) = ctrl->xfer.dma.input_tag.phy_addr; sg_dma_len(sg_rx_itr) = QUP_BUF_OVERHD_BC; ++sg_rx_itr; /* * We only want a single BAM interrupt per transfer, and we always * add a flush-stop i2c tag as the last tx sg entry. Since the dma * driver puts the supplied BAM flags only on the last BAM descriptor, * the flush stop will always be the one which generate that interrupt * and invokes the callback. */ dma_desc_tx = dmaengine_prep_slave_sg(tx->dma_chan, sg_tx, sg_tx_itr - sg_tx, tx->dir, (SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_NWD)); if (dma_desc_tx < 0) { dev_err(ctrl->dev, "error dmaengine_prep_slave_sg tx:%ld\n", PTR_ERR(dma_desc_tx)); ret = PTR_ERR(dma_desc_tx); goto dma_xfer_end; } /* callback defined for tx dma desc */ dma_desc_tx->callback = i2c_msm_dma_callback_xfer_complete; dma_desc_tx->callback_param = ctrl; dmaengine_submit(dma_desc_tx); dma_async_issue_pending(tx->dma_chan); /* queue the rx dma desc */ dma_desc_rx = dmaengine_prep_slave_sg(rx->dma_chan, sg_rx, sg_rx_itr - sg_rx, rx->dir, 0); if (dma_desc_rx < 0) { dev_err(ctrl->dev, "error dmaengine_prep_slave_sg rx:%ld\n", PTR_ERR(dma_desc_rx)); ret = PTR_ERR(dma_desc_rx); goto dma_xfer_end; } dmaengine_submit(dma_desc_rx); dma_async_issue_pending(rx->dma_chan); /* Set the QUP State to Run when completes the txn */ ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN); if (ret) { dev_err(ctrl->dev, "transition to run state failed before DMA transaction :%d\n", ret); goto dma_xfer_end; } ret = i2c_msm_xfer_wait_for_completion(ctrl, &ctrl->xfer.complete); dma_xfer_end: /* free scatter-gather lists */ kfree(sg_tx); kfree(sg_rx); return ret; } static void i2c_msm_dma_free_channels(struct i2c_msm_ctrl *ctrl) { int i; for (i = 0; i < I2C_MSM_DMA_CNT; ++i) { struct i2c_msm_dma_chan *chan = &ctrl->xfer.dma.chan[i]; if (!chan->is_init) continue; dma_release_channel(chan->dma_chan); chan->is_init = false; chan->dma_chan = NULL; } if (ctrl->xfer.dma.state > I2C_MSM_DMA_INIT_CORE) ctrl->xfer.dma.state = I2C_MSM_DMA_INIT_CORE; } static const char * const i2c_msm_dma_chan_name[] = {"tx", "rx"}; static int i2c_msm_dmaengine_dir[] = { DMA_MEM_TO_DEV, DMA_DEV_TO_MEM }; static int i2c_msm_dma_init_channels(struct i2c_msm_ctrl *ctrl) { int ret = 0; int i; /* Iterate over the dma channels to initialize them */ for (i = 0; i < I2C_MSM_DMA_CNT; ++i) { struct dma_slave_config cfg = {0}; struct i2c_msm_dma_chan *chan = &ctrl->xfer.dma.chan[i]; if (chan->is_init) continue; chan->name = i2c_msm_dma_chan_name[i]; chan->dma_chan = dma_request_slave_channel(ctrl->dev, chan->name); if (!chan->dma_chan) { dev_err(ctrl->dev, "error dma_request_slave_channel(dev:%s chan:%s)\n", dev_name(ctrl->dev), chan->name); /* free the channels if allocated before */ i2c_msm_dma_free_channels(ctrl); return -ENODEV; } chan->dir = cfg.direction = i2c_msm_dmaengine_dir[i]; ret = dmaengine_slave_config(chan->dma_chan, &cfg); if (ret) { dev_err(ctrl->dev, "error:%d dmaengine_slave_config(chan:%s)\n", ret, chan->name); dma_release_channel(chan->dma_chan); chan->dma_chan = NULL; i2c_msm_dma_free_channels(ctrl); return ret; } chan->is_init = true; } ctrl->xfer.dma.state = I2C_MSM_DMA_INIT_CHAN; return 0; } static void i2c_msm_dma_teardown(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_mode_dma *dma = &ctrl->xfer.dma; i2c_msm_dma_free_channels(ctrl); if (dma->state > I2C_MSM_DMA_INIT_NONE) dma_free_coherent(ctrl->dev, I2C_MSM_DMA_TAG_MEM_SZ, dma->input_tag.vrtl_addr, dma->input_tag.phy_addr); dma->state = I2C_MSM_DMA_INIT_NONE; } static int i2c_msm_dma_init(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_mode_dma *dma = &ctrl->xfer.dma; u8 *tags_space_virt_addr; dma_addr_t tags_space_phy_addr; /* check if DMA core is initialized */ if (dma->state > I2C_MSM_DMA_INIT_NONE) goto dma_core_is_init; /* * allocate dma memory for input_tag + eot_n_flush_stop_tags + tag_arr * for more see: I2C_MSM_DMA_TAG_MEM_SZ definition */ tags_space_virt_addr = dma_alloc_coherent( ctrl->dev, I2C_MSM_DMA_TAG_MEM_SZ, &tags_space_phy_addr, GFP_KERNEL); if (!tags_space_virt_addr) { dev_err(ctrl->dev, "error alloc %d bytes of DMAable memory for DMA tags space\n", I2C_MSM_DMA_TAG_MEM_SZ); return -ENOMEM; } /* * set the dma-tags virtual and physical addresses: * 1) the first tag space is for the input (throw away) tag */ dma->input_tag.vrtl_addr = tags_space_virt_addr; dma->input_tag.phy_addr = tags_space_phy_addr; /* 2) second tag space is for eot_flush_stop tag which is const value */ tags_space_virt_addr += I2C_MSM_TAG2_MAX_LEN; tags_space_phy_addr += I2C_MSM_TAG2_MAX_LEN; dma->eot_n_flush_stop_tags.vrtl_addr = tags_space_virt_addr; dma->eot_n_flush_stop_tags.phy_addr = tags_space_phy_addr; /* set eot_n_flush_stop_tags value */ *((u16 *) dma->eot_n_flush_stop_tags.vrtl_addr) = QUP_TAG2_INPUT_EOT | (QUP_TAG2_FLUSH_STOP << 8); /* 3) all other tag spaces are used for transfer tags */ tags_space_virt_addr += I2C_MSM_TAG2_MAX_LEN; tags_space_phy_addr += I2C_MSM_TAG2_MAX_LEN; dma->tag_arr.vrtl_addr = tags_space_virt_addr; dma->tag_arr.phy_addr = tags_space_phy_addr; dma->state = I2C_MSM_DMA_INIT_CORE; dma_core_is_init: return i2c_msm_dma_init_channels(ctrl); } static int i2c_msm_dma_xfer(struct i2c_msm_ctrl *ctrl) { int ret; ret = i2c_msm_dma_init(ctrl); if (ret) { dev_err(ctrl->dev, "DMA Init Failed: %d\n", ret); return ret; } /* dma map user's buffers and create tags */ ret = i2c_msm_dma_xfer_prepare(ctrl); if (ret < 0) { dev_err(ctrl->dev, "error on i2c_msm_dma_xfer_prepare():%d\n", ret); goto err_dma_xfer; } ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RESET); if (ret < 0) goto err_dma_xfer; /* program qup registers */ i2c_msm_qup_xfer_init_reset_state(ctrl); ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN); if (ret < 0) goto err_dma_xfer; /* program qup registers which must be set *after* reset */ i2c_msm_qup_xfer_init_run_state(ctrl); /* enqueue transfer buffers */ ret = i2c_msm_dma_xfer_process(ctrl); if (ret) dev_err(ctrl->dev, "error i2c_msm_dma_xfer_process(n_bufs:%zu):%d\n", ctrl->xfer.dma.buf_arr_cnt, ret); err_dma_xfer: i2c_msm_dma_xfer_unprepare(ctrl); return ret; } /* * i2c_msm_qup_slv_holds_bus: true when slave hold the SDA low */ static bool i2c_msm_qup_slv_holds_bus(struct i2c_msm_ctrl *ctrl) { u32 status = readl_relaxed(ctrl->rsrcs.base + QUP_I2C_STATUS); bool slv_holds_bus = !(status & QUP_I2C_SDA) && (status & QUP_BUS_ACTIVE) && !(status & QUP_BUS_MASTER); if (slv_holds_bus) dev_info(ctrl->dev, "bus lines held low by a slave detected\n"); return slv_holds_bus; } /* * i2c_msm_qup_poll_bus_active_unset: poll until QUP_BUS_ACTIVE is unset * * @return zero when bus inactive, or nonzero on timeout. * * Loop and reads QUP_I2C_MASTER_STATUS until bus is inactive or timeout * reached. Used to avoid race condition due to gap between QUP completion * interrupt and QUP issuing stop signal on the bus. */ static int i2c_msm_qup_poll_bus_active_unset(struct i2c_msm_ctrl *ctrl) { void __iomem *base = ctrl->rsrcs.base; ulong timeout = jiffies + msecs_to_jiffies(I2C_MSM_MAX_POLL_MSEC); int ret = 0; size_t read_cnt = 0; do { if (!(readl_relaxed(base + QUP_I2C_STATUS) & QUP_BUS_ACTIVE)) goto poll_active_end; ++read_cnt; } while (time_before_eq(jiffies, timeout)); ret = -EBUSY; poll_active_end: /* second logged value is time-left before timeout or zero if expired */ i2c_msm_prof_evnt_add(ctrl, MSM_DBG, I2C_MSM_ACTV_END, ret, (ret ? 0 : (timeout - jiffies)), read_cnt); return ret; } static void i2c_msm_clk_path_vote(struct i2c_msm_ctrl *ctrl) { i2c_msm_clk_path_init(ctrl); if (ctrl->rsrcs.clk_path_vote.client_hdl) msm_bus_scale_client_update_request( ctrl->rsrcs.clk_path_vote.client_hdl, I2C_MSM_CLK_PATH_RESUME_VEC); } static void i2c_msm_clk_path_unvote(struct i2c_msm_ctrl *ctrl) { if (ctrl->rsrcs.clk_path_vote.client_hdl) msm_bus_scale_client_update_request( ctrl->rsrcs.clk_path_vote.client_hdl, I2C_MSM_CLK_PATH_SUSPEND_VEC); } static void i2c_msm_clk_path_teardown(struct i2c_msm_ctrl *ctrl) { if (ctrl->rsrcs.clk_path_vote.client_hdl) { msm_bus_scale_unregister_client( ctrl->rsrcs.clk_path_vote.client_hdl); ctrl->rsrcs.clk_path_vote.client_hdl = 0; } } /* * i2c_msm_clk_path_init_structs: internal impl detail of i2c_msm_clk_path_init * * allocates and initilizes the bus scaling vectors. */ static int i2c_msm_clk_path_init_structs(struct i2c_msm_ctrl *ctrl) { struct msm_bus_vectors *paths = NULL; struct msm_bus_paths *usecases = NULL; i2c_msm_dbg(ctrl, MSM_PROF, "initializes path clock voting structs"); paths = devm_kzalloc(ctrl->dev, sizeof(*paths) * 2, GFP_KERNEL); if (!paths) { dev_err(ctrl->dev, "error msm_bus_paths.paths memory allocation failed\n"); return -ENOMEM; } usecases = devm_kzalloc(ctrl->dev, sizeof(*usecases) * 2, GFP_KERNEL); if (!usecases) { dev_err(ctrl->dev, "error msm_bus_scale_pdata.usecases memory allocation failed\n"); goto path_init_err; } ctrl->rsrcs.clk_path_vote.pdata = devm_kzalloc(ctrl->dev, sizeof(*ctrl->rsrcs.clk_path_vote.pdata), GFP_KERNEL); if (!ctrl->rsrcs.clk_path_vote.pdata) { dev_err(ctrl->dev, "error msm_bus_scale_pdata memory allocation failed\n"); goto path_init_err; } paths[I2C_MSM_CLK_PATH_SUSPEND_VEC] = (struct msm_bus_vectors) { .src = ctrl->rsrcs.clk_path_vote.mstr_id, .dst = MSM_BUS_SLAVE_EBI_CH0, .ab = 0, .ib = 0, }; paths[I2C_MSM_CLK_PATH_RESUME_VEC] = (struct msm_bus_vectors) { .src = ctrl->rsrcs.clk_path_vote.mstr_id, .dst = MSM_BUS_SLAVE_EBI_CH0, .ab = I2C_MSM_CLK_PATH_AVRG_BW(ctrl), .ib = I2C_MSM_CLK_PATH_BRST_BW(ctrl), }; usecases[I2C_MSM_CLK_PATH_SUSPEND_VEC] = (struct msm_bus_paths) { .num_paths = 1, .vectors = &paths[I2C_MSM_CLK_PATH_SUSPEND_VEC], }; usecases[I2C_MSM_CLK_PATH_RESUME_VEC] = (struct msm_bus_paths) { .num_paths = 1, .vectors = &paths[I2C_MSM_CLK_PATH_RESUME_VEC], }; *ctrl->rsrcs.clk_path_vote.pdata = (struct msm_bus_scale_pdata) { .usecase = usecases, .num_usecases = 2, .name = dev_name(ctrl->dev), }; return 0; path_init_err: devm_kfree(ctrl->dev, paths); devm_kfree(ctrl->dev, usecases); devm_kfree(ctrl->dev, ctrl->rsrcs.clk_path_vote.pdata); ctrl->rsrcs.clk_path_vote.pdata = NULL; return -ENOMEM; } /* * i2c_msm_clk_path_postponed_register: reg with bus-scaling after it is probed * * @return zero on success * * Workaround: i2c driver may be probed before the bus scaling driver. Calling * msm_bus_scale_register_client() will fail if the bus scaling driver is not * ready yet. Thus, this function should be called not from probe but from a * later context. Also, this function may be called more then once before * register succeed. At this case only one error message will be logged. At boot * time all clocks are on, so earlier i2c transactions should succeed. */ static int i2c_msm_clk_path_postponed_register(struct i2c_msm_ctrl *ctrl) { ctrl->rsrcs.clk_path_vote.client_hdl = msm_bus_scale_register_client(ctrl->rsrcs.clk_path_vote.pdata); if (ctrl->rsrcs.clk_path_vote.client_hdl) { if (ctrl->rsrcs.clk_path_vote.reg_err) { /* log a success message if an error msg was logged */ ctrl->rsrcs.clk_path_vote.reg_err = false; dev_err(ctrl->dev, "msm_bus_scale_register_client(mstr-id:%d):0x%x (ok)", ctrl->rsrcs.clk_path_vote.mstr_id, ctrl->rsrcs.clk_path_vote.client_hdl); } } else { /* guard to log only one error on multiple failure */ if (!ctrl->rsrcs.clk_path_vote.reg_err) { ctrl->rsrcs.clk_path_vote.reg_err = true; dev_info(ctrl->dev, "msm_bus_scale_register_client(mstr-id:%d):0 (not a problem)", ctrl->rsrcs.clk_path_vote.mstr_id); } } return ctrl->rsrcs.clk_path_vote.client_hdl ? 0 : -EAGAIN; } static void i2c_msm_clk_path_init(struct i2c_msm_ctrl *ctrl) { /* * bail out if path voting is diabled (master_id == 0) or if it is * already registered (client_hdl != 0) */ if (!ctrl->rsrcs.clk_path_vote.mstr_id || ctrl->rsrcs.clk_path_vote.client_hdl) return; /* if fail once then try no more */ if (!ctrl->rsrcs.clk_path_vote.pdata && i2c_msm_clk_path_init_structs(ctrl)) { ctrl->rsrcs.clk_path_vote.mstr_id = 0; return; }; /* on failure try again later */ if (i2c_msm_clk_path_postponed_register(ctrl)) return; } /* * i2c_msm_qup_isr: QUP interrupt service routine */ static irqreturn_t i2c_msm_qup_isr(int irq, void *devid) { struct i2c_msm_ctrl *ctrl = devid; void __iomem *base = ctrl->rsrcs.base; struct i2c_msm_xfer *xfer = &ctrl->xfer; struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk; u32 i2c_status = 0; u32 err_flags = 0; u32 qup_op = 0; u32 clr_flds = 0; bool log_event = false; bool signal_complete = false; bool need_wmb = false; i2c_msm_prof_evnt_add(ctrl, MSM_PROF, I2C_MSM_IRQ_BGN, irq, 0, 0); if (!atomic_read(&ctrl->xfer.is_active)) { dev_info(ctrl->dev, "irq:%d when no active transfer\n", irq); return IRQ_HANDLED; } i2c_status = readl_relaxed(base + QUP_I2C_STATUS); err_flags = readl_relaxed(base + QUP_ERROR_FLAGS); qup_op = readl_relaxed(base + QUP_OPERATIONAL); if (i2c_status & QUP_MSTR_STTS_ERR_MASK) { signal_complete = true; log_event = true; /* * If there is more than 1 error here, last one sticks. * The order of the error set here matters. */ if (i2c_status & QUP_ARB_LOST) ctrl->xfer.err = I2C_MSM_ERR_ARB_LOST; if (i2c_status & QUP_BUS_ERROR) ctrl->xfer.err = I2C_MSM_ERR_BUS_ERR; if (i2c_status & QUP_PACKET_NACKED) ctrl->xfer.err = I2C_MSM_ERR_NACK; } /* check for FIFO over/under runs error */ if (err_flags & QUP_ERR_FLGS_MASK) ctrl->xfer.err = I2C_MSM_ERR_OVR_UNDR_RUN; /* Dump the register values before reset the core */ if (ctrl->xfer.err && ctrl->dbgfs.dbg_lvl >= MSM_DBG) i2c_msm_dbg_qup_reg_dump(ctrl); /* clear interrupts fields */ clr_flds = i2c_status & QUP_MSTR_STTS_ERR_MASK; if (clr_flds) { writel_relaxed(clr_flds, base + QUP_I2C_STATUS); need_wmb = true; } clr_flds = err_flags & QUP_ERR_FLGS_MASK; if (clr_flds) { writel_relaxed(clr_flds, base + QUP_ERROR_FLAGS); need_wmb = true; } clr_flds = qup_op & (QUP_OUTPUT_SERVICE_FLAG | QUP_INPUT_SERVICE_FLAG); if (clr_flds) { writel_relaxed(clr_flds, base + QUP_OPERATIONAL); need_wmb = true; } if (need_wmb) /* * flush writes that clear the interrupt flags before changing * state to reset. */ wmb(); /* Reset and bail out on error */ if (ctrl->xfer.err) { /* Flush for the tags in case of an error and DMA Mode*/ if (ctrl->xfer.mode_id == I2C_MSM_XFER_MODE_DMA) { writel_relaxed(QUP_I2C_FLUSH, ctrl->rsrcs.base + QUP_STATE); /* * Ensure that QUP_I2C_FLUSH is written before * State reset */ wmb(); } /* HW workaround: when interrupt is level triggerd, more * than one interrupt may fire in error cases. Thus we * change the QUP core state to Reset immediately in the * ISR to ward off the next interrupt. */ writel_relaxed(QUP_STATE_RESET, ctrl->rsrcs.base + QUP_STATE); signal_complete = true; log_event = true; goto isr_end; } /* handle data completion */ if (xfer->mode_id == I2C_MSM_XFER_MODE_BLOCK) { /* block ready for writing */ if (qup_op & QUP_OUTPUT_SERVICE_FLAG) { log_event = true; if (qup_op & QUP_OUT_BLOCK_WRITE_REQ) complete(&blk->wait_tx_blk); if ((qup_op & blk->complete_mask) == blk->complete_mask) { log_event = true; signal_complete = true; } } /* block ready for reading */ if (qup_op & QUP_INPUT_SERVICE_FLAG) { log_event = true; complete(&blk->wait_rx_blk); } } else { /* for FIFO/DMA Mode*/ if (qup_op & QUP_MAX_INPUT_DONE_FLAG) { log_event = true; /* * If last transaction is an input then the entire * transfer is done */ if (ctrl->xfer.last_is_rx) signal_complete = true; } /* * Ideally, would like to check QUP_MAX_OUTPUT_DONE_FLAG. * However, QUP_MAX_OUTPUT_DONE_FLAG is lagging behind * QUP_OUTPUT_SERVICE_FLAG. The only reason for * QUP_OUTPUT_SERVICE_FLAG to be set in FIFO mode is * QUP_MAX_OUTPUT_DONE_FLAG condition. The code checking * here QUP_OUTPUT_SERVICE_FLAG and assumes that * QUP_MAX_OUTPUT_DONE_FLAG. */ if (qup_op & (QUP_OUTPUT_SERVICE_FLAG | QUP_MAX_OUTPUT_DONE_FLAG)) { log_event = true; /* * If last transaction is an output then the * entire transfer is done */ if (!ctrl->xfer.last_is_rx) signal_complete = true; } } isr_end: if (ctrl->xfer.err || (ctrl->dbgfs.dbg_lvl >= MSM_DBG)) i2c_msm_dbg_dump_diag(ctrl, true, i2c_status, qup_op); if (log_event || (ctrl->dbgfs.dbg_lvl >= MSM_DBG)) i2c_msm_prof_evnt_add(ctrl, MSM_PROF, I2C_MSM_IRQ_END, i2c_status, qup_op, err_flags); if (signal_complete) complete(&ctrl->xfer.complete); return IRQ_HANDLED; } static void i2x_msm_blk_free_cache(struct i2c_msm_ctrl *ctrl) { kfree(ctrl->xfer.blk.tx_cache); kfree(ctrl->xfer.blk.rx_cache); } static void i2c_msm_qup_init(struct i2c_msm_ctrl *ctrl) { u32 state; void __iomem *base = ctrl->rsrcs.base; i2c_msm_prof_evnt_add(ctrl, MSM_PROF, I2C_MSM_PROF_RESET, 0, 0, 0); i2c_msm_qup_sw_reset(ctrl); i2c_msm_qup_state_set(ctrl, QUP_STATE_RESET); writel_relaxed(QUP_N_VAL | QUP_MINI_CORE_I2C_VAL, base + QUP_CONFIG); writel_relaxed(QUP_OUTPUT_OVER_RUN_ERR_EN | QUP_INPUT_UNDER_RUN_ERR_EN | QUP_OUTPUT_UNDER_RUN_ERR_EN | QUP_INPUT_OVER_RUN_ERR_EN, base + QUP_ERROR_FLAGS_EN); writel_relaxed(QUP_INPUT_SERVICE_MASK | QUP_OUTPUT_SERVICE_MASK, base + QUP_OPERATIONAL_MASK); writel_relaxed(QUP_EN_VERSION_TWO_TAG, base + QUP_I2C_MASTER_CONFIG); i2c_msm_qup_fifo_calc_size(ctrl); /* * Ensure that QUP configuration is written and that fifo size if read * before leaving this function */ mb(); state = readl_relaxed(base + QUP_STATE); if (!(state & QUP_I2C_MAST_GEN)) dev_err(ctrl->dev, "error on verifying HW support (I2C_MAST_GEN=0)\n"); } /* * qup_i2c_try_recover_bus_busy: issue QUP bus clear command */ static int qup_i2c_try_recover_bus_busy(struct i2c_msm_ctrl *ctrl) { int ret; ulong min_sleep_usec; /* call i2c_msm_qup_init() to set core in idle state */ i2c_msm_qup_init(ctrl); /* must be in run state for bus clear */ ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN); if (ret < 0) { dev_err(ctrl->dev, "error: bus clear fail to set run state\n"); return ret; } /* * call i2c_msm_qup_xfer_init_run_state() to set clock dividers. * the dividers are necessary for bus clear. */ i2c_msm_qup_xfer_init_run_state(ctrl); writel_relaxed(0x1, ctrl->rsrcs.base + QUP_I2C_MASTER_BUS_CLR); /* * wait for recovery (9 clock pulse cycles) to complete. * min_time = 9 clock *10 (1000% margin) * max_time = 10* min_time */ min_sleep_usec = max_t(ulong, (9 * 10 * USEC_PER_SEC) / ctrl->rsrcs.clk_freq_out, 100); usleep_range(min_sleep_usec, min_sleep_usec * 10); return ret; } static int qup_i2c_recover_bus_busy(struct i2c_msm_ctrl *ctrl) { u32 bus_clr, bus_active, status; int retry = 0; dev_info(ctrl->dev, "Executing bus recovery procedure (9 clk pulse)\n"); do { qup_i2c_try_recover_bus_busy(ctrl); bus_clr = readl_relaxed(ctrl->rsrcs.base + QUP_I2C_MASTER_BUS_CLR); status = readl_relaxed(ctrl->rsrcs.base + QUP_I2C_STATUS); bus_active = status & I2C_STATUS_BUS_ACTIVE; if (++retry >= I2C_QUP_MAX_BUS_RECOVERY_RETRY) break; } while (bus_clr || bus_active); dev_info(ctrl->dev, "Bus recovery %s after %d retries\n", (bus_clr || bus_active) ? "fail" : "success", retry); return 0; } static int i2c_msm_qup_post_xfer(struct i2c_msm_ctrl *ctrl, int err) { /* poll until bus is released */ if (i2c_msm_qup_poll_bus_active_unset(ctrl)) { if ((ctrl->xfer.err == I2C_MSM_ERR_ARB_LOST) || (ctrl->xfer.err == I2C_MSM_ERR_BUS_ERR) || (ctrl->xfer.err == I2C_MSM_ERR_TIMEOUT)) { if (i2c_msm_qup_slv_holds_bus(ctrl)) qup_i2c_recover_bus_busy(ctrl); /* do not generalize error to EIO if its already set */ if (!err) err = -EIO; } } /* * Disable the IRQ before change to reset state to avoid * spurious interrupts. * */ disable_irq(ctrl->rsrcs.irq); /* flush dma data and reset the qup core in timeout error. * for other error case, its handled by the ISR */ if (ctrl->xfer.err & I2C_MSM_ERR_TIMEOUT) { /* Flush for the DMA registers */ if (ctrl->xfer.mode_id == I2C_MSM_XFER_MODE_DMA) writel_relaxed(QUP_I2C_FLUSH, ctrl->rsrcs.base + QUP_STATE); /* reset the qup core */ i2c_msm_qup_state_set(ctrl, QUP_STATE_RESET); err = -ETIMEDOUT; } else if (ctrl->xfer.err == I2C_MSM_ERR_NACK) { err = -ENOTCONN; } return err; } static enum i2c_msm_xfer_mode_id i2c_msm_qup_choose_mode(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_mode_fifo *fifo = &ctrl->xfer.fifo; struct i2c_msm_xfer *xfer = &ctrl->xfer; size_t rx_cnt_sum = xfer->rx_cnt + xfer->rx_ovrhd_cnt; size_t tx_cnt_sum = xfer->tx_cnt + xfer->tx_ovrhd_cnt; if (ctrl->dbgfs.force_xfer_mode != I2C_MSM_XFER_MODE_NONE) return ctrl->dbgfs.force_xfer_mode; if (((rx_cnt_sum < fifo->input_fifo_sz) && (tx_cnt_sum < fifo->output_fifo_sz))) return I2C_MSM_XFER_MODE_FIFO; if (ctrl->rsrcs.disable_dma) return I2C_MSM_XFER_MODE_BLOCK; return I2C_MSM_XFER_MODE_DMA; } /* * i2c_msm_xfer_calc_timeout: calc maximum xfer time in jiffies * * Basically timeout = (bit_count / frequency) * safety_coefficient. * The safety-coefficient also accounts for debugging delay (mostly from * printk() calls). */ static void i2c_msm_xfer_calc_timeout(struct i2c_msm_ctrl *ctrl) { size_t byte_cnt = ctrl->xfer.rx_cnt + ctrl->xfer.tx_cnt; size_t bit_cnt = byte_cnt * 9; size_t bit_usec = (bit_cnt * USEC_PER_SEC) / ctrl->rsrcs.clk_freq_out; size_t loging_ovrhd_coef = ctrl->dbgfs.dbg_lvl + 1; size_t safety_coef = I2C_MSM_TIMEOUT_SAFTY_COEF * loging_ovrhd_coef; size_t xfer_max_usec = (bit_usec * safety_coef) + I2C_MSM_TIMEOUT_MIN_USEC; ctrl->xfer.timeout = usecs_to_jiffies(xfer_max_usec); } static int i2c_msm_xfer_wait_for_completion(struct i2c_msm_ctrl *ctrl, struct completion *complete) { struct i2c_msm_xfer *xfer = &ctrl->xfer; long time_left; int ret = 0; time_left = wait_for_completion_timeout(complete, xfer->timeout); if (!time_left) { xfer->err = I2C_MSM_ERR_TIMEOUT; i2c_msm_dbg_dump_diag(ctrl, false, 0, 0); ret = -EIO; i2c_msm_prof_evnt_add(ctrl, MSM_ERR, I2C_MSM_COMPLT_FL, xfer->timeout, time_left, 0); } else { /* return an error if one detected by ISR */ if (xfer->err) ret = -(xfer->err); i2c_msm_prof_evnt_add(ctrl, MSM_DBG, I2C_MSM_COMPLT_OK, xfer->timeout, time_left, 0); } return ret; } static u16 i2c_msm_slv_rd_wr_addr(u16 slv_addr, bool is_rx) { return (slv_addr << 1) | (is_rx ? 0x1 : 0x0); } /* * @return true when the current transfer's buffer points to the last message * of the user's request. */ static bool i2c_msm_xfer_msg_is_last(struct i2c_msm_ctrl *ctrl) { return ctrl->xfer.cur_buf.msg_idx >= (ctrl->xfer.msg_cnt - 1); } /* * @return true when the current transfer's buffer points to the last * transferable buffer (size =< QUP_MAX_BUF_SZ) of the last message of the * user's request. */ static bool i2c_msm_xfer_buf_is_last(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_buf *cur_buf = &ctrl->xfer.cur_buf; struct i2c_msg *cur_msg = ctrl->xfer.msgs + cur_buf->msg_idx; return i2c_msm_xfer_msg_is_last(ctrl) && ((cur_buf->byte_idx + QUP_MAX_BUF_SZ) >= cur_msg->len); } static void i2c_msm_xfer_create_cur_tag(struct i2c_msm_ctrl *ctrl, bool start_req) { struct i2c_msm_xfer_buf *cur_buf = &ctrl->xfer.cur_buf; cur_buf->out_tag = i2c_msm_tag_create(start_req, cur_buf->is_last, cur_buf->is_rx, cur_buf->len, cur_buf->slv_addr); cur_buf->in_tag.len = cur_buf->is_rx ? QUP_BUF_OVERHD_BC : 0; } /* * i2c_msm_xfer_next_buf: support cases when msg.len > 256 bytes * * @return true when next buffer exist, or false when no such buffer */ static bool i2c_msm_xfer_next_buf(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer_buf *cur_buf = &ctrl->xfer.cur_buf; struct i2c_msg *cur_msg = ctrl->xfer.msgs + cur_buf->msg_idx; int bc_rem = cur_msg->len - cur_buf->end_idx; if (cur_buf->is_init && cur_buf->end_idx && bc_rem) { /* not the first buffer in a message */ cur_buf->byte_idx = cur_buf->end_idx; cur_buf->is_last = i2c_msm_xfer_buf_is_last(ctrl); cur_buf->len = min_t(int, bc_rem, QUP_MAX_BUF_SZ); cur_buf->end_idx += cur_buf->len; /* No Start is required if it is not a first buffer in msg */ i2c_msm_xfer_create_cur_tag(ctrl, false); } else { /* first buffer in a new message */ if (cur_buf->is_init) { if (i2c_msm_xfer_msg_is_last(ctrl)) { return false; } else { ++cur_buf->msg_idx; ++cur_msg; } } else { cur_buf->is_init = true; } cur_buf->byte_idx = 0; cur_buf->is_last = i2c_msm_xfer_buf_is_last(ctrl); cur_buf->len = min_t(int, cur_msg->len, QUP_MAX_BUF_SZ); cur_buf->is_rx = (cur_msg->flags & I2C_M_RD); cur_buf->end_idx = cur_buf->len; cur_buf->slv_addr = i2c_msm_slv_rd_wr_addr(cur_msg->addr, cur_buf->is_rx); i2c_msm_xfer_create_cur_tag(ctrl, true); } i2c_msm_prof_evnt_add(ctrl, MSM_DBG, I2C_MSM_NEXT_BUF, cur_buf->msg_idx, cur_buf->byte_idx, 0); return true; } static void i2c_msm_pm_clk_disable_unprepare(struct i2c_msm_ctrl *ctrl) { clk_disable_unprepare(ctrl->rsrcs.core_clk); clk_disable_unprepare(ctrl->rsrcs.iface_clk); } static int i2c_msm_pm_clk_prepare_enable(struct i2c_msm_ctrl *ctrl) { int ret; ret = clk_prepare_enable(ctrl->rsrcs.iface_clk); if (ret) { dev_err(ctrl->dev, "error on clk_prepare_enable(iface_clk):%d\n", ret); return ret; } ret = clk_prepare_enable(ctrl->rsrcs.core_clk); if (ret) { clk_disable_unprepare(ctrl->rsrcs.iface_clk); dev_err(ctrl->dev, "error clk_prepare_enable(core_clk):%d\n", ret); } return ret; } static int i2c_msm_pm_xfer_start(struct i2c_msm_ctrl *ctrl) { int ret; struct i2c_msm_xfer *xfer = &ctrl->xfer; mutex_lock(&ctrl->xfer.mtx); /* if system is suspended just bail out */ if (ctrl->pwr_state == I2C_MSM_PM_SYS_SUSPENDED) { struct i2c_msg *msgs = xfer->msgs + xfer->cur_buf.msg_idx; dev_err(ctrl->dev, "slave:0x%x is calling xfer when system is suspended\n", msgs->addr); mutex_unlock(&ctrl->xfer.mtx); return -EIO; } pm_runtime_get_sync(ctrl->dev); /* * if runtime PM callback was not invoked (when both runtime-pm * and systme-pm are in transition concurrently) */ if (ctrl->pwr_state != I2C_MSM_PM_RT_ACTIVE) { dev_info(ctrl->dev, "Runtime PM-callback was not invoked.\n"); i2c_msm_pm_resume(ctrl->dev); } ret = i2c_msm_pm_clk_prepare_enable(ctrl); if (ret) { mutex_unlock(&ctrl->xfer.mtx); return ret; } i2c_msm_qup_init(ctrl); /* Set xfer to active state (efectively enabling our ISR)*/ atomic_set(&ctrl->xfer.is_active, 1); enable_irq(ctrl->rsrcs.irq); return 0; } static void i2c_msm_pm_xfer_end(struct i2c_msm_ctrl *ctrl) { atomic_set(&ctrl->xfer.is_active, 0); /* * DMA resources are freed due to multi-EE use case. * Other EEs can potentially use the DMA * resources with in the same runtime PM vote. */ if (ctrl->xfer.mode_id == I2C_MSM_XFER_MODE_DMA) i2c_msm_dma_free_channels(ctrl); i2c_msm_pm_clk_disable_unprepare(ctrl); if (pm_runtime_enabled(ctrl->dev)) { pm_runtime_mark_last_busy(ctrl->dev); pm_runtime_put_autosuspend(ctrl->dev); } else { i2c_msm_pm_suspend(ctrl->dev); } mutex_unlock(&ctrl->xfer.mtx); } /* * i2c_msm_xfer_scan: initial input scan */ static void i2c_msm_xfer_scan(struct i2c_msm_ctrl *ctrl) { struct i2c_msm_xfer *xfer = &ctrl->xfer; struct i2c_msm_xfer_buf *cur_buf = &xfer->cur_buf; while (i2c_msm_xfer_next_buf(ctrl)) { if (cur_buf->is_rx) xfer->rx_cnt += cur_buf->len; else xfer->tx_cnt += cur_buf->len; xfer->rx_ovrhd_cnt += cur_buf->in_tag.len; xfer->tx_ovrhd_cnt += cur_buf->out_tag.len; if (i2c_msm_xfer_msg_is_last(ctrl)) xfer->last_is_rx = cur_buf->is_rx; } xfer->cur_buf = (struct i2c_msm_xfer_buf){0}; } static int i2c_msm_frmwrk_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) { int ret = 0; struct i2c_msm_ctrl *ctrl = i2c_get_adapdata(adap); struct i2c_msm_xfer *xfer = &ctrl->xfer; if (IS_ERR_OR_NULL(msgs)) { dev_err(ctrl->dev, " error on msgs Accessing invalid pointer location\n"); return PTR_ERR(msgs); } ret = i2c_msm_pm_xfer_start(ctrl); if (ret) return ret; /* init xfer */ xfer->msgs = msgs; xfer->msg_cnt = num; xfer->mode_id = I2C_MSM_XFER_MODE_NONE; xfer->err = 0; xfer->rx_cnt = 0; xfer->tx_cnt = 0; xfer->rx_ovrhd_cnt = 0; xfer->tx_ovrhd_cnt = 0; atomic_set(&xfer->event_cnt, 0); init_completion(&xfer->complete); xfer->cur_buf.is_init = false; xfer->cur_buf.msg_idx = 0; i2c_msm_prof_evnt_add(ctrl, MSM_PROF, I2C_MSM_XFER_BEG, num, msgs->addr, 0); i2c_msm_xfer_scan(ctrl); i2c_msm_xfer_calc_timeout(ctrl); xfer->mode_id = i2c_msm_qup_choose_mode(ctrl); dev_dbg(ctrl->dev, "xfer() mode:%d msg_cnt:%d rx_cbt:%zu tx_cnt:%zu\n", xfer->mode_id, xfer->msg_cnt, xfer->rx_cnt, xfer->tx_cnt); switch (xfer->mode_id) { case I2C_MSM_XFER_MODE_FIFO: ret = i2c_msm_fifo_xfer(ctrl); break; case I2C_MSM_XFER_MODE_BLOCK: ret = i2c_msm_blk_xfer(ctrl); break; case I2C_MSM_XFER_MODE_DMA: ret = i2c_msm_dma_xfer(ctrl); break; default: ret = -EINTR; }; i2c_msm_prof_evnt_add(ctrl, MSM_PROF, I2C_MSM_SCAN_SUM, ((xfer->rx_cnt & 0xff) | ((xfer->rx_ovrhd_cnt & 0xff) << 16)), ((xfer->tx_cnt & 0xff) | ((xfer->tx_ovrhd_cnt & 0xff) << 16)), ((ctrl->xfer.timeout & 0xfff) | ((xfer->mode_id & 0xf) << 24))); ret = i2c_msm_qup_post_xfer(ctrl, ret); /* on success, return number of messages sent (which is index + 1)*/ if (!ret) ret = xfer->cur_buf.msg_idx + 1; i2c_msm_prof_evnt_add(ctrl, MSM_PROF, I2C_MSM_XFER_END, ret, xfer->err, xfer->cur_buf.msg_idx + 1); /* process and dump profiling data */ if (xfer->err || (ctrl->dbgfs.dbg_lvl >= MSM_PROF)) i2c_msm_prof_evnt_dump(ctrl); i2c_msm_pm_xfer_end(ctrl); return ret; } enum i2c_msm_dt_entry_status { DT_REQ, /* Required: fail if missing */ DT_SGST, /* Suggested: warn if missing */ DT_OPT, /* Optional: don't warn if missing */ }; enum i2c_msm_dt_entry_type { DT_U32, DT_BOOL, DT_ID, /* of_alias_get_id() */ }; struct i2c_msm_dt_to_pdata_map { const char *dt_name; void *ptr_data; enum i2c_msm_dt_entry_status status; enum i2c_msm_dt_entry_type type; int default_val; }; static int i2c_msm_dt_to_pdata_populate(struct i2c_msm_ctrl *ctrl, struct platform_device *pdev, struct i2c_msm_dt_to_pdata_map *itr) { int ret, err = 0; struct device_node *node = pdev->dev.of_node; for (; itr->dt_name ; ++itr) { switch (itr->type) { case DT_U32: ret = of_property_read_u32(node, itr->dt_name, (u32 *) itr->ptr_data); break; case DT_BOOL: *((bool *) itr->ptr_data) = of_property_read_bool(node, itr->dt_name); ret = 0; break; case DT_ID: ret = of_alias_get_id(node, itr->dt_name); if (ret >= 0) { *((int *) itr->ptr_data) = ret; ret = 0; } break; default: dev_err(ctrl->dev, "error %d is of unknown DT entry type\n", itr->type); ret = -EBADE; } i2c_msm_dbg(ctrl, MSM_PROF, "DT entry ret:%d name:%s val:%d", ret, itr->dt_name, *((int *)itr->ptr_data)); if (ret) { *((int *)itr->ptr_data) = itr->default_val; if (itr->status < DT_OPT) { dev_err(ctrl->dev, "error Missing '%s' DT entry\n", itr->dt_name); /* cont on err to dump all missing entries */ if (itr->status == DT_REQ && !err) err = ret; } } } return err; } /* * i2c_msm_rsrcs_process_dt: copy data from DT to platform data * @return zero on success or negative error code */ static int i2c_msm_rsrcs_process_dt(struct i2c_msm_ctrl *ctrl, struct platform_device *pdev) { u32 fs_clk_div, ht_clk_div, noise_rjct_scl, noise_rjct_sda; int ret; struct i2c_msm_dt_to_pdata_map map[] = { {"i2c", &pdev->id, DT_REQ, DT_ID, -1}, {"qcom,clk-freq-out", &ctrl->rsrcs.clk_freq_out, DT_REQ, DT_U32, 0}, {"qcom,clk-freq-in", &ctrl->rsrcs.clk_freq_in, DT_REQ, DT_U32, 0}, {"qcom,disable-dma", &(ctrl->rsrcs.disable_dma), DT_OPT, DT_BOOL, 0}, {"qcom,master-id", &(ctrl->rsrcs.clk_path_vote.mstr_id), DT_SGST, DT_U32, 0}, {"qcom,noise-rjct-scl", &noise_rjct_scl, DT_OPT, DT_U32, 0}, {"qcom,noise-rjct-sda", &noise_rjct_sda, DT_OPT, DT_U32, 0}, {"qcom,high-time-clk-div", &ht_clk_div, DT_OPT, DT_U32, 0}, {"qcom,fs-clk-div", &fs_clk_div, DT_OPT, DT_U32, 0}, {NULL, NULL, 0, 0, 0}, }; ret = i2c_msm_dt_to_pdata_populate(ctrl, pdev, map); if (ret) return ret; /* set divider and noise reject values */ return i2c_msm_set_mstr_clk_ctl(ctrl, fs_clk_div, ht_clk_div, noise_rjct_scl, noise_rjct_sda); } /* * i2c_msm_rsrcs_mem_init: reads pdata request region and ioremap it * @return zero on success or negative error code */ static int i2c_msm_rsrcs_mem_init(struct platform_device *pdev, struct i2c_msm_ctrl *ctrl) { struct resource *mem_region; ctrl->rsrcs.mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qup_phys_addr"); if (!ctrl->rsrcs.mem) { dev_err(ctrl->dev, "error Missing 'qup_phys_addr' resource\n"); return -ENODEV; } mem_region = request_mem_region(ctrl->rsrcs.mem->start, resource_size(ctrl->rsrcs.mem), pdev->name); if (!mem_region) { dev_err(ctrl->dev, "QUP physical memory region already claimed\n"); return -EBUSY; } ctrl->rsrcs.base = devm_ioremap(ctrl->dev, ctrl->rsrcs.mem->start, resource_size(ctrl->rsrcs.mem)); if (!ctrl->rsrcs.base) { dev_err(ctrl->dev, "error failed ioremap(base:0x%llx size:0x%llx\n)", (u64) ctrl->rsrcs.mem->start, (u64) resource_size(ctrl->rsrcs.mem)); release_mem_region(ctrl->rsrcs.mem->start, resource_size(ctrl->rsrcs.mem)); return -ENOMEM; } return 0; } static void i2c_msm_rsrcs_mem_teardown(struct i2c_msm_ctrl *ctrl) { release_mem_region(ctrl->rsrcs.mem->start, resource_size(ctrl->rsrcs.mem)); } /* * i2c_msm_rsrcs_irq_init: finds irq num in pdata and requests it * @return zero on success or negative error code */ static int i2c_msm_rsrcs_irq_init(struct platform_device *pdev, struct i2c_msm_ctrl *ctrl) { int ret, irq; irq = platform_get_irq_byname(pdev, "qup_irq"); if (irq < 0) { dev_err(ctrl->dev, "error reading irq resource\n"); return irq; } ret = request_irq(irq, i2c_msm_qup_isr, IRQF_TRIGGER_HIGH, "i2c-msm-v2-irq", ctrl); if (ret) { dev_err(ctrl->dev, "error request_irq(irq_num:%d ) ret:%d\n", irq, ret); return ret; } disable_irq(irq); ctrl->rsrcs.irq = irq; return 0; } static void i2c_msm_rsrcs_irq_teardown(struct i2c_msm_ctrl *ctrl) { free_irq(ctrl->rsrcs.irq, ctrl); } static struct pinctrl_state * i2c_msm_rsrcs_gpio_get_state(struct i2c_msm_ctrl *ctrl, const char *name) { struct pinctrl_state *pin_state = pinctrl_lookup_state(ctrl->rsrcs.pinctrl, name); if (IS_ERR_OR_NULL(pin_state)) dev_info(ctrl->dev, "note pinctrl_lookup_state(%s) err:%ld\n", name, PTR_ERR(pin_state)); return pin_state; } /* * i2c_msm_rsrcs_gpio_pinctrl_init: initializes the pinctrl for i2c gpios * * @pre platform data must be initialized */ static int i2c_msm_rsrcs_gpio_pinctrl_init(struct i2c_msm_ctrl *ctrl) { ctrl->rsrcs.pinctrl = devm_pinctrl_get(ctrl->dev); if (IS_ERR_OR_NULL(ctrl->rsrcs.pinctrl)) { dev_err(ctrl->dev, "error devm_pinctrl_get() failed err:%ld\n", PTR_ERR(ctrl->rsrcs.pinctrl)); return PTR_ERR(ctrl->rsrcs.pinctrl); } ctrl->rsrcs.gpio_state_active = i2c_msm_rsrcs_gpio_get_state(ctrl, I2C_MSM_PINCTRL_ACTIVE); ctrl->rsrcs.gpio_state_suspend = i2c_msm_rsrcs_gpio_get_state(ctrl, I2C_MSM_PINCTRL_SUSPEND); return 0; } static void i2c_msm_pm_pinctrl_state(struct i2c_msm_ctrl *ctrl, bool runtime_active) { struct pinctrl_state *pins_state; const char *pins_state_name; if (runtime_active) { pins_state = ctrl->rsrcs.gpio_state_active; pins_state_name = I2C_MSM_PINCTRL_ACTIVE; } else { pins_state = ctrl->rsrcs.gpio_state_suspend; pins_state_name = I2C_MSM_PINCTRL_SUSPEND; } if (!IS_ERR_OR_NULL(pins_state)) { int ret = pinctrl_select_state(ctrl->rsrcs.pinctrl, pins_state); if (ret) dev_err(ctrl->dev, "error pinctrl_select_state(%s) err:%d\n", pins_state_name, ret); } else { dev_err(ctrl->dev, "error pinctrl state-name:'%s' is not configured\n", pins_state_name); } } /* * i2c_msm_rsrcs_clk_init: get clocks and set rate * * @return zero on success or negative error code */ static int i2c_msm_rsrcs_clk_init(struct i2c_msm_ctrl *ctrl) { int ret = 0; if ((ctrl->rsrcs.clk_freq_out <= 0) || (ctrl->rsrcs.clk_freq_out > I2C_MSM_CLK_FAST_PLUS_FREQ)) { dev_err(ctrl->dev, "error clock frequency %dKHZ is not supported\n", (ctrl->rsrcs.clk_freq_out / 1000)); return -EIO; } ctrl->rsrcs.core_clk = clk_get(ctrl->dev, "core_clk"); if (IS_ERR(ctrl->rsrcs.core_clk)) { ret = PTR_ERR(ctrl->rsrcs.core_clk); dev_err(ctrl->dev, "error on clk_get(core_clk):%d\n", ret); return ret; } ret = clk_set_rate(ctrl->rsrcs.core_clk, ctrl->rsrcs.clk_freq_in); if (ret) { dev_err(ctrl->dev, "error on clk_set_rate(core_clk, %dKHz):%d\n", (ctrl->rsrcs.clk_freq_in / 1000), ret); goto err_set_rate; } ctrl->rsrcs.iface_clk = clk_get(ctrl->dev, "iface_clk"); if (IS_ERR(ctrl->rsrcs.iface_clk)) { ret = PTR_ERR(ctrl->rsrcs.iface_clk); dev_err(ctrl->dev, "error on clk_get(iface_clk):%d\n", ret); goto err_set_rate; } return 0; err_set_rate: clk_put(ctrl->rsrcs.core_clk); ctrl->rsrcs.core_clk = NULL; return ret; } static void i2c_msm_rsrcs_clk_teardown(struct i2c_msm_ctrl *ctrl) { clk_put(ctrl->rsrcs.core_clk); clk_put(ctrl->rsrcs.iface_clk); i2c_msm_clk_path_teardown(ctrl); } static void i2c_msm_pm_suspend(struct device *dev) { struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev); if (ctrl->pwr_state == I2C_MSM_PM_RT_SUSPENDED) { dev_err(ctrl->dev, "attempt to suspend when suspended\n"); return; } i2c_msm_dbg(ctrl, MSM_DBG, "suspending..."); i2c_msm_pm_pinctrl_state(ctrl, false); i2c_msm_clk_path_unvote(ctrl); /* * We implement system and runtime suspend in the same way. However * it is important for us to distinguish between them in when servicing * a transfer requests. If we get transfer request while in runtime * suspend we want to simply wake up and service that request. But if we * get a transfer request while system is suspending we want to bail * out on that request. This is why if we marked that we are in system * suspend, we do not want to override that state with runtime suspend. */ if (ctrl->pwr_state != I2C_MSM_PM_SYS_SUSPENDED) ctrl->pwr_state = I2C_MSM_PM_RT_SUSPENDED; return; } static int i2c_msm_pm_resume(struct device *dev) { struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev); if (ctrl->pwr_state == I2C_MSM_PM_RT_ACTIVE) return 0; i2c_msm_dbg(ctrl, MSM_DBG, "resuming..."); i2c_msm_clk_path_vote(ctrl); i2c_msm_pm_pinctrl_state(ctrl, true); ctrl->pwr_state = I2C_MSM_PM_RT_ACTIVE; return 0; } #ifdef CONFIG_PM /* * i2c_msm_pm_sys_suspend_noirq: system power management callback */ static int i2c_msm_pm_sys_suspend_noirq(struct device *dev) { int ret = 0; struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev); enum i2c_msm_power_state prev_state = ctrl->pwr_state; i2c_msm_dbg(ctrl, MSM_DBG, "pm_sys_noirq: suspending..."); /* Acquire mutex to ensure current transaction is over */ mutex_lock(&ctrl->xfer.mtx); ctrl->pwr_state = I2C_MSM_PM_SYS_SUSPENDED; mutex_unlock(&ctrl->xfer.mtx); i2c_msm_dbg(ctrl, MSM_DBG, "pm_sys_noirq: suspending..."); if (prev_state == I2C_MSM_PM_RT_ACTIVE) { i2c_msm_pm_suspend(dev); /* * Synchronize runtime-pm and system-pm states: * at this point we are already suspended. However, the * runtime-PM framework still thinks that we are active. * The three calls below let the runtime-PM know that we are * suspended already without re-invoking the suspend callback */ pm_runtime_disable(dev); pm_runtime_set_suspended(dev); pm_runtime_enable(dev); } return ret; } /* * i2c_msm_pm_sys_resume: system power management callback * shifts the controller's power state from system suspend to runtime suspend */ static int i2c_msm_pm_sys_resume_noirq(struct device *dev) { struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev); i2c_msm_dbg(ctrl, MSM_DBG, "pm_sys_noirq: resuming..."); mutex_lock(&ctrl->xfer.mtx); ctrl->pwr_state = I2C_MSM_PM_RT_SUSPENDED; mutex_unlock(&ctrl->xfer.mtx); return 0; } #endif #ifdef CONFIG_PM_RUNTIME static void i2c_msm_pm_rt_init(struct device *dev) { pm_runtime_set_suspended(dev); pm_runtime_set_autosuspend_delay(dev, (MSEC_PER_SEC >> 2)); pm_runtime_use_autosuspend(dev); pm_runtime_enable(dev); } /* * i2c_msm_pm_rt_suspend: runtime power management callback */ static int i2c_msm_pm_rt_suspend(struct device *dev) { struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev); i2c_msm_dbg(ctrl, MSM_DBG, "pm_runtime: suspending..."); i2c_msm_pm_suspend(dev); return 0; } /* * i2c_msm_pm_rt_resume: runtime power management callback */ static int i2c_msm_pm_rt_resume(struct device *dev) { struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev); i2c_msm_dbg(ctrl, MSM_DBG, "pm_runtime: resuming..."); return i2c_msm_pm_resume(dev); } #else static void i2c_msm_pm_rt_init(struct device *dev) {} #define i2c_msm_pm_rt_suspend NULL #define i2c_msm_pm_rt_resume NULL #endif static const struct dev_pm_ops i2c_msm_pm_ops = { #ifdef CONFIG_PM_SLEEP .suspend_noirq = i2c_msm_pm_sys_suspend_noirq, .resume_noirq = i2c_msm_pm_sys_resume_noirq, #endif SET_RUNTIME_PM_OPS(i2c_msm_pm_rt_suspend, i2c_msm_pm_rt_resume, NULL) }; static u32 i2c_msm_frmwrk_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK); } static const struct i2c_algorithm i2c_msm_frmwrk_algrtm = { .master_xfer = i2c_msm_frmwrk_xfer, .functionality = i2c_msm_frmwrk_func, }; static const char const *i2c_msm_adapter_name = "MSM-I2C-v2-adapter"; static int i2c_msm_frmwrk_reg(struct platform_device *pdev, struct i2c_msm_ctrl *ctrl) { int ret; i2c_set_adapdata(&ctrl->adapter, ctrl); ctrl->adapter.algo = &i2c_msm_frmwrk_algrtm; strlcpy(ctrl->adapter.name, i2c_msm_adapter_name, sizeof(ctrl->adapter.name)); ctrl->adapter.nr = pdev->id; ctrl->adapter.dev.parent = &pdev->dev; ctrl->adapter.dev.of_node = pdev->dev.of_node; ret = i2c_add_numbered_adapter(&ctrl->adapter); if (ret) { dev_err(ctrl->dev, "error i2c_add_adapter failed\n"); return ret; } return ret; } static void i2c_msm_frmwrk_unreg(struct i2c_msm_ctrl *ctrl) { i2c_del_adapter(&ctrl->adapter); } static int i2c_msm_probe(struct platform_device *pdev) { struct i2c_msm_ctrl *ctrl; int ret = 0; dev_info(&pdev->dev, "probing driver i2c-msm-v2\n"); ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; ctrl->dev = &pdev->dev; platform_set_drvdata(pdev, ctrl); ctrl->dbgfs.dbg_lvl = DEFAULT_DBG_LVL; ctrl->dbgfs.force_xfer_mode = I2C_MSM_XFER_MODE_NONE; mutex_init(&ctrl->xfer.mtx); ctrl->pwr_state = I2C_MSM_PM_RT_SUSPENDED; if (!pdev->dev.of_node) { dev_err(&pdev->dev, "error: null device-tree node"); return -EBADE; } ret = i2c_msm_rsrcs_process_dt(ctrl, pdev); if (ret) { dev_err(ctrl->dev, "error in process device tree node"); return ret; } ret = i2c_msm_rsrcs_mem_init(pdev, ctrl); if (ret) goto mem_err; ret = i2c_msm_rsrcs_clk_init(ctrl); if (ret) goto clk_err; /* vote for clock to enable reading the version number off the HW */ i2c_msm_clk_path_vote(ctrl); ret = i2c_msm_pm_clk_prepare_enable(ctrl); if (ret) { dev_err(ctrl->dev, "error in enabling clocks:%d\n", ret); goto clk_err; } /* * reset the core before registering for interrupts. This solves an * interrupt storm issue when the bootloader leaves a pending interrupt. */ ret = i2c_msm_qup_sw_reset(ctrl); if (ret) dev_err(ctrl->dev, "error error on qup software reset\n"); i2c_msm_pm_clk_disable_unprepare(ctrl); i2c_msm_clk_path_unvote(ctrl); ret = i2c_msm_rsrcs_gpio_pinctrl_init(ctrl); if (ret) goto err_no_pinctrl; i2c_msm_pm_rt_init(ctrl->dev); ret = i2c_msm_rsrcs_irq_init(pdev, ctrl); if (ret) goto irq_err; i2c_msm_dbgfs_init(ctrl); ret = i2c_msm_frmwrk_reg(pdev, ctrl); if (ret) goto reg_err; i2c_msm_dbg(ctrl, MSM_PROF, "probe() completed with success"); return 0; reg_err: i2c_msm_dbgfs_teardown(ctrl); i2c_msm_rsrcs_irq_teardown(ctrl); irq_err: i2x_msm_blk_free_cache(ctrl); err_no_pinctrl: i2c_msm_rsrcs_clk_teardown(ctrl); clk_err: i2c_msm_rsrcs_mem_teardown(ctrl); mem_err: dev_err(ctrl->dev, "error probe() failed with err:%d\n", ret); devm_kfree(&pdev->dev, ctrl); return ret; } static int i2c_msm_remove(struct platform_device *pdev) { struct i2c_msm_ctrl *ctrl = platform_get_drvdata(pdev); /* Grab mutex to ensure ongoing transaction is over */ mutex_lock(&ctrl->xfer.mtx); ctrl->pwr_state = I2C_MSM_PM_SYS_SUSPENDED; pm_runtime_disable(ctrl->dev); /* no one can call a xfer after the next line */ i2c_msm_frmwrk_unreg(ctrl); mutex_unlock(&ctrl->xfer.mtx); mutex_destroy(&ctrl->xfer.mtx); i2c_msm_dma_teardown(ctrl); i2c_msm_dbgfs_teardown(ctrl); i2c_msm_rsrcs_irq_teardown(ctrl); i2c_msm_rsrcs_clk_teardown(ctrl); i2c_msm_rsrcs_mem_teardown(ctrl); i2x_msm_blk_free_cache(ctrl); return 0; } static struct of_device_id i2c_msm_dt_match[] = { { .compatible = "qcom,i2c-msm-v2", }, {} }; static struct platform_driver i2c_msm_driver = { .probe = i2c_msm_probe, .remove = i2c_msm_remove, .driver = { .name = "i2c-msm-v2", .owner = THIS_MODULE, .pm = &i2c_msm_pm_ops, .of_match_table = i2c_msm_dt_match, }, }; static int i2c_msm_init(void) { return platform_driver_register(&i2c_msm_driver); } subsys_initcall(i2c_msm_init); static void i2c_msm_exit(void) { platform_driver_unregister(&i2c_msm_driver); } module_exit(i2c_msm_exit); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:i2c-msm-v2");